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A Auxiliary Results

This appendix collects the building blocks to our main result (Theorem 1). The first one is

well-known result since Phillips (1991) and it will be stated here without proof for completeness.

Proposition 1. Let St =
∑t

j=1 zj be the partial sum of the sequence {zt}∞t=1 of (n × 1)

random vectors. Then, under Assumption 3, (a) Σ = limT→∞ T−1E(ST S′
T ) exists and is

positive definite and (b) ZT (r) ≡ T−1/2S[rT ] ⇒ Σ1/2W (r), where [∙] denotes the integer part

and W (∙) is a vector Wiener process on [0, 1]n.

The implied convergence in Proposition 1(a) is a direct consequence of the stationarity

assumption together with the mixing condition as shown by Ibragimov and Linnik (1971).

Finally, Proposition 1(b) is a multivariate generalization of the univariate invariance principle

(Durlauf and Phillips 1985).

The next proposition state the relation between estimator applied to the pre-intervention

period and the same estimator applied to the transformed variables. It also define the pseudo-

true parameter β0 in term of the DGP parameters. Specifically, the OLS estimator β̂ of y1t on

y0t and a constant is related to the OLS estimator γ̂ of z1t on z0t and a constant by:

Proposition 2. Let H := H(r, μ) to be the transformation defined in (3.4) for 0 ≤ r ≤ n and

μ ∈ Rn. Then, [D]
2:n+1:2:n+1

(β̂ − β0) = γ̂, where D := H−1 and β0 :=

(

[D]
2:n+1:2:n+1

)−1

[D]
2:n+1×1

is

given by

β0 := β0(r, μ) :=






0 if r = 0 and μ = 0,
(
0n−2,

μ1

μn
, 0
)′

if r = 0 and μ 6= 0,

(−Γ′, α)
′

if r = 1,

[π′, (1,−π′) (−Γ′, α)]
′

if 2 ≤ r ≤ n − 1 and

[π′, (1,−π′)h(0), δ]′ if r = n.

We can now state the asymptotic distribution of γ̂, i.e., the OLS estimator in the trans-

formed variables. For that, we first establish some more notation. For any zero mean vector
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process covariance-stationary {vt}, we define the following (n × n) non-random matrices:

Ω0(v) := lim
T→∞

1

T

T∑

t=1

E(vtv
′
t),

Ωj(v) := lim
T→∞

1

T

T∑

t=1

t−j∑

s=1

E(vsv
′
t), j = 1, 2, . . . (A.1)

Ω(v) := lim
T→∞

1

T
E

(
T∑

t=1

vt

T∑

t=1

v′
t

)

,

Υ(v) := lim
T→∞

1

T
V

(
T∑

t=1

[vt]1vt

)

,

if the limits and expectations exist.

Some particular cases of the result below can be found elsewhere in the time-series literature.

See, for instance, Durlauf and Phillips (1985) and Phillips (1986a,b).

Proposition 3. Suppose that Assumption 1 holds and that {vt := H ′ (ε′
t, 0)′}∞t=1 fulfills As-

sumption 3, where H := H(r, μ) is the transformation defined in (3.4). Then, as T −→ ∞,

ΛT0γ̂ ⇒ q∗,

where ΛT0 := ΛT0(r, μ) := diag[λT0(r, μ)] with

λT0(r, μ) :=






(1n − 1, T
−1/2
0 )′ if r = 0 and μ = 0

(1n − 2, T
1/2
0 , T

−1/2
0 )′ if r = 0 and μ 6= 0

(T01n − 1, T
1/2
0 )′ if r = 1 and μ = 0

(T01n − 2, T
3/2
0 , T

1/2
0 )′ if r = 1 and μ 6= 0

(T
1/2
0 1r − 1, T01n − r, T

1/2
0 )′ if 2 ≤ r ≤ n − 2 and μ = 0

(T
1/2
0 1r − 1, T01n − 1 − r, T

3/2
0 , T

1/2
0 )′ if 2 ≤ r ≤ n − 2 and μ 6= 0

(T
1/2
0 1n − 1, T

1/2
0 )′ if r = n − 1 and μ = 0

(T
1/2
0 1n − 2, T

3/2
0 , T

1/2
0 )′ if r = n − 1 and μ 6= 0

(T
1/2
0 1n − 2, FT0 , T

1/2
0 )′ if r = n.

FT0 is a positive increasing sequence such that lim
T0→∞

T0∑

t=1

(
ft

FT0

)2

=: φ2 > 0 is finite and the
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random vector q∗ := q∗(r, μ) is given by:

q∗(0, μ) :=











[∫ 1

0
BB′ds

]

2:n×2:n

[∫ 1

0
Bds

]

2:n

1






−1







[∫ 1

0
BB′ds

]

2:n×1:1[∫ 1

0
Bds

]

1:1








, if μ = 0









[∫ 1

0
BB′ds

]

2:n−1×2:n−1

[
μn

∫ 1

0
sBds

]

2:n−1

[∫ 1

0
Bds

]

2:n−1

μ2
n

3
μn

2

1









−1












[∫ 1

0
BB′ds

]

2:n−1×1:1[
μn

∫ 1

0
sBds

]

1:1[∫ 1

0
Bds

]

1:1












, if μ 6= 0

q∗(1, μ) :=











[
∫ 1

0
BB′ds]

2:n×2:n

[
∫ 1

0
Bds]
2:n

1






−1






[
∫ 1

0
BdB′ + Ω0 + Ω1]

2:n×1:1[∫ 1

0
dB
]

1:1





 , if μ = 0









[
∫ 1

0
BB′ds]

2:n−1×2:n−1

[μn

∫ 1

0
sBds]

2:n−1

[
∫ 1

0
Bds]

2:n−1

μ2
n

3
μn

2

1









−1










[
∫ 1

0
BdB′ + Ω0 + Ω1]

2:n−1×1:1[
μn

∫ 1

0
sdB

]

1:1[∫ 1

0
dB
]

1:1











, if μ 6= 0

q∗(r, μ) :=















[Ω0]
2:r×2:r

0 0
[∫ 1

0
BB′ds

]

r+1:n×r+1:n

[∫ 1

0
Bds

]

r+1:n

1










−1

×












[∫ 1

0
dB∗

]

2:r[∫ 1

0
BdB′ + 1(Ω0 + Ω1)

]

r+1:n×1:1[∫ 1

0
dB
]

1:1












, if 2 ≤ r ≤ n − 2 and μ = 0,













[Ω0]
2:r×2:r

0 0 0
[∫ 1

0
BB′ds

]

r+1:n−1×r+1:n−1

[
μn

∫ 1

0
sBds

]

r+1:n−1

[∫ 1

0
Bds

]

r+1:n−1

μ2
n

3
μn

2

1













−1

×
















[∫ 1

0
dB∗

]

2:r[∫ 1

0
BdB′ + 1(Ω0 + Ω1)

]

r+1:n−1×1:1[
μn

∫ 1

0
sdB

]

1:1[∫ 1

0
dB
]

1:1
















, if 2 ≤ r ≤ n − 2 and μ 6= 0,
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q∗(n − 1, μ) :=











[Ω0]
2:n×2:n

0

1






−1






[∫ 1

0
dB∗

]

2:n[∫ 1

0
dB
]

1:1





 , if μ = 0








[Ω0]
2:n−1×2:n−1

0 0

μ2
n

3
μn

2

1








−1












[∫ 1

0
dB∗

]

2:n−1[
μn

∫ 1

0
sdB

]

1:1[∫ 1

0
dB
]

1:1












, if μ 6= 0

q∗(n, μ) :=











[Ω0]
2:n×2:n

0

1






−1






[∫ 1

0
dB∗

]

2:n[∫ 1

0
dB
]

1:1





 , for μ = 0








[Ω0]
2:n−1×2:n−1

0 0

μ2
nφ2 μnφ̃

1








−1










[∫ 1

0
dB∗

]

2:n−1

[μnφB]
1:1[∫ 1

0
dB
]

1:1











, for μ 6= 0,

with φ̃ := lim
T0→∞

T0∑

t=1

ft

FT0

√
T0

< ∞, B := Ω1/2W and B∗ := Υ1/2W where W := {W (s), s ∈

[0, 1]}, denotes a standard vector Wiener process on [0, 1]n and Ω := Ω(v), Ω0 := Ω0(v),

Ω1 := Ω1(v), Υ := Υ(v) are defined in (A.1).

If the DGP has only deterministic trends (r = n), the trend is of the form ft = tk, k > 0.

In this case, FT0 = T
k+1/2
0 and φ2 := lim

T0→∞

1
T0

T0∑

t=1

(
t

T0

)2k

= 1
2k+1

and φ̃ := lim
T→∞

T0∑

t=1

tk

T k+1 = 1
k+1

.

For k = 1, the asymptotic distributions for the DGP when r = n − 1 and r = n are identical.

B Unpacking Notation of Theorem 1

Set V := V (r) := [Ω0]
1:1×1:1

I(r > 0), where I(∙) is the indicator function. Define G := G(r) :=

lim
T0→∞

ξT0

(

ΛT [D]
2:n+1:2:n+1

)−1

. The n + 1-dimensional random vector p := p(r, μ), for the case

where μ = 0 is given by

p(0,0) :=

[∫ 1

λ0
Bds

1 − λ0

]

; p(1,0) :=










[∫ 1

λ0
dB
]

1:1[∫ 1

λ0
Bds

]

2:n

1 − λ0










; p(r,0) :=













[∫ 1

λ0
dB
]

1:1

[
∫ 1

λ0
dB]

2:r

[
∫ 1

λ0
Bds]

r+1:n

1 − λ0













for 2 ≤ r ≤ n − 2;

p(n − 1,0) = p(n,0) :=










[∫ 1

λ0
dB
]

1:1[∫ 1

λ0
dB
]

2:n

1 − λ0










,
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and for μ 6= 0:

p(0, μ) :=








[∫ 1

λ0
Bds

]

1:n−1
μn(1−λ2

0)
2

1 − λ0








; p(1, μ) :=












[∫ 1

λ0
dB
]

1:1[∫ 1

λ0
Bds

]

2:n−1
μn(1−λ2

0)
2

1 − λ0












; p(r, μ) :=
















[∫ 1

λ0
dB
]

1:1

[
∫ 1

λ0
dB]

2:r

[
∫ 1

λ0
Bds]

r+1:n−1
μn(1−λ2

0)
2

1 − λ0
















for 2 ≤ r ≤ n − 2;

p(n − 1, μ) :=












[∫ 1

λ0
dB
]

1:1[∫ 1

λ0
dB
]

2:n−1
μn(1−λ2

0)
2

1 − λ0












; p(n, μ) :=












[∫ 1

λ0
dB
]

1:1[∫ 1

λ0
dB
]

2:n−1

μnφ̌

1 − λ0












,

where φ̌ := lim
T→∞

T∑

t>T0

ft

FT

√
T

< ∞ and the processes B will be defined below.

The n + 1-dimensional random vector q := q(r, μ) is defined as

q(0, μ) :=











[∫ λ0

0
BB′ds

]

2:n×2:n

[∫ λ0

0
Bds

]

2:n

λ0






−1







[∫ λ0

0
BB′ds

]

2:n×1:1[∫ λ

0
Bds

]

1:1








, if μ = 0









[
∫ λ0

0
BB′ds]

2:n−1×2:n−1

[μn

∫ λ0

0
sBds]

2:n−1

[
∫ λ0

0
Bds]

2:n−1

μ2
nλ3

0
3

μnλ2
0

2

λ0









−1










[
∫ λ0

0
BdB′ + λ0(Ω0 + Ω1)]

2:n−1×1:1[
μn

∫ λ0

0
sdB

]

1:1[∫ λ0

0
dB
]

1:1











, if μ 6= 0

q(1, μ) :=











[
∫ λ0

0
BB′ds]

2:n×2:n

[
∫ λ0

0
Bds]

2:n

λ0






−1






[
∫ λ0

0
BdB′ + Ω0 + Ω1]

2:n×1:1[∫ λ0

0
dB
]

1:1





 , if μ = 0









[
∫ λ0

0
BB′ds]

2:n−1×2:n−1

[μn

∫ λ0

0
sBds]

2:n−1

[
∫ λ0

0
Bds]

2:n−1

μ2
nλ3

0
3

μnλ2
0

2

λ0









−1










[
∫ λ0

0
BdB′ + λ0(Ω0 + Ω1)]

2:n−1×1:1[
μn

∫ λ0

0
sdB

]

1:1[∫ λ0

0
dB
]

1:1











, if μ 6= 0
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q(r, μ) :=















[Ω0]
2:r×2:r

0 0
[∫ λ0

0
BB′ds

]

r+1:n×r+1:n

[∫ λ0

0
Bds

]

r+1:n

λ0










−1

×












[∫ λ0

0
dB∗

]

2:r[∫ λ0

0
BdB′ + 1(Ω0 + Ω1)

]

r+1:n×1:1[∫ λ0

0
dB
]

1:1












, if 2 ≤ r ≤ n − 2 and μ = 0,













[Ω0]
2:r×2:r

0 0 0
[∫ λ0

0
BB′ds

]

r+1:n−1×r+1:n−1

[
μn

∫ λ0

0
sBds

]

r+1:n−1

[∫ λ0

0
Bds

]

r+1:n−1

μ2
nλ3

0
3

μnλ2
0

2

λ0













−1

×
















[∫ λ0

0
dB∗

]

2:r[∫ λ0

0
BdB′ + λ0(Ω0 + Ω1)

]

r+1:n−1×1:1[
μn

∫ λ0

0
sdB

]

1:1[∫ λ0

0
dB
]

1:1
















, if 2 ≤ r ≤ n − 2 and μ 6= 0,

q(n − 1, μ) :=











[Ω0]
2:n×2:n

0

λ0






−1






[∫ λ0

0
dB∗

]

2:n[∫ λ0

0
dB
]

1:1





 , if μ = 0








[Ω0]
2:n−1×2:n−1

0 0

μ2
nλ3

0
3

μnλ2
0

2

λ0








−1












[∫ λ0

0
dB∗

]

2:n−1[
μn

∫ λ0

0
sdB

]

1:1[∫ λ0

0
dB
]

1:1












, if μ 6= 0

q(n, μ) :=











[Ω0]
2:n×2:n

0

λ0






−1






[∫ λ0

0
dB∗

]

2:n[∫ λ

0
dB
]

1:1





 , for μ = 0








[Ω0]
2:n−1×2:n−1

0 0

μ2
nφ2 μnφ̃

λ0








−1










[∫ λ0

0
dB∗

]

2:n−1

[μnφB]
1:1[∫ λ0

0
dB
]

1:1











, for μ 6= 0,
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Finally, the random variable a := a(r, μ), for the case when μ = 0, is given by

a(r,0) :=






1
1−λ0







[∫ 1

λ0
BB′ds

]

1:1×1:1

− 2q(0,0)′







[∫ 1

λ0
BB′ds

]

2:n×1:1

[
∫ 1

λ0
Bds]

1:1







+ q(0,0)′






[∫ λ0

0
BB′ds

]

2:n×2:n

[∫ λ0

0
Bds

]

2:n

λ0




 q(0,0)




 , if r = 0

1
1−λ0

[∫ 1

λ0
dB∗

]

1:1

, for r ≥ 1

and for the case μ 6= 0:

a(r, μ) :=






1
1−λ0











[∫ 1

λ0
BB′ds

]

1:1×1:1

− 2q(0, μ)′











[∫ 1

λ0
BB′ds

]

2:n−1×1:1

μn[
∫ 1

λ0
sBds]
1:1

[
∫ 1

λ0
Bds]

1:1











+ q(0, μ)′









[∫ λ0

0
BB′ds

]

2:n−1×2:n−1

[
μn

∫ λ0

0
sBds

]

2:n−1

[∫ λ0

0
Bds

]

2:n−1

μ2
nλ3

0
3

μnλ2
0

2

λ0









q(0, μ)









, if r = 0

1
1−λ0

[∫ 1

λ0
dB∗

]

1:1

, for r ≥ 1,

with φ̃ := lim
T→∞

T0∑

t=1

ft

FT

√
T

< ∞, B := Ω1/2W and B∗ := Υ1/2W where W := {W (s), s ∈

[0, 1]}, denotes a standard vector Wiener process on [0, 1]n and Ω := Ω(v), Ω0 := Ω0(v),

Ω1 := Ω1(v), Υ := Υ(v) are defined in (A.1).

C Proof of the Main Results

Proof of Proposition 2

Let ỹt := (y
(0)
t

′
, 1)′ and recall that zt := H ′ỹt. Let Ỹ be the (T0 × n + 1) matrix constructed

by stacking ỹ′
t for t = 1, . . . , T0. Define Z by stacking z′

t. Hence, Z = Ỹ H . Define the

(n + 1 × n + 1) matrices Σ := Ỹ
′
Ỹ and Ω := Z ′Z =, such that

β̂ :=

(

[Σ]
2:n+1×2:n+1

)−1

[Σ]
2:n+1×1:1

and γ̂ :=

(

[Ω]
2:n+1×2:n+1

)−1

[Ω]
2:n+1×1:1

,
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provided that [Σ]
2:n+1×2:n+1

and [Ω]
2:n+1×2:n+1

are non-singular. To show the relation between β̂ and

γ̂ recall that D = H−1. Therefore, we may write Σ = D′ΩD. Notice that

[Σ]
2:n+1×2:n+1

=

(
[D]

1:1×2:n+1

′ [D]
2:n+1×2:n+1

′
)

Ω






[D]
1:1×2:n+1

[D]
2:n+1×2:n+1






[Σ]
2:n+1×1:1

=

(
[D]

1:1×2:n+1

′ [D]
2:n+1×2:n+1

′
)

Ω






[D]
1:1×1:1

[D]
2:n+1×1:1






In all cases considered we have that [D]
1:1×2:n+1

= 0, which implies that we can rewrite β̂ as

β̂ =

(

[D]
2:n+1×2:n+1

)−1

(γ̂ + [D]
2:n+1×1:1

)

Rearranging the terms and setting β0 =

(

[D]
2:n+1×2:n+1

)−1

[D]
2:n+1×1:1

yield the result.

Proof of Proposition 3

Let z1t := [zt]
1:1

and z0t := [zt]
2:n+1

. Then,

ΛT γ̂ =

(

Λ−1
T

T0∑

t=1

z0tz
′
0tΛ

−1
T

)−1

Λ−1
T

T0∑

t=1

z0tz1t =: M−1
T mT .

Applying the convergence results of Lemma 1 and the continuous mapping theorem, we have

M−1
T mT ⇒ M−1m =: q∗, where the non-singular random matrix M := M (r, μ) and the

random vector m := m(r, μ) are defined in the Proposition 3.

Proof of Theorem 1

First notice that δ̂t − δt = νt − (β̂ − β0)
′xt = z1t − γ̂ ′z0t. Therefore, for (a) we have

ξT0(δ̂t − δt − νt) = −ξT0x
′
t(β̂ − β0) = −ξT0x

′
t

(

[D]
2:n+1:2:n+1

)−1

γ̂

= −x′
t

[

ξT0

(

[D]
2:n+1:2:n+1

)−1

Λ−1
T

]

(ΛT γ̂) ⇒ −(Gq)′xt,

where the convergence in distribution follows from the definition of G, Proposition 3 and the

Continuous Mapping Theorem (CMT). For (b), Lemma 1 and the CMT yield

ξT (Δ̂T − ΔT ) =
T

T2

[(
ξT

T

T∑

t>T0

z1t

)

− (ΛT γ̂)′

(
ξT

T
Λ−1

T

T∑

t>T0

z0t

)]

⇒
1

1 − λ0

(1, q′)p,
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where the random vectors q and p are defined as in the Theorem 1 for each case of r and μ.

Similarly, for (c) we have that (δ̂t − δt)
2 = z2

1t − 2γ̂ ′z0tz1t + γ̂ ′z0tz
′
0tγ̂. Hence,

ζT V̂T =
T

T2

[(
ζT

T

T∑

t>T0

z2
1t

)

− 2(ΛT γ̂)′

(
ζT

T
Λ−1

T

T∑

t>T0

z0tz1t

)

+ (ΛT γ̂)′

(
ζT

T
Λ−1

T

T∑

t>T0

z0tz
′
0tΛ

−1
T

)

(ΛT γ̂)

]

.

For r = 0 and ζT = 1/T we have the following result

1

T
V̂T ⇒

1

1 − λ0

[j1 − 2q(0)′j2 + q(0)′Nq(0)] =: a,

where the random vectors j1, j2 and matrix N are defined in Appendix B. For r ≥ 1, ζT =
√

T

and the last two terms in parenthesis vanish in probability such that

√
T

(

V̂T − [Ω0]
1:1×1:1

)

⇒
1

1 − λ0

[∫ 1

λ0

dB∗

]

1:1

.

Proof of Theorem 2

Part (a) follows directly from of Theorem 1(a) combined with the Continuous Mapping The-

orem. For (b), let G̃T (x) := 1
τ

∑τ
j=1 I(ψj ≤ x) be the unfeasible counterpart of ĜT , where

τ := T0 − T2 + 1. We now show that both G̃T (x) − GT (x) and ĜT (x) − G̃T (x) vanish in

probability as T0 → ∞. The result then follows by the triangle inequality.

Due to the strictly stationarity assumption EG̃T (x) = 1
τ

∑τ
j=1 P(ψj ≤ x) = P(ψ0 ≤ x) =:

GT (x). Hence, G̃T (x) is unbiased for GT (x). So, it is enough to show that VG̃T (x) converges

to zero. The sequence {Wj := I(ψj ≤ x)}j is stationary and, as a consequence,

VG̃T (x) =
1

τ

∑

|k|<τ

(1 −
|k|
τ

)γk, γk := C(W1,W1+k).

Also, 0 ≤ Wj ≤ 1. We can bound the first T2 − 1 covariances by 1 and the remanning ones

using a mixing inequality due to ? ]. For |k| ≥ T2, we have γk ≤ 4α(k − T2 + 1), where α(j) is

the mixing coefficient of {εt}t.
6 Then,

VG̃T (x) ≤
2T2 + 1

τ
+

8

τ

τ∑

k=T2

α(k − T2 + 1).

Finally, since T0 → ∞ implies τ → ∞, we have the first term converging to zero and the second

converges to zero due to the strong mixing assumption.

6In fact the sequence {Wj(νj , . . . , νj+T2−1}j is also strong mixing.
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For the second part, fix x as a continuity point of G and write

Ĝ(x) :=
1

τ

τ∑

j=1

I(ψ0 + (ψ̂ − ψ0) ≤ x).

For any ε > 0 define the events AT (ε) = {‖ψ̂−ψ0‖∞ < ε} and BT (ε, x) = {|G̃(x)−G(x)| < ε}.

On AT we have G̃(x− ει) ≤ Ĝ(x) ≤ G̃(x + ει), where ι is a conformable vector of ones. If we

condition on BT , we have for the continuity points of G(x) G(x−ει)−ε ≤ Ĝ(x) ≤ G(x+ει)+ε.

Set ε → 0 to conclude since AT ∩ BT occurs with probability approaching 1.

For (c) we use the fact that (b) is equivalent (refer to Theorem 6.3.1 of ? ]) to say that for

any subsequence {Tj}, we can extract a subsequence {Tjk
} such that ĜTjk

(ω, x) → G(x) for

all ω ∈ Ω3 and x a continuity point of G with P(Ω3) = 1. Since G is assumed continuous and

for each fixed ω, ĜTjk
(ω, x) is a CDF, the last convergence can be made uniform by Polya’s

theorem, i.e., supx∈Rb |ĜTjk
(ω, x) − GTjk

(x)| → 0 for all ω ∈ Ω3. The result then follows by

using the equivalence (in the other direction) of Theorem 6.3.1 of ? ].

Proof of Theorem 3

Let F denote the CDF of p, i.e. F (x) := P(p ≤ x). Since
√

bLj and
√

T (Δ̂T − ΔT ) has the

same limiting distribution p according to Theorem 1(b) and p is a continuous random variable,

we have that F̂t,b is asymptotically mean unbiased for FT for every x ∈ R since

E(F̂T,b(x) − FT (x)) =
1

#J

∑

j∈J

P(
√

bLj ≤ x) − P(
√

T (Δ̂T − ΔT ) ≤ x) = o(1).

To show that F̂T,b(x) converges to FT (x) in probability, it is enough to show that the variance

of F̂T,b(x) vanishes. Let Hj := I(
√

bLj ≤ x) and γi,j := C(Hi, Hj). Since Hj is binary, we have

that |γij| ≤ 1. Therefore, V(F̂T,b(x)) ≤ (2b+1)
T−b+1

+ 1
(T−b+1)2

∑
|i−j|>b γi,j . The first term is o(1)

under the theorem’s assumptions. For the second term, notice that for any pair ( i, j) ∈ J 2 we

have that Hi and Hj are functions of the subsamples indexed by Si and Sj , respectively. For

|i − j| > b we have Si ∩ Sj = ∅. Hence, we can bound the covariance as |γi,j | ≤ 4α(|i − j| − b),

where α(∙) is the mixing coefficient of the process {εt}t and the mixing inequality is due to

Ibragimov (1962). Thus,

1

(T − b + 1)2

∑

|i−j|>b

γi,j ≤
4

(T − b + 1)2

∑

|i−j|>b

α(|i − j| − b) ≤
8

(T − b + 1)

T−b+1∑

k=1

α(k) = o(1),

which proves the pointwise convergence, namely |FT,b(x) − FT (x)|
p

−→ 0 for every x ∈ R.

For the uniform result we once again use the equivalence given in Theorem 6.3.1 of Resnick

(1999) to say that for any subsequence {Tj}, we can extract a subsequence {Tjk
} such that

F̂Tjk
(ω, x) → F (x) for all ω ∈ Ω4 and x ∈ R with P(Ω4) = 1. Since F is continuous and for

each fixed ω, F̂Tjk
(ω, x) is a CDF, the last convergence can be made uniform by Polya’s theorem

27



such that supx∈Rb |F̂Tjk
(ω, x) − FTjk

(x)| → 0 for all ω ∈ Ω4. The result then follows by using

the equivalence (in the other direction) of Theorem 6.3.1 of Resnick (1999).
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