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Abstract
In this paper, we survey the most recent advances
in supervised machine learning (ML) and high-
dimensional models for time-series forecasting. We
consider both linear and nonlinear alternatives. Among
the linear methods, we pay special attention to penal-
ized regressions and ensemble of models. The nonlinear
methods considered in the paper include shallow
and deep neural networks, in their feedforward and
recurrent versions, and tree-based methods, such as
random forests and boosted trees. We also consider
ensemble and hybrid models by combining ingredients
from different alternatives. Tests for superior predictive
ability are briefly reviewed. Finally, we discuss appli-
cation of ML in economics and finance and provide an
illustration with high-frequency financial data.

KEYWORDS
bagging, boosting, deep learning, forecasting, machine learning,
neural networks, nonlinear models, penalized regressions, ran-
dom forests, regression trees, regularization, sieve approximation,
statistical learning theory

JEL CLASS IF ICAT ION :
C22

1 INTRODUCTION

This paper surveys the recent developments in machine learning (ML) methods to economic and
financial time-series forecasting.MLmethods have become an important estimation,model selec-
tion, and forecasting tool for applied researchers in Economics and Finance. With the availability
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of vast data sets in the era of Big Data, producing reliable and robust forecasts is of great impor-
tance.1
However, what is ML? It is certainly a buzzword which has gained a lot of popularity during

the last few years. There are a myriad of definitions in the literature and one of the most well
established is from the artificial intelligence pioneer Arthur L. Samuel who defines ML as “the
field of study that gives computers the ability to learn without being explicitly programmed.”2 We
prefer a less vague definition where ML is the combination of automated computer algorithms
with powerful statistical methods to learn (discover) hidden patterns in rich data sets. In that
sense, Statistical Learning Theory gives the statistical foundation of ML. Therefore, this paper
is about Statistical Learning developments and not ML in general as we are going to focus on
statistical models. MLmethods can be divided into threemajor groups: supervised, unsupervised,
and reinforcement learning. This survey is about supervised learning, where the task is to learn
a function that maps an input (explanatory variables) to an output (dependent variable) based on
data organized as input–output pairs. Regressionmodels, for example, belong to this class. On the
other hand, unsupervised learning is a class of MLmethods that uncover undetected patterns in a
data setwith nopreexisting labels as, for example, cluster analysis or data compression algorithms.
Finally, in reinforcement learning, an agent learns to perform certain actions in an environment
which lead it tomaximumreward. It does so by exploration and exploitation of knowledge it learns
by repeated trials of maximizing the reward. This is the core of several artificial intelligence game
players (AlfaGo, for instance) as well as in sequential treatments, like Bandit problems.
The supervised ML methods presented here can be roughly divided in two groups. The first

one includes linear models and is discussed in Section 2. We focus mainly on specifications esti-
mated by regularization, also known as shrinkage. Such methods date back at least to Tikhonov
(1943). In Statistics and Econometrics, regularized estimators gained attention after the seminal
papers by Willard James and Charles Stein who popularized the bias-variance trade-off in sta-
tistical estimation (James & Stein, 1961; Stein, 1956). We start by considering the Ridge Regres-
sion estimator put forward by Hoerl and Kennard (1970). After that, we present the least absolute
shrinkage and selection (LASSO) estimator of Tibshirani (1996) and its many extensions. We also
include a discussion of other penalties. Theoretical derivations and inference for dependent data
are also reviewed.
The second group of ML techniques focuses on nonlinear models. We cover this topic in Sec-

tion 3 and start by presenting a unified framework based on sieve semiparametric approximation
as in Grenander (1981). We continue by analyzing specific models as special cases of our gen-
eral setup. More specifically, we cover feedforward neural networks (NNs), both in their shallow
and deep versions and recurrent neural networks (RNNs), and tree-basedmodels such as random
forests (RFs) and boosted trees. NNs are probably one of the most popular ML methods. The suc-
cess is partly due to the, in our opinion, misguided analogy to the functioning of the human brain.
Contrary to what has been boasted in the early literature, the empirical success of NN models
comes from amathematical fact that a linear combination of sufficiently many simple basis func-
tions is able to approximate very complicated functions arbitrarily well in some specific choice of
metric. Regression trees only achieved popularity after the development of algorithms to atten-
uate the instability of the estimated models. Algorithms like Random Forests and Boosted Trees
are now in the toolbox of applied economists.
In addition to the models mentioned above, we also include a survey on ensemble-based meth-

ods such as Bagging Breiman (1996) and the complete subset regression (CRS, Elliott et al., 2013,
2015). Furthermore,we give a brief introduction towhatwenamed “hybridmethods,”where ideas
from both linear and nonlinear models are combined to generate new ML forecasting methods.
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78 MASINI et al.

Before presenting an empirical illustration of the methods, we discuss tests of superior predic-
tive ability in the context of ML methods.

1.1 General framework

A quick word on notation: an uppercase letter as in 𝑋 denotes a random quantity as opposed to a
lowercase letter 𝑥 which denotes a deterministic (nonrandom) quantity. Bold letters as in 𝑿 and
𝒙 are reserved for multivariate objects such as vector and matrices. The symbol ‖ ⋅ ‖𝑞 for 𝑞 ≥ 1
denotes the 𝓁𝑞 norm of a vector. For a set 𝑆, we use |𝑆| to denote its cardinality.
Given a sample with 𝑇 realizations of the random vector (𝑌𝑡, 𝒁′𝑡 )

′, the goal is to predict 𝑌𝑇+ℎ
for horizons ℎ = 1,… ,𝐻. Throughout the paper, we consider the following assumption:

Assumption 1 (Data Generating Process (DGP)). Let {(𝑌𝑡, 𝒁′𝑡 )
′}∞𝑡=1 be a covariance-stationary

stochastic process taking values on ℝ𝑑+1.

Therefore, we are excluding important nonstationary processes that usually appear in time-
series applications. In particular, unit root and some types on long-memory process are excluded
by Assumption 1.
For (usually predetermined) integers 𝑝 ≥ 1 and 𝑟 ≥ 0, define the 𝑛-dimensional vector of pre-

dictors 𝑿𝑡 ∶= (𝑌𝑡−1, … , 𝑌𝑡−𝑝, 𝒁′𝑡 , … , 𝒁
′
𝑡−𝑟)

′ where 𝑛 = 𝑝 + 𝑑(𝑟 + 1) and consider the following
direct forecasting model:

𝑌𝑡+ℎ = 𝑓ℎ(𝑿𝑡) + 𝑈𝑡+ℎ, ℎ = 1,… ,𝐻, 𝑡 = 1,… , 𝑇, (1)

where 𝑓ℎ ∶ ℝ𝑛 → ℝ is an unknown (measurable) function and 𝑈𝑡+ℎ ∶= 𝑌𝑡+ℎ − 𝑓ℎ(𝑿𝑡) is
assumed to be zero mean and finite variance.3
The model 𝑓ℎ could be the conditional expectation function, 𝑓ℎ(𝒙) = 𝔼(𝑌𝑡+ℎ|𝑿𝑡 = 𝒙), or sim-

ply the best linear projection of𝑌𝑡+ℎ onto the space spanned by𝑿𝑡. Regardless of themodel choice,
our target becomes 𝑓ℎ, for ℎ = 1,… ,𝐻. As 𝑓ℎ is unknown, it should be estimated from data. The
target function 𝑓ℎ can be a single model or an ensemble of different specifications and it can also
change substantially for each forecasting horizon.
Given an estimate 𝑓ℎ for 𝑓ℎ, the next step is to evaluate the forecasting method by estimat-

ing its prediction accuracy. Most measures of prediction accuracy derive from the random quan-
tityΔℎ(𝑿𝑡) ∶= |𝑓ℎ(𝑿𝑡) − 𝑓ℎ(𝑿𝑡)|. For instance, the term prediction consistency refers to estimators
such that Δℎ(𝑿𝑡)

𝑝
⟶ 0 as 𝑇 → ∞ where the probability is taken to be unconditional; as opposed

to its conditional counterpart which is given by Δℎ(𝒙𝑡)
𝑝
⟶ 0, where the probability law is condi-

tional on𝑿𝑡 = 𝒙𝑡. Clearly, if the latter holds for (almost) every 𝒙𝑡 then the former holds by the law
of iterated expectation.
Other measures of prediction accuracy can be derived from the 𝑞 norm induced by either the

unconditional probability law 𝔼|Δℎ(𝑿𝑡)|𝑞 or the conditional one 𝔼(|Δℎ(𝑿𝑡)|𝑞|𝑿𝑡 = 𝒙𝑡) for 𝑞 ≥ 1.
By far, themost used are the (conditional)meanabsolutely prediction error (𝖬𝖠𝖯𝖤)when 𝑞 = 1 and
(conditional) mean squared prediction error (𝖬𝖲𝖯𝖤) when 𝑞 = 2, or the (conditional) root mean
squared prediction error (𝖱𝖬𝖲𝖯𝖤), which is simply the square root of 𝖬𝖲𝖯𝖤. Those measures of
prediction accuracy based on the 𝑞 norms are stronger than prediction consistency in the sense
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MASINI et al. 79

that their convergence to zero as sample size increases implies prediction consistency byMarkov’s
inequality.
This approach stems fromcasting economic forecasting as a decision problem.Under the choice

of a loss function, the goal is to select 𝑓ℎ from a family of candidate models that minimizes the
expected predictive loss or risk. Given an estimate 𝑓ℎ for 𝑓ℎ, the next step is to evaluate the fore-
casting method by estimating its risk. The most commonly used losses are the absolute error and
squared error, corresponding to 1 and 2 risk functions, respectively. See Granger and Machina
(2006) for references of a detailed exposition of this topic, Elliott and Timmermann (2008) for a
discussion of the role of the loss function in forecasting, and Elliott and Timmermann (2016) for
a more recent review.

1.2 Summary of the paper

Apart from this brief introduction, the paper is organized as follows. Section 2 reviews penalized
linear regression models. Nonlinear ML models are discussed in Section 3. Ensemble and hybrid
methods are presented in Section 4. Section 5 briefly discusses tests for superior predictive abil-
ity. An empirical application is presented in Section 6. Finally, we conclude and discuss some
directions for future research in Section 7.

2 PENALIZED LINEARMODELS

We consider the family of linear models where 𝑓(𝒙) = 𝜷′0𝒙 in (1) for a vector of unknown param-
eters 𝜷0 ∈ ℝ𝑛. Notice that we drop the subscript ℎ for clarity. However, the model as well as
the parameter 𝜷0 have to be understood for particular value of the forecasting horizon ℎ. These
models contemplate a series of well-known specifications in time-series analysis, such as predic-
tive regressions, autoregressive models of order 𝑝, 𝐴𝑅(𝑝), autoregressive models with exogenous
variables, 𝐴𝑅𝑋(𝑝), and autoregressive models with dynamic lags 𝐴𝐷𝐿(𝑝, 𝑟), among many others
(Hamilton, 1994). In particular, (1) becomes

𝑌𝑡+ℎ = 𝜷
′
0𝑿𝑡 + 𝑈𝑡+ℎ, ℎ = 1,… ,𝐻, 𝑡 = 1,… , 𝑇, (2)

where under squared loss, 𝜷0 is identified by the best linear projection of 𝑌𝑡+ℎ onto 𝑿𝑡 which is
well definedwhenever 𝚺 ∶= 𝔼(𝑿𝑡𝑿′𝑡 ) is nonsingular. In that case,𝑈𝑡+ℎ is orthogonal to𝑿𝑡 by con-
struction and this property is exploited to derive estimation procedures such as the ordinary least
squares (OLS). However, when 𝑛 > 𝑇 (and sometimes 𝑛 ≫ 𝑇) the OLS estimator is not unique as
the sample counterpart of 𝚺 is rank deficient. In fact, we can completely overfit whenever 𝑛 ≥ 𝑇.
Penalized linear regression arises in the setting where the regression parameter is not uniquely

defined. It is usually the case when 𝑛 is large, possibly larger than the number of observations
𝑇, and/or when covariates are highly correlated. The general idea is to restrict the solution of the
OLS problem to a ball around the origin. It can be shown that, although biased, the restricted
solution has smaller mean squared error (MSE), when compared to the unrestricted OLS (Hastie
et al., 2009, Chap. 3 and Chap. 6).

 14676419, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/joes.12429 by U

niversity O
f C

alifornia - D
avis, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



80 MASINI et al.

In penalized regressions, the estimator 𝜷 for the unknown parameter vector 𝜷0 minimizes the
Lagrangian form

𝑄(𝜷) =

𝑇−ℎ∑
𝑡=1

(
𝑌𝑡+ℎ − 𝜷

′𝑿𝑡
)2
+ 𝑝(𝜷),

= ‖𝒀 − 𝑿𝜷‖22 + 𝑝(𝜷),
(3)

where 𝒀 ∶= (𝑌ℎ+1, …𝑌𝑇)′, 𝑿 ∶= (𝑿1, …𝑿𝑇−ℎ)′, and 𝑝(𝜷) ∶= 𝑝(𝜷; 𝜆, 𝜸, 𝒁) ≥ 0 is a penalty func-
tion that depends on a tuning parameter 𝜆 ≥ 0, that controls the trade-off between the good-
ness of fit and the regularization term. If 𝜆 = 0, we have a classical unrestricted regression, since
𝑝(𝜷; 0, 𝜸, 𝑿) = 0. The penalty function may also depend on a set of extra hyperparameters 𝜸 , as
well as on the data 𝑿. Naturally, the estimator 𝜷 also depends on the choice of 𝜆 and 𝜸 . Different
choices for the penalty functions were considered in the literature of penalized regression.

Ridge regression

The ridge regressionwas proposed byHoerl andKennard (1970) as a way to fight highly correlated
regressors and stabilize the solution of the linear regression problem. The idea was to introduce a
small bias but, in turn, reduce the variance of the estimator. The ridge regression is also known as
a particular case of Tikhonov Regularization (Tikhonov, 1943, 1963; Tikhonov & Arsenin, 1977),
in which the scale matrix is diagonal with identical entries.
The ridge regression corresponds to penalizing the regression by the squared 𝓁2 norm of the

parameter vector, that is, the penalty in (3) is given by

𝑝(𝜷) = 𝜆

𝑛∑
𝑖=1

𝛽2
𝑖
= 𝜆‖𝜷‖22.

Ridge regression has the advantage of having an easy to compute analytic solution, where the
coefficients associated with the least relevant predictors are shrunk toward zero, but never reach-
ing exactly zero. Therefore, it cannot be used for selecting predictors, unless some truncation
scheme is employed.

Least absolute shrinkage and selection operator

The LASSO was proposed by Tibshirani (1996) and Chen et al. (2001) as a method to regularize
and perform variable selection at the same time. LASSO is one of the most popular regularization
methods and it is widely applied in data-rich environments where number of features 𝑛 is much
larger than the number of the observations.
LASSO corresponds to penalizing the regression by the 𝓁1 norm of the parameter vector, that

is, the penalty in (3) is given by

𝑝(𝜷) = 𝜆

𝑛∑
𝑖=1

|𝛽𝑖| = 𝜆‖𝜷‖1.
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MASINI et al. 81

The solution of the LASSO is efficiently calculated by coordinate descent algorithms (Hastie
et al., 2015, Chap. 5). The 𝓁1 penalty is the smallest convex 𝓁𝑝 penalty norm that yields sparse
solutions. We say the solution is sparse if only a subset 𝑘 < 𝑛 coefficients are nonzero. In other
words, only a subset of variables is selected by the method. Hence, LASSO is most useful when
the total number of regressors 𝑛 ≫ 𝑇 and it is not feasible to test combination or models.
Despite attractive properties, there are still limitations to the LASSO. A large number of alterna-

tive penalties have been proposed to keep its desired properties while overcoming its limitations.

Adaptive LASSO

The adaptive LASSO (adaLASSO) was proposed by Zou (2006) and aimed to improve the LASSO
regression by introducing a weight parameter, coming from a first step OLS regression. It also has
sparse solutions and efficient estimation algorithm, but enjoys the oracle property, meaning that it
has the same asymptotic distribution as the OLS conditional on knowing the variables that should
enter the model.4
The adaLASSO penalty consists in using a weighted 𝓁1 penalty:

𝑝(𝜷) = 𝜆

𝑛∑
𝑖=1

𝜔𝑖|𝛽𝑖|,
where the number of features 𝜔𝑖 = |𝛽∗

𝑖
|−1 and 𝛽∗

𝑖
is the coefficient from the first-step estimation

(any consistent estimator of 𝜷0) AdaLASSO can deal withmanymore variables than observations.
Using LASSO as the first-step estimator can be regarded as the two-step implementation of the
local linear approximation in Fan et al. (2014) with a zero initial estimate.

Elastic net

The elastic net (ElNet) was proposed by Zou and Hastie (2005) as a way of combining strengths of
LASSO and ridge regression. While the 𝐿1 part of the method performs variable selection, the 𝐿2
part stabilizes the solution. This conclusion is even more accentuated when correlations among
predictors become high. As a consequence, there is a significant improvement in prediction accu-
racy over the LASSO (Zou & Zhang, 2009).
The ElNet penalty is a convex combination of 𝓁1 and 𝓁2 penalties:

𝑝(𝜷) = 𝜆

[
𝛼

𝑛∑
𝑖=1

𝛽2
𝑖
+ (1 − 𝛼)

𝑛∑
𝑖=1

|𝛽𝑖|] = 𝜆[𝛼‖𝜷‖22 + (1 − 𝛼)‖𝜷‖1],
where 𝛼 ∈ [0, 1]. The ElNet has both the LASSO and ridge regression as special cases.
Just like in the LASSO regression, the solution to the ElNet problem is efficiently calculated by

coordinate descent algorithms. Zou and Zhang (2009) propose the adaptive ElNet. The ElNet and
adaLASSO improve the LASSO in distinct directions: the adaLASSO has the oracle property and
the ElNet helpswith the correlation among predictors. The adaptive ElNet combines the strengths
of bothmethods. It is a combination of ridge and adaLASSO, where the first-step estimator comes
from the ElNet.
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82 MASINI et al.

Folded concave penalization

LASSO approaches became popular in sparse high-dimensional estimation problems largely due
their computational properties. Another very popular approach is the folded concave penalization
of Fan and Li (2001). This approach covers a collection of penalty functions satisfying a set of
properties. The penalties aim to penalizemore parameters close to zero than those that are further
away, improving performance of the method. In this way, penalties are concave with respect to
each |𝛽𝑖|.
One of themost popular formulations is the SCAD (smoothly clipped absolute deviation). Note

that unlike LASSO, the penalty may depend on 𝜆 in a nonlinear way. We set the penalty in (3) as
𝑝(𝜷) =

∑𝑛

𝑖=1
𝑝(𝛽𝑖, 𝜆, 𝛾), where

𝑝(𝑢, 𝜆, 𝛾) =

⎧⎪⎪⎨⎪⎪⎩
𝜆|𝑢| if |𝑢| ≤ 𝜆,
2𝛾𝜆|𝑢|−𝑢2−𝜆2

2(𝛾−1)
if 𝜆 ≤ |𝑢| ≤ 𝛾𝜆,

𝜆2(𝛾+1)

2
if |𝑢| > 𝛾𝜆

for 𝛾 > 2 and 𝜆 > 0. The SCAD penalty is identical to the LASSO penalty for small coefficients,
but continuously relaxes the rate of penalization as the coefficient departs from zero. Unlike OLS
or LASSO, we have to solve a nonconvex optimization problem that may have multiple minima
and is computationally more intensive than the LASSO. Nevertheless, Fan et al. (2014) showed
how to calculate the oracle estimator using an iterative Local Linear Approximation algorithm.

Other penalties

Regularization imposes a restriction on the solution space, possibly imposing sparsity. In a data-
rich environment, it is a desirable property as it is likely that many regressors are not relevant to
our prediction problem. The presentation above concentrates on the, possibly,most used penalties
in time-series forecasting. Nevertheless, there are many alternative penalties that can be used in
regularized linear models.
The group LASSO, proposed by Yuan and Lin (2006), penalizes the parameters in groups, com-

bining the 𝓁1 and 𝓁2 norms. It is motivated by the problem of identifying “factors,” denoted by
groups of regressors as, for instance, in regressionwith categorical variables that can assumemany
values. Let  = {𝑔1, … , 𝑔𝑀} denote a partition of {1, … , 𝑛} and 𝜷𝑔𝑖 = [𝛽𝑖 ∶ 𝑖 ∈ 𝑔𝑖] the correspond-
ing regression subvector. The group LASSO assign to (3) the penalty 𝑝(𝜷) =

∑𝑀

𝑖=1

√|𝑔𝑖|‖𝜷𝑔𝑖‖2,
where |𝑔𝑖| is the cardinality of a set 𝑔𝑖 . The solution is efficiently estimated using, for instance,
the group-wise majorization descent algorithm (Yang & Zou, 2015). Naturally, the adaptive group
LASSOwas also proposed aiming to improve some of the limitations present on the group LASSO
algorithm (Wang & Leng, 2008). In the group LASSO, the groups enter or not in the regression.
The sparse group LASSO recover sparse groups by combining the group LASSO penalty with the
𝐿1 penalty on the parameter vector (Simon et al., 2013).
Park and Sakaori (2013) modify the adaLASSO penalty to explicitly take into account lag infor-

mation. Konzen and Ziegelmann (2016) propose a small change in penalty and perform a large
simulation study to assess the performance of this penalty in distinct settings. They observe that
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MASINI et al. 83

taking into account lag information improves model selection and forecasting performance when
compared to the LASSO and adaLASSO. They apply their method to forecasting inflation and risk
premium with satisfactory results.
There is a Bayesian interpretation to the regularization methods presented here. The ridge

regression can be also seen as a maximum a posteriori estimator of a Gaussian linear regres-
sion with independent, equivariant, Gaussian priors. The LASSO replaces the Gaussian prior by a
Laplace prior (Hans, 2009; Park & Casella, 2008). These methods fall within the area of Bayesian
Shrinkage methods, which is a very large and active research area, and it is beyond the scope of
this survey.

2.1 Theoretical properties

In this section, we give an overview of the theoretical properties of penalized regression estimators
previously discussed. Most results in high-dimensional time-series estimation focus on model
selection consistency, oracle property, and oracle bounds, for both the finite dimension (𝑛 fixed,
but possibly larger than 𝑇) and high dimension (𝑛 increases with 𝑇, usually faster).
More precisely, suppose there is a population, parameter vector 𝜷0 that minimizes Equation (2)

over repeated samples. Suppose this parameter is sparse in a sense that only components indexed
by 𝑆0 ⊂ {1, … , 𝑛} are nonnull. Let 𝑆0 ∶= {𝑗 ∶ 𝛽𝑗 ≠ 0}. We say amethod ismodel selection consistent
if the index of nonzero estimated components converges to 𝑆0 in probability.5

ℙ(𝑆0 = 𝑆0) → 1, 𝑇 → ∞.

Consistency can also be stated in terms of how close the estimator is to true parameter for a given
norm. We say that the estimation method is 𝑞-consistent if for every 𝜖 > 0:

ℙ(‖𝜷0 − 𝜷0‖𝑞 > 𝜖) → 0, 𝑇 → ∞.

It is important to note that model selection consistency does not imply, nor it is implied by, 𝑞-
consistency. As a matter of fact, one usually has to impose specific assumptions to achieve each
of those modes of convergence.
Model selection performance of a given estimation procedure can be further broke down in

terms of how many relevant variables 𝑗 ∈ 𝑆0 are included in the model (screening). Or how
many irrelevant variables 𝑗 ∉ 𝑆0 are excluded from the model. In terms of probability, model
screening consistency is defined by ℙ(𝑆0 ⊇ 𝑆0) → 1 and model exclusion consistency defined by
ℙ(𝑆0 ⊆ 𝑆0) → 1 as 𝑇 → ∞.
We say a penalized estimator has the oracle property if its asymptotic distribution is the same

as the unpenalized one only considering the 𝑆0 regressors. Finally, oracle risk bounds are finite
sample bounds on the estimation error of 𝜷 that hold with high probability. These bounds require
relatively strong conditions on the curvature of objective function, which translates into a bound
on the minimum restricted eigenvalue of the covariance matrix among predictors for linear mod-
els and a rate condition on 𝜆 that involves the number of nonzero parameters, |𝑆0|.
The LASSO was originally developed in fixed design with independent and identically dis-

tributed (IID) errors, but it has been extended and adapted to a large set of models and designs.
Knight and Fu (2000) was probably the first paper to consider the asymptotics of the LASSO esti-
mator. The authors consider fixed design and fixed 𝑛 framework. From their results, it is clear
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84 MASINI et al.

that the distribution of the parameters related to the irrelevant variables is non-Gaussian. To our
knowledge, the first work expanding the results to a dependent setting was Wang et al. (2007),
where the error term was allowed to follow an autoregressive process. Authors show that LASSO
is model selection consistent, whereas amodified LASSO, similar to the adaLASSO, is bothmodel
selection consistent and has the oracle property. Nardi and Rinaldo (2011) show model selection
consistency and prediction consistency for lag selection in autoregressivemodels. Chan and Chen
(2011) show oracle properties and model selection consistency for lag selection in ARMAmodels.
Yoon et al. (2013) derive model selection consistency and asymptotic distribution of the LASSO,
adaLASSO, and SCAD, for penalized regressions with autoregressive error terms. Sang and Sun
(2015) study lag estimation of autoregressive processes with long-memory innovations using gen-
eral penalties and show model selection consistency and asymptotic distribution for the LASSO
and SCAD as particular cases. Kock (2016) showsmodel selection consistency and oracle property
of adaLASSO for lag selection in stationary and integrated processes. All results above hold for the
case of fixed number of regressors or relatively high dimension, meaning that 𝑛∕𝑇 → 0.
In sparse, high-dimensional, stationary univariate time-series settings, where 𝑛 → ∞ at some

rate faster than 𝑇, Medeiros andMendes (2016, 2017) showmodel selection consistency and oracle
property of a large set of linear time-series models with difference martingale, strong mixing,
and non-Gaussian innovations. It includes, predictive regressions, autoregressive models 𝐴𝑅(𝑝),
autoregressive models with exogenous variables 𝐴𝑅𝑋(𝑝), autoregressive models with dynamic
lags 𝐴𝐷𝐿(𝑝, 𝑟), with possibly conditionally heteroskedastic errors. Xie et al. (2017) show oracle
bounds for fixed design regression with 𝛽-mixing errors. Wu and Wu (2016) derive oracle bounds
for the LASSO on regression with fixed design and weak dependent innovations, in a sense of
Wu (2005), whereas Han and Tsay (2020) show model selection consistency for linear regression
with randomdesign andweak sparsity6 under serially dependent errors and covariates, within the
same weak dependence framework. Xue and Taniguchi (2020) showmodel selection consistency
and parameter consistency for a modified version of the LASSO in time-series regressions with
long-memory innovations.
Fan and Li (2001) showmodel selection consistency and oracle property for the folded concave

penalty estimators in a fixed dimensional setting. Kim et al. (2008) showed that the SCAD also
enjoys these properties in high dimensions. In time-series settings, Uematsu and Tanaka (2019)
show oracle properties and model selection consistency in time-series models with dependent
regressors. Lederer et al. (2019) derived oracle prediction bounds for many penalized regression
problems. The authors conclude that generic high-dimensional penalized estimators provide con-
sistent prediction with any design matrix. Although the results are not directly focused on time-
series problems, they are general enough to hold in such setting.
Babii et al. (2020c) proposed the sparse-group LASSO as an estimation technique when high-

dimensional time-series data are potentially sampled at different frequencies. The authors derived
oracle inequalities for the sparse-group LASSO estimator within a framework where distribution
of the data may have heavy tails.
Two frameworks not directly considered in this survey but of great empirical relevance are non-

stationary environments and multivariate models. In sparse, high-dimensional, integrated time-
series settings, Lee and Shi (2020) and Koo et al. (2020) show model selection consistency and
derive the asymptotic distributions of LASSO estimators and some variants. Smeeks and Wijler
(2021) proposed the Single-equation Penalized Error Correction Selector (SPECS), which is an
automated estimation procedure for dynamic single-equation models with a large number of
potentially cointegrated variables. In sparsemultivariate time series, Hsu et al. (2008) showmodel
selection consistency in vector autoregressive (VAR) models with white-noise shocks. Ren and
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MASINI et al. 85

Zhang (2010) use adaLASSO in a similar setting, showing both model selection consistency and
oracle property. Afterward, Callot and Kock (2013) show model selection consistency and oracle
property of the adaptive Group LASSO. In high-dimensional settings, where the dimension of the
series increase with the number of observations, Kock and Callot (2015) and Basu andMichailidis
(2015) show oracle bounds and model selection consistency for the LASSO in Gaussian 𝑉𝐴𝑅(𝑝)
models, extending previous works. Melnyk and Banerjee (2016) extended these results for a large
collection of penalties. Zhu (2020) derives oracle estimation bounds for folded concave penal-
ties for Gaussian 𝑉𝐴𝑅(𝑝) models in high dimensions. More recently, researchers have departed
from Gaussianity and correct model specification. Wong et al. (2020) derived finite sample guar-
antees for the LASSO in a misspecified VAR model involving 𝛽-mixing process with sub-Weibull
marginal distributions. Masini et al. (2019) derive equation-wise error bounds for the LASSO esti-
mator of weakly sparse 𝑉𝐴𝑅(𝑝) in mixingale dependence settings, that include models with con-
ditionally heteroskedastic innovations.

2.2 Inference

Although several papers derived the asymptotic properties of penalized estimators as well as the
oracle property, these results have been derived under the assumption that the true nonzero coef-
ficients are large enough. This condition is known as the 𝜷-min restriction. Furthermore, model
selection, such as the choice of the penalty parameter, has not been taken into account. Therefore,
the true limit distribution, derived under uniform asymptotics and without the 𝜷-min restriction
can be very different from Gaussian, being even bimodal; see, for instance, Leeb and Pötscher
(2005, 2008) and Belloni et al. (2014) for a detailed discussion.
Inference after model selection is actually a very active area of research and a vast num-

ber of papers have recently appeared in the literature. van de Geer et al. (2014) proposed the
desparsified LASSO in order to construct (asymptotically) a valid confidence interval for each
𝛽𝑗,0 by modifying the original LASSO estimate 𝜷. Let 𝚺∗ be an approximation for the inverse of
𝚺 ∶= 𝔼(𝑿𝑡𝑿

′
𝑡 ), then the desparsified LASSO is defined as 𝜷 ∶= 𝜷 + 𝚺∗(𝒀 − 𝑿𝜷)∕𝑇. The addition

of this extra term to the LASSO estimator results in an unbiased estimator that no longer esti-
mates any coefficient exactly as zero. More importantly, asymptotic normality can be recover in
the sense that

√
𝑇(𝛽𝑖 − 𝛽𝑖,0) converges in distribution to a Gaussian distribution under appropri-

ate regularity conditions. Not surprisingly, the most important condition is how well 𝚺−1 can
be approximated by 𝚺∗. In particular, the authors propose to run 𝑛 LASSO regressions of 𝑋𝑖
onto𝑿−𝑖 ∶= (𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛), for 1 ≤ 𝑖 ≤ 𝑛. The authors named this process as nodewide
regressions, and use those estimates to construct𝚺∗ (refer to Section 2.1.1 in van deGeer et al., 2014,
for details)).
Belloni et al. (2014) put forward the double-selection method in the context of on a linear

model in the form 𝑌𝑡 = 𝛽01𝑋
(1)
𝑡 + 𝜷′02𝑿

(2)
𝑡 + 𝑈𝑡, where the interest lies on the scalar parame-

ter 𝛽01 and 𝑿
(2)
𝑡 is a high-dimensional vector of control variables. The procedure consists in

obtaining an estimation of the active (relevant) regressors in the high-dimension auxiliary regres-
sions of 𝑌𝑡 on 𝑿(2) and of 𝑋

(1)
𝑡 on 𝑿(2)𝑡 , given by 𝑆1 and 𝑆2, respectively.7 This can be obtained

either by LASSO or any other estimation procedure. Once the set 𝑆 ∶= 𝑆1 ∪ 𝑆2 is identified, the
(a priori) estimated nonzero parameters can be estimated by a low-dimensional regression 𝑌𝑡
on 𝑋(1)𝑡 and {𝑋(2)

𝑖𝑡
∶ 𝑖 ∈ 𝑆}. The main result (Theorem 1 of Belloni et al., 2014) states conditions

under which the estimator 𝛽01 of the parameter of interest properly studentized is asymptotically
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86 MASINI et al.

normal. Therefore, uniformly valid asymptotic confidence intervals for 𝛽01 can be constructed in
the usual fashion.
Similar to Taylor et al. (2014) and Lockhart et al. (2014), Lee et al. (2016) put forward general

approach to valid inference after model selection. The idea is to characterize the distribution of
a postselection estimator conditioned on the selection event. More specifically, the authors argue
that the postselection confidence intervals for regression coefficients should have the correct cov-
erage conditional on the selected model. The specific case of the LASSO estimator is discussed in
details. The main difference between Lee et al. (2016) and Taylor et al. (2014) and Lockhart et al.
(2014) is that in the former, confidence intervals can be formed at any value of the LASSO penalty
parameter and any coefficient in the model. Finally, it is important to stress that Lee et al. (2016)
inference is carried on the coefficients of the selected model, while van de Geer et al. (2014) and
Belloni et al. (2014) consider inference on the coefficients of the true model.
The above papers do not consider a time-series environment. Hecq et al. (2019) is one of the first

papers which attempt to consider post-selection inference in a time-series environment. However,
their results are derived under a fixed number of variables. Babii et al. (2020a) and Adámek et al.
(2020) extend the seminal work of van de Geer et al. (2014) to time-series framework.
More specifically, Babii et al. (2020a) consider inference in time-series regression models

underheteroskedastic and autocorrelated errors. The authors consider heteroskedaticity- and
autocorrelation-consistent (HAC) estimation with sparse group-LASSO. They propose a debi-
ased central limit theorem for low dimensional groups of regression coefficients and study the
HAC estimator of the long-run variance based on the sparse-group LASSO residuals. Adámek et
al. (2020) extend the desparsified LASSO to a time-series setting under near-epoch dependence
assumptions, allowing for non-Gaussian, serially correlated and heteroskedastic processes. Fur-
thermore, the number of regressors can possibly grow faster than the sample size.

3 NONLINEARMODELS

The function 𝑓ℎ appearing in (1) is unknown and in several applications the linearity assumption
is too restrictive andmore flexible formsmust be considered. Assuming a quadratic loss function,
the estimation problem turns to be the minimization of the functional

𝑆(𝑓) ∶=

𝑇−ℎ∑
𝑡=1

[𝑌𝑡+ℎ − 𝑓(𝑿𝑡)]
2, (4)

where 𝑓 ∈ , a generic function space. However, the optimization problem stated in (4) is infea-
sible when  is infinite dimensional, as there is no efficient technique to search over all . Of
course, one solution is to restrict the function space, as for instance, imposing linearity or specific
forms of parametric nonlinear models as in, for example, Teräsvirta (1994), Suarez-Fariñas et al.
(2004), or McAleer and Medeiros (2008); see also Teräsvirta et al. (2010) for a recent review of
such models.
Alternatively, we can replace  by simpler and finite-dimensional 𝐷 . The idea is to consider a

sequence of finite-dimensional spaces, the sieve spaces, 𝐷, 𝐷 = 1, 2, 3, …, that converges to  in
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MASINI et al. 87

some norm. The approximating function 𝑔𝐷(𝑿𝑡) is written as

𝑔𝐷(𝑿𝑡) =

𝐽∑
𝑗=1

𝛽𝑗𝑔𝑗(𝑿𝑡),

where 𝑔𝑗(⋅) is the 𝑗th basis function for 𝐷 and can be either fully known or indexed by a vector
of parameters, such that: 𝑔𝑗(𝑿𝑡) ∶= 𝑔(𝑿𝑡; 𝜽𝑗). The number of basis functions 𝐽 ∶= 𝐽𝑇 will depend
on the sample size 𝑇. 𝐷 is the dimension of the space and it also depends on the sample size:
𝐷 ∶= 𝐷𝑇 . Therefore, the optimization problem is then modified to

𝑔𝐷(𝑿𝑡) = arg min
𝑔𝐷(𝑿𝑡)∈𝐷

𝑇−ℎ∑
𝑡=1

[𝑌𝑡+ℎ − 𝑔𝐷(𝑿𝑡)]
2
. (5)

The sequence of approximating spaces𝐷 is chosen by using the structure of the original under-
lying space  and the fundamental concept of dense sets. If we have two sets 𝐴 and 𝐵 ∈  , 
being a metric space, 𝐴 is dense in 𝐵 if for any 𝜖 > 0, ∈ ℝ and 𝑥 ∈ 𝐵, there is a 𝑦 ∈ 𝐴 such that‖𝑥 − 𝑦‖ < 𝜖. This is called the method of “sieves.” For a comprehensive review of the method
for time-series data, see Chen (2007).
For example, from the theory of approximating functions we know that the proper subset

 ⊂  of polynomials is dense in , the space of continuous functions. The set of polynomi-
als is smaller and simpler than the set of all continuous functions. In this case, it is natural to
define the sequence of approximating spaces 𝐷, 𝐷 = 1, 2, 3, … by making 𝐷 the set of polyno-
mials of degree smaller or equal to 𝐷 − 1 (including a constant in the parameter space). Note
that 𝖽𝗂𝗆(𝐷) = 𝐷 < ∞. In the limit this sequence of finite-dimensional spaces converges to the
infinite-dimensional space of polynomials, which on its turn is dense in .
When the basis functions are all known “linear sieves,” the problem is linear in the parameters

andmethods like OLS (when 𝐽 ≪ 𝑇) or penalized estimation as previously described can be used.
For example, let 𝑝 = 1 and pick a polynomial basis such that

𝑔𝐷(𝑋𝑡) = 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑋
2
𝑡 + 𝛽3𝑋

3
𝑡 +⋯+ 𝛽𝐽𝑋

𝐽
𝑡 .

In this case, the dimension 𝐷 of 𝐷 is 𝐽 + 1, due to the presence of a constant term.
If 𝐽 ≪ 𝑇, the vector of parameters 𝜷 = (𝛽1, … , 𝛽𝐽)′ can be estimated by

𝜷 = (𝑿′𝐽𝑿𝐽)
−1𝑿′𝐽𝒀,

where 𝑿𝐽 is the 𝑇 × (𝐽 + 1) design matrix and 𝒀 = (𝑌1, … , 𝑌𝑇)′.
When the basis functions are also indexed by parameters (“nonlinear sieves”), nonlinear least-

squares methods should be used. In this paper, we will focus on frequently used nonlinear sieves:
NNs and regression trees.
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88 MASINI et al.

F i gu r e 1 Graphical representation of a single hidden layer neural network [Colour figure can be viewed at
wileyonlinelibrary.com]

3.1 Neural networks

3.1.1 Shallow NN

NN is one of the most traditional nonlinear sieves. NN can be classified into shallow or deep
networks.We start describing the shallowNNs. Themost common shallowNN is the feedforward
NN where the approximating function 𝑔𝐷(𝑿𝑡) is defined as

𝑔𝐷(𝑿𝑡) ∶= 𝑔𝐷(𝑿𝑡; 𝜽) = 𝛽0 +

𝐽𝑇∑
𝑗=1

𝛽𝑗𝑆(𝜸
′
𝑗
𝑿𝑡 + 𝛾0,𝑗),

= 𝛽0 +

𝐽𝑇∑
𝑗=1

𝛽𝑗𝑆(𝜸̃
′
𝑗
𝑿̃𝑡).

(6)

In the abovemodel, 𝑿̃𝑡 = (1, 𝑿′𝑡 )
′, 𝑆𝑗(⋅) is a basis function and the parameter vector to be estimated

is given by 𝜽 = (𝛽0, … , 𝛽𝐾, 𝜸′1, … , 𝜸
′
𝐽𝑇
, 𝛾0,1, … , 𝛾0,𝐽𝑇 )

′, where 𝜸̃𝑗 = (𝛾0,𝑗, 𝜸′𝑗)
′.

NN models form a very popular class of nonlinear sieves and have been used in many appli-
cations of economic forecasting. Usually, the basis functions 𝑆(⋅) are called activation functions
and the parameters are called weights. The terms in the sum are called hidden neurons as an
unfortunate analogy to the human brain. Specification (6) is also known as a single hidden layer
NN model as is usually represented in the graphical as in Figure 1. The green circles in the figure
represent the input layer which consists of the covariates of the model (𝑿𝑡). In the example in
the figure, there are four input variables. The blue and red circles indicate the hidden and output
layers, respectively. In the example, there are five elements (neurons) in the hidden layer. The
arrows from the green to the blue circles represent the linear combination of inputs: 𝜸′

𝑗
𝑿𝑡 + 𝛾0,𝑗 ,

𝑗 = 1,… , 5. Finally, the arrows from the blue to the red circles represent the linear combination
of outputs from the hidden layer: 𝛽0 +

∑5

𝑗=1
𝛽𝑗𝑆(𝜸

′
𝑗
𝑿𝑡 + 𝛾0,𝑗).
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MASINI et al. 89

There are several possible choices for the activation functions. In the early days, 𝑆(⋅)was chosen
among the class of squashing functions as per the definition below.

Definition 1. A function 𝑆 ∶ ℝ⟶ [𝑎, 𝑏], 𝑎 < 𝑏, is a squashing (sigmoid) function if it is non-
decreasing, lim

𝑥⟶∞
𝑆(𝑥) = 𝑏 and lim

𝑥⟶−∞
𝑆(𝑥) = 𝑎.

Historically, the most popular choices are the logistic and hyperbolic tangent functions such
that:

Logistic ∶𝑆(𝑥) =
1

1 + exp(−𝑥)

Hyperbolic tangent ∶𝑆(𝑥) =
exp(𝑥) − exp(−𝑥)

exp(𝑥) + exp(−𝑥)
.

The popularity of such functionswas partially due to theoretical results on function approxima-
tion. Funahashi (1989) establishes that NN models as in (6) with generic squashing functions are
capable of approximating any continuous functions from one finite dimensional space to another
to any desired degree of accuracy, provided that 𝐽𝑇 is sufficiently large. Cybenko (1989) andHornik
et al. (1989) simultaneously proved approximation capabilities of NN models to any Borel mea-
surable function and Hornik et al. (1989) extended the previous results and showed that the NN
models are also capable to approximate the derivatives of the unknown function. Barron (1993)
relates previous results to the number of terms in the model.
Stinchcombe and White (1989) and Park and Sandberg (1991) derived the same results of

Cybenko (1989) and Hornik et al. (1989) but without requiring the activation function to be sig-
moid. While the former considered a very general class of functions, the later focused on radial-
basis functions (RBF) defined as:

Radial Basis ∶ 𝑆(𝑥) = exp(−𝑥2).

More recently, Yarotsky (2017) showed that the rectified linear units (ReLU) as

Rectified Linear Unit ∶ 𝑆(𝑥) = max(0, 𝑥),

are also universal approximators.
Model (6) can be written in matrix notation. Let 𝚪 = (𝜸̃1, … , 𝜸̃𝐾),

𝑿 =

⎛⎜⎜⎜⎜⎝
1 𝑋11 ⋯ 𝑋1𝑝
1 𝑋21 ⋯ 𝑋2𝑝
⋮ ⋱ ⋮

1 𝑋𝑇1 ⋯ 𝑋𝑇𝑝

⎞⎟⎟⎟⎟⎠
, and (𝑿𝚪) =

⎛⎜⎜⎜⎜⎝
1 𝑆(𝜸̃′1𝒙̃1) ⋯ 𝑆(𝜸̃′𝐾𝒙̃1)

1 𝑆(𝜸̃′1𝒙̃2) ⋯ 𝑆(𝜸̃′𝐾𝒙̃2)

⋮ ⋮ ⋱ ⋮

1 𝑆(𝜸̃′1𝒙̃𝑇) ⋯ 𝑆(𝜸̃′𝐾𝒙̃𝑇)

⎞⎟⎟⎟⎟⎠
.

Therefore, by defining 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝐾)′, the output of a feedforward NN is given by:
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90 MASINI et al.

𝒉𝐷(𝑿, 𝜽) = [ℎ𝐷(𝑿1; 𝜽), … , ℎ𝐷(𝑿𝑇; 𝜽)]
′

=

⎡⎢⎢⎢⎣
𝛽0 +

∑𝐾

𝑘=1
𝛽𝑘𝑆(𝜸

′
𝑘
𝑿1 + 𝛾0,𝑘)

⋮

𝛽0 +
∑𝐾

𝑘=1
𝛽𝑘𝑆(𝜸

′
𝑘
𝑿𝑇 + 𝛾0,𝑘)

⎤⎥⎥⎥⎦
= (𝑿𝚪)𝜷.

(7)

The dimension of the parameter vector 𝜽 = [𝗏𝖾𝖼 (𝚪)′, 𝜷′]′ is 𝑘 = (𝑛 + 1) × 𝐽𝑇 + (𝐽𝑇 + 1) and can
easily get very large such that the unrestricted estimation problem defined as

𝜽 = arg min
𝜽∈ℝ𝑘

‖𝒀 − (𝑿𝚪)𝜷‖22
is unfeasible. A solution is to use regularization as in the case of linear models and consider the
minimization of the following function:

𝑄(𝜽) = ‖𝒀 − (𝑿𝚪)𝜷‖22 + 𝑝(𝜽), (8)

where usually 𝑝(𝜽) = 𝜆𝜽′𝜽. Traditionally, the most common approach to minimize (8) is to use
Bayesian methods as in MacKay (1992a); MacKay (1992b) and Foresee and Hagan (1997). A more
modern approach is to use a technique known as Dropout (Srivastava et al., 2014).
The key idea is to randomly drop neurons (along with their connections) from the NN during

estimation. An NN with 𝐽𝑇 neurons in the hidden layer can generate 2𝐽𝑇 possible “thinned” NN
by just removing some neurons. Dropout samples from this 2𝐽𝑇 different thinnedNN and train the
sampled NN. To predict the target variable, we use a single unthinned network that has weights
adjusted by the probability law induced by the random drop. This procedure significantly reduces
overfitting and gives major improvements over other regularization methods.
We modify Equation (6) by

𝑔∗𝐷(𝑿𝑡) = 𝛽0 +

𝐽𝑇∑
𝑗=1

𝑠𝑗𝛽𝑗𝑆(𝜸
′
𝑗
[𝒓 ⊙ 𝑿𝑡] + 𝑣𝑗𝛾0,𝑗),

where 𝑠, 𝑣, and 𝒓 = (𝑟1, … , 𝑟𝑛) are independent Bernoulli random variables each with probability
𝑞 of being equal to 1. The NN model is thus estimated by using 𝑔∗𝐷(𝑿𝑡) instead of 𝑔𝐷(𝑿𝑡) where,
for each training example, the values of the entries of 𝒓 are drawn from the Bernoulli distribution.
The final estimates for 𝛽𝑗 , 𝜸𝑗 , and 𝛾𝑜,𝑗 are multiplied by 𝑞.

3.1.2 Deep NNs

AdeepNNmodel is a straightforward generalization of specification (6)wheremore hidden layers
are included in the model as represented in Figure 2. In the figure, we represent a deep NN with
two hidden layers with the same number of hidden units in each. However, the number of hidden
neurons can vary across layers.
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MASINI et al. 91

F i gu r e 2 Deep neural network architecture [Colour figure can be viewed at wileyonlinelibrary.com]

As pointed out in Mhaska et al. (2017), while the universal approximation property holds for
shallowNNs, deep networks can approximate the class of compositional functions as well as shal-
lownetworks butwith exponentially lower number of training parameters and sample complexity.
Set 𝐽𝓁 as the number of hidden units in layer 𝓁 ∈ {1, … , 𝐿}. For each hidden layer 𝓁, define

𝚪𝓁 = (𝜸̃1𝓁, … , 𝜸̃𝑘𝓁𝓁). Then, the output 𝓁 of layer 𝓁 is given recursively by

𝓁(𝓁−1(⋅)𝚪𝓁)
𝑛×(𝐽𝓁+1)

=

⎛⎜⎜⎜⎜⎝
1 𝑆(𝜸̃′

1𝓁
1𝓁−1(⋅)) ⋯ 𝑆(𝜸̃′

𝑘𝓁𝓁
1𝓁−1(⋅))

1 𝑆(𝜸̃′
1𝓁
2𝓁−1(⋅)) ⋯ 𝑆(𝜸̃′

𝑘𝓁𝓁
2𝓁−1(⋅))

⋮ ⋮ ⋱ ⋮

1 𝑆(𝜸̃′
1𝓁
𝑛𝓁−1(⋅)) ⋯ 𝑆(𝜸̃′

𝐽𝓁𝓁
𝑛𝓁−1(⋅))

⎞⎟⎟⎟⎟⎠
,

where 𝑜 ∶= 𝑿. Therefore, the output of the deep NN is the composition of

𝒉𝐷(𝑿) = 𝐿(⋯3(2(1(𝑿𝚪1)𝚪2)𝚪3)⋯)𝚪𝐿𝜷.

The estimation of the parameters is usually carried out by stochastic gradient descendmethods
with dropout to control the complexity of the model.

3.1.3 Recurrent neural networks

Broadly speaking, RNNs are NNs that allow for feedback among the hidden layers. RNNs can use
their internal state (memory) to process sequences of inputs. In the framework considered in this
paper, a generic RNN could be written as

𝑯𝑡 = 𝒇(𝑯𝑡−1, 𝑿𝑡),

𝑌𝑡+ℎ|𝑡 = 𝑔(𝑯𝑡),
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92 MASINI et al.

F i gu r e 3 Architecture of the long-short-term memory cell (LSTM) [Colour figure can be viewed at
wileyonlinelibrary.com]

where 𝑌𝑡+ℎ|𝑡 is the prediction of 𝑌𝑡+ℎ given observations only up to time 𝑡, 𝒇 and 𝑔 are functions
to be defined, and𝑯𝑡 is what we call the (hidden) state. From a time-series perspective, RNNs can
be seen as a kind of nonlinear state-space model.
RNNs can remember the order that the inputs appear through its hidden state (memory) and

they can also model sequences of data so that each sample can be assumed to be dependent on
previous ones, as in time-series models. However, RNNs are hard to be estimated as they suffer
from the vanishing/exploding gradient problem. Set the cost function to be

𝑇(𝜽) =

𝑇−ℎ∑
𝑡=1

(𝑌𝑡+ℎ − 𝑌𝑡+ℎ|𝑡)2,

where 𝜽 is the vector of parameters to be estimated. It is easy to show that the gradient 𝜕𝑇(𝜽)
𝜕𝜽

can
be very small or diverge. Fortunately, there is a solution to the problem proposed by Hochreiter
and Schmidhuber (1997). A variant of RNN which is called long-short-termmemory (LSTM) net-
work. Figure 3 shows the architecture of a typical LSTM layer. AnLSTMnetwork can be composed
of several layers. In the figure, red circles indicate logistic activation functions, while blue cir-
cles represent hyperbolic tangent activation. The symbols “𝖷” and “+” represent, respectively, the
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MASINI et al. 93

A l g o r i t hm 1 Mathematically, RNNs can be defined by the following algorithm

1. Initiate with 𝒄0 = 0 and𝑯0 = 0.
2. Given the input 𝑿𝑡 , for 𝑡 ∈ {1, … , 𝑇}, do:

𝒇𝑡 = Logistic(𝑾𝑓𝑿𝑡 + 𝑼𝑓𝑯𝑡−1 + 𝒃𝑓)

𝒊𝑡 = Logistic(𝑾𝑖𝑿𝑡 + 𝑼𝑖𝑯𝑡−1 + 𝒃𝑖)

𝒐𝑡 = Logistic(𝑾𝑜𝑿𝑡 + 𝑼𝑜𝑯𝑡−1 + 𝒃𝑜)

𝒑𝑡 = Tanh(𝑾𝑐𝑿𝑡 + 𝑼𝑐𝑯𝑡−1 + 𝒃𝑐)

𝒄𝑡 = (𝒇𝑡 ⊙ 𝒄𝑡−1) + (𝒊𝑡 ⊙ 𝒑𝑡)

𝒉𝑡 = 𝒐𝑡 ⊙ Tanh(𝒄𝑡)

𝒀𝑡+ℎ|𝑡 = 𝑾𝑦𝒉𝑡 + 𝒃𝑦

where𝑼𝑓 ,𝑼𝑖 ,𝑼𝑜 ,𝑼𝑐 ,𝑼𝑓 ,𝑾𝑓 ,𝑾𝑖 ,𝑾𝑜 ,𝑾𝑐 , 𝒃𝑓 , 𝒃𝑖 , 𝒃𝑜 , and 𝒃𝑐 are parameters to be estimated.

F i gu r e 4 Information flow in an
LTSM cell [Colour figure can be viewed
at wileyonlinelibrary.com]

element-wise multiplication and sum operations. The RNN layer is composed of several blocks:
the cell state and the forget, input, and ouput gates. The cell state introduces a bit of memory
to the LSTM so it can “remember” the past. LSTM learns to keep only relevant information to
make predictions, and forget nonrelevant data. The forget gate tells which information to throw
away from the cell state. The output gate provides the activation to the final output of the LSTM
block at time 𝑡. Usually, the dimension of the hidden state (𝑯𝑡) is associated with the number of
hidden neurons.
Algorithm 1 describes analytically how the LSTM cell works. 𝒇𝑡 represents the output of the

forget gate. Note that it is a combination of the previous hidden state (𝑯𝑡−1) with the new infor-
mation (𝑿𝑡). Note that 𝒇𝑡 ∈ [0, 1] and it will attenuate the signal coming com 𝒄𝑡−1. The input and
output gates have the same structure. Their function is to filter the “relevant” information from
the previous time period as well as from the new input. 𝒑𝑡 scales the combination of inputs and
previous information. This signal will be then combined with the output of the input gate (𝒊𝑡).
The new hidden state will be an attenuation of the signal coming from the output gate. Finally,
the prediction is a linear combination of hidden states. Figure 4 illustrates how the information
flows in an LSTM cell.
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94 MASINI et al.

F i gu r e 5 Example of a simple tree [Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Regression trees

A regression tree is a nonparametric model that approximates an unknown nonlinear function
𝑓ℎ(𝑿𝑡) in (1) with local predictions using recursive partitioning of the space of the covariates.
A tree may be represented by a graph as in the left side of Figure 5, which is equivalent as the
partitioning in the right side of the figure for this bidimensional case. For example, suppose that
we want to predict the scores of basketball players based on their height and weight. The first
node of the tree in the example splits the players taller than 1.85 m from the shorter players. The
second node in the left takes the short players groups and split them by weights and the second
node in the right does the same with the taller players. The prediction for each group is displayed
in the terminal nodes and they are calculated as the average score in each group. To grow a tree,
we must find the optimal splitting point in each node, which consists of an optimal variable and
an optimal observation. In the same example, the optimal variable in the first node is height and
the observation is 1.85 m.
The idea of regression trees is to approximate 𝑓ℎ(𝑿𝑡) by

ℎ𝐷(𝑿𝑡) =

𝐽𝑇∑
𝑗=1

𝛽𝑗𝐼𝑗(𝑿𝑡), where 𝐼𝑘(𝑿𝑡) =

{
1 if 𝑿𝑡 ∈ 𝑗,

0 otherwise.

From the above expression, it becomes clear that the approximation of 𝑓ℎ(⋅) is equivalent to a
linear regression on 𝐽𝑇 dummy variables, where 𝐼𝑗(𝑿𝑡) is a product of indicator functions.
Let 𝐽 ∶= 𝐽𝑇 and 𝑁 ∶= 𝑁𝑇 be, respectively, the number of terminal nodes (regions, leaves) and

parent nodes. Different regions are denoted as1, … ,𝐽 . The root node at position 0. The parent
node at position 𝑗 has two split (child) nodes at positions 2𝑗 + 1 and 2𝑗 + 2. Each parent node has
a threshold (split) variable associated, 𝑋𝑠𝑗𝑡, where 𝑠𝑗 ∈ 𝕊 = {1, 2, … , 𝑝}. Define 𝕁 and 𝕋 as the sets
of parent and terminal nodes, respectively. Figure 6 gives an example. In the example, the parent
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MASINI et al. 95

F i gu r e 6 Example of tree with labels

nodes are 𝕁 = {0, 2, 5} and the terminal nodes are 𝕋 = {1, 6, 11, 12}.
Therefore, we can write the approximating model as

ℎ𝐷(𝑿𝑡) =
∑
𝑖∈𝕋

𝛽𝑖𝐵𝕁𝑖(𝑿𝑡; 𝜽𝑖), (9)

where

𝐵𝕁𝑖(𝑿𝑡; 𝜽𝑖) =
∏
𝑗∈𝕁

𝐼(𝑋𝑠𝑗,𝑡; 𝑐𝑗)
𝑛𝑖,𝑗 (1+𝑛𝑖,𝑗 )

2 × [1 − 𝐼(𝑋𝑠𝑗,𝑡; 𝑐𝑗)]
(1−𝑛𝑖,𝑗)(1+𝑛𝑖,𝑗), (10)

𝐼(𝑋𝑠𝑗,𝑡; 𝑐𝑗) =

{
1 if 𝑋𝑠𝑗,𝑡 ≤ 𝑐𝑗
0 otherwise,

𝑛𝑖,𝑗 =

⎧⎪⎨⎪⎩
−1 if the path to leaf 𝑖 does not include parent node 𝑗;
0 if the path to leaf 𝑖 include the 𝐫𝐢𝐠𝐡𝐭 − 𝐡𝐚𝐧𝐝 child of parent node 𝑗;
1 if the path to leaf 𝑖 include the 𝐥𝐞𝐟 𝐭 − 𝐡𝐚𝐧𝐝 child of parent node 𝑗.

𝕁𝑖: indexes of parent nodes included in the path to leaf 𝑖. 𝜽𝑖 = {𝑐𝑘} such that 𝑘 ∈ 𝕁𝑖 , 𝑖 ∈ 𝕋 and∑
𝑗∈𝕁
𝐵𝕁𝑖(𝑿𝑡; 𝜽𝑗) = 1.

3.2.1 Random forests

RF is a collection of regression trees, each specified in a bootstrap sample of the original data.
Themethod was originally proposed by Breiman (2001). Since we are dealing with time series, we
use a block bootstrap. Suppose there are 𝐵 bootstrap samples. For each sample 𝑏, 𝑏 = 1,… , 𝐵, a
tree with 𝐾𝑏 regions is estimated for a randomly selected subset of the original regressors. 𝐾𝑏 is
determined in order to leave aminimumnumber of observations in each region. The final forecast
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96 MASINI et al.

A l g o r i t hm 2 The boosting algorithm is defined as the following steps

1. Initialize 𝜙𝑖0 = 𝑌̄ ∶=
1

𝑇

∑𝑇

𝑡=1
𝑌𝑡 ;

2. For𝑚 = 1,… ,𝑀:
(a) Make 𝑈𝑡𝑚 = 𝑌𝑡 − 𝜙𝑡𝑚−1
(b) Grow a (small) Tree model to fit 𝑢𝑡𝑚, 𝑢𝑡𝑚 =

∑
𝑖∈𝕋𝑚

𝛽𝑖𝑚𝐵𝕁𝑚𝑖(𝑿𝑡; 𝜽𝑖𝑚)

(c) Make 𝜌𝑚 = argmin
𝜌

∑𝑇

𝑡=1
[𝑢𝑡𝑚 − 𝜌𝑢𝑡𝑚]

2

(d) Update 𝜙𝑡𝑚 = 𝜙𝑡𝑚−1 + 𝑣𝜌𝑚𝑢𝑡𝑚

is the average of the forecasts of each tree applied to the original data:

𝑌𝑡+ℎ|𝑡 = 1𝐵
𝐵∑
𝑏=1

[
𝕋𝑏∑
𝑖=1

𝛽𝑖,𝑏𝐵𝕁𝑖,𝑏(𝑿𝑡; 𝜽𝑖,𝑏)

]
.

The theory for RF models has been developed only to independent and identically distributed
random variables. For instance, Scornet et al. (2015) proves consistency of the RF approximation
to the unknown function 𝑓ℎ(𝑿𝑡). More recently, Wager and Athey (2018) proved consistency and
asymptotic normality of the RF estimator.

3.2.2 Boosting regression trees

Boosting is another greedy method to approximate nonlinear functions that uses base learners
for a sequential approximation. Themodel we consider here, called Gradient Boosting, was intro-
duced by Friedman (2001) and can be seen as a Gradient Descendent method in functional space.
The study of statistical properties of the Gradient Boosting is well developed for independent

data. For example, for regression problems, Duffy and Helmbold (2002) derived bounds on the
convergence of boosting algorithms using assumptions on the performance of the base learner.
Zhang andYu (2005) prove convergence, consistency, and results on the speed of convergencewith
mild assumptions on the base learners. Bühlmann (2002) shows similar results for consistency in
the case of 𝓁2 loss functions and three basemodels. Since boosting indefinitely leads to overfitting
problems, some authors have demonstrated the consistency of boosting with different types of
stopping rules, which are usually related to small step sizes, as suggested by Friedman (2001).
Some of these works include boosting in classification problems and gradient boosting for both
classification and regression problems. See, for instance, Jiang (2004), Lugosi and Vayatis (2004),
Bartlett and Traskin (2007), Zhang and Yu (2005), Bühlmann (2006), and Bühlmann (2002).
Boosting is an iterative algorithm. The idea of boosted trees is to, at each iteration, sequentially

refit the gradient of the loss function by small trees. In the case of quadratic loss as considered in
this paper, the algorithm simply refits the residuals from the previous iteration.
Algorithm 2 presents the simplified boosting procedure for a quadratic loss. It is recommended

to use a shrinkage parameter 𝑣 ∈ (0, 1] to control the learning rate of the algorithm. If 𝑣 is close
to 1, we have a faster convergence rate and a better in-sample fit. However, we are more likely
to have overfitting and produce poor out-of-sample results. In addition, the derivative is highly
affected by overfitting, even if we look at in-sample estimates. A learning rate between 0.1 and 0.2
is recommended to maintain a reasonable convergence ratio and to limit overfitting problems.
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MASINI et al. 97

The final fitted value may be written as

𝑌𝑡+ℎ = 𝑌̄ +

𝑀∑
𝑚=1

𝑣𝜌𝑚𝑢𝑡𝑚

= 𝑌̄ +

𝑀∑
𝑚=1

𝑣𝜌𝑚
∑
𝑘∈𝕋𝑚

𝛽𝑘𝑚𝐵𝕁𝑚𝑘(𝑿𝑡; 𝜽𝑘𝑚).

(11)

3.3 Inference

Conducting inference in nonlinear ML methods is tricky. One possible way is to follow Medeiros
et al. (2006), Medeiros and Veiga (2005), and Suarez-Fariñas et al. (2004) and interpret particu-
lar nonlinear ML specifications as parametric models, as for example, general forms of smooth
transition regressions. However, this approach restricts the application of ML methods to very
specific settings. An alternative, is to consider models that can be cast in the sieves framework
as described earlier. This is the case of splines and feed-forward NNs, for example. In this setup,
Chen and Shen (1998) and Chen (2007) derived, under regularity conditions, the consistency and
asymptotically normality of the estimates of a semiparametric sieve approximations. Their setup
is defined as follows:

𝑌𝑡+ℎ = 𝜷
′
0𝑿𝑡 + 𝑓(𝑿𝑡) + 𝑈𝑡+ℎ,

where 𝑓(𝑿𝑡) is a nonlinear function that is nonparametrically modeled by sieve approximations.
Chen and Shen (1998) and Chen (2007) consider both the estimation of the linear and nonlinear
components of the model. However, their results are derived under the case where the dimension
of 𝑿𝑡 is fixed.
Recently, Chernozhukov et al. (2017, 2018) consider the case where the number of covariates

diverge as the sample size increases in a very general setup. In this case, the asymptotic results
in Chen and Shen (1998) and Chen (2007) are not valid and the authors put forward the so-called
double ML methods as a nice generalization to the results of Belloni et al. (2014). Nevertheless,
the results do not include the case of time-series models.
More specifically to the case of Random Forests, asymptotic and inferential results are derived

in Scornet et al. (2015) and Wager et al. (2018) for the case of IID data. More recently, Davis and
Nielsen (2020) prove a uniform concentration inequality for regression trees built on nonlinear
autoregressive stochastic processes and prove consistency for a large class of random forests.
Finally, it is worth mentioning the interesting work of Borup et al. (2020). In their paper, the
authors show that proper predictor targeting controls the probability of placing splits along strong
predictors and improves prediction.
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98 MASINI et al.

A l g o r i t hm 3 Bagging for Time-Series Models

The Bagging algorithm is defined as follows.
1. Arrange the set of tuples (𝑦𝑡+ℎ, 𝒙′𝑡), 𝑡 = ℎ + 1,… , 𝑇, in the form of a matrix 𝑽 of dimension (𝑇 − ℎ) × 𝑛.
2. Construct (block) bootstrap samples of the form {(𝑦∗

(𝑖)2
, 𝒙′∗
(𝑖)2
), … , (𝑦∗

(𝑖)𝑇
, 𝒙′∗
(𝑖)𝑇
)}, 𝑖 = 1, … , 𝐵, by drawing

blocks of𝑀 rows of 𝑽 with replacement.
3. Compute the 𝑖th bootstrap forecast as

𝑦∗
(𝑖)𝑡+ℎ|𝑡 =

{
0 if |𝑡∗𝑗 | < 𝑐 ∀𝑗,
𝝀∗
(𝑖)
𝒙∗
(𝑖)𝑡

otherwise,
(11)

where 𝒙∗
(𝑖)𝑡
∶= 𝑺∗

(𝑖)𝑡
𝒛∗
(𝑖)𝑡

and 𝑺𝑡 is a diagonal selection matrix with 𝑗th diagonal element given by

𝕀{|𝑡𝑗 |>𝑐} =
{
1 if |𝑡𝑗| > 𝑐,
0 otherwise,

𝑐 is a prespecified critical value of the test. 𝝀∗
(𝑖)
is the OLS estimator at each bootstrap repetition.

4. Compute the average forecasts over the bootstrap samples:

𝑦̃𝑡+ℎ|𝑡 = 1𝐵
𝐵∑
𝑖=1

𝑦∗
(𝑖)𝑡|𝑡−1.

A l g o r i t hm 4 Bagging for Time-Series Models and Many Regressors

The Bagging algorithm is defined as follows.
0. Run 𝑛 univariate regressions of 𝑦𝑡+ℎ on each covariate in 𝒙𝑡 . Compute 𝑡-statistics and keep only the ones

that turn out to be significant at a given prespecified level. Call this new set of regressors as 𝒙̌𝑡
1–4. Same as before but with 𝒙𝑡 replaced by 𝒙̌𝑡 .

4 OTHERMETHODS

4.1 Bagging

The term baggingmeans Bootstrap Aggregating and was proposed by Breiman (1996) to reduce the
variance of unstable predictors.8 It was popularized in the time-series literature by Inoue and Kil-
ian (2008), who to construct forecasts from multiple regression models with local-to-zero regres-
sion parameters and errors subject to possible serial correlation or conditional heteroskedasticity.
Bagging is designed for situations in which the number of predictors is moderately large relative
to the sample size.
The bagging algorithm in time-series settings have to take into account the time dependence

dimension when constructing the bootstrap samples.
In Algorithm 3, one requires that it is possible to estimate and conduct inference in the linear

model. This is certainly infeasible if the number of predictors is larger than the sample size (𝑛 >
𝑇), which requires the algorithm to be modified. Garcia et al. (2017) and Medeiros et al. (2021)
adopt the changes as described in Algorithm 4.
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MASINI et al. 99

4.2 Complete subset regression

CSR is a method for combining forecasts developed by Elliott et al. (2013, 2015). The motivation
was that selecting the optimal subset of 𝑿𝑡 to predict 𝑌𝑡+ℎ by testing all possible combinations
of regressors is computationally very demanding and, in most cases, unfeasible. For a given set
of potential predictor variables, the idea is to combine forecasts by averaging9 all possible linear
regressionmodels with fixed number of predictors. For example, with 𝑛 possible predictors, there
are 𝑛 unique univariate models and

𝑛𝑘,𝑛 =
𝑛!

(𝑛 − 𝑘)!𝑘!

different 𝑘-variate models for 𝑘 ≤ 𝐾. The set of models for a fixed value of 𝑘 as is known as the
complete subset.
When the set of regressors is large the number of models to be estimated increases rapidly.

Moreover, it is likely that many potential predictors are irrelevant. In these cases, it was suggested
that one should include only a small, 𝑘, fixed set of predictors, such as 5 or 10. Nevertheless,
the number of models still very large, for example, with 𝑛 = 30 and 𝑘 = 8, there are 5,852,925
regression. An alternative solution is to follow Garcia et al. (2017) and Medeiros et al. (2021) and
adopt a similar strategy as in the case of Bagging high-dimensional models. The idea is to start
fitting a regression of 𝑌𝑡+ℎ on each of the candidate variables and save the 𝑡-statistics of each
variable. The 𝑡-statistics are ranked by absolute value, and we select the 𝑛̃ variables that are more
relevant in the ranking. The CSR forecast is calculated on these variables for different values of
𝑘. This approach is based on the Sure Independence Screening of Fan and Lv (2008), extended
to dependent by Yousuf (2018), that aims to select a superset of relevant predictors among a very
large set.

4.3 Hybrid methods

Recently,Medeiros andMendes (2013) proposed the combination of LASSO-based estimation and
NNmodels. The idea is to construct a feedforward single-hidden layerNNwhere the parameters of
the nonlinear terms (neurons) are randomly generated and the linear parameters are estimated by
LASSO (or one of its generalizations). Similar ideas were also considered by Kock and Teräsvirta
(2014, 2015).
Trapletti et al. (2000) and Medeiros et al. (2006) proposed to augment a feedforward shallow

NN by a linear term. The motivation is that the nonlinear component should capture only the
nonlinear dependence, making the model more interpretable. This is in the same spirit of the
semi-parametric models considered in Chen (2007).
Inspired by the above ideas, Medeiros et al. (2021) proposed combining random forests with

adaLASSO and OLS. The authors considered two specifications. In the first one, called RF/OLS,
the idea is to use the variables selected by a Random Forest in a OLS regression. The second
approach, named adaLASSO/RF, works in the opposite direction. First select the variables by
adaLASSO and than use them in a Random Forest model. The goal is to disentangle the relative
importance of variable selection and nonlinearity to forecast inflation.
Recently, Diebold and Shin (2019) propose the “partially-egalitarian” LASSO to combine sur-

vey forecasts. More specifically, the procedure sets some combining weights to zero and shrinks
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100 MASINI et al.

the survivors toward equality. Therefore, the final forecast will be close related to the simple aver-
age combination of the survived forecasts. Although the paper considers survey forecasts, the
method is quite general and can be applied to any set of forecasts. As pointed out by the authors,
optimally-regularized regression-based combinations and subset-average combinations are very
closely connected. Diebold et al. (2021) extended the ideas in Diebold et al. (2019) in order to con-
struct regularized mixtures of density forecasts. Both papers shed light on howmachine learning
methods can be used to optimally combine a large set of forecasts.

5 FORECAST COMPARISON

With the advances in the ML literature, the number of available forecasting models and methods
have been increasing at a fast pace. Consequently, it is very important to apply statistical tools to
compare different models. The forecasting literature provides a number of tests since the seminal
paper by Diebold and Mariano (1995) that can be applied as well to the ML models described in
this survey.
In the Diebold andMariano’s (1995) test, two competing methods have the same unconditional

expected loss under the null hypothesis, and the test can be carried out using a simple 𝑡-test. A
small sample adjustment was developed by Harvey et al. (1997). See also the recent discussion in
Diebold (2015). One drawback of the Diebold and Mariano’s (1995) test is that its statistic diverges
under null when the competing models are nested. However, Giacomini and White (2006) show
that the test is valid if the forecasts are derived frommodels estimated in a rolling window frame-
work. Recently, McCracken (2020) shows that if the estimation window is fixed, the Diebold and
Mariano’s (1995) statistic may diverge under the null. Therefore, it is very important that the fore-
casts are computed in a rolling window scheme.
In order to accommodate cases where there are more than two competing models, an uncondi-

tional superior predictive ability (USPA) test was proposed by White (2000). The null hypothesis
states that a benchmark method outperforms a set of competing alternatives. However, Hansen
(2005) showed that White’s (2000) test can be very conservative when there are competing meth-
ods that are inferior to the benchmark. Another important contribution to the forecasting liter-
ature is the model confidence set (MCS) proposed by Hansen et al. (2011). An MCS is a set of
competing models that is built in a way to contain the best model with respect to a certain loss
function and with a given level of confidence. The MCS acknowledges the potential limitations
of the data set, such that uninformative data yield an MCS with a large number models, whereas
informative data yield an MCS with only a fewmodels. Importantly, the MCS procedure does not
assume that a particular model is the true one.
Another extension of the Diebold and Mariano’s (1995) test is the conditional equal predictive

ability (CEPA) test proposed by Giacomini andWhite (2006). In practical applications, it is impor-
tant to know not only if a given model is superior but also when it is better than the alternatives.
Recently, Li et al. (2020) proposed a very general framework to conduct conditional predictive
ability tests.
In summary, it is very important to compare the forecasts from different ML methods and the

literature provides a number of tests that can be used.
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MASINI et al. 101

6 APPLICATIONS OFMLMETHODS TO ECONOMIC AND
FINANCIAL FORECASTING

6.1 Linear methods

Penalized regressions are now an important option in the toolkit of applied economists. There is
a vast literature considering the use of such techniques to economics and financial forecasting.
Macroeconomic forecasting is certainly one of the most successful applications of penalized

regressions. Medeiros and Mendes (2016) applied the adaLASSO to forecasting U.S. inflation and
showed that the method outperforms the linear autoregressive and factor models. Medeiros and
Vasconcelos (2016) show that high-dimensional linear models produce, on average, smaller fore-
casting errors for macroeconomic variables when a large set of predictors is considered. Their
results also indicate that a good selection of the adaLASSO hyperparameters reduces forecasting
errors. Garcia et al. (2017) show that high-dimensional econometric models, such as shrinkage
and CSR, perform very well in real-time forecasting of Brazilian inflation in data-rich environ-
ments. The authors combine forecasts of different alternatives and show that model combination
can achieve superior predictive performance. Smeeks and Wijler (2018) consider an application
to a large macroeconomic U.S. data set and demonstrate that penalized regressions are very com-
petitive. Medeiros et al. (2021) conduct a vast comparison of models to forecast U.S. inflation and
showed the penalized regressions were far superior to several benchmarks, including factor mod-
els. Ardia et al. (2019) introduce a general text sentiment framework that optimizes the design
for forecasting purposes and apply it to forecasting economic growth in the United States. The
method includes the use of the Elnet for sparse data-driven selection and the weighting of thou-
sands of sentiment values. Tarassow (2019) consider penalized VARs to forecast six different eco-
nomic uncertainty variables for the growth of the real M2 and real M4 Divisia money series for
the United States using monthly data. Uematsu and Tanaka (2019) consider high-dimensional
forecasting and variable selection via folded-concave penalized regressions. The authors forecast
quarterly U.S. gross domestic product data using a high-dimensional monthly data set and the
mixed data sampling (MIDAS) framework with penalization. See also Babii et al. (2020b, 2020c).
There is also a vast list of applications in empirical finance. Elliott et al. (2013) find that com-

binations of subset regressions can produce more accurate forecasts of the equity premium than
conventional approaches based on equal-weighted forecasts and other regularization techniques.
Audrino andKnaus (2016) used LASSO-basedmethods to estimate forecastingmodels for realized
volatilities. Callot et al. (2017) consider modeling and forecasting large realized covariance matri-
ces of the 30 Dow Jones stocks by penalized VAR models. The authors find that penalized VARs
outperform the benchmarks by a wide margin and improve the portfolio construction of a mean–
variance investor. Chinco et al. (2019) use the LASSO to make 1-minute-ahead return forecasts for
a vast set of stocks traded at the New York Stock Exchange. The authors provide evidence that
penalized regression estimated by the LASSO boost out-of-sample predictive power by choosing
predictors that trace out the consequences of unexpected news announcements.

6.2 Nonlinear methods

There are many papers on the application of nonlinear ML methods to economic and financial
forecasting. Most of the papers focus on NNmethods, specially the ones from the early literature.
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102 MASINI et al.

With respect to the early papers, most of the models considered were nonlinear versions of
autoregressive models. At best, a small number of extra covariates were included. See, for exam-
ple, Teräsvirta et al. (2005) and the references therein. In the majority of the papers, including
Teräsvirta et al. (2005), there was no strong evidence of the superiority of nonlinear models as the
differences in performance were marginal. Other examples from the early literature are Swanson
and White (1995, 1997a, 1997b), Balkin and Ord (2000), Tkacz (2001), Medeiros et al. (2001), and
Heravi et al. (2004).
More recently, with the availability of large datasets, nonlinear models are back to the scene.

For example, Medeiros et al. (2021) show that, despite the skepticism of the previous literature
on inflation forecasting, ML models with a large number of covariates are systematically more
accurate than the benchmarks for several forecasting horizons and show that Random Forests
dominated all other models. The good performance of the Random Forest is due not only to
its specific method of variable selection but also the potential nonlinearities between past key
macroeconomic variables and inflation. Other successful example is Gu et al. (2020). The authors
show large economic gains to investors using ML forecasts of future stock returns based on a very
large set of predictors. The best performingmodels are tree-based and neural networks. Coulombe
et al. (2020) show significant gains when nonlinear ML methods are used to forecast macroeco-
nomic time series. Borup et al. (2020) consider penalized regressions, ensemble methods, and
random forest to forecast employment growth in the United States over the period 2004–2019
using Google search activity. Their results strongly indicate that Google search data have predic-
tive power. Borup et al. (2020) compute now- and backcasts of weekly unemployment insurance
initial claims in theUS based on a rich set of daily Google Trends search-volume data andmachine
learning methods.

6.3 Empirical illustration

In this section, we illustrate the use of some of themethods reviewed in this paper to forecast daily
realized variance of the Brazilian Stock Market index (BOVESPA). We use as regressors informa-
tion from other major indexes, namely, the S&P500 (US), the FTSE100 (United Kingdom), DAX
(Germany),Hang Seng (HongKong), andNikkei (Japan).Ourmeasure of realized volatility is con-
structed by aggregating intraday returns sample at the 5-min frequency. The data were obtained
from the Oxford-Man Realized Library at Oxford University.10
For each stock index, we define the realized variance as

𝑅𝑉𝑡 =

𝑆∑
𝑠=1

𝑟2𝑠𝑡,

where 𝑟𝑠𝑡 is the log return sampled at the 5-min. frequency. 𝑆 is the number of available returns
at day 𝑡.
The benchmark model is the heterogeneous autoregressive (HAR) model proposed by Corsi

(2009):

log 𝑅𝑉𝑡+1 = 𝛽0 + 𝛽1 log 𝑅𝑉𝑡 + 𝛽5 log 𝑅𝑉5,𝑡 + 𝛽22 log 𝑅𝑉22,𝑡 + 𝑈𝑡+1, (13)
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MASINI et al. 103

F i gu r e 7 Realized variance of different stock indexes [Colour figure can be viewed at
wileyonlinelibrary.com]

where 𝑅𝑉𝑡 is daily realized variance of the BOVESPA index,

𝑅𝑉5,𝑡 =
1

5

4∑
𝑖=0

𝑅𝑉𝑡−𝑖, and

𝑅𝑉22,𝑡 =
1

22

21∑
𝑖=0

𝑅𝑉𝑡−𝑖.

As alternatives, we consider an extended HAR model with additional regressors estimated by
adaLASSO. We include as extra regressors the daily past volatility of the other five indexes con-
sidered here. The model has a total of eight candidate predictors. Furthermore, we consider two
nonlinear alternatives using all predictors: a random forest and shallow and deep NNs.
The realized variances of the different indexes are illustrated in Figure 7. The data start in Febru-

ary 2, 2000 and ends in May 21, 2020, a total of 4200 observations. The sample includes two peri-
ods of very high volatility, namely, the financial crisis of 2007–2008 and the Covid-19 pandemics
of 2020. We consider a rolling window exercise, were we set 1500 observations in each window.
The models are reestimated every day.
Several other authors have estimated nonlinear and ML models to forecast realized variances.

McAleer and Medeiros (2008) considered a smooth transition version of the HAR while Hille-
brand and Medeiros (2016) considered the combination of smooth transitions, long memory, and
NN models. Hillebrand and Medeiros (2010) and McAleer and Medeiros (2011) combined NN
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104 MASINI et al.

Tab l e 1 Forecasting results

Full sample 2007–2008 2020
Model MSE QLIKE MSE QLIKE MSE QLIKE
HARX-LASSO 0.96∗∗ 0.98 0.98∗ 0.96 0.90∗∗∗ 0.90
Random forest 1.00 1.02 0.95∗∗∗ 0.98 1.13∗∗ 1.03∗

Neural network (1) 0.99∗∗ 0.99 0.97∗∗ 0.98 0.99 0.99
Neural network (3) 0.99∗∗ 0.99 0.98∗ 0.99 0.99 0.99
Neural network (5) 0.90∗∗ 0.99 0.98∗ 0.99 0.99 0.99

The table reports for each model, the mean squared error (MSE) and the QLIKE statistics as a ratio to the HAR benchmark.
Values smaller than one indicates that the model outperforms the HAR. The asterisks indicate the results of the Diebold-Mariano
test of equal forecasting performance. *,**, and ***, indicate rejection of the null of equal forecasting ability at the 10%, 5%, and
1%, respectively.

models with bagging and Scharth and Medeiros (2009) considered smooth transition regression
trees. The use of LASSO and its generalizations to estimate extensions of the HAR model was
proposed by Audrino and Knaus (2016).
Although the models are estimated in logarithms, we report the results in levels, which in the

end is the quantity of interest. We compare the models according to theMSE and the QLIKEmet-
ric.
The results are shown in Table 1. The table reports for each model, the MSE and the QLIKE

statistics as a ratio to the HAR benchmark. Values smaller than one indicates that the model out-
performs the HAR. The asterisks indicate the results of the Diebold-Mariano test of equal fore-
casting performance. *,**, and ***, indicate rejection of the null of equal forecasting ability at the
10%, 5%, and 1%, respectively. We report results for the full out-of-sample period, the financial
crisis years (2007–2008), and then for 2020 as a way to capture the effects of the Covid-19 pan-
demics on the forecasting performance of different models.
As we can see from the tables, the ML methods considered here outperform the HAR bench-

mark. The winner model is definitely the HAR model with additional regressors and estimated
with adaLASSO. The performance improves during the high volatility periods and the gains reach
10% during the Covid-19 pandemics. RFs do not performwell. On the other hand, NNmodels with
different number of hidden layers outperform the benchmark.

7 CONCLUSIONS AND THE ROAD AHEAD

In this paper, we present a nonexhaustive review of the most of the recent developments in ML
and high-dimensional statistics to time-seriesmodeling and forecasting.We presented both linear
and nonlinear alternatives. Furthermore, we consider ensemble and hybrid models. Finally, we
briefly discuss tests for superior predictive ability.
Among linear specification, we pay special attention to penalized regression (Ridge, LASSO

and its generalizations, for example) and ensemble methods (Bagging and CSR). Although, there
have been major theoretical advances in the literature on penalized linear regression models for
dependent data, the same is not true for ensemble methods. The theoretical results for Bagging
are so far based on independent data and the results for CSR are quite limited.
With respect to nonlinear ML methods, we focused on NNs and tree-based methods. Theoret-

ical results for RFs and boosted trees have been developed only to IID data and in the case of a
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MASINI et al. 105

low-dimensional set of regressors. For shallow NNs, Chen et al. (2007) and Chen (2007) provide
some theoretical results for dependent data in the low-dimensional case. The behavior of such
models in high dimensions is still under study. The same is true for deep NNs.
Nevertheless, the recent empirical evidence shows that nonlinear ML models combined with

large data sets can be extremely useful for economic forecasting.
As a direction for further developments we list the following points:

1. Develop results for Bagging and Boosting for dependent data.
2. Show consistency and asymptotic normality of the RF estimator of the unknown function
𝑓ℎ(𝑿𝑡) when the data are dependent.

3. Derive a better understanding of the variable selection mechanism of nonlinear ML methods.
4. Develop inferential methods to access variable importance in nonlinear ML methods.
5. Develop models based on unstructured data, such as text data, to economic forecasting.
6. Evaluate ML models for nowcasting.
7. Evaluate ML in very unstable environments with many structural breaks.

Finally, we would like to point that we left a number of other interesting ML methods out of
this survey, such as, for example, Support Vector Regressions, autoenconders, nonlinear factor
models, and many more. However, we hope that the material presented here can be of value to
anyone interested of applying ML techniques to economic and/or financial forecasting.
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ENDNOTES
1 More recently, ML for causal inference have started to receive a lot of attention. However, this survey will not
cover causal inference with ML methods.

2 The original sentence is “Programming computers to learn from experience should eventually eliminate the
need for much of this detailed programming effort.” See Samuel (1959).

3 The zero mean condition can be always ensured by including an intercept in the model. Also the variance of
𝑓(𝑿𝑡) to be finite suffices for the finite variance.

4 The oracle property was first described in Fan and Li (2001) in the context of nonconcave penalized estimation.
5 A more precise treatment would separate sign consistency frommodel selection consistency. Sign consistency first
appeared in Zhao and Yu (2006) and also verify whether the sign of estimated regression weights converge to
the population ones.

6 Weak sparsity generalizes sparsity by supposing that coefficients are (very) small instead of exactly zero.
7 The relevant regressors are the ones associated with nonzero parameter estimates.
8 An unstable predictor has large variance. Intuitively, small changes in the data yield large changes in the predic-
tive model.

9 It is possible to combine forecasts using anyweighting scheme. However, it is difficult to beat uniformweighting
(Genre et al., 2013).

10 https://realized.oxford-man.ox.ac.uk/data/assets
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