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ABSTRACT
Recently, there has been growing interest in developing statistical tools to conduct counterfactual analysis
with aggregate data when a single “treated” unit suffers an intervention, such as a policy change, and
there is no obvious control group. Usually, the proposed methods are based on the construction of an
artificial counterfactual from a pool of “untre ated” peers, organized in a panel data structure. In this
article, we consider a general framework for counterfactual analysis for high-dimensional, nonstationary
data with either deterministic and/or stochastic trends, which nests well-established methods, such as
the synthetic control. We propose a resampling procedure to test intervention effects that does not rely
on postintervention asymptotics and that can be used even if there is only a single observation after the
intervention. A simulation study is provided as well as an empirical application. Supplementary materials
for this article are available online.
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1. Introduction

Since the proposal of synthetic control (SC) method by
Abadie and Gardeazabal (2003) and Abadie, Diamond, and
Hainmueller (2010), measuring treatment (intervention) effects
on a single treated unit based on counterfactuals constructed
from artificial controls has become a popular practice. Usually,
artificial (synthetic) controls are built from a panel of untreated
peers observed over time, before and after the intervention.

This article has two major contributions. First, we investigate
the consequences of estimating counterfactuals when the data
are nonstationary, with deterministic and/or stochastic trends
and when the dimensionality of the counterfactual model grows
with the sample size. We propose a modification of Tibshirani’s
(1996) least absolute and selection operator (LASSO), which has
been proven to be consistent for the parameters of interest under
weak sparsity of the model. Our estimator is a special case of the
adaptive LASSO of Zou (2006). Our results have implications for
cointegration analysis in high dimensions. Second, we develop
inferential procedures based on partial resampling that can be
applied in situations where the number of observations after
the intervention is small when compared to the number of time
periods before it. Our testing procedure can be used even when
there is a single observation after the intervention. Moreover,
the test can be extended to the stationary case with virtually
no modifications. The statistical framework considered here
nests the SC method and many of its variants as well as the
panel factor (PF) method of Hsiao, Ching, and Wan (2012) and
the artificial counterfactual (ArCo) of Carvalho, Masini, and
Medeiros (2018).
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We believe our results are of general importance for the fol-
lowing reasons. First, several applications of the SC method are
for trending data. With nonstationary data, the usual inferential
procedures to evaluate the effects of the intervention can be mis-
leading. Second, although it is not usual for applications involv-
ing counterfactual estimation to be truly high dimensional,
compared to the number of variables in the model, the number
of pre-intervention observations is frequently small. Therefore,
deriving the statistical properties of counterfactual estimators
under high dimensions and nonstationarity at the same time
is of considerable importance. Finally, recent methods consider
that the number of postintervention observations grows with
the sample size. In this scenario, the tests have very little power
when effects diminish in the aftermath of the intervention or
when effects concern the variance of the variable of interest.
More worrisome is that with a long postintervention period,
there could be a larger probability of contamination effects; that
is, the peers may be affected by the intervention. Our inferential
procedure fits nicely when the time period after the intervention
is very small.

1.1. Overview

The method is divided into steps. Suppose we are interested in
estimating the effects on a variable Yt of an intervention that
occurred at time t = T0 +1. We estimate a counterfactual based
on a number of covariates, Xt ∈ R

p, constructed from a number
of peers that are assumed to be unaffected by the intervention.

© 2021 American Statistical Association
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We allow the dimension of Xt to grow with the sample size T,
that is, p ≡ pT . The procedure is thus summarized as:

1. Based on the sample {Yt , X′
t}T0

t=1 estimate Yt = X′
tθ0 + Vt ,

where Vt is an error term that will be specified later. To cope
with high-dimensionality and nonstationarity, estimate the
model by the modification of the LASSO method proposed
in this article.

2. For t = T0 + 1, . . . , T, estimate the intervention effects by
δ̂t = Yt − X′

t θ̂T0 , where θ̂T0 is the estimated coefficient in the
first step.

3. Test for H0 : g(δT0+1, . . . , δT) = 0 by using the partial
resampling procedure that will be described later. g(·) is a
vector-valued continuous function.

In this article, we show consistency of θ̂T0 to θ0, where θ0
will be defined both under stationarity and nonstationarity. We
show consistency of the estimated average intervention effect,
�̂ = 1

T−T0

∑T
t=T0+1 δ̂t . Finally, we propose a statistic to test for

the general null hypothesis defined above.

1.2. Comparison With the Literature

Recent articles have discussed the effects of nonstationarity
on counterfactual estimation in low dimensions. Bai, Li, and
Ouyang (2014) show consistency of the Hsiao, Ching, and Wan’s
(2012) panel approach when the data are integrated of order one.
Masini and Medeiros (2019) provided the asymptotic distribu-
tion of the counterfactual estimation under nonstationarity in
low dimensions and develop the necessary results to conduct
inference using the methods proposed here. Ferman and Pinto
(2016) studied the SC estimator in cases with explosive common
factors and imperfect pre-intervention fit. Finally, Li (2020)
analyzed the properties of counterfactual estimators under both
trend-stationary and unit-root cases. We complement the anal-
ysis in the previous articles by simultaneously providing a full
and general treatment of counterfactual estimation with both
nonstationary and high-dimensional data.

High dimensionality has been considered in settings less
general than the ones considered here. For example, Bléhaut
et al. (2020) considered the case of independent and identically
distributed data, Li and Bell (2017) studied the case where the
data are stationary, and Carvalho, Masini, and Medeiros (2018)
derived results under a setup where the data are either stationary
or have bounded deterministic trends, that is, deterministic
functions of t/T. As we combine nonstationarity with high-
dimensions, our approach generalizes the above cited articles.

Several articles have proposed methods to conduct inference
for counterfactual and treatment effect estimation. Many of
them derive the results from an asymptotic argument over the
postintervention sample and under a less general framework
than the one considered in this article. For example, the high-
dimensional results in Carvalho, Masini, and Medeiros (2018)
were derived under either stationarity or bounded determin-
istic trends. Chernozhukov, Wuthrich, and Zhu (2020) pro-
posed a generalization of the previous article with a new infer-
ence method to test hypotheses on average treatment effects
under high dimensionality and potential nonstationarity. Dif-
ferent from our assumptions, they impose that exactly the same
(stochastic) trend is shared among all variables in the model.

Other articles tackle the problem of inference with a small
number of observations after the intervention. Chernozhukov,
Wuthrich, and Zhu (2018) proposed a general conformal infer-
ence method to test hypotheses on the counterfactuals. Different
from the authors, we consider the case where the number of
regressors grows at a faster rate than the sample size. Catta-
neo, Feng, and Titiunik (2019) constructed prediction intervals
in the canonical SC framework and provide conditions under
which these intervals offer finite-sample probability guarantees
in low dimensions and stationary data. Brodersen et al. (2015)
considered a Bayesian structural time-series model to estimate
the counterfactuals and advocated posterior inference to mea-
sure the effects of the intervention. In the low-dimensional case,
Ferman and Pinto (2016) and Li (2020) discussed inference in
the SC framework based on Andrews’s (2003) end-of-sample
tests. Shaikh and Toulis (2019) considered randomization tests
with staggered adoption of treatment in the SC framework with
low dimensional and stationary data. See also Amjad, Shah,
and Shen (2018), Arkhangelsky et al. (2019), and Ben-Michael,
Feller, and Rothstein (2019). Another nice extension of the SC
method is Abadie and L’Hour (2019).

This article is also related to the literature on unit roots and
cointegration in high dimensions. To our knowledge, this is one
of the first works to derive the properties of LASSO estimators
for cointegrating regressions in the case where the number of
regressors is larger than the sample size. For fixed dimension,
Liao and Phillips (2015), Lee, Shi, and Gao (2018), and Kock
(2016) derived the limiting distribution of LASSO-type estima-
tors under several setups with nonstationary variables. Liang
and Schienle (2019) proposed a shrinkage methodology for
simultaneous model selection and estimation of vector error
correction models when the dimension is large and can increase
with sample size. Another related article is Onatski and Wang
(2018), where the authors derived the distribution of cointe-
gration test statistics in a high-dimensional. The previous two
articles consider the setting when the dimension of the model
grows at slower rate than the sample size. Recently, Wijler and
Smeekes (2020) considered the estimation of error correction
models in high dimensions. However, their framework is quite
different from ours.

1.3. Summary of the Article

The rest of the article is organized as follows. We present the
setup and assumptions in Section 2 and derive the theoretical
results in Section 3. In Section 3.2, we describe the inferential
procedure considered in this article. A guide to practical imple-
mentation of the methods is presented in Section 4. We present
the results of a simulation experiment in Section 5 and discuss
the empirical application in Section 6. Section 7 concludes the
article. Finally, we present additional material in the appendix.
The supplementary material provides additional results and all
the proofs.

2. Setup and Assumptions
2.1. Notation

All random variables (real-valued scalars, vectors and matri-
ces) are defined in a common probability space (�, F ,P). We
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denote random variables by an upper case letter, X, for instance,
and its realization by a lower case letter, X(ω) = x. The expected
value operator is with respect to the P law such that E(X) :=∫
�

X(ω)dP(ω). Matrices and vectors are written in bold letters
X. Sets are denoted by calligraphic upper case such as in X ; in
that case, |X | denotes the cardinality of the set X .

We reserve the symbol ‖ · ‖ without subscript for a generic
(semi)norm. We use ‖ · ‖q and ‖ · ‖Lq to denote, respectively, the
�q and Lq norms for q ∈ [1, ∞]. Such that for a d−dimensional
(possibly random) vector X = (X1, . . . , Xd)

′, we have ‖X‖q :=
(
∑d

i=1 |Xi|q)1/q for q ∈ [1, ∞) and ‖X‖∞ := maxi≤d |Xi|;
and, for a scalar random variable X, ‖X‖Lq = (E|X|q)1/q for
q ∈ [1, ∞) and ‖X‖L∞ is the essential supremum of X. If X is a
(m × n) (random) matrix, then ‖X‖max := maxi≤m,j≤n |Xi,j|.
We also use the ‖X‖0 := |{i : Xi 	= 0}| to denote the �0

“norm” of a vector X. Moreover, for a d-dimensional square
matrix M, we use ‖X‖2

M to denote the quadratic form X′MX.
For any vector X, we use diag (X) to denote the diagonal matrix
whose diagonal consists of the elements of X. 1(A) represents
an indicator function on the event A, that is, 1(A) = 1 if A is
true or 1(A) = 0, otherwise.

Finally, unless stated otherwise, all the asymptotics are taken
as T0 → ∞, and the o(1) and oP(1) terms are with respect to the
limit as T0 → ∞. We denote convergence in probability and in
distribution by “

p→” and “⇒,” respectively. See the supplemental
material for a full list of symbols used in the article and presented
in the appendix.

2.2. Basic Setup

Suppose we have n units (countries, states, municipalities, firms,
etc.) indexed by i = 1, . . . , n. For every time period t =
1, . . . , T, we observe a realization of a real-valued random vector
Zt := (Z1t , . . . , Znt)′. We consider a scalar variable for each unit
for the sake of simplicity. The results in the article can be easily
extended to the multivariate case. Furthermore, we assume that
an intervention took place at T0 + 1, where 1 < T0 < T. Let
Dt ∈ {0, 1} be a binary variable flagging the periods where the
intervention (treatment) was in place. Therefore, following the
potential outcome notation, we can express Zit as

Zit = DtZ(1)
it + (1 − Dt)Z(0)

it ,

where Z(1)
it denotes the potential outcome when the unit i is

exposed to the intervention and Z(0)
1t is the potential outcome

of unit i when it is not exposed to the intervention.
We are ultimately concerned with testing the hypothesis on

the potential effects of the intervention in the unit of interest.
Without loss of generality, we set unit 1 to be the one of inter-
est. Our framework accommodates the case of more than one
treated unit with minor changes as long as the number of treated
units is held fixed as the number of periods (and potentially the
number of untreated units) grows. Otherwise, the result would
have to reflect the limit ratio of treated to untreated units as well.
The null hypothesis to be tested is:

H0 : δt := Z(1)
1t − Z(0)

1t = 0, ∀t > T0. (1)
It is evident that for each unit i = 1, . . . , n and at each period
t = 1, . . . , T, we observe either Z(0)

it or Z(1)
it . In particular, Z(0)

1t

is not observed from t = T0 + 1 onward. For this reason,
we henceforth call it the counterfactual—that is what would
Z1t have been like had there been no intervention (potential
outcome).

To construct the counterfactual, let Z(0)
0t :=

(
Z(0)

2t , . . . , Z(0)
nt

)′

be the collection of control variables (all other variables except
the those belonging to unit 1). We could have also included lags
of the variables and/or exogenous regressors into Z0t , but to
keep the argument simple, we have considered only contempo-
raneous variables; see Carvalho, Masini, and Medeiros (2018)
for more general specifications. Panel-based methods, such as
the PF and ArCo methodologies, as well as the SC extensions
discussed in Doudchenko and Imbens (2016), construct an
ArCo by considering the following model in the absence of an
intervention:

Z(0)
1t = M

(
Z(0)

0t ; θ0
)

+ Vt , t = 1, . . . , T, (2)

where M : Z × � → R, Z ⊆ R
n−1, is a known measurable

mapping up to a vector of parameters indexed by θ0 ∈ �

and � is a parameter space. A linear specification (including a
constant) for the model M(Z0t ; θ) is the most common choice
among counterfactual models for the pre-intervention period.

The main idea is to estimate (2) using just the pre-
intervention sample, t = 1, . . . , T0, since in this case, Z(0)

0t =
Z0t := (Z2t , . . . , Znt)

′ under Assumption 1 below. Conse-
quently, the estimated counterfactual for the postintervention
period, t = T0 + 1, . . . , T, becomes Ẑ(0)

1t := M(Z0t ; θ̂T0).
Under some sort of stationarity assumption on Z0t and, more
importantly, under the assumption that the control units are
not affected by the intervention, Hsiao, Ching, and Wan (2012)
and Carvalho, Masini, and Medeiros (2018) showed that δ̂t :=
Z1t − Ẑ(0)

1t is an unbiased estimator for δt as the pre-intervention
sample size grows to infinity and

�̂T = 1
T − T0

T∑
t=T0+1

δ̂t , (3)

is
√

T-consistent for �T := 1
T−T0

∑T
t=T0+1 δt and is asymptot-

ically normal as both T and T0 grow to infinity and keep the
(sample) ratio T0/T unaltered.

Consider the following assumption.

Assumption 1. Z0t is independent of Ds for all 1 ≤ s, t ≤ T.

To recover the effects of the intervention, Assumption 1 is
key. However, for an unbiased estimate, it would be enough to
impose E(Z0t|Ds = 1) = E(Z0t|Ds = 0). For a thorough dis-
cussion on Assumption 1, including the potential bias resulting
from its failure in the stationary setup, refer to Carvalho, Masini,
and Medeiros (2018).

The main purpose of this article is to extend the above results
in the presence of deterministic and/or stochastic trends in the
data-generating process (DGP) of Z(0)

t . This leads to new chal-
lenges. For instance, due to the nonstationarity of the regressors,
θ0 can no longer be identified as the linear projection parameter
of Z(0)

1t onto a constant and Z(0)
0t .
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2.3. Nonstationarity

We model the units in the absence of the intervention as a
nonstationary (vector) process {Z(0)

t := (Z1t , . . . , Znt)′}t≥1.

Assumption 2. (DGP)

(1) Consider that the process {Z(0)
it : 1 ≤ i ≤ n, t ≥ 1} is either

generated by

(a) Stochastic Trend:

Z(0)
it = Z(0)

it−1+fit+Uit , t ≥ 1, with Z(0)
i0 = OP(1), or

(4)
(b) Deterministic Trend:

Z(0)
it = fit + Uit , t ≥ 1. (5)

In both cases, {fit}t≥1 is a deterministic sequence, and
{U t := (U1t , . . . , Unt)′}t≥1 takes values in U ⊂ R

n and is
a zero-mean weakly dependent stochastic process fulfilling
one of the two conditions described in Assumption 3 in
Appendix A.

(2) Furthermore, assume that there is at least one linear combi-
nation of the elements of Z(0)

t , with a nonzero coefficient for
the first element (i = 1), that results in a process integrated
of order 0, I(0). For a formal definition of integrated process
we refer to Definition 1 in Appendix A.

The deterministic sequence {fit}t≥1 in Assumption 2 is con-
sidered idiosyncratic, that is, unit-specific. However, in most
applications, we expect to have a common (up to a constant)
trend such that fit = μ′

if t where μi and f t are multidimensional.
The DGP (4) may involve an I(1) (integrated of order 1) process
depending upon the choice of the sequence fit . If we take fit =
μi ∈ R, we have a unit-root process with drift μi. Thus, a
constant fit generates a linear (deterministic) trend plus a pure
unit-root process.

Example 1 (Nonstationary factor model). Consider model (4)
and assume there exists a nonstationary factor driving the
dynamics of the units, that is, Ft = μF + Ft−1 + UF

t . Thus,
the nonstationary factor model Z(0)

it = ci + μiFt + UZ
it , where

UZ
it is a weakly dependent process, is equivalent to (4) with

Uit = μiUF
t + UZ

it − UZ
it−1 and fit = μiμF . Furthermore,

if μi = 1, for all i = 1, 2, . . . , n, we have the nonstationary
model considered in Chernozhukov, Wuthrich, and Zhu (2020).
This example can be easily extended to the case where there are
multiple factors.

Example 2 (Unit roots and cointegration). Consider the triangu-
lar cointegration model:

Z(0)
it = θ ′Z0t + Vt and �Z0t = U0t ,

where Vt and U0t are weakly stationary stochastic processes.
This representation is equivalent to (4) with fit = 0 and U1t =
θ ′U0t + Vt − Vt−1.

Example 3 (Deterministic trends). Models with heterogeneous
deterministic trends can be easily handled by setting fit = μift ,
where ft is a general deterministic function of t.

Importantly, failure to comply with Assumption 2(2) results
in what is known as a spurious regression. We acknowledge that
the name “spurious” might be misleading since, in some cases, it
might be possible to construct a nonlinear function of the units
that results in an I(0) process. Therefore, the DGP is considered
spurious only in the sense that all linear combinations of the
units are not an I(0) process.

2.4. The Target Model and High Dimensionality

To simplify the notation, we rename the variable of interest as
Yt := Z(0)

1t and denote the final regressors as a p-dimensional
vector Xt , where Xt := (1, Z′

0t)
′. Note that in the current setup

p = n, but we choose to use another notation to explicitly allow
for the case where there are more variables observed for each one
of the units. As mentioned before, the results in this article are
easily generalized to the multivariate case. We can now properly
define the target model together with its “true parameters”.

Ideally (in the mean squared error sense), we would like
M(x) := E(Yt|Xt = x). However in the presence of trends, we
would be most likely to have the model M = Mt time dependent.
In fact, even a common approximation of the conditional expec-
tation model by a linear projection of Yt onto the space spanned
by the columns of Xt would result in time-varying parameters
again due to the nonstationary setup.

Let r ∈ {0, 1, . . . , n−1} be the number of independent linear
relations among the n units that results in an I(0) process. By
Assumption 2, we have that r ≥ 1 and at least one of those
relations includes unit 1 such that its coefficient can be normal-
ized to one. For the DGP (4), r also represents the number of
cointegration relations as per Engle and Granger (1987). For the
DGP (5), if fit = μift , we have r = n − 1 because for any
vector θ ∈ R

n−1 such that (1, θ ′)μ = 0, the trend ft is canceled;
therefore, (1, θ ′)Z(0)

t ∼ I(0).
Let �̃ be an (n × r) matrix containing the r independent

linear relations resulting in an I(0) process as described in the
previous paragraph. Without loss of generality, since �̃ is rank r
by definition, we can normalize it such that

Jt
(r×1)

:= �̃
′Z(0)

t ∼ I(0), �̃ := (Ir : −�′)′. (6)

Furthermore, let J1t be the first component of the vector Jt
and J0t = 1 if r = 1 and J0t = (1, J2t , . . . , Jrt)′ for r > 1.
Since Jt ∼ I(0), we can then define the limit of the average linear
projection of J1t onto J0t as

π
(r×1)

:= lim
T→∞

1
T

T∑
t=1

[E(J0tJ′
0t)]−1[E(J0tJ1t)] (7)

We can now define the pseudo-true parameters as

θ0 := θ0(r) :=
{

(π , �′)′ r = 1
[π ′, (1, −π ′

0)�
′]′ 2 ≤ r ≤ n − 1, (8)

where �(n − r × r) is defined by (6), π is defined by (7) and
π0 := (π2, . . . , πr)′.

Hence, the “pseudo-true” model in the absence of an inter-
vention becomes

Yt = X′
tθ0 + Vt , 1 ≤ t ≤ T, (9)
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where the p-dimensional vector θ0 is defined in Equation (8)
depending on the DGP appearing in Assumption 2 and the
number of independent linear I(0) relations.

Remark 1. Whenever the cointegration subspace is of dimen-
sion r > 1, we cannot single out the cointegration vector even
after normalization. However, θ0 is uniquely defined by (8) as
long as π defined by (7) is well defined. In fact, the vector β0 :=
(1, −θ ′

0)
′ is the vector that minimizes the variance of β ′(Yt , X′

t)
′

among all the vectors β defined in the cointegration subspace.
Precisely for this reason, β0 was chosen to be the “pseudo-
true” parameter of interest, as it results in a counterfactual
estimator with minimum variance among all other counterfac-
tuals that could be constructed via linear combinations of the
columns of �̃.

Example 4 (Nonstationary factor model (Example 1) revisited).
Consider the model described in Example 1 and set r = 1 with
μj 	= 0, for j = 1, 2, and μj = 0, for j > 2. Therefore, �̃ =(

1, −μ1
μ2

, 0, . . . , 0
)′

and the “pseudo-true” parameter vector is

given by θ0 =
(

c1 − μ1
μ2

c2, μ1
μ2

, 0, . . . , 0
)

.

We consider the case where the number of regressors Xt
in (9) can be much larger than the number of observations,
such that p is a function of the sample size. Our motivation
to move to a high-dimensional setup is to accommodate two
cases: when the number of units is much larger than the number
of observations available (n � T) or the number of units is
small but T is also small, such that n ≈ T or n > T. High
dimensionality is also important in the case where more than
one variable is observed for each unit.

3. Estimation and Theoretical Results

The challenge to consistently estimate the parameters of model
(9) arises because the model combines both high dimension-
ality and nonstationarity. Any of these two features taken sep-
arately are well studied in the literature. For estimation of (9)
in a high-dimension and stationary time-series framework, see
Kock and Callot (2015), Medeiros and Mendes (2016), or Car-
valho, Masini, and Medeiros (2018), for example. For estimation
in the low-dimensional and nonstationary case, see, Phillips
(1986,1987) or Masini and Medeiros (2019). We propose to
estimate the parameters of (9) via a weighted least absolute
shrinkage and selection operator (WLASSO), that is, θ̂ :=
θ̂T0(λ, w) is a minimizer of θ �→ Q(θ , λ, w) defined as

Q(θ , λ, w) := 1
T0

T0∑
t=1

(Yt − X′
tθ)2 + λ

p∑
i=1

wi|θi|, (10)

where λ ≥ 0 is the common penalty term and w :=
(w1, . . . , wp)′ is a vector of almost surely nonnegative weights
specific for each parameter. In a low-dimension setup, namely,
p � T, we might choose λ = 0. Although, (10) resembles
the adaptive LASSO estimator, the choice of the weights wi,
i = 1, . . . , p will be very different. The weights should be
determined according to the nature of the trend in each series.
Table 1 shows weights for a typical process encountered in

Table 1. Weight selection.

Description DGP Growth Weight
condition (w)

I(0) process Xit = fit + Uit and fit = O(1) No 1
Linear trend Xit = ao + a1t + Uit Yes |Xi,T0 |

Polynomial trend Xit = ao + a1t + · · · + ak tk + Uit Yes |Xi,T0 |
I(1), no drift Xit = Xit−1 + Uit and Xi0 = Op(1) No

√
T0

I(1) with drift Xit = a0 + Xit−1 + Uit and Xi0 = Op(1) Yes |Xi,T0 |
NOTE: The table shows the choice of weights wi , i = 1, . . . , p in the modified

LASSO estimator of Equation (10) for typical DGPs that are common in empirical
applications. The column Growth Condition indicates whether or not the growth
condition holds.

practical applications. More details about the choice of wi,
i = 1, . . . , p can be found in Section 4 and in Appendix A.

Hereafter, we outline the steps toward the proof of our main
result (Theorem 1). The details such as technical assumptions
and propositions can be found in Appendix A. First, due to the
presence of trending regressors, not all the components of Xt are
of the same order (in probability). Therefore, it is convenient to
consider a reparameterization of the objective function (10) . We
stress that this reparameterization is only convenient in order to
analyze the estimator properties and by no means should it be
carried out in the application of the proposed methodology in
practice.

Clearly, both DGPs defined in Assumption 2 can be written
as follows:

Z(0)
it = dit + ηit , 1 ≤ i ≤ n, t ≥ 1, (11)

where dit is a deterministic trend and ηit is the stochastic com-
ponent (not necessarily stationary). Equation (5) becomes (11)
by setting dit = ci + fit and ηit = Uit . Similarly, for Equation (4),
we conclude, by backward recursion, that dit = ait := ∑t

s=1 fit
and ηit = Z(0)

i0 + ∑t
s=1 Uis.

Consider the following linear transformation applied to
Equation (10).

γ := Lθ , Wt := L−1Xt L := diag[(�1, . . . , �p)
′], (12)

where �1 = 1 and for 2 ≤ i ≤ p, �i will depend on
the nonstationary nature of the data and may be different for
each one of the regressors. For instance, we set �i = diT0
if the growth condition (Proposition 1(b) in Appendix A) is
satisfied; otherwise �i = √

T0 if the regressor follows DPG
(4), or 1 if the regressor follows DGP (5) in Assumption 2. The
reparameterized objective function then becomes

H(γ ) := H(γ , λ, ν) := 1
T0

T0∑
t=1

(Yt−W ′
tγ )2+λ

p∑
i=1

νi|γi|, (13)

where ν := (ν1, . . . , νp)′ and νi := wi/�i for 1 ≤ i ≤ p.
The importance of such reparameterization is that the new

regressors Wt are free of diverging trends, which makes the
problem tractable. Moreover, a minimizer γ̂ of γ �→ H(γ ) is
related to a minimizer θ̂ of θ �→ Q(θ) through γ̂ := L̂θ , and the
reparametrized target parameters become γ 0 := Lθ0.

The oracle inequality (A.6) in Appendix A is the basis for our
result. When it is applied to γ = γ 0, it yields an upper bound
for both the prediction error ‖γ̂ − γ 0‖	 and the �1-estimation
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error ‖γ̂ − γ ‖1. If we set that the number of nonzero “pseudo-
true” coefficients (s0) to grow slower than T0, even if p � T0,
then we can achieve consistency of both the prediction error and
the �1-estimation error under some conditions.

3.1. Weak Sparsity

The assumption of sparsity (s0 � p) of γ 0 is just one way of
imposing a low-dimensional structure in a high-dimensional
problem. Otherwise, under p � T0, a consistent procedure
is not possible. An alternative is through the concept of weak
sparsity. Here, we follow Negahban et al. (2012) and define for
b ∈ [0, 1] the b-“radius” of γ 0 ∈ R

p as

Rb :=
p∑

j=1
|γ0,j|b. (14)

The idea behind a weak sparsity is to impose a restriction on
Rb for some b ∈ (0, 1]. When b = 0, we have R0 = |S0| =:
s0, which is called strong or exact sparsity. The concept of weak
sparsity applied to (A.6) results in Proposition 3 in Appendix A.
The latter combined with the probabilistic bounds in Lemmas 1
and 2 fully characterize the asymptotic behavior of γ̂ − γ 0 and
consequently of θ̂ − θ0 from which we obtain our main result.

Theorem 1. Under Assumptions 1–6 (Assumptions 3–6 are
stated in the Appendix A.2) , as T0 → ∞:

1. ‖γ̂ − γ 0‖1 = OP

[(
ψ(p)√

T0

)1−b Rb
λ1

]
= oP(1)

2. δ̂t − δt − Vt = OP

[
ψ(p)2−bRb
T(1−b)/2

0 λ1

]
= oP(1) for all T0 < t ≤ T.

If further T1 := T − T0 → ∞:

1. �̂T − �T = OP

[
ψ(p)2−bRb
T(1−b)/2

0 λ1
∨ 1√

T1

]
= oP(1)

where ψ(x) = x2/q under Assumption 3(a) and ψ(x) = log(x)

under Assumption 3(b), Rb is given by (14) and λ1 is defined in
Assumption 6(c).

The results (a) and (b) of Theorem 1 follow under the con-
dition of what we call Partial Asymptotics, that is, an asymptotic
approach only for the pre-intervention period, where the num-
ber of postintervention periods T1 := T−T0 is kept fixed, while
T0 → ∞. This approach is tailored to accommodate situations
where T0 is much larger than T1, which justifies the sampling
error from the estimation of θ0 by θ̂ to be of smaller order
than Vt . In contrast, for part (c) of Theorem 1, we used the Full
Asymptotics approach to establish the asymptotic properties by
considering that the whole sample is increasing, while the pro-
portion between the pre-intervention and the postintervention
sample size is constant. In that case, T → ∞.

Part (a) of Theorem 1 states the �1-consistency for the param-
eter estimation, which in turn enables us to derive in part (b)
an asymptotic (as T0 → ∞) mean-unbiased estimator for
the treatment effect δt for every period in the postintervention
sample. Finally, part (c) gives us a consistent estimator (as both
T0 and T1 diverge to infinity) for the average intervention effect
across the postintervention period.

All rates of convergences appearing in Theorem 1 depend
upon the interplay of three main components: (i) the number
of regressors/units via ψ(p), (ii) the degree of (weak) sparsity
of the “true” parameters through Rb and (iii) the (restricted)
strong convexity of the objective function captured by the small-
est (restricted) eigenvalue of 	 := 1

T0

∑T0
t=1 WtW ′

t , which is
assumed to be lower bounded by λ1. The term ψ(p) is standard
in the literature on high dimensionality. It is a consequence
of trying to control for the sampling error for polynomial or
subexponential tails.

3.2. Inference

The inference procedure presented in this section is based on
the sequence of estimators {̂δt}t>T0 obtained in Section 3. More
specifically, we consider any continuous mapping φ : RT1 →
R

b whose argument is the T1-dimensional vector (̂δT0+1 −
δT0+1, . . . , δ̂T − δT)′. Thus, we are ultimately interested in the
distribution of ̂φ := φ(̂δT0+1 − δT0+1, . . . , δ̂T − δT) under the
null (1) where δt = 0 for all t > T0.

We consider a situation where the pre-intervention period is
substantially larger than the postintervention period, T0 � T1.
We may even want to handle the case where T1 = 1. The results
in this section are based on part (b) of Theorem 1. We have that
under the asymptotics on the pre-invention period (T0 → ∞),
̂φ − φ0

p→ 0 where φ0 := φ(VT0+1, . . . , VT). Consider the
construction of ̂φ using only blocks of size T1 of consecutive
observations from the pre-intervention sample. There are T0 −
T1 − 1 such blocks denoted by

̂φj := φ(V̂j, . . . , V̂j+T1−1) j = 1, . . . , T0 − T1 + 1,

where V̂t := Yt − θ̂
′
T0 Xt with the subscript T0 in θ̂ indicates

that the estimator is calculated using the entire pre-intervention
sample.

For each j, we have that ̂φj − φj
p→ 0 where φj :=

φ(Vj, . . . , Vj+T1−1). Under a strict stationarity assumption on
Vt , we have that φj is equal in distribution to φ0 for all j. Hence,
we propose to estimate the distribution QT(x) := P(̂φ ≤ x) by

Q̂T(x) := 1
T0 − T1 + 1

T0−T1+1∑
j=1

1(̂φj ≤ x),

where, for a pair of vectors a, b ∈ R
d, we say that a ≤ b ⇐⇒

ai ≤ bi, ∀i.

Theorem 2. For any continuous φ : R
T1 → R

b, let ̂φ :=
φ(̂δT0+1 − δT0+1, . . . , δ̂T − δT) and φ0 := φ(VT0+1, . . . , VT).
Consider the conditions of Theorem 1 but with Assumption 3(a)
fulfilled with q > 4. Assume that {Vt} is strictly stationary. Then,
for fixed T1 as T0 → ∞,

1. ̂φ − φ0
p→ 0

2. Q̂T(x) − QT(x)
p→ 0 for all x ∈ C0 := {continuity point of

Q0(x) := P(φ0 ≤ x)}
3. If Q0(x) is continuous, the result (b) holds uniformly in x ∈

R
b.
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4. If φ is real-valued, then QT[Q̂−1
T (τ )] → τ for all τ ∈ (0, 1)

such that Q−1
0 (τ ) ∈ C0, where f −1 denotes left inverse of f .

By the appropriate choice of φ(·), Theorem 2 provides a
simple way to conduct inference. We could be interested in
testing the intervention effects on all postintervention periods
individually by setting φ(̂δT0+1, . . . , δ̂T) = (̂δT0+1, . . . , δ̂T)′, or
on the average intervention effect across the postintervention
periods φ(̂δT0+1, . . . , δ̂T) = 1

T1

∑T
t=T0+1 δ̂t .

A reasonable choice for testing the null (1) would be
φ(̂δT0+1, . . . , δ̂T) = 1

T1

∑T
t=T0+1 δ̂2

t , or, more generally,
φ(̂δT0+1, . . . , δ̂T) = 1

T1

∑T
t=T0+1 g (̂δt), for some positive

function g(·), such as | · |. Regardless of the choice, Theorem 2
ensures a correct asymptotic test size or a correct asymptotic
coverage probability.

As we might be interested in a joint confidence set for the
vector δ := (δT0+1, . . . , δT)′, we can take φ̂ = δ̂ − δ, where
δ̂ := (̂δT0+1, . . . , δ̂T)′. Unless T1 = 1, there several ways to
construct a confidence set for a given significance level. For
instance, a (1 − τ) confidence cube that takes into account
the potential autocorrelation among the δt ’s is given by AT :=
×T

t=T0+1 [̂δt − Q̃−1
T (1 − τ/2); δ̂t − Q̃−1

T (τ/2)], where Q̃−1
T (τ ) =

inf{x ∈ R : Q̂T(xι) ≥ τ } and ι is a vector of T1 ones. As a direct
corollary of Theorem 2 assuming that Q0 is continuous for any
τ ∈ (0, 1), we have P (δ ∈ AT) → 1 − τ , as T0 → ∞.

Any test procedure based on an univariate test statistic φ̂ can
have its p-value evaluated by 1 − Q̂T(φ̂) for a one-tailed test or
1 − Q̂T(−|φ̂|) + Q̂T(|φ̂|) for a double-tailed test. Technically
speaking, φ̂ is not a statistic since it depends on the value of the
unknown {δt}t>T0 . However, under the null of interest (1), we
have δt = 0.

4. A Guide to Practice

To apply the method described in this article in practice, some
choices must be made.

Choice of the penalty parameter: λ can be chosen via the
Bayesian information criterion (BIC) where the degrees of free-
dom are determined by the number of nonzero estimates of θ0.
We set the maximum penalty level to be ‖ 1

T0

∑T0
t=1 YtXt‖∞ with

an exponential path down to a minimum value as, for example,
λmin = 0.001 along L equally spaced intervals in the glmnet
package in R. In our simulations and empirical example, we set
L = 100.

Regressor weights: The weights wi, i = 1, . . . , p are cho-
sen according to the trending behavior of each regressor. At
the level of generality considered in the article, namely, DGPs
with all sorts of deterministic and/or stochastic idiosyncratic
trend combinations, it seems difficult to derive a rule to choose
weights that would consistently estimate the parameters in all
cases without relying on any previous knowledge of the DGP.
First, as we do not penalize the intercept w1 = 0. For the
remaining regressors, the following strategy can be adopted:

1. If the nature of the nonstationarity is the same for all series,
that is, ∀ i ∈ {1, 2, . . . , n}, Z(0)

it follows either (4) or (5)
with fitμi = μ′

if t , where f t is a vector of deterministic
components, all ωi can be set to one. This is a similar case

to the one considered in Chernozhukov, Wuthrich, and Zhu
(2020), where ωi := ω.

2. If all the units are at most of the order (in probability) of the
unit of interest (unit one), again we can set the weights to a
unit. The nature of the trend in the unit of interest can be
determined by classical unit-root tests.

3. Although the theoretical results in the article are general
enough to cover a wide variety of trends, in most empirical
applications, we expect to find four possible cases: I(0) series,
I(1) with or without drift, and a trend-stationary series with
a linear trend. These cases can be identified by usual unit-
root tests applied to each series. However, we are fully aware
that multiple pretesting will be an issue, especially when the
number of series to be tested is large. While we do not provide
a theory to accommodate these issues in our setup, we believe,
based on the simulation results presented in Section 5, that
the effects of pretesting are minor. Furthermore, in practice,
we recommend that the practitioner run robustness tests by
running the methodology with different choices of weights.

4. To avoid spurious results, the practitioner can pretest for
cointegration. For a high-dimension cointegration test refer
to Onatski and Wang (2018) or Liang and Schienle (2019).
We believe that Theorem 1 coupled with Assumption 5 can
guide the practitioner to decide which weight to pick in any
particular empirical application.

One remaining question is whether to estimate the model in
levels, as advocated in this article, or in first differences, claiming
the theory in Carvalho, Masini, and Medeiros (2018). The latter
is certainly an option. However, that would destroy the potential
cointegration (long-run) relation, yielding a less precise estimate
of the counterfactual.

5. Simulations

The goal of this section is to conduct a Monte Carlo simulation
to corroborate the asymptotic results in the article as well as
to evaluate the finite-sample performance of the inferential
approach advocated in the previous section.

Suppose that the units in the absence of intervention are
modeled via a single factor Ft such that for each unit i ∈
{1, . . . , n} and every t ∈ {1, . . . , T}, we have

Z(0)
it = ci + μiFt + UZ

it , (15)

where ci ∈ R, UZ
it is an idiosyncratic shock and μi ∈ R is the

factor loading for unit i. We impose that the factor follows either
a unit-root process with a (possibly nonlinear) drift

Ft = f F
t + Ft−1 + UF

t , t ≥ 1 (16)

for some initial condition F0 = OP(1) or a trend-stationary
process

Ft = f F
t + UF

t , (17)

where {f F
t }∞t=1 is a deterministic sequence.

The factor model above results in a common trend (at least
for those units with nonzero loadings, μi 	= 0) and a correlation
among the stochastic components of the vector Z(0)

t .
We simulate three baseline models. The number of Monte

Carlo replications is 10,000. The first simulated model consists
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of Equations (15) and (17) with independent and identically
normally distributed innovations, n = 200, and s0 = 5. The
factor loadings are determined as follows: μi = 1 for i =
1, . . . , s0 + 1 and μi = 0 for i > s0 + 1. Hence, the dataset
consists of s0 + 1 trend-stationary variables and n − s0 − 1 I(0)
processes. The second baseline DGP differs from the first one by
considering equations (15) and (16). Therefore, the first s0 + 1
variables have unit roots, and the remaining are covariance-
stationary. Finally, in the third simulated specification, we mix
the trends. The first �s0/2� + 1 variables are trend-stationary,
followed by s0 − �s0/2� − 1 ones with unit roots, and the
remaining are covariance-stationary. In all cases, we simulated
T = 100 observations and we set T1 = 3. The test statistic
considered is φ(x) = ‖x‖2. We consider several alternatives
to the baseline DGPs by changing the error distributions, the
total number of observations (T), the number of posttreatment
observations (T1), the number of units (n), the sparsity (s0), the
shape of the deterministic component (f F

t ), and the degree of
autocorrelation in the errors (ρ).

For each replication, the counterfactual model is estimated
by setting ωi = 1, i = 1, . . . , p for the first two specifications
described above. Note that in these cases, we are not imposing
the correct weights on all variables. This will be important to
evaluate the potential harm of misspecifying the weights for
some of the variables. For the third case considered, we pretest
for unit roots in order to determine the weights. The procedure
is as follows. For each series, we run an augmented Dickey-
Fuller test for the null of the unit root against the alternative of
a covariance-stationary process. If the null is rejected, we set the
weight to a unit. Alternatively, in case of a nonrejection of the
null, we test if the mean of the first-difference of the series is
zero or not. If it is zero, we set the weight to

√
T0. Otherwise,

the weight is set to |Xi,T0 |; see Table 1 for details. In all cases, the
penalty parameter is chosen by the BIC as described in Section 4.

Tables 2 and 3 report size results for model (15)–(17) and
(15)–(16), respectively. The mixed-trend case is reported in the
mentary material. The tables show, for different settings, rejec-
tion rates under the null hypothesis of no intervention effect

Table 2. Rejection rates under the null (empirical size): deterministic trends.

LASSO Oracle True

0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Innovation Distribution
Normal 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
χ2(1) 0.0198 0.0602 0.1078 0.0231 0.0703 0.1277 0.0198 0.0591 0.1076
t-stud(3) 0.0187 0.0632 0.1144 0.0275 0.0781 0.1299 0.0208 0.0602 0.1086
Mixed Normal 0.0205 0.0603 0.1105 0.0300 0.0775 0.1339 0.0186 0.0572 0.1049

Sample Size
T = 50 0.0270 0.0768 0.1320 0.0494 0.1144 0.1740 0.0262 0.0694 0.1210
100 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
150 0.0194 0.0632 0.1094 0.0220 0.0644 0.1212 0.0152 0.0536 0.1050
200 0.0182 0.0578 0.1042 0.0202 0.0592 0.1116 0.0164 0.0526 0.1018
500 0.0138 0.0530 0.1016 0.0140 0.0544 0.1004 0.0104 0.0514 0.1006

Number of Total Units
n = 200 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
300 0.0236 0.0671 0.1175 0.0281 0.0743 0.1281 0.0198 0.0579 0.1053
500 0.0268 0.0748 0.1206 0.0289 0.0780 0.1327 0.0224 0.0626 0.1099
1000 0.0325 0.0778 0.1304 0.0273 0.0755 0.1298 0.0193 0.0554 0.1089

Number of Relevant (nonzero) Covariates
s0 = 2 0.0201 0.0634 0.1152 0.0210 0.0653 0.1195 0.0174 0.0573 0.1036
5 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
50 0.0223 0.0661 0.1153 0.2480 0.3547 0.4290 0.0196 0.0606 0.1079
97 0.0217 0.0626 0.1088 1.0000 1.0000 1.0000 0.0233 0.0607 0.1091

Deterministic Component
f F
t = √

t 0.0280 0.0809 0.1367 0.0255 0.0745 0.1299 0.0195 0.0572 0.1068
t 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
t3/2 0.0317 0.0823 0.1407 0.0314 0.0855 0.1413 0.0224 0.0630 0.1112
t2 0.0253 0.0685 0.1177 0.0263 0.0742 0.1280 0.0178 0.0508 0.1005

Serial Correlation
ρ = 0 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
0.5 0.0216 0.0607 0.1134 0.0278 0.0749 0.1281 0.0199 0.0574 0.1037
0.7 0.0246 0.0720 0.1245 0.0308 0.0812 0.1384 0.0191 0.0590 0.1046
0.9 0.0342 0.0889 0.1404 0.0486 0.1111 0.1745 0.0220 0.0635 0.1111

Postintervention Periods
T1 = 1 0.0166 0.0583 0.1061 0.0151 0.0572 0.1099 0.0121 0.0562 0.1027
2 0.0198 0.0631 0.1109 0.0273 0.0685 0.1185 0.0125 0.0566 0.1033
3 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
4 0.0301 0.0717 0.1247 0.0370 0.0896 0.1467 0.0256 0.0670 0.1151
5 0.0286 0.0686 0.1184 0.0448 0.0933 0.1537 0.0279 0.0650 0.1127

Baseline DGP: (15) and (17) with T = 100, independent and identically normally distributed innovations, n = 200, s0 = 5, T1 = 3 and 10,000 Monte Carlo simulations. The
test statistic considered is φ(x) = ‖x‖2. All distributions are standardized (zero mean and unit variance). Mixed normal is equal to 2 Normal distributions with probability
(0.3, 0.7), mean (−10, 10) and variance (2, 1). The AR(1) structure with coefficient ρ is applied to the common factor innovation UF

1t and the first unit idiosyncratic

innovation UZ
1t . The penalization parameter λ is chosen via the Bayesian information criterion (BIC). We set the maximum penalty level to be ‖ 1

T0

∑T0
t=1 YtXt‖∞ with an

exponential path down to λmin = 0.001 along 100 equally spaced intervals in the glmnet package. Oracle means OLS estimation in the pre-intervention period with
known active regressors S0 (perfect model selection). True means no estimation in the pre-intervention period. True parameter θ0 was used.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1781

Table 3. Rejection rates under the null (empirical size): stochastic trends.

LASSO Oracle True

0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Innovation Distribution
Normal 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
χ2(1) 0.0260 0.0765 0.1385 0.0244 0.0727 0.1308 0.0209 0.0598 0.1060
t-stud(3) 0.0282 0.0831 0.1444 0.0261 0.0779 0.1355 0.0194 0.0581 0.1118
Mixed Normal 0.0357 0.0912 0.1444 0.0330 0.0862 0.1426 0.0208 0.0615 0.1103

Sample Size
T = 50 0.0566 0.1155 0.1791 0.0512 0.1071 0.1663 0.0247 0.0641 0.1086
100 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
150 0.0226 0.0686 0.1208 0.0216 0.0664 0.1174 0.0156 0.0526 0.0988
200 0.0193 0.0630 0.1145 0.0190 0.0617 0.1143 0.0156 0.0542 0.1022
500 0.0106 0.0546 0.1026 0.0108 0.0544 0.1010 0.0104 0.0520 0.0966

Number of Total Units
n = 200 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
300 0.0391 0.0875 0.1479 0.0274 0.0748 0.1290 0.0184 0.0581 0.1039
500 0.0471 0.0953 0.1520 0.0281 0.0802 0.1358 0.0198 0.0610 0.1088
1000 0.0583 0.1085 0.1575 0.0293 0.0764 0.1300 0.0224 0.0590 0.1042

Number of Relevant (nonzero) Covariates
s0 = 2 0.0256 0.0698 0.1272 0.0225 0.0667 0.1213 0.0188 0.0558 0.1054
5 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
50 0.0497 0.1117 0.1797 0.2541 0.3636 0.4441 0.0174 0.0572 0.1058
97 0.0574 0.1251 0.1950 1.0000 1.0000 1.0000 0.0203 0.0579 0.1060

Deterministic Component
f F
t = 0 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095

1 0.0314 0.0815 0.1373 0.0316 0.0815 0.1393 0.0205 0.0615 0.1122√
t 0.0264 0.0693 0.1191 0.0294 0.0814 0.1380 0.0215 0.0605 0.1083

t 0.0265 0.0711 0.1225 0.0292 0.0768 0.1334 0.0184 0.0560 0.1050
Serial Correlation

ρ = 0 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
0.5 0.0297 0.0785 0.1313 0.0280 0.0761 0.1320 0.0178 0.0572 0.1019
0.7 0.0275 0.0773 0.1335 0.0264 0.0781 0.1342 0.0211 0.0575 0.1064
0.9 0.0299 0.0752 0.1278 0.0323 0.0823 0.1359 0.0222 0.0631 0.1107

Postintervention Periods
T1 = 1 0.0321 0.0753 0.1273 0.0304 0.0714 0.1201 0.0295 0.0690 0.1151
2 0.0289 0.0777 0.1316 0.0271 0.0762 0.1311 0.0219 0.0759 0.1224
3 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
4 0.0396 0.0930 0.1522 0.0345 0.0879 0.1430 0.0212 0.0608 0.1087
5 0.0516 0.1088 0.1695 0.0464 0.1021 0.1641 0.0293 0.0661 0.1181

NOTE: Baseline DGP: (15) and (16) with T = 100, independent and identically normally distributed innovations, n = 200, s0 = 5, T1 = 3 and 10,000 Monte
Carlo simulations. The test statistic considered is φ(x) = ‖x‖2. All distributions are standardized (zero mean and unit variance). Mixed normal is equal to 2 Normal
distributions with probability (0.3, 0.7), mean (−10, 10) and variance (2, 1). The AR(1) structure with coefficient ρ is applied to the common factor innovation UF

1t and
the first unit idiosyncratic innovation UZ

1t . The penalization parameter λ is chosen via the Bayesian information criterion (BIC). We set the maximum penalty level to be

‖ 1
T0

∑T0
t=1 YtXt‖∞ with an exponential path down to λmin = 0.001 along 100 equally spaced intervals in the glmnet package. Oracle means OLS estimation in the

pre-intervention period with known active regressors S0 (perfect model selection). True means no estimation in the pre-intervention period. True parameter θ0 was used.

under three different nominal size values: 0.01, 0.05 and 0.1. The
rejection rates are computed for three estimation frameworks:
LASSO means that the counterfactual is estimated by LASSO
with all the n units included in the model. The penalization
parameter λ is chosen as described in Section 4. Oracle means
that the counterfactual is estimated by ordinary least squares
(OLS) using only the s0 relevant units. Finally, True means no
estimation, that is, the counterfactual is estimated with the true
values of the parameters (θ0). All distributions are standardized
(zero mean and unit variance). Mixed normal means two Nor-
mal distributions with probability (0.3, 0.7), mean (−10, 10) and
variance (2, 1). The autoregressive of order one, AR(1), structure
with coefficient ρ is applied to the common factor innovation
UF

1t and the first unit idiosyncratic innovation UZ
1t .

Several conclusions emerge from the tables. First, the size
distortions of the LASSO are comparable to the ones from
the Oracle and slightly superior to those from the true model.
Note that the size distortions from the true model reflect only
the estimation error of the cumulative distribution of Vt . On
the other hand, the other two cases also reflect the estimation

error of θ0. Second, it seems that different error distributions
do not affect the rejection rates. As expected, the total sample
size (T) has a strong influence on the size distortions, which
approached close to zero as the sample increased. The number of
units (n) seems to have more influence in the case of stochastic
trends, where the distortions for the case when n = 1000 can
be nonnegligible. In addition, high residual autocorrelation, as
expected, can cause more distortions. Finally, the number of
observations after the intervention also seems to have an effect
on the text. However, the distortions are not large. Overall, the
proposed inference procedure works extremely satisfactorily,
especially for the 0.1 significance level. Furthermore, either
potential misspecification of the weights or pretesting for unit
roots does not seem to cause any visible harm to the inferential
procedure described in the article.

Table 4 presents rejection rates under the alternative for the
baseline DGP case. We consider two types of intervention. The
first one has only mean effects while the second causes variance
effects. It is clear from that the test has nontrivial power against
the alternatives.
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Table 4. Rejection Rates under the alternative (empirical power).

Deterministic Trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean intervention δt = cσ1{t > T0}
c = 0.2 0.10 0.12 0.14 0.16 0.17 0.19 0.20 0.22 0.23 0.25

0.4 0.23 0.27 0.32 0.35 0.37 0.40 0.43 0.46 0.47 0.48
0.6 0.48 0.51 0.56 0.60 0.63 0.65 0.67 0.69 0.70 0.71
0.8 0.76 0.79 0.82 0.86 0.88 0.89 0.91 0.91 0.92 0.93
1.0 0.94 0.95 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99

Variance intervention δt = cσ Z1{t > T0} where Z ∼ N(0, 1)

c = 0.2 0.09 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.24 0.25
0.4 0.26 0.29 0.32 0.36 0.38 0.39 0.41 0.44 0.46 0.48
0.6 0.50 0.54 0.58 0.63 0.66 0.69 0.70 0.71 0.73 0.74
0.8 0.78 0.81 0.85 0.88 0.89 0.91 0.92 0.92 0.92 0.93
1.0 0.93 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.99 0.99

Stochastic trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean intervention δt = cσ1{t > T0}
c = 0.1 0.19 0.20 0.24 0.28 0.30 0.32 0.33 0.36 0.38 0.39

0.2 0.63 0.67 0.72 0.73 0.76 0.78 0.80 0.81 0.81 0.83
0.3 0.95 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Variance intervention δt = cσ Z1{t > T0}
c = 0.1 0.17 0.20 0.22 0.25 0.27 0.30 0.32 0.33 0.35 0.37

0.2 0.57 0.60 0.65 0.68 0.70 0.72 0.75 0.76 0.78 0.79
0.3 0.91 0.92 0.94 0.96 0.96 0.97 0.97 0.98 0.98 0.98
0.4 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Mixed Trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean intervention δt = cσ1{t > T0}
c = 0.1 0.20 0.22 0.22 0.30 0.31 0.33 0.35 0.36 0.38 0.39

0.2 0.61 0.67 0.75 0.78 0.78 0.79 0.81 0.82 0.82 0.82
0.3 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Variance intervention δt = cσ Z1{t > T0}
c = 0.1 0.20 0.22 0.22 0.26 0.28 0.31 0.33 0.34 0.38 0.39

0.2 0.62 0.60 0.65 0.68 0.70 0.72 0.75 0.76 0.78 0.79
0.3 0.95 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NOTE: Baseline DGP: (5) and (4) with T = 100, iid normally distributed innovations, n = 200 units, s0 = 5, T1 = 3 and 10,000 Monte Carlo simulations per case. Empirical
rejection rate of the test statistic φ(x) = ‖x‖2. The penalization parameter λ is chosen via the Bayesian Information Criteria (BIC). We set the maximum penalty level
to be ‖ 1

T0

∑T0
t=1 Yt Xt‖∞ with an exponential path down to λmin = 0.001 along 100 equally spaced intervals in the glmnet package. σ 2 is the variance of unit 1 at

t = T0.

Results concerning parameter estimation are reported in the
supplementary material.

6. Empirical Illustration

We consider an application to optimal price setting in the retail
industry in Brazil. Our dataset consists of the daily prices
and quantities sold of a product commercialized by one of
the major retail chains in Brazil, which has approximately
1,400 stores distributed in more than 700 municipalities over
the country. Due to a confidentiality agreement, we are not
allowed to disclose either the name of the product or the name
of the retail chain. On average, the company sells more than
29,000 units of this product per day across the country, which
represents an important share of the company’s total revenue.
The quantities are aggregated at the municipal level. Our sample
consists of approximately 30% of the municipalities where
there are stores. The number and size of stores differ across
municipalities.

To determine the optimal price of the product (in terms
of profit or revenue maximization), a randomized experiment
has been carried out. The price of the product was changed
in 107 municipalities (treatment group), while in the other
126 municipalities, the prices were kept fixed at the original
level (control group). As a different experiment was running
during the same period in the remaining municipalities, we
decided to exclude these cities in order to avoid potential sources
of biases. The selection of the treatment and control groups
was carried out according to socioeconomic and demographic
characteristics of each municipality as well as to the distribution
of stores in each city. Nevertheless, it is important to emphasize
three facts. First, we used no information about the quantities
sold of the product in each municipality, which is our output
variable, in the randomization process. This way, we avoid any
selection bias and can maintain the validity of Assumption 1.
Second, although according to municipality characteristics, we
keep a homogeneous balance between groups, the parallel trend
hypothesis is violated, and there is strong heterogeneity with
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respect to the quantities sold and consumer behavior in each
city, even after controlling for observables. Finally, the time
series of sold quantities displays a clear heterogeneous trend.
Due to the previously described facts, we advocate the use of
the methodology proposed in this article.

For each day t, qit represents the total quantities sold of the
product in all stores of municipality i, where i = 1, . . . , n and
t = 1, . . . , T. Our sample runs from June 20, 2016, to October

31, 2016, a total of 134 daily observations. The experiment
was conducted during the period October 18–31 (14 days).
During these days, the practiced prices in the municipalities
belonging to the treatment group were increased in �p Brazil-
ian Reais, while for the other municipalities, they were kept
fixed. The first 126 municipalities are in the control group
(i = 1, . . . , 126), whereas the remaining 107 are in the treat-
ment group (i = 127, . . . , 233). The number of pretreatment

Figure 1. Quantities sold.
NOTE: Panel (a) displays the daily evolution of total quantities sold in all municipalities and in the treatment and control groups. The sample period runs from June 20, 2016,
to October 31, 2016. The experiment starts in October 18, 2016, and ends in October 31, 2016 (14 observations). The starting date of the experiment is represented by the
vertical red line. Panel (b) shows the estimated slope coefficients in a pure linear trend model for the quantities sold in each municipality during the pretreatment sample.
Panel (c) displays the histogram of the p-value of the augmented Dickey-Fuller test for the null of unit roots against the alternative of a trend-stationary model applied to
the quantity sold in each municipality.
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observations is T0 = 120. Panel (a) in Figure 1 presents the
time-series dynamics of the total quantity sold over all munic-
ipalities as well as in the control and treatment groups. Some
facts emerge from the visual inspection of the figure. First, there
is a clear trend in the data. Second, there is also a strong weekly
pattern. Panel (b) in Figure 1 displays the histograms of the
estimated slope parameter of a pure linear trend model for the
municipalities in the control and treatment groups during the
pretreatment sample. For each municipality, we estimate by OLS
the following linear trend model: qit = αi + θit + ut . Panel
(b) in Figure 1 displays the empirical distribution of θ̂ across
municipalities. Panel (c) shows the histogram of the p-values
of the augmented Dickey-Fuller (ADF) test for the null of unit
roots against the alternative of a trend-stationary model, applied
to the series of quantities sold in each municipality of the control
and treatment groups. There is a clear heterogeneity in the trend
pattern that precludes the use of the traditional differences-in-
differences estimator as well as the methodology put forward in
Carvalho, Masini, and Medeiros (2018).

To determine the optimal price, it is necessary to obtain the
effects of the price change on the quantities sold. We consider
two cases. In the first case, we assume that the effects are homo-
geneous across municipalities, and our output variable of inter-
est is the total quantity of the product sold in the treatment
group: qt = 1

107
∑233

i=126 qit .
We estimate the effect according to the following steps:

1. Estimate the parameters of the regression

qt = θ0 +
126∑
i=1

θiqit + π1Mont + π2Tuet + π3Wedt

+π4Thut + π5Frit + π6Satt + Vt = X′
tθ + Vt

by the WLASSO procedure using the 120 observations from
June 20, 2016, to October 18, 2016 (pretreatment sample).
Mont , . . . , Satt are six dummies for the days of the week. As
we include a constant in the model, we omit the dummy for

Figure 2. Actual and counterfactual sales.
NOTE: Panel (a) shows the aggregated actual and counterfactual sales over the pretreatment and posttreatment periods. The sample period runs from June 20, 2016, to
October 31, 2016. The experiment starts in October 18, 2016, and ends in October 31, 2016 (14 observations). The starting date of the experiment is represented by the
vertical red line. Panel (b) shows the aggregated actual and counterfactual sales for the posttreatment period. Confidence intervals of 95% for the counterfactual path are
also displayed.
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Table 5. Results.

Panel (a): Aggregated Panel (b): Disaggregated

Mean Std. Dev. Max. Min.

� −1,147 −12.90 52.08 5.52 −526.70
�/#stores −4.33 −4.21 4.42 5.52 −23.27
p-value (square) 0 0.41 0.29 1 0
p-value (absolute) 0 0.36 0.31 1 0
Proportion (%) of rejection of the null (square) NA 19 NA NA NA
Proportion (%) of rejection of the null (absolute) NA 31 NA NA NA
Number of regressors 133 133 NA NA NA
Number of relevant regressors 26 9.46 8.06 72 0
Number of pretreatment observations 120 120 NA NA NA
Number of observations during treatment 14 14 NA NA NA

NOTE: The table reports estimation results. Panel (a) shows the average treatment effect � for all stores in the treatment group over the treatment period. The average
effect per store is also reported (�/#stores), where #stores is the number of stores in the treatment group. p-value (square) and p-value (absolute) represent the p-values
of the resampling-based test with φ(x) = 1

T1

∑T1
j=1 x2

j and φ(x) = 1
T1

∑T1
j=1 |xj|, respectively.

Sundays. The penalty parameter of the WLASSO procedure
is selected by the BIC.

2. Project the counterfactual as q̂t = X′
t θ̂ and compute δt =

qt − q̂t , for t > T0.

We evaluate the effects on sales during each one of the 14
days following the initial price increase. The results are reported
in Figure 2 and Table 5. The figure shows the actual sales, the
estimated counterfactual, and a 95% confidence interval using
the partial resampling method described in Section 3.2, where
φ(x) = x. As expected, the effects are negative and statistically
significant for most of the days. We also run the resampling
test for φ(x) = 1

T1

∑T1
j=1 x2

j and φ(x) = 1
T1

∑T1
j=1 |xj|. Table 5,

Panel (a), reports the average effect for all municipalities in the
treatment group as well as the effect per store. Extrapolating the
result for the entire company, the average daily effect yields a
reduction in sales of more than 4000 units, potentially causing
a great impact in terms of revenue and profit. The table also
reports the number of selected regressors with the WLASSO
method.

To measure the degree of heterogeneity of price elasticities
across different municipalities, we estimate the counterfactuals
for each one of the municipalities in the treatment group. We
replace (18) by the following model:

qjt = θk0 + ∑126
i=1 θkiqit + πk1Mont + πk2Tuet + πk3Wedt

+πk4Thut + πk5Frit + πk6Satt + Vjt ,
= X′

jtθk + Vjt , j = 126, . . . , 233; k = j − 126.

The results are displayed in Panel (b) of Table 5. The table
reports the mean, standard deviation, maximum and minimum
of the average daily effects for each municipality as well as
the effects normalized by the number of stores in each city
in the treatment group. The table also reports the mean,
standard deviation, maximum and minimum of the p-value
of the resampling test conducted with φ(x) = 1

T1

∑T1
j=1 x2

j and
φ(x) = 1

T1

∑T1
j=1 |xj| and the proportion of municipalities where

the null of no effect has been rejected. For the squared test, in
19% of the cities, the increase in prices negatively affected the
demand for the product, whereas according to the absolute
test, the effects are negative and significant in 30% of the
municipalities.

7. Conclusions

We discussed a flexible method to conduct counterfactual anal-
ysis with aggregate data, which is particularly relevant in sit-
uations where there is a single treated unit and “controls” are
not available, such as in regional policy evaluation. The setup
considered in the article allows for potentially high-dimensional
and nonstationary data displaying deterministic and/or stochas-
tic trends. We proposed a weighted version of the LASSO for
parameter estimation in a high-dimensional linear regression
framework, which is consistent under very general assump-
tions. Furthermore, we showed the consistency of the average
intervention effect (over postintervention observations), and
we also developed an inferential procedure based on partial
resampling to test the general hypothesis on the intervention
effects. Our testing procedure does not rely on postintervention
asymptotics.

Appendix A: Omitted Technical Assumptions and
Results

This appendix collects more technical details such as definitions,
assumptions and auxiliary results that lead to our main result
(Theorem 1).

A.1. Definitions

We reproduce here the definition in Davidson (2009).

Definition 1 (I(0) process). A generic scalar process {Gt} is said to be
I(0), denoted Gt ∼ I(0), if

GT := GT(s) := 1
υT

�Ts�∑
t=1

[Gt − E(Gt)] ⇒ B,

where υ2
T := E

{∑T
t=1 [Gt − E(Gt)]

}2
and B := {B(s), s ∈ [0, 1]} is a

standard Wiener process.

From the definition above, stationarity is not (even weakly) required
for a process to be I(0). However, deterministic trends are not allowed,
and summability of the covariance is necessary. Otherwise, if any of
those conditions are violated, we could not have υ2

T ∼ cT for 0 <

c < ∞, which is necessary to ensure that E[B(s) − B(r)]2 = s − r for
0 ≤ s ≤ r ≤ 1.
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As is common in the literature on high dimensionality, we need a
certain compatibility between the norms ‖·‖1 and ‖·‖	 . Many options
are available in the literature, but they are usually in the form of a lower
bound of the minimum of the eigenvalue of 	. Here, we follow van de
Geer and Bühlmann (2009) and Huang and Zhang (2012).

Definition 2 (Compatibility Constant). For a (p×p) (possibly stochas-
tic) matrix M, a set S ⊆ {1, . . . , p} and ascalar ξ ≥ 0, the compatibility
constant is given by

χ(M,S , ξ) := inf
{‖x‖M

√|S|
‖xS‖1

: x ∈ R
p : ‖xSc‖1 ≤ ξ‖xS‖1)

}
.

(A.1)
Moreover, we say that (M,S , ξ) satisfies the compatibility condition if
χ(M,S , ξ) > 0.

Notice that the square of the compatibility constant is the minimum
�1-eigenvalue of 	 restricted to a cone in R

p. Moreover, we allow for
random 	 in the definition since, as opposed to the deterministic trend
case, the 	 does not converge to a deterministic matrix in the pure
stochastic trend case. In a low-dimensional setup Masini and Medeiros
(2019), shows that 	 converges in distribution to a positive definite
random matrix almost surely.

A.1.1. Growth condition
To understand the link between the sequence fit appearing in Assump-
tion 2 and the trend it generates, it is worth considering the continuous
version of fit given by fi(t), such that

ait :=
t∑

s=1
fis = O

[∫
fi(t)dt

]
, for integrable fi(t) : R → R

+.

(A.2)
Therefore, if fi(t) = O(tc), with c ∈ R, we have ait = O(tc+1) for
c 	= 0. When c = −1, we have ait = O(log t). Model (4) covers a wide
class of trend patterns depending on the choice of the sequence {fit},
including (we drop the subscript i in what follows):

No trend: tft → 0, which implies at → 0 as t → ∞.

Sublinear: ft → 0 and tft → ∞, which implies at/t → 0 as t → ∞.

Linear: ft → c > 0, which implies at → ct as t → ∞.

Subexponential: ft → ∞ and ft/ exp ct → 0, for any c > 0. Thus,
at/ exp ct → 0 as t → ∞.

Exponential: ft → c1 exp c2t, which implies at → c1/c2 exp c2t as
t → ∞ for some c1, c2 > 0.

Superexponential: ft/(c1 exp c2t) → ∞. Therefore, at/c1 exp c2t →
∞ as t → ∞ for c1, c2 > 0.

It is important to understand under which conditions the stochastic
part of (11) is asymptotically dominated by the deterministic one, in
the sense that Z(0)

it /dit → 1, almost surely or in probability. For (5),
this is always the case as long as fit → ∞, which implies |dit| → ∞.
For (4), since the variance of ηit increases as t → ∞, it is no longer
enough to have ait → ∞. In fact, since ηit = OP(

√
t), ait must be of

an order higher than
√

t. This is ensured, for instance, by taking fit = tc

with c > −1/2. As an illustration, taking a random walk with drift as an
example, Zit = μit+

∑t
s=1 Uis. Then, dit = μit, and we have Zit/dit =

1 + ∑t
s=1 Us/μit → 1, almost surely or in probability, depending on

the law of large numbers, which is available for the process {U t}. We
formalize those facts in the following proposition, which also gives the
definition of Growth condition, which will be used later on.

Proposition 1. Consider the DGPs in Assumption 2, assuming that {U t}
fulfills Assumption 3 for 1 ≤ i ≤ n. Therefore, as t → ∞,

1. (Growth Condition) Z(0)
it /dit → 1 in probability under DGP (4)

if
√

t/dit = o(1); or Z(0)
it /dit → 1 almost surely under DGP (5) if

fit → ∞
2. (No-Growth) Z(0)

it = OP(
√

t) under DGP (4) if dit/
√

t = O(1); or
Z(0)

it = OP(1) under DGP (5) if fit = O(1).

Moreover, for (5), if dit = o(
√

t), then t−1/2Z(0)
it converges in distri-

bution to a Gaussian random variable.

A.2. Assumptions

Assumption 3 deals with the tradeoff between moment conditions
and serial dependency. The exponential decay of the strong mixing
coefficient ensures that the q-th moment of the sum of the zero-mean
strong mixing variables is of order Tq/2. The exponential decay allows
us to invoke a result from Merlevède, Peligrad, and Rio (2009) and
derive a Bernstein-type inequality that, combined with condition (b),
results in an exponential bound for the sum of innovations.

Assumption 3 (Moments and Dependency). {U t}t≥1 is a zero-mean
strong mixing sequence of n-dimensional random vectors with a mix-
ing coefficient given by α(m) = exp(−2cm) for some c > 0 fulfilling
one of the conditions:

1. There exists a real q > 2 such that sup
{
E|Uit|q+ε : 1 ≤ i ≤ n,

t ∈ N} < ∞, for ε > 0;
2. There exist real numbers c1, c2, c3 > 0 such that sup {P(|Uit| > u) :

1 ≤ i ≤ n, t ∈ N} ≤ c1 exp(−c2uc3), for all u > 0.

In both cases, the smallest eigenvalue of the matrix E(U tU ′
t) is

bounded away from 0 uniformly in t ∈ N.

Clearly, Assumption 3(b) implies (a) for all q > 0. The converse is
not true even if (a) holds for all q > 2. We employ (a) to deal with fat
tails, whereas we use (b) to handle subexponential growth of units in
case of exponential decay of the tails. This includes sub-Gaussian (c3 ≥
2), subexponential (c3 ≥ 1) and many other families of distributions
of interest. Finally, we bound from below the smallest eigenvalue to
ensure that E(ZtZ′

t) properly scaled is full rank and, therefore, avoid
multicollinearity among the regressors.

From Proposition 1, we conclude that whether the DGP will satisfy
the growth condition depends on the growth rate of dit . For (4), the
growth condition depends on whether

√
t/dit → 0 or not. For (5), the

growth condition does not hold if fit → c < ∞. Therefore, to estimate
(9) in high dimensions, we need to impose a separation between those
two regimes as the number of units increases. Consider the following
assumptions.

Assumption 4 (Strong Separation). Let H ⊆ {1, . . . , n} be the index
set of units {Z(0)

it , 1 ≤ 1 ≤ n} that fulfill the growth condition
of Proposition 1 and dH(T0) := inf i∈H |di,T0 |. Then, for (4) in
Assumption 2, assume

ψ(|H|)√T0
dH(T0)

= o(1) for DGP (4) in Assumption 2; or
ψ(|H|)
dH(T0)

= o(1) for DGP (5) in Assumption 2,

where ψ(x) = x1/q under Assumption 3(a) and ψ(x) = log(x) under
Assumption 3(b).

Assumption 5 (Hyperparameter Tuning). For some c > 0, set the
penalty parameter λ of (10) by either

1. λ = 4cp2/q/
√

T0 under Assumption 3(a); or
2. λ = 4(c + 2 log p)/

√
T0 under Assumption 3(b).
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Additionally, set w1 = 0 such that the intercept is not penalized and,
for 2 ≤ i ≤ p, set

1. wi = |XiT0 | under the growth condition (Proposition 1(b)) or
2. wi = 1 if DGP (4) or

√
T0 if DGP (5) in Assumption 2

Assumption 6 (Rates). Assume

1. ‖θ0‖1 ≤ c for some c < ∞
2. log p = o[(T1/4

0 / log T0)c3 ] under Assumption 3(b)

3. ψ(p)2−bRb
T(1−b)/2

0 λ1
= o(1) for some b ∈ [0, 1] where χ2(	,Sb, ξ) = Op(λ1)

where ψ(x) = x1/q under Assumption 3(a) and ψ(x) = log(x) under
Assumption 3(b).

Assumption 6(a) is sufficient to bound the moments of Vt in terms
of the moments of U t in Lemma 1. Part (b) is necessary to apply
the second part of Lemma 2 in the proof of Lemma 1. Finally, (c)
states the rate conditions to ensure the consistency of the estimator.
More importantly, it implies a lower (probability) bound of the com-
patibility constant and deserves some clarification. For the case of
deterministic trends, DGP (5), under mild conditions, we have that
‖	 − E(	)‖max vanishes in probability. Therefore, we could replace
the condition by a deterministic one in terms of a deterministic matrix
E(	). Hence, we require only the existence of a constant λ1 > 0,
such that χ(E(	),Sb, ξ) ≥ λ1, where χ(E(	),Sb, ξ) is given by
Definition 2.

Unfortunately, that is no longer true for the stochastic trends,
DGP (4), as 	 fails to converge to a deterministic matrix. The event
{χ2(	,Sb, ξ) ≥ λ1}, however, is expected to hold with high probability
as long as we pick λ1 > 0 small enough or vanishing at an appropriate
rate. Note such an event imposes an indirect restriction on the number
of cointegration relations r ∈ {0, . . . , n − 1} that could exist among the
n units. It is not difficult to check that the rank of the stochastic matrix
	 is lower bounded by max[min(p, T) − r, 1] almost surely. Hence,
when p grows faster than T and r grows faster than T, we might have
the rank of 	 approximately equal to 1. Therefore, it is unlikely that the
event {χ2(	,Sb, ξ) ≥ λ1} will hold with high probability regardless
of the choice of λ1 ≥ 0. On the other hand, if r = o(T), it is plausible
to expect, as in the fixed design case, that the minimum restricted
eigenvalue of 	 is bounded away from zero with high probability.

A.3. Results

A.3.1. Oracle Inequalities
For S ⊆ {1, . . . , p} and scalars λ0, λ1 > 0, a ≥ 0, b ∈ [0, 1] and
λ2 ∈ (0, 1) consider the following auxiliary events:

�0 :=
⎧⎨⎩

∥∥∥∥∥∥ 2
T0

T0∑
t=1

WtVt

∥∥∥∥∥∥∞
≤ λ0

⎫⎬⎭ , (A.3)

�1(S) := {Ra
bχ2(	,S , ξ) ≥ λ1}, (A.4)

�2(S) :=
{

sup
i∈S

νi ≤ 1 + λ2

}
∩

{
inf

i∈Sc
νi ≥ 1 − λ2

}
. (A.5)

Then, we have the following oracle inequality

Proposition 2. Then, on the event �0 ∩ �2 and provided that λ > λ0,
the following inequality holds for all δ ∈ [0, 1), γ ∈ R

p and S ⊆
{1, . . . , p}:

‖γ̂ − γ 0‖	 + 2δλ‖γ̂ − γ ‖1 ≤ ‖γ − γ 0‖	 + λ
2|S|

χ2(	,S , ξ)

+ 4λ(‖γSc‖ν ∨ ‖γSc‖1), (A.6)

where λ := λ(1−λ2)−λ0, λ := λ(1+λ2)+λ0+δλ, ξ := λ((1−δ)λ)−1

and 	 := 1
T0

∑T0
t=1 WtW′

t . Additionally, the right-hand side is taken
to be +∞ whenever χ(	,S , ξ) = 0.

If we set S = S0 := {j : |γ0,j| > 0}, that is, the set of active
regressors, then

‖γ̂ − γ 0‖	 + 2δλ‖γ̂ − γ 0‖1 ≤ λ
2|S0|

χ2(	,S0, ξ)
.

Proposition 3. Let Sb := {j : |γ 0
j | > λ

2

λ 1{b > 0}} for b ∈ [0, 1]. Then,
under the same conditions of Proposition 2, for any b ∈ [0, 1]:

‖γ̂ − γ 0‖	 + 2δλ‖γ̂ − γ 0‖1

≤
[

1
χ2(	,Sb, ξ)

+ 4(1 + λ2)
]

λ
2(1−b)

λbRb. (A.7)

Therefore, if we set λ = kλ0 for some k > 1/(1 − λ2), then on �0 ∩
�1 ∩ �2:

‖γ̂ − γ ‖1 ≤ C1

[
1

χ2(	,Sb, ξ)
+ 4(1 + λ2)

]
λ1−bRb, (A.8)

and Sb := {j : |γ 0
j | > C2λ} where both C1, C2 > 0 are constants

depending only on b, the constant λ2 and the choice of δ ∈ (0, 1) and
k given by

C1 := [1 + δ + (1 − δ)(λ2 + 1/k)]2(q−1)

2δ(1 − λ2 − 1/k)
and

C2 := 1{b > 0}[1 + δ + (1 − δ)(λ2 + 1/k)]2.

A.3.2. Probability Bounds on the events �0 and �2
Lemma 1. Under assumption, set λ0 = λ/2, then

P(�c
0) = P

⎛⎝∥∥∥∥∥∥ 1
T0

T0∑
t=1

WtVt

∥∥∥∥∥∥∞
>

λ0
2

⎞⎠
=

{
O(c−q/2) under Assumption 3(a)
O[exp(−c/2)] under Assumption 3(b).

In the setup where all the regressors are stationary, the event �2
happens with probability 1 by setting wi = 1 for all 1 ≤ i ≤ p. In
the factor model example, setting wi = 1 for all units results in �2
occurring surely regardless of the factor DGP considered and/or the
deterministic trend associated with it. Since, in that case, we have that
νi ≤ 1 for i ∈ S0 and νi = 1 otherwise. This fortunate result is a
consequence that all regressors that do not load on the factor are I(0)

processes. The same would be true whenever the process of the units in
Sc

0 is of smaller or equal order in probability of the process in variables
in S0.

To extend this result to the general setup, let wi = wi,t be a
possibly stochastic sequence of almost surely nonnegative weights.
Then, the event �2 happens with probability approaching 1 as long
as {lim supt supi∈S νi,t ≤ 1} and {lim inf t inf i∈Sc vi,t ≥ 1}, where
νit := wit/�it also happens with probability approaching one. If we
choose the vector of weights w in (10) according to Assumption 5,
the event �2 occurs with probability approaching one since by the
definition of �i in (12), νi → 1 for all 2 ≤ i ≤ p. For the case when
the growth condition holds for Xit , we would like to penalize it setting
wit = di,T0 . However, since we do not directly observe it, we are using
Xi,T0 instead, and we are able to state the following result.

Lemma 2. Under the same conditions of Theorem 1 we have P(�2) →
1 as T0 → ∞.
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