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Inference for the mean difference in the two-sample random censorship model is
an important problem in comparative survival and reliability test studies. This
paper develops an adjusted empirical likelihood inference and a martingale-based
bootstrap inference for the mean difference. A nonparametric version of Wilks'
theorem for the adjusted empirical likelihood is derived, and the corresponding
empirical likelihood confidence interval of the mean difference is constructed. Also,
it is shown that the martingale-based bootstrap gives a correct first order
asymptotic approximation of the corresponding estimator of the mean difference,
which ensures that the martingale-based bootstrap confidence interval has
asymptotically correct coverage probability. A simulation study is conducted to
compare the adjusted empirical likelihood, the martingale-based bootstrap, and
Efron's bootstrap in terms of coverage accuracies and average lengths of the con-
fidence intervals. The simulation indicates that the proposed adjusted empirical
likelihood and the martingale-based bootstrap confidence procedures are com-
parable, and both seem to outperform Efron's bootstrap procedure. � 2001
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1. INTRODUCTION

In the analysis of survival data in comparative survival and reliability
studies, it is important to make statistical inference for the mean difference
of two populations based on the life data of two treatment groups or a
treatment group and a control group. Let X 0

1 , ..., X 0
n and Y 0

1 , ..., Y 0
m be

random samples of survival times from two different populations with
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distribution function F and G, respectively. Let +1 and +2 be the means of the
two populations X0 and Y 0, respectively, and %=+2&+1 . In practice, we
need to compare the two population means, i.e., test %=0, or provide a
confidence interval for %. With complete observations, Qin (1997) used an
empirical likelihood ratio statistic to test hypothesis and construct con-
fidence interval for %. This paper extends the method to the two sample
random censorship model. In addition, a martingale-based bootstrap
inference for the mean difference is also established.

In the two-sample random censorship model, the variables [X 0
1 , ..., X 0

n]
and [Y 0

1 , ..., Y 0
m] are randomly censored by two sequences of random

variables [U1 , ..., Un] and [V1 , ..., Vn], with distribution function K and
Q, respectively. So instead of observing the X 0

i 's and Y 0
j 's directly, one only

observes (Xi , $i) for i=1, 2, ..., n and (Yj , qj) for j=1, 2, ..., m, where

Xi =min(X 0
i , Ui), $i=I(X 0

i �Ui),

Yj =min(Y 0
j , Vj), qj=I(Y 0

j �V j).

Here I( } ) denotes the indicator function. We shall assume that X 0
i , Ui , Y 0

j ,
Vj for i=1, ..., n and j=1, ..., m are mutually independent.

As Owen (1988) pointed out, empirical likelihood methods were first
used by Thomas and Grunkemeier (1975) to construct confidence intervals
for survival probabilities. In their method, Thomas and Grunkemeier used
product type constraints by decomposing the survival probability to a
product of some conditional probabilities. However, this limits the
applicability of this method to other cases. For example, it is difficult to
extend this method to inference for the mean difference in the two sample
random censoring model considered here. The reason is that proper
product type constraints are difficult to find. It is noted that Owen's
empirical likelihood is based on linear constraints and hence has very
general applicability in the absence of censoring (see, e.g., Owen, 1988,
1990, 1991; Hall and Scala, 1990; DiCiccio et al., 1991; Chen, 1993, 1994;
Qin and Lawless, 1994; Qin 1996; Chen and Qin, 1993; Kolaczyk, 1994,
and Wang and Jing, 1999). We show in this paper that for the two-sample
random censorship model, the empirical likelihood idea is also useful in
order to develop an adjusted empirical likelihood inference for the mean
difference. Under the assumption that the censoring distributions are
known, one could extend Owen's idea to define an empirical log-likelihood
function (ELLF). However, in practice, the censoring distributions are
usually unknown. Naturally, we replace the unknown censoring distribu-
tion functions in ELLF with their Kaplan�Meier product-limit estimators
(Kaplan and Meier, 1958) to define an estimated ELLF. The estimated
ELLF involves the estimation of the unknown censoring distributions and
hence is not asymptotically standard chi-square distributed. This motivates
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us to adjust the estimated ELLF in such a way that the adjusted ELLF
retains an asymptotic standard chi-square distribution. Hence, such an
adjustment also achieves the construction of confidence intervals. The
adjusted empirical likelihood has the same advantages as the standard
empirical likelihood except that an unknown adjusting factor must be
estimated. The adjusting factor is a quantity which reflects the loss of infor-
mation due to censoring. A different approach to extend empirical
likelihood for censored data is given in Pan and Zhou (2000).

Another accomplishment of this paper is the construction of a mar-
tingale-based bootstrap confidence interval of %. This procedure is as
follows: First, we define an estimator of %, say %� n , and represent it as a
stochastic integral with respect to a martingale. Second, we replace the
martingale process by the products of the corresponding point processes
and standard normal random variables. Finally, we use the conditional dis-
tribution of the resulting statistic to approximate that of %� n and apply the
approximate distribution to construct a confidence interval of %. Such a
procedure was first applied by Lin et al. (1993) for checking the Cox
model. Later, Lin and Spiekerman (1996) also applied it for model check-
ing for a parametric regression. Recently, Wang (1998) applied this method
to inference for a class of functionals of survival distribution and termed it
``martingale-based bootstrap.'' An obvious advantage of this method is that
it doesn't use the variance estimators. Another advantage is that its com-
putation is simple since it involves only resampling from a standard normal
population.

The rest of this paper is organized as follows. In Section 2, the adjusted
empirical log-likelihood ratio is described with Wilks' Theorem (Theorem 2.1)
established. From there, an adjusted empirical likelihood confidence interval of
% is derived. We introduce in Section 3 the martingale-based bootstrap method
and provides the approximation theorems. A simulation study is conducted in
Section 4 to compare the coverage accuracies of the confidence intervals
constructed from the adjusted empirical likelihood, the martingale-based
bootstrap and the Efron's bootstrap method. Proofs are given in the Appendix.

2. AN ADJUSTED EMPIRICAL LIKELIHOOD INFERENCE

2.1. Description of Methods

We first give some motivation for defining the adjusted empirical
likelihood. Let %(F, G )=EY 0&EX0. Then we have

E
qY

1&Q(Y&)
&E

$X
1&K(X&)

=%(F, G ) (2.1)
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by the facts that E $X
1&K(X&)=EX 0 and E qY

1&Q(Y&)=EY 0. In the location
shift model, % is just %(F, G ). Let P1=( p11 , ..., p1n) and P2=( p21 , ..., p2m)
be probability vectors, i.e., �n

i=1 p1i=1, �m
j=1 p2j=1, p1i>0, p2j>0 for

i=1, 2, ..., n and j=1, 2, ..., m. Let Fp1
and Gp2

be the distribution functions
which assign probabilities p1i and p2j at the points Xi $i �(1&K(Xi&)) and
Yj qj �(1&Q(Yj&)), respectively, for i=1, 2, ..., n and j=1, 2, ..., m. Then,
we have

%(Fp1
, Gp2

)= :
m

j=1

p2j
qjYj

1&Q(Yj&)
& :

n

i=1

p1i
$iXi

1&K(Xi&)
. (2.2)

The empirical log-likelihood ratio can be defined as

l0 (%)=&2 max
%(Fp1 , Gp2)=% \ :

n

i=1

log(np1i)+ :
m

j=1

log(mp2j)+ . (2.3)

�n
i=1 p1i=1

�n
j=1 p2j=1

Notice that K and Q in the definition of %(Fp1
, Gp2

) are usually assumed
unknown. Hence, a natural way is to replace K and Q in l0 (%) by their
Kaplan-Meier estimators, say K� n and Q� m , which are defined by

1&K� n (t)= `
n

i=1
_ n&i

n&i+1&
I[X(i)�t, $(i)=0]

and

1&Q� m (t)= `
m

j=1 _
m& j

m& j+1&
I[Y(j)�t, q(j)=0]

,

where X(1)�X(2)� } } } �X(n) and Y(1)�Y(2)� } } } �Y(n) are the order
statistics of the X-sample and Y-sample, and $(i ) and q( j ) are the $ and
q associated with X(i ) and Y( j ) respectively. That is, we can define an
estimated empirical likelihood, evaluated at %, by

l� (%)=&2 max _ :
n

i=1

log(np1i)+ :
m

j=1

log(mp2j)& (2.4)

subject to the restrictions

{
:
m

j=1

p2j \ Yjqj

1&Q� m (Yj&)+& :
n

i=1

p1i \ Xi $i

1&K� n (X i&)+=%,

:
n

i=1

p1i=1 and :
m

j=1

p2j=1.

(2.5)
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Let Vni=Xi$i �(1&K� n (Xi&)), Umj=Yjqj�(1&Q� m (Yj&)), Sn, mi=
1
m �m

j=1

Umj&Vni , and Tn, mj=Umj&
1
n �n

i=1 Vni for i=1, 2, ..., n and j=1, 2, ..., m.
By using the Lagrange multiplier method, l� (%) can be proved to be

l� (%)=2 { :
n

i=1

log _1+* \1+
m
n + (Sn, mi&%)& (2.6)

+ :
m

j=1

log _1+* \1+
n
m+ (Tn, mj&%)&= , (2.7)

where * satisfies

\1+
m
n + :

n

i=1

Sn, mi&%

1+* \1+
m
n + (Sn, mi&%)

+\1+
n
m+

_ :
m

j=1

Tn, mj&%

1+* \1+
n
m+ (Tn, mj&%)

=0. (2.8)

Let F� n (t) and G� m (t) be the Kaplan�Meier estimators of F and G, respec-
tively. It is easy to check the jumps of F� n (t) and G� m (t) at Xi and Yj are
$i �n(1&K� n (Xi&)) and qj �m(1&Q� m (Yj&)), respectively. This implies
that 1

n �n
i=1 Vni=��

0 t dF� n (t) and 1
m �m

i=1 Umj=��
0 t dG� m (t). Hence, the

modified jackknife variance estimators for ��
0 t dF� n (t) and ��

0 t dG� m (t) due
to Stute (1996) can be used to estimate the asymptotic variance of
1
n �n

i=1 Vni and of 1
m �m

j=1 Umj consistently. Let us denote by _̂2
x, Jk and _̂2

y, Jk

the modified jackknife estimators of the asymptotic variances, respectively.
Further, let

_̂2
n, m=4 \1+

m
n + _̂2

x, JK+4 \1+
n
m+ _̂2

y, JK , (2.9)

D� 2
n, m=\n+m

n + 1
n

:
n

i=1

(Sn, mi&%)2+\n+m
m + 1

m
:
m

j=1

(Tn, mj&%)2 (2.10)

and

'n, m=
D� 2

n, m

_̂2
n, m

. (2.11)

Then, the adjusted empirical log-likelihood is defined as

l� ad (%)='n, m l� (%), (2.12)
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and l� ad (%) can be proved to be asymptotically standard chi-square dis-
tributed with 1 degree of freedom because of the use of the estimated
adjusting factor 'n, m . This is an estimator of a quantity indicating the
information loss due to censoring.

Let H� (s)=P(X1>s), L� (s)=P(Y1>s), H� 0 (s)=P(X1>s, $1=0), L� 0 (s)
=P(Y1>s, q1=0), H� 1 (s)=P(X1>s, $1=1), L� 1 (s)=P(Y1>s, q1=1),
#0, H(x)=exp[�x&

0
dH� 0(s)

H� (s))
], CH(x)=�x&

0
dK(s)

(1&H(s))(1&K(s))
, {H=inf[t : H(t)=1].

Similar definitions also apply to #0, L , CL (x) and {L .
The following assumptions are needed for our results:

(A1)(i) �{H
0 x#2

0, H (x) dH� 1 (x)<�,

(ii) �{L
0 y#2

0, L ( y) dL� 1 ( y)<�,

(A2)(i) �{H
0 xC 1�2

H (x) dF(x)<�,

(ii) �{L
0 yC 12

L ( y) dG( y)<�

(A3)(i) �{H
0 (x2 dF(x)�(1&K(x&)))<�,

(ii) �{L
0 ( y2 dG( y)�(1&Q(Y&)))<�,

(A4)(i) {F={H and F({F)=F({F&)

(ii) {G={L and G({G)=G({G&),

(A5) m
n � \>0.

Remark 2.1. Conditions (A1) and (A2) are used in Stute (1996, 1995).
Condition (A3) is to ensure that the second moment of 2Y�(1&Q(Y&))
and $X�(1&K(X&)) exists. Condition (A4) is used in Stute and Wang
(1993) to ensure estimability of F and G in the right tails, which in turn
ensure estimability of the means of F and G.

Theorem 2.1. Under assumptions (A1)�(A5), l� ad (%) has an asymptotic
standard chi-square distribution with 1 degree of freedom, that is,

l� ad (%) w�
L /2

1 .

Theorem 2.1 can be used to construct an :-level confidence interval, i.e.

I:=[%� : l� (%� )�c:],

with P(/2
1�c:)=1&:.

Theorem 2.2. Under the conditions of Theorem 2.1, I: has asymptoti-
cally the correct coverage probability 1&:, i.e.,

P(% # I:)=1&:+o(1).
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Theorem 2.1 can be used to test the hypothesis H0 : %=%0 . According to
the duality between confidence intervals and hypothesis tests, we can define
an :-level empirical likelihood test for the null hypothesis H0 by

,={1, if l� ad (%0)>c:

0, otherwise.

By Theorem 2.1, we can get

P(,=1 | H0)=:+o(1),

which means the asymptotic significant level of , is :. That is, we reject H0

at asymptotic confidence level : if l� ad (%0)>c: , where c: is as defined
before.

3. MARTINGALE-BASED BOOTSTRAP INFERENCE

Note that %=EY 0&EX 0=��
0 (1&G(t)) dt&��

0 (1&F(t)) dt. Hence, a
natural estimator of % is

%� n, m=|
Y(m)

0
(1&G� m (t)) dt&|

X(n)

0
(1&F� n (t)) dt, (3.1)

where F� n (t) and G� m (t) are the Kaplan�Meier estimators.
Let Hn (t)= 1

n �n
i=1 I[Xi�t], Lm(t)= 1

m �m
j=1 I[Yj�t], N1i (t)=I[Xi�t,

$i=1], N2 j (t)=I[Y j�t, q j=1], 4F (t)=� t
0

dF(s)
1&F(s)

, and 4G(t)=� t
0

dG(s)
1&G(s)

.
Let

M F
i (t)=N1i (t)&|

t

0
I[Xi�s] d4F (s)

and

M G
j (t)=N2 j (t)&|

t

0
I[Yj�s] d4G(s).

By Shorack and Wellner (1986), the M F
i (t)'s and the M G

j (t)'s are square
integrable martingales on [0, +�).

Let JmY ( y)=I[0� y�Y(m)] and JnX (x)=I[0�x�X(n)].
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Theorem 3.1. Assume - n �{F
X(n)

(1&F(t)) dt w�
p

0 and - m �{G
Y(m)

(1 &
G(t)) dt w�

p
0. We have

%� n, m&%=:m&;n+op (n&1�2)+op (m&1�2),

where

:m=&
1
m

:
m

j=1
|

Y(m)

0 _|
Y(m)

y
(1&G(x)) dx&

_
1&G� m ( y&)

1&G( y)
JmY ( y)

1&Lm ( y&)
dM G

j ( y)

and

;n=&
1
n

:
n

i=1
|

X(n)

0 _|
X(n)

x
(1&F(x)) dx&

_
1&F� n (x&)

1&F(x)
JnX (x)

1&Hn (x&)
dM F

i (x).

Theorem 3.1 gives a martingale representation for %� n, m&%. From this
theorem, the asymptotic distribution of - n+m(%� n, m&%) is the same as
that of - n+m(:m&;n) as m

n � \. Following the idea of Lin et al. (1993),
the limiting distribution of - n+m(:m&;n) can be approximated through
a Monte Carlo simulation. Let [!1i , 1�i�n] and [!2 j , 1� j�m] be
independent standard normal random variables which are independent of
each other, [(Xi , $i), 1�i�n], and [(Yj , qj)1� j�m], respectively.
We replace [M F

i (t)] and [M G
j (t)] in :m and ;n by [N1i (t) !1i] and

[N2 j (t) !2 j], and F and G by F� n (t) and G� m (t), respectively. The resulting
statistic is then

W*n, m=:m*&;n*,

where

:m*=&
1
m

:
m

j=1
|

Y(m)

0 \|
(Y(m)

y
(1&G� m (s)) ds

_
1&G� m ( y&)

1&G� m ( y)

JmY ( y)
1&Lm ( y&)+ !2 j dN2 j ( y)
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and

;n*=&
1
n

:
n

j=1
|

X(n)

0 \|
(X(n)

x
(1&F� n (t)) dt

_
1&F� n (x&)

1&F� n (x)

JnX (x)
1&Hn (x&)+ !1j dN1j (x).

The following theorem shows that the distribution of - n+m(%� n, m&%)
can be approximated by K*(x)=P*(- n+m W*n, m�x), where P* denotes
the conditional probability given [Xi , $i]n

i=1 and [Yj , q j]m
j=1 .

Theorem 3.2. Under the following conditions:

(C1) �{H
0

1
1&K(s&) dF(s) and �{L

0
1

1&Q(s&) dG(s)<�,

(C2) supt | �{F
t (1&F(s)) ds�(1&F(t))|<� and supt | �{G

t (1&G(s)) ds�
(1&G(t))|<�,

(C3) - n �{F
(X(n)

(1&F(t)) dt w�
p

0 and - m �{G
Y(m)

(1&G(t)) dt w�
p

0,

if F and K, and G and Q have no common jumps and F([{H]), and
G([{L])=0, we have with probability 1,

sup
x

|P(- n+m (S� n, m&S)�x)&K*(x)| w�a.s. 0.

Remark 3.1. There are many examples where the conditions of
Theorem 3.2 are satisfied. For instance, the first parts of Conditions (C1)
and (C2) are clearly satisfied when F(t)=1&e&2rt and K(t)=1&e&rt for
t�0 and some constant r>0. Now let us check the first part of Condition
(C3) for this example. Notice that P(X(n)>log n5�16r)=1&(1&e&log n15�16

)n

=1&(1&n&15�16)n. This proves P(X(n)>log n5�16r) � 1. Hence, we have in
probability - n �{F

X(n)
(1&F(t) dt�- ne&log n5�8

� 0.

Clearly, K*(x) can be calculated using Monte carlo simulation by
repeatedly generating [!1i]n

i=1 and [!2 j]m
j=1 , respectively, from the

standard normal distribution while keeping [Xi , $i]n
i=1 and [Y j , qj]m

j=1

fixed. This method is introduced by Lin et al. (1993) and is termed the
martingale-based bootstrap in Wang and Jing (1998).

Theorem 3.2 can also be applied for the construction of confidence inter-
vals of %. From Theorem 3.2, the confidence interval for % at level : can be
written as

IMB, :=(%� n, m&q̂*1&:�2 (n+m)&1�2, %� n, m&q̂*:�2 (n+m)&1�2),
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where q̂# satisfies K*(q̂#*)=# for 0<#<1. The following theorem shows
that the confidence interval has the correct coverage probability.

Theorem 3.3. Under conditions of Theorem 3.2, we have

P(% # I� MB, :)=1&:+o(1).

4. SIMULATION RESULTS

In the introduction, we presented some advantages of the adjusted
empirical likelihood (AEL) and the martingale-based bootstrap method
(MBB). We now compare the performances of the AEL, the MBB, and
Efron's bootstrap (EB) method in terms of the coverage probabilities and
the average lengths of their confidence intervals via simulation studies. The
coverage probabilities and average lengths of the EB confidence sets are
calculated based on the bootstrap estimator of %� n, m in (3.1).

We consider the two-sample random censorship model with F(t)=
1&e&2t, t�0, G(t)=1&e&2(t&1), t�1, K(t)=1&e&c1t, t�0 and Q(t)=1
&e&c2(t&1), t�1 with c1 and c2 chosen to accommodate certain preselected
censoring percentage. That is, in the model, the life data of two groups were
generated from F(t) and G(t), and the corresponding censoring times were
generated from K(t) and Q(t), respectively. The simulations were run with
sample sizes of (n, m)=(10, 20), (15, 10), (25, 30), (30, 25) and (60, 60),
respectively. The coverage probabilities and average lengths of the confidence
intervals are calculated for the AEL, MB, and EB method from 1000
simulated data sets of each sample size (n, m). The nominal level is taken
to be 0.90. Table I gives the simulation results.

From Table I, we observe the following:

(1) The AEL and the MBB method do perform competitively in
comparison to Efron's bootstrap method, as their confidence intervals have
relatively high coverage accuracies and short average lengths. Actually, the
standard bootstrap confidence intervals are too conservative in terms of the
coverage probabilities, and this suggests lack of consistency.

(2) The AEL works uniformly well in terms of the average lengths of
the confidence intervals. In terms of coverage accuracies, it seems that the
AEL also performs better than the MBB for small and moderate sample
sizes (e.g., (n, m)=(10, 15) and (n, m)=(25, 30)) in the cases where the CP
are 0.10 and 0.25, respectively. For large sample sizes (e.g., (n, m)=
(60, 60)), the MBB seems to perform slightly better than the AEL. Also,
the MBB is more preferable than AEL in the worst case where the CP is
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TABLE I

Coverage Probabilities (COPR) and Average Lengths (AVLE) for the Confidence Intervals of
% under Different Censoring Percentages (CP) When the Nominal Level is 0.90

AEL MB EB

CP (n, m) COPR AVLE COPR AVLE COPR AVLE

(10,15) 0.8760 0.4010 0.9520 0.6060 0.9800 1.5784

(15,10) 0.8680 0.3720 0.9480 0.6295 0.9720 1.4296

0.10 (25,30) 0.9180 0.3480 0.8770 0.4534 0.9760 0.7323

(30,25) 0.8860 0.3430 0.9390 0.4515 0.9580 0.5803

(60,60) 0.9080 0.2860 0.9020 0.3358 0.9500 0.3504

(10,15) 0.8420 0.4190 0.9560 0.6372 0.9820 1.4815

(15,10) 0.8340 0.4240 0.9510 0.6466 0.9760 1.3137

0.25 (25,30) 0.9160 0.3830 0.9320 0.4753 0.9820 1.1353

(30,25) 0.9220 0.3970 0.8630 0.4698 0.9680 0.9302

(60,60) 0.9170 0.3120 0.9140 0.3677 0.9700 0.8711

(10,15) 0.7840 0.4450 0.8220 0.6693 0.9580 1.2075

(15,10) 0.8120 0.4220 0.8420 0.5587 0.9840 1.2293

0.40 (25,30) 0.8540 0.4010 0.8540 0.4745 0.9820 0.8259

(30,25) 0.8580 0.4200 0.8600 0.4692 0.9660 0.7698

(60,60) 0.8810 0.3810 0.8830 0.3823 0.9900 0.5647

0.40 in terms of coverage accuracies. However, in terms of the average
lengths, we have the opposite conclusion in this case.

(3) The performances of both AEL and MBB depend on the censor-
ing percentages and sample size. For every fixed sample size (n, m), the
coverage accuracies for both methods generally decrease as the censoring
percentage increases. The coverage accuracies increase for every fixed cen-
soring percentage as sample size increases. It seems that the CP and sample
size affect the coverage accuracies of the bootstrap much less. The reason
may be that the bootstrap is not consistent.

Based on (B.2) and the ``plug method'' to estimate the asymptotic
variance, we also calculated the coverage probabilities and average lengths
of normal approximation (NA) confidence intervals of %. The simulation
results show that the NA confidence intervals have uniformly lower
coverage accuracies than the AEL and MBB and similar average lengthes
to MBB.
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APPENDIX A

Proofs of Theorems 2.1 and 2.2

Let

#1, H(x)=
1

H� (x) | I[x<s] s#0, H(s) dH� 1 (s)

and

#2, H(x)=||
I[s<x, s<t] t#0, H(t)

H� 2 (s)
dH� 0 (s) dH� 1 (t),

where #0, H is defined in Section 2. Similarly, we can define #1, L (x) and
#2, L (x).

To prove Theorem 2.1, Lemma is needed.

Lemma 4.1. Under Assumptions (A1), (A3), and (A4), we have

1

- n
:
n

i=1

(Vni&EX 0) w�L N(0, _2
1),

and

1

- m
:
m

j=1

(Umj&EY 0) w�L N(0, _2
2),

where

_2
1=Var[X1#0, H(X1) $1+#1, H(X1)(1&$1)&#2, H(X1)],

and

_2
2=Var[Y1#0, L (Y1) q1+#2, L (Y1)(1&q1)&#2, L (Y1)].

Proof of Lemma. Notice that

1
n

:
n

i=1

(Vni&EX 0)=|
�

0
x d(F� n&F )

and the similar expressions apply to 1
m �m

j=1 (Umj&EY 0). Hence, Corollary
1.2 of Stute (1995) proves Lemma A.1.
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Proof of Theorem 2.1. To prove Theorem 2.1, we need to prove

(a) max1�i�n |Sn, mi |=op ((n+m)1�2) and max1� j�m |Tn, mj |=op ((n
+m)1�2).

(b) *=Op ((n+m)&1�2), where * is that satisfying (2.8).

Let us first prove (a). Notice that

max
1�i�n

|Sn, mi |= max
1�i�n }Vni+

1
m

:
m

j=1

qjYj

1&Q� m (Yj&)
&% } (A.1)

� max
1�i�n

|Vni&EX 0|+ max
1� j�m

|Umj&EY 0|.

Let Vi=$iXi �(1&K(X i&)). It is clear that [Vi]n
i=1 are iid non-negative

random variables and EV 2
i =� (x2�(1&K(x&))) dF(x)<�. Hence, by

Lemma 3 of Owen (1990), we have

max
1�i�n

Vi=op(n1�2). (A.2)

This together with the fact

sup
0�x�X(n)

}K
� n (x&)&K(x&)

1&K� n (x&) }=Op (1) (A.3)

(see, e.g., Zhou, 1991) shows

max
1�i�n

|Vni |� max
1�i�n

|V i |+ max
1�i�n }

$iX i (K� n (Xi&)&K(Xi&)

(1&K(Xi&))(1&K� n (Xi&)) }
�op (n1�2)+ sup

0�s�X(n)
}K� n (s)&K(s)

1&K� n (s) } max
1�i�n

|Vi |=op (n1�2).

(A.4)

Similarly, we can demonstrate

max
1� j�m

|Umj |=op (m1�2). (A.5)

Relations (A.4) and (A.5) together prove

max
1� j�m

|Sn, mi |=op ((n+m)1�2), (A.6)

307INFERENCE FOR THE MEAN DIFFERENCE



since m
n � \>0. The same arguments can be used to obtain

max
1� j�m

|Tn, mj |=op ((n+m)1�2). (A.7)

Relations (A.6) and (A.7) together yield part (a).
Next, we show part (b). Notice that

1
n

:
n

i=1
\ Xi$i

1&K� n (Xi&)+
2

=
1
n

�
n

i=1
\ Xi $i

1&K� n (Xi&)+
2

I[1&K� n (Xi&)�2(1&K(Xi&))]

+
1
n

:
n

i=1
\ Xi$i

1&K� n (Xi&)+ I[1&K� n (X i&)>2(1&K(Xi&))]

:=`n1+`n2 . (A.8)

Under (A3), we have (1�n) �n
i=1 (Xi $i �(1&K(Xi&)))2 w�

a.s. � (x2 dF(x)�(1&
K(x)))<�. Hence, it follows that with probability 1

`n1�
1
4

1
n

:
n

i=1
\ Xi $i

1&K(Xi&)+
2

�
1
4 |

x2 dF(x)
1&K(x&)

>0. (A.9)

On the other hand, for any =>0 we have

P( |`n1 |>=)�P \.
n

i=1
{1&K� n (Xi&)>2(1&K(Xi&))=+

�P \.
n

i=1
{ |K� n (Xi&)&K(Xi&)|>1&K(Xi&)=+

�P \ sup
1�x�X(n)

}K
� n (x)&K(x)

1&K(x) }>1+� 0. (A.10)

From (A.8), (A.9), and (A.10), we get

1
n

:
n

i=1 \
Xi$i

1&K� n (Xi&)+
2

�
1
4 |

x2 dF(x)
1&K(x&)

+op (1). (A.11)

Similarly, we have

1
m

:
m

j=1
\ Y jqj

1&Q� m (Yj&)+
2

�
1
4 |

y2 dG( y)
1&Q(Y&)

+op (1). (A.12)
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By (A.11) and (A.12), it follows that

1
n

:
n

i=1

S 2
n, mi�

1
4 \|

x2 dF(x)
1&K(x&)

+|
y2 dG( y)

1&Q(Y&)++op (1), (A.13)

and

1
n

:
n

i=1

T 2
n, mj�

1
4 \|

x2 dF(x)
1&K(x&)

+|
y2 dG( y)

1&Q(Y&)++op (1). (A.14)

Lemma A.1 implies that

1
n

:
n

i=1

Sn, mi&%=Op ((n+m)&1�2), (A.15)

and

1
m

:
m

j=1

Tn, mj&%=Op ((n+m)&1�2), (A.16)

as m
n � \>0.

By (A.13)�(A.16) and the same arguments as in the proof of (2.14) in
Owen (1990), we can prove (b).

From (2.8), we have

\1+
m
n + :

n

i=1

(Sn, mi&%)

__1&* \1+
m
n + (Sn, mi&%)+

*2 (1+m�n)2 (Sn, mi&%)2

1+*(Sn, mi&%) &
+\1+

n
m+ :

m

i=1

(Tn, mi&%)

+_1&* \1+
n
m+ (Tn, mi&%)+

*2 (1+n�m)2 (Tn, mi&%)2

1+*(Tn, mi&%) &=0.

(A.17)

Solving the equation, we get

*=
\1+

m
n + :

n

i=1

(Sn, mi&%)+\1+
n
m+ :

m

j=1

(Tn, mj&%)

\1+
m
n +

2

:
m

i=1

(Sn, mi&%)2+\1+
n
m+

2

:
m

j=1

(Tn, mj&%)2

+#n (A.18)
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with

#n=

*2 ((m+n)�n)3 �n
i=1 ((Sn, mi&%)3�(1+*(1+m�n)(Sn, mi&%)))

+*2 ((m+n)�m)3 �m
j=1 ((Tn, mj&%)3�(1+*(1+n�m)(Tn, mj&%)))

((n+m)�n)2 �n
i=1 (Sn, mi&%)2+((n+m)�m)2 �m

j=1 (Tn, mj&%)2 .

Under Assumption (A3), we have (1�n) �n
i=1 ($iXi �(1&K(Xi&)))k=

Op (1) for k=1, 2. This together with Eq. (A.3) proves (1�n) �n
i=1 ($iXi�(1&

K� n (Xi&)))k=Op (1), k=1, 2. Similarly, we can prove that (1�m) �m
j=1

(qjYj �(1&Q� m (Yj&)))k=Op (1), k=1, 2. Hence, we have

1
n

:
n

i=1

(Sn, mi&%)2=Op (1), (A.19)

and

1
m

:
m

j=1

(Tn, mj&%)2=Op (1). (A.20)

By result (b), Eqs. (A.6), (A.7), (A.19), and (A.20), we get

|#n |�Op ((n+m)&1)( max
1�i�n

|Sn, mi&%|+ max
1� j�m

|Tn, mj&%| )

=op ((n+m)&12). (A.21)

Using Taylor's expansion in (2.12), we get

lad =2 :
n

i=1
{* \1+

m
n + (Sn, mi&%)&

1
2 _* \1+

m
n + (Sn, mi&%)&

2

=
+2 :

m

j=1
{* \1+

n
m+ (Tn, mj&%)

&
1
2 _* \1+

n
m+ (Tn, mj&%)&

2

=+`n, m , (A.22)

where

`n, m�*3 :
n

i=1
_\1+

m
n+ (Sn, mi&%)&

3

+*3 :
m

j=1
_\1+

n
m+ (Tm, j&%)&

2

.

Again using result (b) and Eqs. (A.6), (A.7), (A.19), and (A.20), it follows
that

`n, m=op (1). (A.23)
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Denote by g(*) the right hand side of Eq. (2.8). Similar to (A.22) and
(A.23), it follows that

0=*g(*)=
n+m

n { :
n

i=1

*(Sn, mi&%)&\1+
m
n+ :

n

i=1

[*(Sn, mi&%)]2=
+

n+m
m { :

m

j=1

*(Tn, mj&%)&\1+
n
m+ :

m

j=1

[*(Tn, mj&%)]2=+op (1).

(A.24)

That is,

n+m
n

:
n

i=1

(Sn, mi&%) *+
n+m

m
:
m

j=1

(Tn, mj&%) *

=\n+m
n +

2

:
n

i=1

[*(Sn, mi&%)]2+\n+m
m +

2

:
m

j=1

[*(Tn, mj&%)]2+op (1).

(A.25)

Equations (A.22), (A.23), and (A.25) together yield

lad (%)=*2 \1+
m
n +

2

:
n

i=1

(Sn, mi&%)2+*2 \1+
n
m+

2

:
m

j=1

(Tn, mj&%)2+op (1).

(A.26)

From (A.18), (A.21), (A.26), (A.15), (A.16), (A.19), and (A.20), it follows
that

lad (%)=
1 2

n, m

D2
n, m

+op (1), (A.27)

where D2
n, m is defined as in (2.10) and

1n, m=
- n+m

n
:
n

i=1

(Sn, mi&%)+
- n+m

m
:
m

j=1

(Tn, mj&%).

A simple calculation yields

1n, m=2 �n+m
m _ 1

- m
:
m

j=1

(Un, mj&EY 0)&
&2 �n+m

n _ 1

- n
:
n

i=1

(Vn, mi&EX 0)& .
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By Lemma A.1, we get

1n, m w�L N(0, _2), (A.28)

where

_2=4(1+\) _2
1+4 \1+

1
\+ _2

2 .

Recalling the definition of l� ad (%), we have

l� ad (%)=
12

n, m

_̂2
n, m

+op (1).

By Stute (1996),we have _̂2
i, JK w�

a.s. _2
i for i=1, 2. This proves _̂2

n, m w�
p

_2

and hence

l� ad (%) w�L /2
1 (A.29)

by (A.28).

Proof of Theorem 2.2. Theorem 2.2 is a direct result of Theorem 2.1.

APPENDIX B

Proofs of Theorems 3.1, 3.2, and 3.3

Proof of Theorem 3.1. Theorem 3.1 is a direct result of (3.5) in Wang
and Jing (2000) under assumptions - n �{F

X(n)
(1&F(t)) dt w�

p
0 and

- m �{G
Y(m)

(1&G(t)) dt w�
p

0.

Proof of Theorem 3.2. Note that

- n+m (%� n, m&%)

=�1+
n
m _- m \|

Y(m)

0
(1&G� m (t)) dt&|

�

0
(1&G(t)) dt+&

&�1+
m
n _- n \|

X(n)

0
(1&F� n (t)) dt&|

�

0
(1&F(t)) dt+& . (B.1)
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By Theorem 2.1 of Wang and Jing (2000) and the fact that
(X1 , $1), ..., (Xn , $n) are independent of (Y1 , q1), ..., (Ym , qm), it follows
that

- n+m (%� n, m&%) w�L N \0, \1+
1
\+ _~ 2

2+(1+\) _~ 2
1+ (B.2)

as m
p � \>0, where

_~ 2
1=|

{H

0 \|
{H

s
(1&F(x) dx+

2 1&F(s&)
1&F(s)

1
1&H(s&)

d4F (s),

and

_~ 2
2=|

{L

0 \|
{L

s
(1&G(x)) dx+

2 1&G(s&)
1&G(s)

1
1&L(s&)

d4G(s).

Next, we prove with probability 1

- n+m Wn* w�L* N \0, (1+\) _~ 2
1+\1+

1
\+ _~ 2

2+ . (B.2)

It is easy to see that - n+m Wn* is a sequence of normal variables with
zero mean and variance

_̂2
n, m=\1+

n
m+

1
m

:
m

j=1
\|

Y(m)

0 _|
Y(m)

s
(1&Gm (x)) dx&

_
1&G� m (s&)

1&G� m (s)

1
1&Lm (s&)

dN2 j (s)+
2

+\1+
m
n +

1
n

:
n

i=1
\|

X(n)

0 _|
X(n)

s
(1&F� n (x)) dx&

_
1&F� n (s&)

1&F� n (s)

1
1&Hn (s&)

dN1i (s)+
2

.

To prove (B.2), it is sufficient to prove

_2
n, m w�

p
(1+\) _~ 2

1+\1+
1
\+ _~ 2

2 . (B.3)

313INFERENCE FOR THE MEAN DIFFERENCE



Observe that

_̂2
n, m=\1+

n
m+

1
m

:
m

j=1
|

Y(m)

0 _\|
Y(m)

s
(1&Gm (x)) dx+

_
1&G� m (s&)

1&G� m (s)

1
1&Lm (s&)&

2

dN2 j (s)

+\1+
m
n +

1
n

:
n

i=1
|

X(n)

0 _\|
X(n)

s
(1&F� n (x)) dx+

_
1&F� n (s&)

1&F� n (s)

1
1&Hn (s&)&

2

dN1i (s).

By Stute and Wang (1993), F� n and G� m are strong uniform consistent on
[0, {H] since F and K, and G and Q have no common jumps and
F([{H])=0 and G([{L])=0. Hence,

_̂2
n, m w�

a.s. \1+
1
\+ |

{G

0 _\|
{G

s
(1&G(x)) dx+ 1&G(s&)

1&G(s)
1

1&L(s&)&
2

_(1&Q(s&)) dG(s)

+(1+\) |
{F

0 _\|
{F

s
(1&F(x)) dx+ 1&F(s&)

1&F(s)
1

1&H(s&)&
2

_(1&K(s&)) dF(s)

=(1+\) _~ 2
1+\1+

1
\+ _~ 2

2 .

This proves (B.3), and (B.2) and Theorem 2.2.

Proof of Theorem 3.3. Theorem 3.3 is a direct result of Theorem 3.2.
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