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1 Additional Simulation Results

Table S.1 reports the size distortions for the mixed-trend case. The table shows rejection

rates under the null hypothesis of no intervention effect under three different nominal size

values: 0.01, 0.05 and 0.1. The rejection rates are computed for three estimation frameworks:

LASSO means that the counterfactual is estimated by LASSO with all the n units included

in the model. The penalization parameter λ is chosen as described in Section 4. Oracle

means that the counterfactual is estimated by ordinary least squares (OLS) using only the s0

relevant units. Finally, True means no estimation, that is, the counterfactual is estimated

with the true values of the parameters (θ0). All distributions are standardized (zero mean

and unit variance). Mixed normal means two Normal distributions with probability (0.3, 0.7),

mean (−10, 10) and variance (2, 1). The autoregressive of order one, AR(1), structure with

coefficient ρ is applied to the common factor innovation UF
1t and the first unit idiosyncratic

innovation UZ
1t.

Table S.2 reports several statistics averaged over 10,000 replications for each one of four

data generating processes. More specifically, the mean `1-norm is the average ‖θ̂ − θ‖1, the

mean bias is the average bias (θ̂−θ) over the simulations, the mean MSE is the average mean

squared error, and the mean ∆ is the average intervention effect over the 10 out-of-sample

periods. Note that the true value of ∆ is zero. MSE ∆ is the average squared error over the

simulation and, finally, median ∆ is the median of the estimates of ∆ over the simulations.

Each column in the table represents a variation of the baseline scenario, in which we set

T = 100,s0 = 5, n = 100 and ρ = 0. Model (1) is given by equations (5.1) and (5.2) where

fFt = 0. Model (2) is given by equations (5.1) and (5.2) where fFt = 1. Model (3) is given

by equations (5.1) and (5.3) where fFt = t. Model (4) is given by equations (5.1) and (5.3)

where fFt = t2.

As expected, the `1-norm, the bias, and the MSE of the estimators decrease with the

sample size but increase as the degree of sparsity decreases (s0 grows), as the number of

covariates grows or as the autocorrelation in the errors increases. Nevertheless, the biases
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are negligible. Concerning the estimator of the average intervention effect (∆), the estimators

are rather precise when the trends are deterministic. On the other hand, with stochastic

trends, the biases are small only with no error autocorrelation.

2 Proof of the Main Results

2.1 Proof of Proposition 1

In light of representation (3.2), it is enough to prove result (a) to show that ηit/dit vanishes

in the appropriate sense as t→∞. Under DGP (2.4), we have

ηit
dit

=
Z

(0)
i0

dit
+

∑t
s=1 Uis√
t

√
t

dit
= oP (1) +OP (1)o(1) = oP (1),

where the OP (1) term is a consequence of Assumption 3. Under DGP (2.5), we have that

ηit/dit = Uit/(ci + fit)→ 0, almost surely as fit →∞.

For result (b), we have for DGP (2.4), Z
(0)
it = dit + Z

(0)
it +

∑t
s=1 Uit = O(

√
t) + OP (1) +

OP (
√
t) = OP (

√
t) and for DGP (2.5), Z

(0)
it = ci + fit +Uit = O(1) +O(1) +OP (1) = OP (1).

Finally, under DGP (2.4), if dit = o(
√
t), we have the result by the Central Limit

Theorem (ensured by Assumption 3) combined with Slutsky’s theorem since t−1/2Z
(0)
it =

o(1) + t−1/2
∑t

s=1 Uit.

2.2 Proof of Proposition 2

We start from the reparametrized objective function H defined in (3.4). By definition,

H(γ̂) ≤ H(γ) for all γ. Using the fact that Yt = γ ′0W t + Vt for the transformed variables

and letting Σ := 1
T0

∑T0
t=1W tW

′
t, we have for any γ:

(γ̂ − γ)′Σ(γ̂ − γ0) + λ‖γ̂‖ν ≤ 2(γ̂ − γ)′
1

T

T∑
t=1

W tVt + λ‖γ‖ν , (S.1)

where we use the shorthand ‖γ‖ν :=
∑p

i=1 νi|γi|. We can bound from above the first term

after the inequality in (S.1) using Hölder’s inequality by ‖γ̂ − γ‖1‖ 2
T

∑T
t=1W tVt‖∞, and
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provided that λ0 ≥ ‖ 2
T

∑T
t=1W tVt‖∞, we are left with

(γ̂ − γ)′Σ(γ̂ − γ0) + λ‖γ̂‖ν ≤ λ0‖γ̂ − γ‖1 + λ‖γ‖ν .

Now, let S ⊆ {1 . . . , p} denote an index set such that for any p-dimensional vector v, vS is

the vector containing only the elements of the vector v indexed by S and Sc := S \{1, . . . , p}

its complement. For an arbitrary index set S, we use ‖γ‖1 = ‖γS‖1 + ‖γSc‖1 and ‖γ‖ν =

‖γS‖ν + ‖γSc‖v and the triangle inequality to write

(γ̂ − γ)′Σ(γ̂ − γ0) + λ‖γ̂Sc‖ν − λ0‖γ̂Sc‖1 ≤

λ0‖γ̂S − γS‖1+λ‖γ̂S − γS‖ν + λ‖γSc‖ν + λ0‖γSc‖1.

In addition, consider events defined in (A.3)–(A.5) to conclude that on Ω2, we have for every

γ that ‖γSc‖ν ≥ (1− λ2)‖γSc‖1 and ‖γSc‖ν ≤ (1 + λ2)‖γSc‖1, which yields

(γ̂ − γ)′Σ(γ̂ − γ0) + [λ(1− λ2)− λ0]‖γ̂Sc‖1 ≤

[λ0 + λ(1 + λ2)]‖γ̂S − γS‖1 + λ‖γSc‖ν + λ0‖γSc‖1.

Set λ := λ(1 − λ2) − λ0 and sum λ‖γSc‖1 to both sides of the last inequality and use the

triangle inequality to obtain

(γ̂ − γ)′Σ(γ̂ − γ0) + λ‖γ̂Sc − γSc‖1 ≤

[λ0 + λ(1 + λ2)]‖γ̂S − γS‖1 + 2λ(‖γSc‖ν ∨ ‖γSc‖1).

Finally, for δ ∈ [0, 1), set λ := λ(1 + λ2) + λ0 + δλ and sum δλ‖γ̂S − γ0,S‖1 to both sides

(γ̂ − γ)′Σ(γ̂ − γ0) + λ‖γ̂Sc − γSc‖1 + δλ‖γ̂S − γS‖1 ≤

λ‖γ̂S − γS‖1 + 2λ(‖γSc‖ν ∨ ‖γSc‖1). (S.2)

We now consider two cases: (i) if (γ̂−γ)′Σ(γ̂−γ0) ≥ −δλ‖γ̂−γ‖1+2λ(‖γSc‖ν∨‖γSc‖1),

then the inequality (S.2) implies that (1 − δ)λ‖γ̂Sc − γSc‖1 ≤ λ‖γ̂S − γS‖1, which, by the

definition of ξ and the compatibility condition on the matrix Σ, we have

‖γ̂S − γS‖1 ≤
‖γ̂ − γ‖Σ

√
|S|

χ(Σ,S, ξ)
.
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Using the compatibility condition, the first term on the right-hand side of (S.2) can be upper

bounded by

λ
‖γ̂ − γ‖Σ

√
|S|

χ(Σ,S, ξ)
≤ λ

2|S|
2χ2(Σ,S, ξ)

+
1

2
‖γ̂ − γ‖Σ.

Apply the last bound on (S.2)and multiply it by 2 such that

2(γ̂ − γ)′Σ(γ̂ − γ0) + 2λ‖γ̂Sc − γSc‖1 + 2δλ‖γ̂S − γS‖1 ≤

λ
2|S|

χ2(Σ,S, ξ)
+ ‖γ̂ − γ‖Σ + 4λ(‖γSc‖ν ∨ ‖γSc‖1). (S.3)

Notice that for any pair γ, γ̃ ∈ Rp, we have the identity

2(γ̃ − γ)′Σ(γ̃ − γ0) = ‖γ̃ − γ0‖Σ + ‖γ̃ − γ‖Σ − ‖γ − γ0‖Σ. (S.4)

Apply (S.4) with γ̃ = γ̂ to the first term on the left-hand size of (S.3) such that

‖γ̂ − γ0‖Σ + 2λ‖γ̂Sc − γSc‖1 + 2δλ‖γ̂S − γS‖1 ≤

‖γ − γ0‖Σ +
λ
2|S|

χ2(Σ,S, ξ)
+ 4λ(‖γSc‖ν ∨ ‖γSc‖1).

The result is then obtained by noticing that the sum of the second and third term on the

left-hand side of the inequality can be lower bounded by 2δλ‖γ̂ − γ‖1 because δ ∈ [0, 1).

Now, if (ii) (γ̂ − γ)′Σ(γ̂ − γ0) ≤ −δλ‖γ̂ − γ‖1 + 2λ(‖γSc‖ν ∨ ‖γSc‖1), then the identity

(S.4) give us directly the result since

‖γ̂ − γ0‖Σ + 2δλ‖γ̂ − γ‖1 = 2δλ‖γ̂ − γ‖1 + 2(γ̂ − γ)′Σ(γ̂ − γ0)− ‖γ̂ − γ‖Σ + ‖γ − γ0‖Σ

≤ ‖γ − γ0‖Σ − ‖γ̂ − γ‖Σ + 4λ(‖γSc‖ν ∨ ‖γSc‖1)

≤ ‖γ − γ0‖Σ + 4λ(‖γSc‖ν ∨ ‖γSc‖1).

2.3 Proof of Proposition 3

The proof follows from Proposition 2. We consider only the case when b > 0 since the case

for b = 0 was done in the main text. First, we use the fact that ‖γSc‖ν ≤ (1 + λ2)‖γSc‖1

on the event Ω2. Additionally, we have that Rb :=
∑p

j=1 |γ0,j|b ≥ |Sb|(
λ
2

λ
)b from which we
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conclude that

|Sb| ≤
(
λ

λ
2

)b
Rb(γ0) and ‖γ0

Scb
‖ ≤

(
λ
2

λ

)1−b

Rb.

Set γ = γ0, S = Sq in (A.6) and use the previous inequalities to upper bound the right-hand

side of (A.6) to obtain (A.7).

For the second result, use the condition λ = kλ0 to conclude that

λ = (1− λ2 − 1/k)λ := cλ and λ = [1 + δ + (1− δ)(λ2 + 1/k)]λ := cλ.

Therefore, C2 = 1{q > 0}c2 and C1 := c2(q−1)

2δc
.

2.4 Proof of Lemma 1

We divide the proof into three steps. First, we show that under the hypotheses of Theorem

1, the process {W tVt}t≥1 can be properly bounded. Then, we show that the event Ω0 ∩ Ω1

occurs with high probability. Finally, we derive the results of the Theorem.

2.4.1 Bound Control

We have W t = L−1X t = L−1(dt +ηt) where dt := (d1t, . . . , dpt)
′ and ηt := (η1t, . . . , ηpt)

′ for

t ≥ 1. Then, for the DGP (2.5) in Assumption 2, recall that ηt = U t, dt = c + µft and L

is just a deterministic diagonal matrix. Hence, the process {W t} is strong mixing with the

same coefficient as the process {U t}. Moreover the process {Vt}, as a linear combination of

U t, is also strong mixing with the same mixing coefficient as the process {U t}. Therefore, the

process {W tVt} is also strong mixing with the same mixing coefficient as the process {U t}

under Assumption 3. Additionally, by definition of the scaling matrix L, all the components

of the vector L−1dt are bounded between 0 and 1. If the process {U t} fulfills condition (a)

of Assumption 3, {Vt} also does because Vt = U1t −
∑n

i=2 θ0,iUit and

‖Vt‖Lq ≤ |‖U1t‖Lq +
n∑
i=2

|θ0,i|‖Uit‖Lq = O(‖θ0‖1) = O(1).

Then, by the Cauchy-Schwartz inequality, we have that {W tVt} fulfills the same condition
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with constant q/2 since for some ε > 0, we have

sup
t∈N

sup
i≤p

E|UitVt|q/2+ε/2 ≤
(
sup
t∈N

sup
i≤p

E|Uit|q+ε sup
t∈N

sup
i≤p

E|Vt|q+ε
)1/2

<∞.

Furthermore, if {(Vt,U ′t)′} also fulfills condition (b) of Assumption 3 with the triple (a1, a2, a3)

in the exponential bound, then the process {W tVt} complies with Assumption 3(b) with the

triple (2a1, a2, a3/2) since for each component of the vector, U tVt is bounded by

P(|UitVt| > u) ≤ P(|Uit| >
√
u) + P(|Vt| >

√
u) ≤ 2a1 exp(−a2ua3/2).

Now, consider DGP (2.4). Notice that we cannot follow the same proof strategy taken

for the DGP (2.5) since in this case, {W t} cannot be a mixing process. Therefore, we use

Lemma 1 to construct bounds for ‖
∑T0

t=1WitVt‖Lq and ‖
∑T0

t=1WitWjt‖Lq uniformly in t ≤ T0

and 1 ≤ i, j ≤ p. For the latter, we have∥∥∥∥∥
T0∑
t=1

WitWjt

∥∥∥∥∥
Lq
≤

T0∑
t=1

ditdjt
`i`j

+
1

`j

∥∥∥∥∥
T0∑
t=1

dit
`i
ηjt

∥∥∥∥∥
Lq

+
1

`i

∥∥∥∥∥
T0∑
t=1

djt
`j
ηit

∥∥∥∥∥
Lq

+
1

`i`j

∥∥∥∥∥
T0∑
t=1

ηitηjt

∥∥∥∥∥
Lq
.

Since dit/`i ∈ [0, 1] for all i by definition, the first term is O(T0). The second and third

terms are O(T
3/2
0 /lj) and O(T

3/2
0 /li), respectively, by result (b) of Lemma 1 and the last one

if O(T 2
0 /(`i`j)) from result (c) of Lemma 1. Consequently, we conclude that∥∥∥∥∥

T0∑
t=1

WitWjt

∥∥∥∥∥
Lq

= O

(
T0 ∨

T
3/2
0

`i ∧ `j
∨ T 2

0

`i`j

)
= O(T0).

For the former, we start by the triangle inequality∥∥∥∥∥
T0∑
t=1

WitVt

∥∥∥∥∥
Lq
≤

∥∥∥∥∥
T0∑
t=1

dit
`i
Vt

∥∥∥∥∥
Lq

+
1

`i

∥∥∥∥∥
T0∑
t=1

ηitVt

∥∥∥∥∥
Lq
.

The first term is O(
√
T0) by result (a) of Lemma 1. For the second term, we may use result

(c) and Hölder’s inequality to obtain∥∥∥∥∥
T0∑
t=1

ηitVt

∥∥∥∥∥
Lq
≤

∥∥∥∥∥
T0∑
t=1

ηitU1t

∥∥∥∥∥
Lq

+
n∑
j=2

|θ0,j|

∥∥∥∥∥
T0∑
t=1

ηitUjt

∥∥∥∥∥
Lq

= O(T0 ∨ T0‖θ0‖1) = O(T0).

Hence, the second term is O(T0/`i) by result (a), and therefore∥∥∥∥∥
T0∑
t=1

WitVt

∥∥∥∥∥
Lq

= O(
√
T0 ∨ T0/`i) = O(

√
T0).
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2.4.2 Probability Bounds on Ω0 and Ω1

In light of the results in the previous subsection, we can set λ0 = λ/2 with λ as stated in

the theorem. For DGP (2.5), results (b) and (c) of Lemma 2 allow us to conclude that for

all c > 0:

P(Ωc
0) = P

(∥∥∥∥∥ 1

T0

T0∑
t=1

W tVt

∥∥∥∥∥
∞

>
λ0
2

)
=


O(c−q/2) under Assumption 3(a)

O[exp(−c/2)] under Assumption 3(b).

We start by showing that P(Ω1) → 1. Recall that P(Ωc
1) = P (‖Σ−Σ0‖∞ > λ1). Set

λ1 = χ1(ξ,S,Σ0)/[2(1 + ξ)2s] and x = λ1
√
T0 in Lemma 2. Results (d) and (e) in Lemma 2

imply that

P(Ωc
1) =


O
[(

p2/qs√
T0

)q]
= o(1) under Assumption 3(a),

O
{
exp
[
2 log p− χ1

√
T0

4(1+ξ)2s

]}
= o(1) under Assumption 3(b),

where the o(1) terms follow by assumption of the theorem since p4/qs/
√
T0 = o(1) and

s log p/
√
T0 = o(1).

Additionally, from the relation λ = 2λ0, we may choose λ2 > 0 arbitrarily close to 0 such

that ξ in Proposition 2 can be arbitrarily close to 3. For instance, setting λ2 = 1/10 yields

λ0 + λ(1 + λ2)

λ(1− λ2)− λ0
=

1 + 2(1 + λ2)

2(1− λ2)− 1
=

3 + 2λ2
1− 2λ2

= 4 =: ξ.

Provided that the GIF condition holds, i.e., χ1(4,S,Σ0) > 0, we have for λ as stated in

the theorem and for all c > 0:

P(Ω0 ∩ Ω1) ≥ 1−


O(c−q/2) under Assumption 3(a),

O[exp(−c/2)] under Assumption 3(b).

Similarly, for the DGP (2.4) under Assumption 3(a), by setting λ as stated in the theorem

yields
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P(Ωc
0) = P

(∥∥∥∥∥ 1

T

T∑
t=1

W tVt

∥∥∥∥∥
∞

>
λ0
2

)
= O(c−q/2) and

P(Ω∗1
c) ≤ ε.

2.5 Proof of Theorem 1

By setting λ according to Assumption 5, we have that λ = O[ψ(p)/
√
T0] with ψ(x) = x2/q

under Assumption 3(a) and ψ(x) = log x under Assumption 3(b). The second part of

Proposition 3 combined with Lemmas 1 and 2 yields

‖γ̂ − γ0‖1 = OP

[(
ψ(p)√
T0

)1−b
Rb

λ1

]
.

The result (a) then follows from Assumption 6(c).

For the remaining results, we use the fact that

δ̂t − δt = Vt + (γ̂T0 − γ0)
′W t, T0 < t ≤ T.

For (b), we have by Hölder’s inequality that |δ̂t−δt−Vt| = |(γ̂−γ0)
′W t| ≤ ‖γ̂−γ0‖1‖W t‖∞.

The order in probability of the first term is given by the result (a), and the second term is

OP [ψ(p)] by Lemma 2(a). Hence, δ̂t − δt − Vt = OP [ ψ(p)
2−bRb

T
(1−b)/2
0 λ1

] = oP (1) also by Assumption

6(c). For result (c), we have

∆̂T −∆T :=
1

T1

∑
t>T0

δ̂t − δt =
1

T1

∑
t>T0

Vt − (γ̂ − γ0)
′ 1

T1

∑
t>T0

W t.

The first term is OP (1/
√
T1) under Assumption 3, and the absolute value of the second term

is upper bounded by Hölder’s inequality since

‖γ̂ − γ0‖1

∥∥∥∥∥ 1

T1

∑
t>T0

W t

∥∥∥∥∥
∞

≤ ‖γ̂ − γ0‖1

(∥∥∥∥∥ 1

T1

∑
t>T0

W t − E(W t)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

T1

∑
t>T0

E(W t)

∥∥∥∥∥
∞

)
.

The first term in parentheses is OP [ψ(p)/
√
T1] by Lemma 2(b), whereas the second is O(1).

Therefore, under the assumptions of the theorem, the term in parentheses is OP (1). The

order in probability of the term outside the parentheses is given by result (a). Hence,
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(γ̂ − γ0)
′ 1
T1

∑
t>T0

W t = OP

[(
ψ(p)√
T0

)1−b
Rb

λ1

]
and, therefore

∆̂T −∆T = OP

[(
ψ(p)√
T0

)1−b
Rb

λ1
∨ 1√

T1

]
.

2.6 Proof of Lemma 2

According to the proposition, let R be the index set of the stochastic (nondeterministic) wi.

From the definition of Ω2, we conclude that

Ω2 =

{
sup
i∈S

νS ≤ 1 + λ2

}
∩
{
inf
i∈Sc

νSc ≥ 1− λ2
}
⊇
{
sup
i∈H
|νi − 1| ≤ λ2

}
.

To see that it is indeed the case, recall that the intercept is always included in the model

(belongs to S). Hence, ν1 = 0 ≤ 1 + λ2 for any λ2 ∈ (0, 1). For i > 1, νi is either 1, in that

case trivially 1− λ2 ≤ νi ≤ 1 + λ2, or νi = 1 + ηiT0/diT0 .

We now show that supi∈R |ηit/dit| = oP (1) as t→∞. For DGP (2.4), we have ηiT0/diT0 =(
1√
T0

∑T0
t=1 Uit

) √
T0

diT0
for i ∈ H in Assumption 2. Thus,

sup
i∈H
|ηiT0/diT0| ≤ sup

i∈H

∣∣∣∣∣ 1√
T0

T0∑
t=1

Uit

∣∣∣∣∣
√
T0

infi∈H |diT0|
.

Let dR(T0) := infi∈R |diT0 |. Since {Ut} is a zero-mean strong mixing process by assump-

tion, we can apply Lemma 2(b) to conclude that

sup
i∈R
|νi − 1| =


OP

[
(|R|)1/q

√
T0

dR(T0)

]
= oP (1) under Assumption 3(a),

OP

[√
T0 log(|R|)
dR(T0)

]
= oP (1) under Assumption 3(b).

For DGP (2.5) in Assumption 2, we have that ηiT0/diT0 = UiT0/diT0 . Then, supi∈H |UiT0/diT0| ≤

supi∈H |UiT0|/ infi∈H |diT0|. Applying Lemma 2(a), we have that

sup
i∈H
|νi − 1| =


OP

[
(|R|)1/q
dR(T0)

]
= oP (1) under Assumption 3(a),

OP

[
log(#R)
dR(T0)

]
= oP (1) under Assumption 3(b),

where all the oP (1) terms follow from Assumption 4.
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2.7 Proof of Theorem 2

Part (a) follows directly from Theorem 1 (b) combined with the continuous mapping theorem.

We prove (b) by showing that both Q̂T (x) − Q0(x) = oP (1) and QT (x) − Q0(x) = o(1), as

T0 →∞ for all x ∈ C0, the continuity points of Q0(x) := P(φ0 ≤ x). The result then follows

by the triangle inequality. For the latter, as a consequence of result (a), we have φ̂ ⇒ φ0.

For the former, let Q̃T (x) := 1
τ

∑τ
j=1 1(φj ≤ x} be the unfeasible counterpart of Q̂(x), where

τ := T0−T1 + 1. We first show that Q̃T (x)−Q0(x) vanishes in probability as T0 →∞. Due

to the strict stationarity assumption, E[Q̃T (x)] = 1
τ

∑τ
j=1 P(ψj ≤ x) = P(ψ0 ≤ x) =: Q0(x).

Hence, Q̃T (x) is unbiased for Q0(x). Therefore, it is enough to show that E
[
Q̃2
T (x)

]
converges

to zero. Notice that the sequence {Aj := 1(φj ≤ x)}j is stationary. For this reason,

E
[
Q̃2
T (x)

]
=

1

τ

∑
|k|<τ

(
1− |k|

τ

)
γk, γk := E(A1A1+k).

In addition, 0 ≤ Aj ≤ 1, so we can bound the first T1−1 covariances by 1 and the remaining

covariances using a mixing inequality due to Ibragimov (1962); regarding |k| ≥ T1, we have

γk ≤ 4α(k − T1 + 1), where α(m) is the mixing coefficient of the process {Vt}t. In fact, the

sequence {Aj(νj, . . . , νj+T1−1}j is also strong mixing. Then,

E
[
Q̃2
T (x)

]
≤ 2T1 + 1

τ
+

8

τ

τ∑
k=T1

α(k − T1 + 1).

Finally, since T0 →∞ implies τ →∞, we have that the first term converges to zero, and the

second term converges to zero due to Assumption 3, which establishes that Q̃T (x)−Q0(x) =

oP (1) for all x.

Now, we write Q̂(x) = 1
τ

∑τ
j=1 I[φj + (φ̂j − φj) ≤ x] and, for any ε > 0, we define the

event AT (ε) := {supj ‖φ̂j − φj‖∞ ≤ ε} . On AT , we have that

Q̃(x− ει) ≤ Q̂(x) ≤ Q̃(x+ ει),

where ι ∈ Rb is a vector of 1s. If we add a further condition that BT (ε, x) := {|Q̃(x− ει)−

11



Q0(x− ει)| ∨ |Q̃(x+ ει)− Q0(x+ ει)| ≤ ε}, we have

Q0(x− ει)− ε ≤ Q̂(x) ≤ Q0(x+ ει) + ε.

Now, take ε→ 0 to conclude that, conditional on AT ∩BT , we have |Q̂(x)− Q0(x)| ≤ ε for

all x ∈ C0.

Therefore, it is enough to show that P(AT ∩BT ) = 1 establishes the result (b). BT is a

sure event as Q̃(x) → Q0(x) for all x ∈ C0. Regarding AT , notice that for 1 ≤ t ≤ T0, we

have V̂t − Vt = (γ̂T0 − γ0)
′W t. As a consequence, by Hölder’s inequality,

sup
t≤T0
|V̂t − Vt| ≤ ‖γ̂T0 − γ0‖1 sup

t≤T0
‖W t‖∞ = ‖γ̂T0 − γ0‖1 sup

t,i
|Wit|.

The first term is OP [s0ψ(p)/
√
T0] by Theorem 1(a), and the second term is OP [ψ(pT0)] by

Lemma 2(a). Then, under the assumptions of the theorem, we conclude that supt≤T0 |V̂t −

Vt| = OP [s0ψ(p)ψ(pT0)/
√
T0] = oP (1). Since φ(·) is continuous, the last result implies

supj ‖φ̂j − φj‖∞ = oP (1).

For (c) and (d), we use the fact that (b) is equivalent (refer to Theorem 6.3.1 of Resnick

(1999)) to say that for any subsequence {Tj}, we can extract a further subsequence {Tjk}

such that Q̂Tjk
(ω, x)→ Q0(x) for all ω ∈ Ω3 and x ∈ C0 with P(Ω3) = 1. For (c), since Q0(x)

is assumed continuous and for each fixed ω, Q̂Tjk
(ω, x) is a cumulative distribution function

(cdf), the last convergence can be made uniform by Polya’s theorem, i.e., supx∈Rb |Q̂Tjk
(ω, x)−

Q0(x)| → 0 for all ω ∈ Ω3, where P(Ω3) = 1. The result then follows by using the equivalence

(in the other direction) of Theorem 6.3.1 of Resnick (1999).

For (d), we know that for each ω ∈ Ω3 and x ∈ C0, Q̂Tjk
(ω, x) → Q0(x) is equivalent to

Q̂−1Tjk
(ω, x) → Q−10 (x). We refer to Lemma 21.2 of van der Vaart (2000), which implies once

again by Theorem 6.3.1 of Resnick (1999) that Q̂−1T (x)
p−→ Q−10 (x). By the same reasoning

Q−1T (x)→ Q−10 (x) is equivalent to QT (x)→ Q0(x) for all x ∈ C0. By the triangle inequality,

we have Q̂−1T (x)− Q−1T (x) = oP (1) for x ∈ C0; then, we write

QT
[
Q̂−1T (τ)

]
= QT

[
Q−10 (τ) + Q̂−1T (τ)−Q−10 (τ)

]
.

12



Then, conditional on the event D(ε) :=
{∣∣∣Q̂−1T (x)− Q−10 (x)

∣∣∣ ≤ ε
}

, defined for an arbitrary

ε > 0, and by the monotonicity of QT (·), we have

QT
[
Q−10 (τ)− ε

]
≤ QT

[
Q̂T (τ)

]
≤ QT

[
Q−10 (τ) + ε

]
.

Additionally, consider the event

E (ε) :=
{∣∣QT [Q−10 (τ)− ε]−Q0[Q−10 (τ)− ε]

∣∣ ∨ ∣∣QT [Q−10 (τ) + ε]−Q0[Q−10 (τ) + ε]
∣∣ ≤ ε

}
to write that, conditioned on D(ε) ∩ E (ε), we have

Q0

[
Q−10 (τ)− ε

]
− ε ≤ QT

[
Q̂T (τ)

]
≤ QT

[
Q−10 (τ) + ε

]
+ ε.

Taking the limit as ε → 0 to conclude that, for fixed τ ∈ (0, 1), if Q−10 (τ) ∈ C0 and on

D(ε) ∩ E (ε), we have that
∣∣∣QT [Q̂T (τ)

]
− τ
∣∣∣ ≤ ε, as Q0

[
Q−10 (τ)

]
= τ for x ∈ C0. Finally,

the conditioning event happens with probability approaching 1.

3 Auxiliary Lemmas

Due to the lack of different characters, the variable denominations in this appendix are not

necessarily consistent with the remainder of the article.

Lemma 1. Let {Xt, t ∈ N} be a real-valued zero-mean strong mixing process with mix-

ing coefficient given by α(m) = exp(−2cm) for some c > 0, such that for some q > 2,

supt∈N E|Xt|q+ε < Cq < ∞ for some ε > 0. Additionally, define the partial sum St :=∑t
s=1Xt, then

(a) ‖ST‖Lq = O(
√
T )

(b) ‖
∑T

t=1 St‖Lq = O(T 3/2)

(c) ‖
∑T

t=1 StXt‖Lq/2 = O(T ) if q > 4

(d) ‖
∑T

t=1 S
2
t ‖Lq = O(T 2)

13



Proof. Result (a) can be found in Rio (1994); (b) follows from (a) and the triangle inequality

since ∥∥∥∥∥
T∑
t=1

St

∥∥∥∥∥
Lq
≤

T∑
t=1

‖St‖Lq =
T∑
t=1

(O(
√
t) = O(T 3/2).

For (c), we have that S2
t = (St−1 +Xt)

2 = S2
t−1 +2St−1Xt+X2

t . After taking summations

across t and rearranging, we are left with

T∑
t=1

St−1Xt =
1

2

(
S2
T −

T∑
t=1

X2
t

)
.

Then, by the triangle inequality we have for q > 4:

2

∥∥∥∥∥
T∑
t=1

St−1Xt

∥∥∥∥∥
Lq/2

=

∥∥∥∥∥S2
T −

T∑
t=1

X2
t

∥∥∥∥∥
Lq/2

=

∥∥∥∥∥S2
T −

T∑
t=1

(X2
t − EX2

t )−
T∑
t=1

EX2
t

∥∥∥∥∥
Lq/2

≤
∥∥S2

T

∥∥
Lq/2 +

∥∥∥∥∥
T∑
t=1

(X2
t − EX2

t )

∥∥∥∥∥
Lq/2

+
T∑
t=1

EX2
t .

Since the Lq norm is submultiplicative, the first term is upper bounded by ‖ST‖2Lq/2 , which

is O(T ) by (a). The second term is also O(T ) by (a) since X2
t − EX2

t is a zero-mean strong

mixing process with finite moments of order q/2 + δ/2. Finally, the last is O(T ), and we

conclude that ‖
∑T

t=1 St−1Xt‖Lq/2 = O(T ). The result (c) then follows from the triangle

inequality because∥∥∥∥∥
T∑
t=1

StXt

∥∥∥∥∥
Lq/2
≤

∥∥∥∥∥
T∑
t=1

St−1Xt

∥∥∥∥∥
Lq/2

+

∥∥∥∥∥
T∑
t=1

X2
t

∥∥∥∥∥
Lq/2

= O(T ).

Finally, for (d), we have by the triangle inequality followed by (a):∥∥∥∥∥
T∑
t=1

S2
t

∥∥∥∥∥
Lq
≤

T∑
t=1

∥∥S2
t

∥∥
Lq =

T∑
t=1

O (t) = O(T 2).

Lemma 2. Let {X t := (X1t . . . Xpt)
′, t ∈ N} be a Rp-valued zero-mean strong mixing ran-

dom vector process with mixing coefficient given by α(m) = exp(−2cm) for some c > 0.
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Additionally, consider that the following class of functions

Ψ := {ψ : R→ R : ψ(x) = |x|q, ψ(x) = expxr, q > 2, r > 0}.

Suppose that:

(i) There exists q > 2 such that supt supi≤p E|Xit|q+δ < Cq <∞ for some δ > 0 and

(ii) there exist positive constants a1, a2 and a3, such that supt supi≤p P(|Xit| > u) ≤ a1 exp(−a2xa3)

for all x > 0.

Then, for every x > 0, we have

(a) P (‖X t‖∞ ≥ x) ≤ C1p/ψ(x).

(b) P
(

1√
T

∥∥∥∑T
t=1X t

∥∥∥
∞
≥ x

)
≤ C2p/x

q

(c) P
(

1√
T

∥∥∥∑T
t=1X t

∥∥∥
∞
≥ x

)
≤ R1,T .

(d) P
[

1√
T

∥∥∥∑T
t=1X tX

′
t − E(X tX

′
t)
∥∥∥
∞
≥ x

]
≤ C3p

2/xq

(e) P
[

1√
T

∥∥∥∑T
t=1X tX

′
t − E(X tX

′
t)
∥∥∥
∞
≥ x

]
≤ R2,T

where Cj, j = 1, 2, 3 are constants depending on q and c. Additionally,

R1,T = p exp

{
2c2

[
σ +

1

4c21(log T )4

]
− x

2

}
+
√
Tp

{
1

[
x

2
≤ µ1

(
M

2

)]
+ 1

[
x

2
> µ1

(
M

2

)]
a1 exp [−a2(M/2)a3 ]

}
R2,T = p2 exp

{
2c2

[
κ+

1

4c21(log T )4

]
− x

2

}

+
√
Tp2

1
x

2
≤ ω

√√√√µ2

(√
M

2

)+ 1

x
2
> ω

√√√√µ2

(√
M

2

) 2a1 exp

[
−a2

(
M

2

)a3/2] ,

where M :=
√
T

2c1(log T )2
and, for k > 0,

µk(x) := |EXk
it1(|Xit| > x)| ≤ 2

a1

a
k/a3
2

γ

(
k

a3
+ 1, a2x

a3

)
, (S.1)
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where γ(s, a) :=
∫∞
a
xs−1 exp(−x)dx is the incomplete upper Gamma function. For instance,

when k = a3 = 1, (S.1) turns out to be 2a1
a22

(1 + a2x) exp(−a2x).

If we further impose that log p = o(Ma3/2), then, as T →∞,

R1,T → p exp
(

2c2σ −
x

2

)
R2,T → p2 exp

(
2c2κ−

x

2

)
.

Proof. First, for any (p1×p2) real-valued random matrix Y and ψ ∈ Ψ, we have by Markov’s

inequality that, for any x > 0,

P(‖Y ‖∞ ≥ x) ≤ E[ψ(‖Y ‖∞)]

ψ(x)
≤
p1p2 supi≤p1;j≤p2 E[ψ(|Yi,j|)]

ψ(x)
. (S.2)

Part (a) then follows by setting Y = X t in (S.2) and applying the definition Cψ. In the case

ψ(x) = |x|q, for part (b), set Y = 1√
T

∑T
t=1X t or for part (d), set Y = 1√

T

∑T
t=1X tX t −

E(X tX
′
t) in (S.2), and we have Lemma 6 of Carvalho et al. (2018).

For part (c), if ψ(x) = exp(x), we use a truncation argument. For now, fix M > 0

and let X≤it := Xit1(|Xit| ≤ M/2)− E[Xit1(|Xit| ≤ M/2)] and X>
it := Xit1(|Xit| > M/2)−

E[Xit1(|Xit| > M/2)] for 1 ≤ i ≤ p and t ≥ 1. SinceX t is zero mean by assumption, we have

that Xit = X≤it + X>
it . Furthermore, by construction, X≤it is a bounded (by M) zero-mean

random variable. Therefore, from Theorem 2 in Merlevède et al. (2009), there exist positive

constants c1 and c2, depending only on c, such that for all T ≥ 2 and 0 < q < 1
c1M(log T )2

, the

following inequality holds:

logE

[
exp

(
q

T∑
t=1

X≤i,t

)]
≤ c2q

2(Tσ2
i +M2)

1− c1Mq(log T )2
, i = 1, . . . , p,

where σ2
i := supt

∑
k∈Z |E

(
X≤itX

≤
it+k|

)
< ∞. If we set q = 1√

T
, take M =

√
T

2c1(log T )2
and

σ2 := supi≤p σ
2
i , we have

logE

[
exp

(
1√
T

T∑
t=1

X≤i,t

)]
≤ 2c2

[
σ2 +

1

4c21(log T )4

]
.

Let X≤t := (X≤1t, . . . , X
≤
pt)
′. Then, applying (S.2) with Y = 1√

T

∑T
t=1X

≤
t and ψ(x) = exp(x),
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we have

P

(∥∥∥∥∥ 1√
T

T∑
t=1

X≤t

∥∥∥∥∥
∞

≥ x

)
≤ p exp

[
2c2

(
σ +

1

4c21(log T )4

)
− x
]
.

We now bound 1√
T

∑T
t=1X

>
t , where X>

t := (X>
1t, . . . , X

>
pt)
′. First, notice that

P [|Xit1(|Xit| > M/2)| ≥ x] ≤ P(|Xit| > M/2) ≤ a1 exp(−a2(M/2)a3).

Also,

|E[Xit1(|Xit| > M/2)]| ≤
∫
Xi

|x|1(|x| > M/2)dFit(x) ≤ 2

∫ ∞
M/2

xf(x)dx,

where Fit(x) := P(Xit ≤ x) and f(x) = a1a2a3x
a3−1 exp(−a2xa3), i.e., f := dF

dx
with F (x) :=

1− a1 exp(−a2xa3). The last integral cannot be solved analytically when a3 is not a positive

integer. Apart from a change in variable, it is related to the incomplete upper Gamma

function as defined above.

Then, by the triangle inequality, we have

P(|X>
it | ≥ x) = P {|Xit1(|Xit| > M/2)− E[Xit1(|Xit| > M/2)]| ≥ x}

≤ P
[
|Xit1(|Xit| > M/2)| ≥ x− µ1

(
M

2

)]
≤ 1

[
x ≤ µ1

(
M

2

)]
+ 1

[
x > µ1

(
M

2

)]
P(|Xit| > M/2)

≤ 1

[
x ≤ µ1

(
M

2

)]
+ 1

[
x > µ1(

M

2
)

]
a1 exp [−a2(M/2)a3 ] .

Apply the union bound to conclude that

P

(∥∥∥∥∥ 1√
T

T∑
t=1

X>
t

∥∥∥∥∥
∞

≥ x

)
≤
√
Tp sup

t
sup
i≤p

P(|X>
it | ≥ x)

≤
√
Tp

{
1

[
x ≤ µ1

(
M

2

)]
+ 1

[
x > µ1

(
M

2

)]
a1 exp [−a2(M/2)a3 ]

}
.

Combining both bounds and using the fact that {|A+B| ≥ x} ⊆ {|A| ≥ x/2}∪{|B| ≥ x/2},

17



we have

P

(∥∥∥∥∥ 1√
T

T∑
t=1

X t

∥∥∥∥∥
∞

≥ x

)
≤ p exp

{
2c2

[
σ +

1

4c21(log T )4

]
− x

2

}
+
√
Tp

{
1

[
x

2
≤ µ1

(
M

2

)]
+ 1

[
x

2
> µ1

(
M

2

)]
a1 exp(−a2(M/2)a3)

}
.

For (e), set ψ(x) = exp(x) and Y = 1√
T

∑T
t=1W t where W t := X tX

′
t − E(X tX

′
t) in

(S.2) to obtain

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W t

∥∥∥∥∥
∞

≥ x

)
≤
p2 sup1≤i,j≤p E

[
exp
(

1√
T

∑T
t=1Wi,j,t

)]
exp(x)

.

We can conduct a similar truncation argument to the proof of part (c). Let Wi,j,t = W≤
i,j,t +

W>
i,j,t whereW≤

i,j,t := XitXjt1
[
(|Xit| ∨ |Xjt|) ≤

√
M/2

]
−E

{
XitXjt1

[
(|Xit| ∨ |Xjt|) ≤

√
M/2

]}
and W>

i,j,t = XitXjt1
[
(|Xit| ∨ |Xjt|) >

√
M/2

]
− E

{
XitXjt1

[
(|Xit| ∨ |Xjt|) >

√
M/2

]}
;

then by construction, for each 1 ≤ i, j ≤ p, we have that {W≤
i,j,t}t≥1 is a zero mean, bounded

by M , strong mixing sequence with the same exponential decay of {X t}t≥1. For that reason,

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W≤
t

∥∥∥∥∥
∞

≥ x

)
≤ p2 exp

{
2c2

[
κ+

1

4c21(log T )4

]
− x
}
,

where κ2 := sup1≤i,j≤p supt
∑

k∈Z |E (Wi,j,tWi,j,t+k)| < ∞. For the second term, we have, by

Hölder’s inequality,∣∣∣E (XitXjt)1
(
|Xit| ∨ |Xjt| >

√
M/2

)∣∣∣ ≤ E
[
|XitXjt|1

(
|Xit| ∨ |Xjt| >

√
M/2

)]
≤
{
E
(
X2
it

)
E
[
X2
jt1
(
|Xit| ∨ |Xjt| >

√
M/2

)]}1/2

≤
{
EX2

itE
[
X2
jt1
(
|Xjt| >

√
M/2

)]}1/2

≤ ω
[
µ2

(√
M/2

)]1/2
,

where supt supi E (X2
it) ≤ ω2 <∞ and µ2(·) is defined in (S.1).
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Then, by the triangle inequality,

P(|W>
i,j,t| ≥ x) = P

{∣∣∣XitXjt1
(
|Xit| ∨ |Xjt| >

√
M/2

)
− E

[
XitXjt1

(
|Xit| ∨ |Xjt| >

√
M/2

)]∣∣∣ ≥ x
}

≤ P
{∣∣∣XitXjt1

(
|Xit| ∨ |Xjt| >

√
M/2

)∣∣∣ ≥ x− ω
[
µ2

(√
M/2

)]1/2}
≤ 1

{
x ≤ ω

[
µ2

(√
M/2

)]1/2}
+ 1

{
x > ω

[
µ2

(√
M/2

)]1/2}
P
(
|Xit| ∨ |Xjt| >

√
M/2

)
≤ 1{x ≤ ω

[
µ2

(√
M/2

)]1/2
}

+ 1

{
x > ω

[
µ2

(√
M/2

)]1/2}
2a1 exp

[
−a2(M/2)a3/2

]
.

Once again, apply the union bound to conclude

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W>
t

∥∥∥∥∥
∞

≥ x

)
≤
√
Tp2 sup

t≤T
sup

1≤i,j≤p
P(|W>

i,j,t| ≥ x).

Combining both bounds using the fact that {|A + B| ≥ x} ⊆ {|A| ≥ x/2} ∪ {|B| ≥ x/2},

we have

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W t

∥∥∥∥∥
∞

≥ x

)
≤ p2 exp

{
2c2

[
κ+

1

4c21(log T )4

]
− x

2

}
+
√
Tp21

{
x

2
≤ ω

[
µ2

(√
M/2

)]1/2}
+ p21

{
x

2
> ω

[
µ2

(√
M/2

)]1/2}
2a1 exp

[
−a2(M/2)a3/2

]
.

For the second part of the Lemma, we use the upper bound for the incomplete upper

Gamma function given by Natalini and Palumbo (2000), which states that for s > 1, b > 1

and a > b
b−1(s − 1), we have γ(s, a) < bas−1 exp(−a). Applying this bound in (S.1) with

b = 2, we have that for all k > 0 and y > 2k/a3:

µk(y) := 2
a1

a
k/a3
2

γ(k/a3 + 1, a2y
a3) < 4a1y

k exp(−a2ya3),

from which we conclude that µk(y)→ 0 as y →∞.

Since M → ∞ is T → ∞, we have for each x > 0, there is a Tx ∈ N such that
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x > 2

{
µ1(M/2) ∨ ω

[
µ2

(√
M/2

)]1/2}
, whenever T > Tx. Thus, for T > Tx, we have

R1,T = p exp

{
2c2

[
σ +

1

4c21(log T )4

]
− x

2

}
+
√
Tpa1 exp [−a2(M/2)a3 ]

R2,T = p2 exp

{
2c2

[
κ+

1

4c21(log T )4

]
− x

2

}
+
√
Tp22a1 exp

[
−a2

(
M

2

)a3/2]
.

Hence, as long as log p = o(Ma3/2), we have the second result of the Lemma.
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4 List of Symbols

4.1 The Romans

4.1.1 Lower case

a Exponent for Rb to expose the condition of the compatibility condition
b Exponent radius for the weak sparsity definition
c, c1, c2, . . . Generic positive constants
d Generic Deterministic Trend
e Exponential
f Deterministic Trends
g Generic continuous function for the infetence procedure
h Cardinality of set H
i Unit index
j Regressor index
k Regressor index 2
`, L Scaling matrix and its entries
m Lag of alpha mixing
n number of units
o, op Landou notation
p Number of regressors
q Number of moments
r Number of I(0) relations
s, s0 Cardinality of index set
t Time index
u
v
w Individual weights of the LASSO
x
y
z
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4.1.2 Upper case

A Random element of proof of Theorem 3
B Standard Brownian motion
F Factor of the common factor model
G Generic random vector of Assumption 3 and Definition 1
H Transformed objective function
M Generic matrix used in GIF
I(·) Integrated process
J Linear combination of I(0) processes
O, o,OP , oP Landou notation
Q LASSO Objective function
R Remainder of Lemma 2
T, T0, T1, T1 Sample size and Treatment, Pre and Post
U , UZ , UF Innovation
V Regression error
X, Y,W,Z(0), Z(1) Units and its transformation

4.2 The Greeks

α Mixing coefficient

θ,θ0, θ̂ Parameter, True and Estimated
γ,γ0, γ̂ Transformed parameter, True and Estimated

δ, δ̂,∆, ∆̂ Treatment effect, ATE and Estimates
ε Arbitrary small positive constant
ζ Linear Projecion in the Factor Model
η The stochastic component of the DGP
θ,Θ Parameters of the generic model
ι Vector of 1s
κ Auxiliary Lemma 1 Appendix
λ, λ0 Penalty parameter
µ Constant of the deterministic trend
ν Combined weight trend
ξ Cone constant
π Projection of I(0) process
ρ Simulation autocorrelation coefficient
σ Variance of the innovation
τ Quantiles
υ Variance of the defining I(0) process

φ, φ̂, φj The Inference function
χ GIF Constant
ψ,Ψ Deterministic Trends
Ω,Ω0,Ω1, . . . , ω Sample space, events
γ, γ̃ Cointegration matrix
Σ,Σ0 Covariance matrix of WW ′
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4.3 Miscellaneous

N,Z,R Naturals, integers and real
C Cone
H Test hypothesis
F Sigma algebra
P,E Probability and expectation operator
D Intervention indicator
U Innovation
M Generic model
G Process to define I(0)
H Set index of growth condition
S,S0 Set index
R index set in the proof of Proposition 3

References

C.V. Carvalho, R. Masini, and M.C. Medeiros. Arco: An artificial counterfactual approach
for high-dimensional panel time-series data. Journal of Econometrics, 207:352–380, 2018.

A. Ibragimov. Some limit theorems for stationary processes. Theory of Probability and its
Applications, 7:349–382, 1962.
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Table S.1: Rejection Rates under the Null (empirical size): Mixed Trends

Baseline DGP: (5.1) and (5.2) with T = 100, independent and identically normally distributed innovations,

n = 200, s0 = 5, T1 = 3 and 10, 000 Monte Carlo simulations. The test statistic considered is φ(x) = ‖x‖2.

All distributions are standardized (zero mean and unit variance). Mixed normal is equal to 2 Normal

distributions with probability (0.3, 0.7), mean (−10, 10) and variance (2, 1). The AR(1) structure with

coefficient ρ is applied to the common factor innovation UF
1t and the first unit idiosyncratic innovation UZ

1t.

The penalization parameter λ is chosen via the Bayesian Information Criterion (BIC). We set the maximum

penalty level to be ‖ 1
T0

∑T0

t=1 YtXt‖∞ with an exponential path down to λmin = 0.001 along 100 equally

spaced intervals in the glmnet package. Oracle means OLS estimation in the pre-intervention period with

known active regressors S0 (perfect model selection). True means no estimation in the pre-intervention

period. True parameter θ0 was used.
LASSO Oracle True

0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1
Innovation Distribution

Normal 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123
χ2(1) 0.0351 0.0776 0.1482 0.0293 0.0819 0.1313 0.0285 0.0616 0.1066

t-stud(3) 0.0296 0.0860 0.1461 0.0341 0.0858 0.1440 0.0269 0.0652 0.1129
Mixed Normal 0.0448 0.0967 0.1541 0.0345 0.0958 0.1519 0.0248 0.0619 0.1186

Sample Size
T = 50 0.0475 0.0932 0.1499 0.0486 0.0878 0.1510 0.0363 0.0766 0.1138

100 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123
150 0.0382 0.0814 0.1531 0.0369 0.0835 0.1347 0.0311 0.0712 0.1091
200 0.0391 0.0936 0.1505 0.0369 0.0870 0.1499 0.0319 0.0707 0.1213
500 0.0452 0.1047 0.1606 0.0413 0.1008 0.1542 0.0318 0.0633 0.1211

Number of Total Units
n = 200 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123

300 0.0277 0.0857 0.1483 0.0285 0.0798 0.1340 0.0235 0.0671 0.1106
500 0.0305 0.0874 0.1488 0.0320 0.0801 0.1397 0.0274 0.0630 0.1214
1000 0.0401 0.0930 0.1455 0.0356 0.0874 0.1477 0.0211 0.0673 0.1158

Number of Relevant (nonzero) Covariates
s0 = 2 0.0261 0.0705 0.1272 0.0226 0.0668 0.1218 0.0197 0.0558 0.1063

5 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123
50 0.0502 0.1121 0.1806 0.2544 0.3637 0.4448 0.0181 0.0577 0.1064
97 0.0580 0.1261 0.1958 1.0007 1.0007 1.0009 0.0205 0.0584 0.1069

Deterministic Component

fFt =
√
t 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123

t 0.0320 0.0815 0.1380 0.0323 0.0816 0.1394 0.0211 0.0623 0.1126
t3/2 0.0266 0.0698 0.1196 0.0294 0.0822 0.1387 0.0223 0.0606 0.1091
t2 0.0267 0.0713 0.1230 0.0293 0.0776 0.1339 0.0189 0.0561 0.1058

Serial Correlation
ρ = 0 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123
0.5 0.0301 0.0791 0.1323 0.0282 0.0770 0.1324 0.0188 0.0577 0.1020
0.7 0.0280 0.0776 0.1337 0.0269 0.0782 0.1347 0.0214 0.0582 0.1074
0.9 0.0303 0.0756 0.1279 0.0326 0.0830 0.1368 0.0229 0.0638 0.1109

Postintervention Periods
T1 = 1 0.0325 0.0754 0.1279 0.0311 0.0719 0.1205 0.0299 0.0699 0.1154

2 0.0292 0.0783 0.1316 0.0275 0.0765 0.1312 0.0224 0.0765 0.1231
3 0.0406 0.0888 0.1480 0.0415 0.0813 0.1414 0.0288 0.0677 0.1123
4 0.0398 0.0937 0.1525 0.0352 0.0885 0.1432 0.0221 0.0610 0.1088
5 0.0520 0.1095 0.1700 0.0474 0.1029 0.1644 0.0298 0.0668 0.1184
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Table S.2: Monte Carlo Results: Estimation

The table reports several statistics averaged over 10,000 replications for each one of four data generating

processes. More specifically, the mean `1-norm is the average ‖θ̂ − θ‖1, the mean bias is the average bias

(θ̂ − θ) over the simulations, the mean MSE is the average mean squared error, and the mean ∆ is the

average intervention effect over the 10 out-of-sample periods. Note that the true value of ∆ is zero. MSE

∆ is the average squared error over the simulation, and, finally, median ∆ is the median of the estimates of

∆ over the simulations. Each column in the table represents a variation of the baseline scenario, in which

we set T = 100,s0 = 5, n = 100 and ρ = 0. Model (1) is given by equations (5.1) and (5.2) where fFt = 0.

Model (2) is given by equations (5.1) and (5.2) where fFt = 1. Model (3) is given by equations (5.1) and

(5.3) where fFt = t. Model (4) is given by equations (5.1) and (5.3) where fFt = t2.

Model Statistic Baseline
Sample Size Sparsity Regressors Autocorrelation

T = 500 T = 1000 s0 = 1 s0 = 10 n = 50 n = 200 ρ = 0.2 ρ = 0.5

(1)

mean `1-norm 1.36 0.26 0.13 0.19 3.04 0.99 1.72 1.46 1.87
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
mean ∆ -0.03 -0.03 0.02 0.01 -0.04 0.01 0.01 0.03 -0.19
MSE ∆ 1.57 0.25 0.17 0.33 3.48 1.00 2.27 2.13 4.99
median ∆ -0.03 -0.03 0.02 0.01 -0.04 0.01 0.01 0.03 -0.19

(2)

mean `1-norm 2.46 0.34 0.15 0.63 4.38 1.52 3.55 2.91 3.83
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
mean ∆ 0.10 -0.02 -0.01 -0.28 -0.08 -0.17 -0.30 0.08 -0.17
MSE ∆ 3.20 0.29 0.15 0.93 6.24 1.56 5.72 4.53 13.21
median ∆ 0.10 -0.02 -0.01 -0.28 -0.08 -0.17 -0.30 0.08 -0.17

(3)

mean `1-norm 3.45 0.66 0.32 1.02 5.82 1.96 4.61 3.68 3.95
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.01
mean ∆ 0.01 -0.02 0.00 -0.08 0.00 0.13 0.00 -0.11 -0.08
MSE ∆ 4.81 0.39 0.23 1.73 7.41 2.25 7.74 5.87 15.51
median ∆ 0.01 -0.02 0.00 -0.08 0.00 0.13 0.00 -0.11 -0.08

(4)

mean `1-norm 1.46 0.64 0.58 0.33 2.93 1.24 1.66 1.52 1.93
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
mean ∆ -0.06 0.01 -0.01 -0.29 -0.03 -0.06 -0.07 -0.06 -0.08
MSE ∆ 0.22 0.12 0.12 0.25 0.30 0.18 0.26 0.32 0.73
median ∆ -0.06 0.01 -0.01 -0.29 -0.03 -0.06 -0.07 -0.06 -0.08
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