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ABSTRACT
Recently, there has been growing interest in developing econometric tools to conduct counterfactual
analysis with aggregate data when a single “treated” unit suffers an intervention, such as a policy change,
and there is no obvious control group. Usually, the proposed methods are based on the construction of
an artificial/synthetic counterfactual from a pool of “untreated” peers, organized in a panel data structure.
In this article, we investigate the consequences of applying such methodologies when the data comprise
integrated processes of order 1, I(1), or are trend-stationary. We find that for I(1) processes without a
cointegrating relationship (spurious case) the estimator of the effects of the intervention diverges, regard-
less of its existence. Although spurious regression is a well-known concept in time-series econometrics,
they have been ignored in most of the literature on counterfactual estimation based on artificial/synthetic
controls. For the case when at least one cointegration relationship exists, we have consistent estimators
for the intervention effect albeit with a nonstandard distribution. Finally, we discuss a test based on
resampling which can be applied when there is at least one cointegration relationship or when the data are
trend-stationary.
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1. Introduction

The goal of this article is to investigate the consequences of
applying popular econometric methods for counterfactual anal-
ysis when the data generating mechanism possess stochastic
and/or deterministic trends. The framework considered here
nests the panel factor (PF) method by Hsiao, Ching, and Wan
(2012) and further generalized by Ouyang and Peng (2015),
Li and Bell (2017), and Chernozhukov, Wuthrich, and Zhu
(2018); the artificial counterfactual (ArCo) of Carvalho, Masini,
and Medeiros (2018); and extensions of the synthetic control
(SC) proposed by Abadie and Gardeazabal (2003) and Abadie,
Diamond, and Hainmueller (2010), as discussed in Doudchenko
and Imbens (2016) and Ferman and Pinto (2016). Most of
the articles on counterfactual analysis for panel data do not
take into account the possibility of nonstationarity. In the
SC setting, the estimation is traditionally viewed as a cross-
section problem and the time-series nature of the data is often
ignored.1

On the other hand, the PF and the ArCo methods explic-
itly explore the time dimension. However, Li (2017) and Car-
valho, Masini, and Medeiros (2018) assumed that the data
are (trend-)stationary while Hsiao, Ching, and Wan (2012)
conjectured that if the data are cointegrated, their results
will still hold. As we show in this article, this conjecture
turns out to be imprecise. Furthermore, inference based on
nonstationary data can be terribly misleading and although
spurious regression is a well-known concept in time-series
econometrics, they have been ignored in most of the litera-
ture on counterfactual estimation based on artificial/synthetic

CONTACT Marcelo C. Medeiros mcm@econ.puc-rio.br Department of Economics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

controls. For example, Hsiao, Ching, and Wan (2012), Car-
valho, Masini, and Medeiros (2018), and Li (2017) consid-
ered testing the null hypothesis of no average effect as the
time dimension grows.2 Our results demonstrate that non-
stationarity induces strong over-rejection of this null when
the critical values are computed using a standard Gaussian
distribution.

Recently, there has been growing interest in developing
tools to conduct counterfactual analysis with aggregate data
when a single unit suffers an intervention, such as a policy
change, and there is no clear control group available. An unit
can be, for example, a country, a region or state, a munici-
pality, or a firm. In these situations, the solution is to con-
struct an ArCo from a pool of “untreated” peers (“donors
pool”). In Hsiao, Ching, and Wan (2012), the counterfactual
is constructed from a linear combination of observed vari-
ables from peers given by the conditional expectation model.
In the SC framework, the counterfactual is built as a convex
combination of peers where the weights of the combination
are estimated from time-series averages of several variables
from the donor pool. Although the methods may seem similar,
they differ in the way the linear combination is constructed.
In the SC method, the weights are positive and sum to one.
On the other hand, Hsiao, Ching, and Wan (2012) did not

1More recently, some authors have advocated the use of SC methods without
taking time averages of the variables (see, e.g., Doudchenko and Imbens
2016; Ferman and Pinto 2016; Li 2017).

2The average is taken over time and not over the cross-section.
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impose any restrictions. The SC method is now a key ingre-
dient in the toolbox of applied researchers; see Athey and
Imbens (2017) for a recent review or Gardeazabal and Vega-
Bayo (2017) for an empirical comparison between the PF and
SC methods.

1.1. Main Takeaways

This article is a major extension of Carvalho, Masini, and
Medeiros (2017). We consider two very distinct scenar-
ios when the data are nonstationary. The first one is the
cointegrated/trend-stationary case, in which there is at least
one cointegrating relationship among the treated unit and the
untreated peers or the data are trend-stationary. This is the most
common case in empirical applications and nests models with
nonstationary common factors. The second one is the spurious
case, when no cointegrating relationship exists and unit-roots
are present. The later may sound empirically irrelevant, as in
the majority of applications the researcher assumes an under-
lying factor model which implies cointegration/common trend.
However, this is an assumption that must be tested and neglect-
ing potential spurious regressions can yield severely erroneous
results. On the other hand, although the cointegration case is
the most common setup, we show that, contrary to the common
sense, that the estimator for the average intervention effect is
not asymptotically normal even in the canonical case where the
errors are uncorrelated and normally distributed. Our results
are derived under the case where the number of observations
grows (T −→ ∞) and the cross-section dimension, n, is
kept fixed.

In the cointegration case, when both the pre- and post-
intervention samples grow at a proportional rate, we show
that our estimator for the average treatment effect is consis-
tent, but not asymptotically normal. The distribution of the
test for the null of no average effect is nonstandard even
when the distribution of the estimator for the cointegrating
vector is mixed normal. This is a new result, which leads
to strong over-rejection of the null hypothesis of no aver-
age intervention effect when the nonstationary nature of the
data is ignored and critical values of test are obtained from a
standard Gaussian distribution (Hsiao, Ching, and Wan 2012;
Carvalho, Masini, and Medeiros 2018). On the other hand,
if the pre-intervention sample diverges to infinity faster than
the post-intervention one, than normality can be achieved.
The spurious case is more troublesome. We show that the
treatment effect estimator diverges. The lack of a cointegrating
relationship makes the construction of the artificial control
using the pre-intervention period invalid, due to harmful effects
of spurious regressions, as extensively discussed in Phillips
(1986a). Therefore, we recommend that cointegration should
be tested before applying such methods with nonstationary
data.

Finally, we discuss two resampling procedures to conduct
inference. The first one is an application of the results in Masini
and Medeiros (2019) and is developed under the framework
where the number of pretreatment observations diverges but
the dimension post-treatment sample is fixed. This test can
be applied under either cointegration or pure deterministic

trends. Furthermore, the testing procedure can be applied even
when there is a single observation after the intervention as well
as when the data are stationary. A second procedure is also
proposed for the case when the full sample diverges to infinity.
However, the test will be valid only under stationarity or under
the case of trend-stationary variables. It is important to highlight
that the deterministic trends considered in this article do not
need to be necessarily linear.

Our results highlight that, contrary to what is commonly
advocated in the SC literature, it is important to test for coin-
tegration in case of nonstationary data.3 In general, the coun-
terfactual estimation based on SC methods requires an almost
perfect in-sample fit. However, the good pre-intervention fit is
an illusion in the case of spurious regressions. It is well known in
the time-series literature that the R-squared of spurious regres-
sions tends to one and the t-statistics associated to the regression
coefficients diverge as the sample size increases; see Phillips
(1986a). The t-statistic for the null of no effect also diverges.
In the case when no cointegration relation exists, one possible
solution is to consider the data in first-differences.

A detailed simulation study corroborates our theoretical
findings and evaluates the asymptotic approximation in finite
samples. We also study the effects of imposing restrictions on
the linear combination of peers as in the original SC method as
well as the use of LASSO estimators as in Carvalho, Masini, and
Medeiros (2018), Doudchenko and Imbens (2016), and Li and
Bell (2017). As expected, none of these approaches mitigate the
harmful effects of nonstationarity. We also conduct a simulation
study to evaluate the effects of pretesting for cointegration when
applying our resampling inferential procedure. We consider the
case when there is only one observation after the intervention
and the data can be cointegrated or not (spurious case). As
before we compare the unrestricted estimator advocated in this
article with restricted versions either imposing the original SC
restrictions or the LASSO ones.

1.2. Comparison With the Literature

As far as we know this is the first article to give a full treat-
ment of counterfactual methods when the data are nonstation-
ary for the case where the number of cross-sections is kept
fixed. Under some assumptions, Bai, Li, and Ouyang (2014)
showed consistency of the panel approach when the data are
integrated of first order but the asymptotic distribution was
not derived. Ferman and Pinto (2016) studied the bias of the
SC method in the case of common nonstationary factors. Li
(2018) derived the asymptotic distribution of the average treat-
ment effects under a nonstationary factor model with quite
restrictive assumptions. Carvalho, Masini, and Medeiros (2017)
considered a more restrictive setting than ours and no infer-
ential procedure is available. Differently from these articles,
we provide the asymptotic distribution of the estimator in a
much more general setup and develop the results required for
inference. Masini and Medeiros (2019) considered the case of
nonstationarity in high dimensions and provided complemen-
tary results.

3See, for instance, Remark 4.4 in Li (2018).
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1.3. Organization of the Article

The rest of the article is organized as follows. Section 2 presents
the setup considered while Section 3 delivers the theoretical
results except for the asymptotic inference procedure which is
presented in Section 4. The simulation experiment is shown
in Section 5. An empirical example in shown in Section 6.
Section 7 concludes the article. Finally, proofs are presented in
the online Appendix. Additional technical results are relegated
to the supplementary materials.

2. Setup and Estimators

2.1. Basic Setup

Suppose we have n units (countries, states, municipalities, firms,
etc.) indexed by i = 1, . . . , n. For each unit and for every time
period t = 1, . . . , T, we observe a realization of a variable yit . We
consider a scalar variable just for the sake of simplicity and the
results in the article can be easily extended to the multivariate
case. Furthermore, we assume that an intervention took place in
unit i = 1, and only in unit 1, at time T0 +1, where T0 = �λ0T�
and λ0 ∈ (0, 1).

Let Dt be a binary variable flagging the periods after the
intervention, such that:

y1t = Dty(1)
1t + (1 − Dt)y(0)

1t ,

where y(1)
1t denotes the outcome when the unit 1 is exposed to the

intervention and y(0)
1t is the potential outcome of unit 1 when it

is not exposed to the intervention.
We are concerned in testing hypothesis on the potential

effects of the intervention in the unit of interest (unit 1) for the
post-intervention period. We consider interventions of the form

y(1)
1t = δt + y(0)

1t , t = T0 + 1, . . . , T, (2.1)

where {δt}T
t=T0+1 is a deterministic sequence.4

The null hypothesis becomes

H0 : δt = 0, ∀t. (2.2)

The null hypothesis of zero average (across post intervention
period) treatment effect is

H̄0 : �T = 1
T − T0

T∑
t=T0+1

δt = 0. (2.3)

ClearlyH0 implies H̄0. The weaker null is of interest since we
have a consistent estimator for �T in contrast to only an asymp-
totic unbiased estimator for δt . It is clear that y(0)

1t is not observed
from t = T0 + 1 onward. For this reason, we henceforth call it
the counterfactual—that is, what would y1t have been like had
there been no intervention (potential outcome).

Let y0t = (
y2t , . . . , ynt

)′ :=
(

y(0)
2t , . . . , y(0)

nt

)′
be the collection

of all untreated variables.5 Panel based methods, such as the PF

4The usual setup in the literature is to consider determinist effects (see, e.g.,
Chernozhukov, Wuthrich, and Zhu 2018).

5We could also have included lags of the variables and/or exogenous regres-
sors into y0t but again to keep the argument simple, we have considered
just contemporaneous variables; see Carvalho, Masini, and Medeiros (2018)
for more general specifications.

and ArCo methodologies, as well as SC extensions, construct
the counterfactual by the following model in the absence of an
intervention:

y(0)
1t = M(y0t ; β0) + νt , t = 1, . . . , T,

= β ′
01y0t + β00 + νt = β ′

0xt + νt ,
(2.4)

where νt is an error term , xt := (
y′

0t , 1
)′ and β0 ∈ R

n. A linear
specification (including a constant) for the model M(y0t) is by
the most common choice.

The main idea is to estimate (2.4) using just the pre-
intervention sample (t = 1, . . . , T0), since in this case y(0)

1t = y1t .
Consequently, the estimated counterfactual is given by

ŷ(0)
1t =

{
y1t if t = 1, . . . , T0,
β̂

′
01y0t + β̂00 if t = T0 + 1, . . . , T.

(2.5)

Under stationarity in the absence of intervention and extra
mild assumptions, Hsiao, Ching, and Wan (2012) and Carvalho,
Masini, and Medeiros (2018) showed that δ̂t := y1t − ŷ(0)

1t is an
unbiased estimator for δt , t = T0 + 1, . . . , T T0 −→ ∞ and

�̂ = 1
T − T0

T∑
t=T0+1

δ̂t (2.6)

is
√

T-consistent for �T and asymptotically normal. However,
with stochastic trends, the population parameter β0 can no
longer be identified as the linear projection parameters of y1t
onto y0t and a constant due to the nonstationary of the regres-
sors. Moreover, in the spurious regression case there is no β0
such that νt will be stationary.

We consider the estimation of (2.4) by ordinary least squares
(OLS) using only the pre-intervention sample (t ≤ T0) which
we denote by β̂ . The fitted values in the post-intervention period
ŷ(0)

1t = β̂
′xt , t > T0 will be our estimated counterfactual and the

intervention effect will be estimated by δ̂t := y1t − ŷ(0)
1t for each

period after the intervention.

2.2. Nonstationarity

We model the units in the absence of the intervention as a
nonstationary (vector) process {y(0)

t }t≥1 defined on some prob-
ability space (�,F , ¶).

Assumption 1. The data generating process (DGP) is indexed by
r ∈ {0, 1, . . . , n}, where n is also the number of units such that:

(a) For r = 0:

y(0)
t = y(0)

t−1 + μ + εt , t ≥ 1, (2.7)

where y(0)
0 = OP(1), μ ∈ R

n and no cointegration
relation exists with unit 1 included.

(b) For 0 < r < n:

y(0)
t = y(0)

t−1 + μ + εt , t ≥ 1, (2.8)

where y(0)
0 = OP(1), μ ∈ R

n and there exist r ≥ 1
cointegration relations with unit 1 included. For 1 ≤ r ≤
n − 1, there is a (n × r) matrix �̃ with rank r such that
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�̃
′y(0)

t is integrated of order zero and at least one element
of the first row of �̃ is nonzero.6

(c) For r = n:

y(0)
t = c + μft + εt , t ≥ 1, (2.9)

where c ∈ R
n, μ ∈ R

n, ft is positive increasing determin-
istic sequence and μ1 �= 0 and μj �= 0 for some j �= 1.

For all cases, {εt}t≥1 is a zero mean covariance-stationary
process.

The DGPs defined in Assumption 1 are of the form y(0)
t =

OP(1) + μdt + ηt , for t ≥ 1. If r < n, then dt = t and ηt =∑t
s=1 εs. If r = n, then dt = ft and ηt = εt . If we set ft = t and

μ �= 0, we have that DGPs(a) and (b) have a stochastic trend and
the DGP(c) have a deterministic linear trend. By setting μ = 0
in DGP(a), we have a “pure” random walk. We exclude the case
when μ = 0 in DGP(c). In that case, the variables are (weakly)
stationary.7

2.3. Example: Nonstationary Factor Model

We illustrate a possible DGP based on a simple factor model.
Suppose that the units in the absence of intervention are mod-
eled via a single factor ft such that for each unit i ∈ {1, . . . , n}
and every t ∈ {1, . . . , T} we have

y(0)
it = ci + μift + uy

it , (2.10)

where ci ∈ R, uy
it is an idiosyncratic error and μi ∈ R is the

factor loadings for unit i. We impose that the factor follows
either a unit root process with a (possibly nonlinear) drift

ft = μf + ft−1 + uf
t , t ≥ 1 (2.11)

for some initial condition f0 = OP(1); or a trend-stationary
process

ft = μf
t + uf

t , (2.12)

where in both cases {μf
t }∞t=1 is a deterministic sequence, not

necessarily linear.
Consider that (uy

1t , . . . , uy
nt , uf

t ) is a zero-mean, independent
and identically distributed Gaussian random vector. The factor
model yields a common trend for those units with nonzero
loadings, μi �= 0, and a correlation among the stochastic
components of y(0)

t due to uf
t .

Let L be the lag operator and write model (2.11) as

ft = (1 − L)−1μf + (1 − L)−1uf
t . (2.13)

Replacing ft by (2.13) in (2.10), y(0)
it is a random walk as in (2.8).

On the other hand, model (2.9) can be easily derived by setting
ft = μf

t and εit = μiuf
t + uy

it in (2.9).
We define a pseudo-true model as yt = β ′

0xt + νt , where
yt := y(0)

1t and xt :=
[

1, y(0)
0t

′]′
. Suppose there are 1 < r + 1 ≤ n

6Notice that for the case when there is at least one cointegration relation, if
the unit one belongs to one of them it belongs to all of them.

7A full treatment of the stationary case in a high-dimensional setup can be
found in Carvalho, Masini, and Medeiros (2018).

units with nonzero loadings (μi �= 0), including unit 1. Without
loss of generality, make those the first r+1 units. In that case, we
have r independent linear relations among those units resulting
in a stationary process since we can cancel the trends by setting
�̃

′y(0)
t , where

�̃
′ =

⎛⎜⎝1 −μ1
μ2

0 0
... 0

. . . 0 0r×(n−r−1)

1 0 0 − μ1
μr+1

⎞⎟⎠ ,

and 0r×(n−r−1) is a r × (n− r −1) matrix of zero elements. After
normalizing to obtain the representation �̃

′ = (
Ir : −�′), we

are left with

�′ =
⎛⎜⎝μ̃1

... 0r×(n−r−1)

μ̃r

⎞⎟⎠ ,

where μ̃i := μi
μr+1

for i ∈ {1, . . . , r}. Then, Jt = �̃
′y(0)

t is
stationary with a typical element Ji,t = ci − μ̃icr+1 + uy

it −
μ̃iu

y
r+1,t = c̃i + ũit , where c̃i := ci − μ̃icr+1 and ũit :=

uy
it − μ̃iu

y
r+1,t .

When r = 1, the pseudo-true vector of parameters becomes
β0 =

(
c1 − μ1

μ2
c2, μ1

μ2
, 0, . . . , 0

)′
, and the covariance struc-

ture of the vector
(

uf
t , uy

1t , . . . , uy
nt

)′
plays no role in deter-

mining the coefficients of the pseudo-true model, since there
is only one possible linear combination that results in a I(0)

process. On the other hand, when r ≥ 2, we have β0 =(̃
c1 − ζ ′̃c0, ζ ′, μ̃1 − ζ ′μ̃0, 0, . . . , 0

)′, where c̃0 := (̃c2, . . . , c̃r)
′,

μ̃0 := (μ̃2, . . . , μ̃r)
′, and ζ denote the linear projection of ũ1t

onto (̃u2t , . . . , ũrt)
′. Now it becomes evident that the covari-

ance structure of
(

uy
1t , . . . , uy

r+1,t

)′
affects the coefficients of the

pseudo-true model through ζ . Finally, the error term for the
linear regression model is given by νt = uy

1t − ∑r+1
i=2 β0,iu

y
it .

If μi = 0 and uy
it = uy

it−1 + vit , i = 1, . . . , n, in model (2.10),
we have the spurious case.

3. Theoretical Results

3.1. Notation

To facilitate the exposure of the theoretical results we establish
the following partition scheme. For a (random) matrix M :=
(mij)1≤i≤n,1≤j≤m when we want to make the dimension explicit
we write M

(n×m)
. We also define the submatrix [M]

a:b×c:d
by

[M]
a:b×c:d

:=

⎛⎜⎜⎜⎝
ma,c ma,c+1 . . . ma,d

ma+1,c ma+1,c+1 . . . ma+1,d
...

...
. . .

...
mb,c ma+1,c+1 . . . mb,d

⎞⎟⎟⎟⎠
for integers 1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤ m. Similarly for a
n-dimensional (random) vector v := (v1, . . . , vn)′, we write v

(n)
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to make the dimension explicit and define the subvector [v]
a:b

by

[v]
a:b

:=

⎛⎜⎜⎜⎝
va

va+1
...

vb

⎞⎟⎟⎟⎠
for integers 1 ≤ a ≤ b ≤ n. Using this notation we have, for
instance, M = [M]

1:n×1:m
and v = [v]

1:n
. Also [M]

1:1×1:1
= m1,1 and

[v]
2:n

= (v2, . . . , vn)′.
All the summations are from period 1 to T whenever the

limits are left unspecified. For convenience, set T2 := T −
T0 as the number post intervention periods. Recall that T0 is
number of period pre-intervention. We denote convergence in
probability and weak converge by “

p−→” and “⇒,” respectively.

3.2. Main Assumptions

To recover the effects of the intervention, we need the following
key assumption.

Assumption 2. E(y(0)
t |Ds) = E(y(0)

t ), for all t, s.

Roughly speaking, the assumption above is sufficient for the
peers to be unaffected by intervention on the unit of interest,
that is, the peers are actually untreated.8

For a generic process {zt}∞t=1, consider the following assump-
tion.

Assumption 3. Let {zt}∞t=1 be a sequence of (n × 1) random
vectors such that

(a) {zt}∞t=1 is zero mean weakly (covariance) stationary;
(b) E|zi1|ξ < ∞ for i = 1, . . . , n and some 2 ≤ ξ < ∞;
(c) {zt}∞t=1 is mixing with coefficients such that∑∞

m=1 α
1−1/ξ
m < ∞ or

∑∞
m=1 φ

1−2/ξ
m < ∞.

Assumption 3 states conditions under which the multivariate
invariance principle is valid for {zt}∞t=1 (refer to Proposition 1
in online Appendix A). Assumption 3(a) limits the hetero-
geneity in the process (at least up to the second moment).
Assumption 3(b) is a standard higher moment existence con-
dition which guarantees, along with Assumption 3(c), bounded
covariances. Assumption 3(c) restricts the temporal dependence
requiring the sequence to be either strong mixing with size
− ξ

ξ−2 or uniform mixing with size − ξ
2ξ−2 .

3.3. Variable Transformations

We follow Sims, Stock, and Watson (1990) and consider a
variable transformation to derive the correct converge rate of
the OLS estimator. Note that these transformations are not
necessary in practical applications. For the DGPs considered

8For a thorough discussion on Assumption 2, including the potential bias
resulting from its failure in the stationary setup refer to Carvalho, Masini,
and Medeiros (2018).

in Assumption 1, the index r also represents the number of
cointegration relations among the n units when 0 < r < n.
As shown in Engle and Granger (1987), the cointegration space
characterized by �̃(n× r) can be normalized to (Ir : �′)′, where
� is of dimension (n − r) × r. Since (Ir : �′)yt is covariance-
stationary by definition, we define α := E

[(
Ir : �′) yt

]
and set

z∗
t := C′yt where

C := C(r) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
Ir 0 0
�

(n−r×r)
In−r 0

− α′
(1×r)

0 1

⎞⎟⎟⎟⎠ , if 0 < r < n, and

In+1, otherwise.
(3.1)

In the presence of a deterministic trend, the last n−r elements
of z∗

t might be asymptotic multicollinear. Hence, we propose the
following transformation to cancel the drift for all but one, the
last variable. If none of the variables has a deterministic trend
there is no need to rotate the regressors. Otherwise, without loss
of generality, make the last unit the one with trend and define the
“rotation” R(r, μ) as

R := R(r, μ) (3.2)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ In−1 0 0
−h(0)′ 1 0

0 0 1

⎞⎟⎠ , if (r = 0 or r = n) and μ �= 0, and

⎛⎜⎜⎜⎝
Ir 0 0 0
0 In−r−1 0 0
0 −h(r)′ 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , for 1 ≤ r ≤ n − 2 and μ �= 0

In+1, otherwise,

where h(r) := 1
μn

(μr+1, μr+2, . . . , μn−1)
′. Now, we have that

z̃t := R′z∗
t is no longer asymptotically multicollinear.

Also for the DGPS with 2 ≤ r ≤ n, we have that the
first component of z̃t is not necessarily orthogonal to the rest
of the stationary components which will be necessary for the
asymptotic results. Let g denote the number of stationary com-
ponents of z̃t , excluding the constant , that is, g := min(r, n−1).
Hence, consider the linear projection of z̃1t onto z̃2t , . . . , z̃gt
and a constant: z̃1t = π2̃z2t + · · · + πg̃ zgt + δ + z1t . Define
π := (π2, . . . , πg)′ and zt := P̃zt , where

P := P(r) (3.3)

:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
1 0 0 0

−π
(g−1×1)

Ig−1 0 0

0 0 In−g 0
−δ 0 0 1

⎞⎟⎟⎟⎟⎠ , if 2 ≤ r ≤ n, and

In+1, otherwise.

Finally, all the asymptotic results are carried on the trans-
formed variable zt := zt(r, μ) := H(r, μ)′

[
y(0)

t
′
, 1

]′
, which

combines all the three transformations described above as

H(r, μ) := C(r)R(r, μ)P(r). (3.4)

The OLS estimator, say β̂ , of y1t on y0t and a constant is
related to the OLS estimator γ̂ of z1t on z0t and a constant by
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Proposition 2 in online Appendix A. Its asymptotic distribution
can be derived from Proposition 3 in online Appendix A. Propo-
sitions 2 and 3 fully characterize the asymptotic behavior of β̂ .

In our main result, we consider two kinds of asymptotics.
In the first one (part (a) of Theorem 1) which we call partial
asymptotics, we consider an asymptotic approach only for the
pre-intervention period where the number of post-intervention
observations T2 := T − T0 are kept fixed while T0 → ∞.
This approach is tailored to accommodate situations where the
number of pre-intervention period T0 is much larger than T2,
which justifies the sampling error from the estimation of β0 by
β̂ to be of smaller order then νt .

Whereas in the second approach (part (b) of Theorem 1),
named full asymptotics, we establish the asymptotic properties
by considering the whole sample increasing in two scenarios.
Either the proportion between the pre-intervention to the post-
intervention sample size, denote by λ0 ∈ (0, 1), if fixed such that
T0 = �λ0T� and T2 := T2(T) or the pre-intervention sample
grows faster than the post-intervention one.9 In this case, the
asymptotics are taken as T → ∞.

Theorem 1. Under the conditions of Proposition 3 in online
Appendix A and Assumption 2:

(a) As T0 → ∞, for every t ∈ {T0 + 1, . . . , T2}
ξT0 (̂δt − δt − νt) ⇒ −(Gq)′xt .

(b) As T → ∞ with T0/T → λ0 ∈ (0, 1):

ξT(�̂T − �T) ⇒ 1
1−λ0

(1, q′)p.

(c) As T → ∞ and T0/T → 1 (or equivalently T2/T0 → 0):

ξT2(�̂T − �T) ⇒
[∫ 1

0
Bds

]
1:1

, if r = 0;

ξT2(�̂T − �T) ⇒
[∫ 1

0
dB

]
1:1

, if 1 ≤ r ≤ n.

(d) ζT(V̂T − V) ⇒ a as T → ∞
where ξT := ξT(r) := T1/2−I(r=0), ζT := ζT(r) :=
T1/2−3/2I(r=0), and V̂T := 1

T2

T∑
t=T0+1

(̂δt − δt)2. The scalar V ,

the matrix G, the random variable a and the random vectors p,
q, and B are all defined in online Appendix B.

Remark 1. From the partial asymptotic analysis (when only the
pre-intervention period is taken to infinity), we have an asymp-
totic unbiased estimator for each of the post-intervention period
under cointegration. Note, however, that the estimator is not
consistent. Not surprisingly, for the case where no cointegration
relation exist (r = 0) the estimator diverges.

9We do not consider the opposite scenario when the post-intervention
period grows faster than the pre-intervention since it would be unrealistic
to most empirical applications.

Remark 2. From the full asymptotic analysis (when the whole
sample size is taken to infinity keeping the ratio of the pre to
post-intervention fixed) we have a

√
T consistent estimator for

the average intervention effect as a consequence of part (b) for
the DGP with at least one cointegration relation or a common
deterministic trend (r > 0). Again whenever no cointegration
relation exist among the unit (r = 0) the estimator diverges.

Remark 3. Except for the cases when T → ∞ and T0/T →
1 where the asymptotic distributions are Gaussian, all other
cases have nonstandard limiting distribution as functionals of a
Winer process. Furthermore, the presence of the drift nuisance
parameters makes those limiting distribution nonpivotal, which
requires an alternative inference procedure. Nevertheless, the
results in this section give us the rate of convergence of those
estimator which is key to the proposed sampling procedure
discussed in the next section.

Remark 4. The SC counterfactual estimator and many of its
variants, as the augmented synthetic control (ASC) estima-
tor of Ben-Michael, Feller, and Rothstein (2019), are con-
structed as linear combinations of peers, such as y(0)

1t =
ω′y0t , where the estimation and restrictions on ω differ across
models/methods. Therefore, define �(ω) as the average inter-
vention effect for a given linear combination ω: �T(ω) =

1
T−T0

∑T
t=T0+1

(
y1t − ω′y0t

)
. Not that, under spurious regres-

sions, there is no value of ω that makes the term inside the paren-
theses integrated of order zero. Therefore, under the null of no
average intervention effect and the case of spurious regression
(r = 0) it can be easily shown that �T(ω) diverges for any value
of ω as the sample size grows. As a consequence, in this case no
method based on linear combinations of peers will give a reliable
counterfactual.

4. Inference

As opposed to the stationary case, the limiting distributions of
the estimators considered in Theorem 1 are all nonstandard
unless in some specific cases. Critical values could still be com-
puted by simulation as long as the nuisance parameters are
identified or a plug-in estimator is used. None of those cases are
ideal so we present some alternative asymptotic valid inference
procedures.

They are based on the sequence of estimators {̂δt}T
t=T0+1.

More specifically, we consider any continuous mappings ψ :
R

T2 → R
q whose argument is the T2-dimensional vector

(̂δT0+1 −δT0+1, . . . , δ̂T −δT)′. Thus, to conduct inference where
are interested in distribution of ψ̂ := ψ (̂δT0+1−δT0+1, . . . , δ̂T −
δT). We consider an estimator for the cdf:

GT(w) := ¶(ψ̂ ≤ w), w ∈ R
q, (4.1)

where, for a pair of vectors a, b ∈ R
q, we say that a ≤ b ⇐⇒

ai ≤ bi, ∀i. Also we only consider the case when r > 0, since
otherwise the estimators in Theorem 1 diverge.

4.1. Partial Asymptotic Inference (Resampling)

The results in this section are based on the procedure proposed
in Masini and Medeiros (2019). We consider the case when the
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pre-intervention period is much larger than the post interven-
tion period, T0 � T2. The results are based on part (a) of
Theorem 1. When T0 −→ ∞, we have that ψ̂

p−→ ψ0, where
ψ0 := ψ(νT0+1, . . . , νT). Therefore, GT(w) → G(w) for every
continuity point of G defined by

G(w) := ¶(ψ0 ≤ w), w ∈ R
q. (4.2)

Consider the construction of ψ̂ using blocks of size T2 of con-
secutive observations from the pre-intervention sample. There
are T0 − T2 − 1 of such estimators denoted by

ψ̂ j := ψ (̂νj, . . . , ν̂j+T2−1), j = 1, . . . , T0 − T2 + 1,

where ν̂t := y1t − β̂
′
T0 xt with the subscript T0 indicates that

the estimator is calculated using the only the pre-intervention
sample.

For any fixed j, we have that ψ̂ j
p−→ ψ j :=

ψ(νj, . . . , νj+T2−1) as T0 → ∞. Under strictly stationarity of
{νt}t≥1, we have that ψ j is equal in distribution to ψ0 for all j.
Therefore, we propose to estimate (4.1) by

ĜT(w) := 1
T0 − T2 + 1

T0−T2+1∑
j=1

I(ψ̂ j ≤ w), w ∈ R
q.

Theorem 2. Under the same conditions of Theorem 1, if further
{νt} is a strictly stationary process, then as T0 → ∞:

(a) ψ̂
p−→ ψ0

(b)
∣∣ĜT(w) − GT(w)

∣∣ p−→ 0 for every continuity point of
w �→ G(w)

(c) If G is continuous, the result (b) holds uniformly in w ∈
R

q.

By the appropriate choice of ψ(·), Theorem 2 provides a
straightforward way to conduct inference even in the case when
there is a single observation after the intervention (T2 = 1). We
could be interested in testing the intervention effects on all post-
intervention period individually by setting ψ(w) = w. Or on the
average intervention effect across the post-intervention period
ψ(w) = 1

T2

∑T2
j=1 wj. A reasonable choice to test H0 using a

univariate statistic is to set ψ(w) = 1
T2

w′w, which is a particular
choice among statistics of the form ψ(w) = 1

T2

∑T2
j=1 g(wj) for

some nonnegative real valued function g(·) such as | · |.
Regardless of the choice, Theorem 2 ensures an asymp-

totic correct size. For instance, for an univariate ψ̂ we have
¶
[
ψ̂ ≤ cT(1 − α)

] → 1 − α, T0 → ∞, where cT(α) :=
inf{w : ĜT(w) ≥ α}. The proof of Theorem 2 follows closely
the results in Masini and Medeiros (2019).

4.2. Full Asymptotic Inference (Subsampling)

Now we consider the situation where the size of the pre- and
post-intervention period are comparable, T0 ≈ T2, which
makes the partial asymptotic argument from the previous
section less compelling. Instead we consider full asymptotic
approach based on part (b) of Theorem 1. For a given positive

integer b split the sample into subsamples of b consecutives
observations indexed by Sj := {j, . . . , j + b − 1}; j ∈ J :=
{1, . . . , T − b + 1}. For each of those subsamples define the
index set of post-intervention period keeping the same ratio of
original sample λ0 = T0/T, that is, Tj := {�λ0b�+ j, . . . , j+b−
1} ⊂ Sj.

Then, in analogy to �̂T − �T define, for each subsample:
Lj := 1

#Tj

∑
t∈Tj

(
y1t − β̂

′
jxt − δt

)
, for j ∈ J , where β̂ j is the

OLS estimator based on a sample indexed by Sj \ Tj and #A
denotes the cardinality of A.

According to part (b) of Theorem 1
√

bLj ⇒ p for each j
as b → ∞. We use {Lj} as an estimator for the asymptotic
distribution of �̂T : FT(x) := ¶(

√
T(�̂T − �T) ≤ x), x ∈

R. The estimator becomes, for each choice of b: F̂T,b(x) :=
1

#J
∑

j∈J
I(

√
bLj ≤ x), x ∈ R.

Theorem 3. Under the same conditions of Theorem 1 and r = n,
provided that b → ∞ as T → ∞ and b/T → 0

sup
x∈R

|̂FT,b(x) − FT(x)| p−→ 0.

Remark 5. Note that the results in the above theorem are only
valid in the case of DGP (c) of Assumption 1.

5. Simulations

5.1. Asymptotic Distributions

To evaluate the asymptotic approximation in finite samples, we
simulate two different scenarios. In the first one, the treated unit
and the peers are cointegrated while in the second case the data
are formed by a set of independent random walks. In this later
case, the counterfactual is spurious. In both cases, we evaluate
the distribution of the estimator for the average intervention
effect under the null hypothesis of no intervention at T0 = T/2.
We consider T = 100 and 1000, and n = 5. It is clear that
T = 1000 is not empirically relevant sample size. Nevertheless,
we keep this case to provide evidence in favor of the asymptotic
theory developed here. The number of Monte Carlo simulations
is set to 10,000. For each scenario and different sample sizes, we
report the finite sample distributions of �̂ = 1

T−T0

∑T
t=T0+1 δ̂t ,

in comparison to the asymptotic distributions as well as the
rejection frequencies, at different significance levels, of the null
hypothesis of no intervention effects when nonstationarity is
neglected and the test is carried out under standard normal
approximation for the t-statistic.

As a complement we also report the empirical rejection rates
for the t-test of no intervention effect when the parameters
are estimated either by restricted least squares or by the least
absolute shrinkage and selection operator (LASSO) of Tibshi-
rani (1996). In the first approach, the parameters of the linear
combination are restricted to be positive and sum one as in the
original SC method, while the LASSO approach was advocated
by Carvalho, Masini, and Medeiros (2018) and Doudchenko and
Imbens (2016). We report only the case where the linear trend is
not included in the regression function. The figures illustrating
the results are relegated to the supplementary materials. In the
following subsections, we describe the mains findings.
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5.1.1. Cointegration
The DGP is defined as

y1t =
n∑

i=2
yit + u1t , (5.1)

where yit = yit−1 + uit , yi0 = 0, i = 2, . . . , n, and
{u1t , . . . , unt}T

t=1 is a sequences of independent and normally
distributed zero-mean random variables with unit variance.
Furthermore, E(ujtuis) = 0 for all t = 1, . . . , T, s = 1, . . . , T,
i = 1, . . . , n, j = 1, . . . , n, and t �= s.

Simulation results are shown in Figures S.1–S.3. Figure S.1
shows the empirical versus the theoretical distributions of the
scaled coefficient estimates. The distribution of �̂j, j = 1, 2, is
presented in Figure S.2 and is compared to the asymptotic results
in the article. Figure S.3 compares the size distortions when the
normal approximation is used, neglecting nonstationarity, with
the case when the correct asymptotic critical values are used.

Two conclusions emerge from the results. First, the simula-
tion corroborates the asymptotic approximation even in small
samples. Second, it is clear that neglecting cointegration intro-
duces strong over-rejection of the null hypothesis, leading the
researcher to find spurious intervention effects. Finally, it is clear
from Figure S.4 that restricting the coefficients does not mitigate
the over-rejections is nonstationarity is not taken carefully into
account.

5.1.2. Spurious Counterfactual
In this case, the DGP is a vector of independent random walks
as follows:

yit = yit−1 + uit , (5.2)

where yi0 = 0 and {uit}T
t=1 is a sequence of independent and

normally distributed zero-mean random variables with unit
variance and E(uitujs) = 0 for all t = 1, . . . , T, s = 1, . . . , T,
i = 1, . . . , n, j = 1, . . . , n, and t �= s.

The simulation results for the spurious case are depicted
in Figures S.5–S.7. Figure S.5 presents the empirical versus
the theoretical distributions of the coefficients estimates. The
distribution of the average intervention effects, �̂j, j = 1, 2, is
presented in Figure S.6 and is confronted with the asymptotic
results. Finally, Figure S.7 compares the size distortions of the
scaled t-test when the normal approximation is used, neglect-
ing nonstationarity, with the case when the correct asymptotic
critical values are used. Note that this is not a valid test as the
t-stat, without normalization, diverges. The size distortions are
presented just for illustrative purposes.

It is clear from the figures that the finite sample distribution
can be well approximated by the asymptotic counterpart. Fur-
thermore, the distribution of the scaled t-stat is highly bimodal.
Finally, conducting inference in the spurious case is extremely
misleading even when restricted estimators are considered as
displayed in Figure S.8.

5.2. Inference

We also conduct a simulation to evaluate the finite sample prop-
erties of the proposed partial resampling inferential procedure
and to evaluate as well the effects of pretesting for cointegration.

We simulate T = {30, 50, 150, 200, 500} observations of three
different models: two involving spurious regression and a third
one where all the variables are cointegrated. We evaluate the
empirical size of the test following the strategy described below
when there is only one observation after the intervention: (1)
We run the Engle–Granger methodology to test the null for no-
cointegration among the variables. The dependent variable is
y1t . We use the Phillips–Ouliaris critical values. (2) If the null of
no-cointegration is rejected at level α, we estimate the models in
levels and proceed with the inferential procedure advocated in
the article. Otherwise, we estimate the model in first-differences.

We consider the following models:

yit = μi + yit−1 + uit , i = 1, . . . , n; t = 1, . . . , T,

where {ut}T
t=1 is a sequence of independent and normally dis-

tributed random variables with zero mean and variance one.
Furthermore, E(uitujt) = 0, ∀ i �= j. We set n = 5. In this case,
the regression of y1t on y2t , . . . , ynt is spurious and there is no
cointegration among the variables.

The second model is given by

y1t = μ1 + y1t−1 + u1t

y2t =
n∑

j=3
yjt + u2t

yit = μi + yit−1 + uit , i =, 3, . . . , n; t = 1, . . . , T.

The error terms are defined as before. Again, the regression of
y1t on y2t , . . . , ynt is spurious but there is a cointegration relation
among the donors.

Finally, the third model is

y1t = β ′y0t + u1t

yit = μi + yit−1 + uit , i =, 2, . . . , n; t = 1, . . . , T,

where y0t = (
y2t , . . . , ynt

)
and each element of β is sampled,

at every Monte Carlo iteration, from a Uniform distribution
between −1 and +1.

In all the above three models, we consider three cases for the
drift term μi: (1) μi = 0; (2) μ = 0.5; and (3) μ ∼ N(0, 0.25).
The results are displayed in Tables 1–2. The tables report the
rejection rates of the partial resampling test (Theorem 2) with
one observation after the intervention. We consider different
significance levels for the pretest for the null of no-cointegration
(α = {NA, 0.001, 0.01, 0.05, 0.10}). Note that α = NA means
that pretesting is not conducted. Panel (a) refers to estimation
without imposing any restriction on the estimated regression.
Panel (b) refers to the restriction that the coefficients of the
estimated model must be positive and sum one. Panel (c) reports
the results when the model is estimated by LASSO with the
penalty term selected by the BIC as in Carvalho, Masini, and
Medeiros (2018). Finally, Panel (d) considers the ASC estimator
proposed by Ben-Michael, Feller, and Rothstein (2019). The
ASC model nests the synthetic differences-in-differences esti-
mator of Arkhangelsky et al. (2019) and has the gold of reducing
bias in the original SC estimator.

Several conclusions emerge from the tables. We start analyz-
ing the spurious case (Tables 1 and 3). It is clear that without
first pretesting for cointegration, the size distortions are quite
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Table 1. Rejection rates under the null (empirical size): spurious regression.

Panel (a): Unrestricted estimation

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.26 0.13 0.13 0.14 0.14 0.27 0.12 0.13 0.13 0.14 0.27 0.12 0.13 0.13 0.14
50 0.23 0.09 0.09 0.10 0.10 0.24 0.10 0.10 0.10 0.11 0.23 0.09 0.09 0.09 0.10

150 0.20 0.06 0.06 0.06 0.06 0.20 0.06 0.06 0.07 0.07 0.19 0.06 0.06 0.06 0.07
200 0.18 0.06 0.06 0.06 0.06 0.18 0.05 0.05 0.06 0.06 0.19 0.05 0.05 0.06 0.06
500 0.17 0.05 0.05 0.05 0.05 0.18 0.05 0.05 0.05 0.06 0.18 0.05 0.05 0.05 0.06

Panel (b): Synthetic control restriction

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.24 0.11 0.11 0.12 0.13 0.24 0.10 0.10 0.11 0.12 0.29 0.10 0.10 0.11 0.12
50 0.22 0.09 0.09 0.09 0.10 0.22 0.09 0.09 0.10 0.10 0.27 0.07 0.08 0.08 0.09

150 0.20 0.06 0.06 0.06 0.07 0.20 0.06 0.06 0.06 0.07 0.29 0.06 0.06 0.07 0.08
200 0.19 0.05 0.05 0.06 0.06 0.19 0.06 0.06 0.06 0.07 0.30 0.06 0.06 0.07 0.08
500 0.19 0.05 0.05 0.05 0.06 0.19 0.05 0.05 0.06 0.06 0.34 0.06 0.06 0.07 0.08

Panel (c): LASSO restriction

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.26 0.09 0.09 0.10 0.11 0.27 0.08 0.09 0.09 0.10 0.26 0.08 0.08 0.09 0.10
50 0.23 0.07 0.07 0.08 0.09 0.23 0.07 0.07 0.08 0.09 0.22 0.07 0.07 0.07 0.08

150 0.20 0.05 0.05 0.05 0.06 0.20 0.06 0.06 0.06 0.07 0.19 0.05 0.06 0.06 0.06
200 0.18 0.05 0.05 0.05 0.06 0.18 0.05 0.05 0.05 0.06 0.19 0.05 0.05 0.05 0.06
500 0.17 0.05 0.05 0.05 0.05 0.18 0.05 0.05 0.05 0.06 0.18 0.05 0.05 0.05 0.06

Panel (d): Augmented synthetic control

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.24 0.11 0.11 0.12 0.12 0.24 0.10 0.10 0.11 0.12 0.29 0.10 0.10 0.11 0.12
50 0.22 0.09 0.09 0.09 0.10 0.22 0.09 0.09 0.09 0.10 0.27 0.07 0.08 0.08 0.09

150 0.20 0.06 0.06 0.06 0.07 0.20 0.06 0.06 0.06 0.07 0.28 0.06 0.06 0.07 0.08
200 0.19 0.05 0.05 0.06 0.06 0.19 0.05 0.06 0.06 0.07 0.29 0.06 0.06 0.07 0.08
500 0.19 0.05 0.05 0.05 0.06 0.18 0.05 0.05 0.06 0.06 0.32 0.06 0.06 0.07 0.08

NOTE: The table reports the rejection rates of the partial resampling test with one observation after the intervention. We consider different significance levels for the pretest
for the null of no-cointegration (α). Note that α = 0 means that pretesting is not conducted. Panel (a) refers to estimation without imposing any restriction. Panel (b)
refers to the restriction that the coefficients of the estimated model must be positive and sum one. Panel (c) reports the results when the model is estimated by LASSO
with the penalty term selected by the BIC. Finally, Panel (d) displays the case of the augmented synthetic control (ASC) estimator.

large and the imposition of restrictions does not attenuate the
problem. When pretesting is conducted, the distortions drop as
the sample size increases, as expected. Furthermore, imposing
restrictions marginally help when the sample is very small (T =
30 or T = 50).

Now we turn to the cointegration case. First, size distortions
can be large when T = 30 or T = 50 but converges to the
nominal size as the sample grows. LASSO restrictions do not
seem to help. On the other hand, the test based on the SC and
ASC estimators is extremely oversized. This is possibly due to
the over restrictive conditions on the parameters of the model.

6. Empirical Example

6.1. Overview

The goal of this empirical illustration is to test whether the share
prices of Petrobras as traded at the New York Stock Exchange
were affected the policy of the Brazilian government to freeze
fuel prices in Brazil and the major corruption scandals involving
the main executives of the company during the recent years.

Petroleo Brasileiro S.A. (Petrobras) is a semipublic Brazil-
ian multinational corporation in the petroleum industry head-
quartered in Rio de Janeiro, Brazil. The company was recently
ranked in the 58th position in the most recent Fortune Global
500 list.10 Petrobras operates in a number of segments in
the oil and gas industry worldwide and it was founded by
the Brazilian government in 1953 as a national oil company
with a legal monopoly on oil produced in Brazil. The pat-
tern of a government founded company controlling all the
oil resources of a given nation is not uncommon; it has
been replicated many times with Venezuela, Mexico, Nor-
way, Saudi Arabia, and others, with different degrees of suc-
cess. As a national oil company, Petrobras was initially fully
state-owned. However, in November of 1995, the Brazilian
Congress amended the constitution to end Petrobras’ 43-year-
old monopoly. As part of this legislation, the government also
authorized the sale of up to 50% minus one of its voting
shares, the rest of which was to be held by the government.

10http://fortune.com/global500/

http://fortune.com/global500/
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Table 2. Rejection rates under the null (empirical size): cointegration.

Panel (a): Unrestricted estimation

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.14 0.14 0.15 0.15 0.15 0.14 0.14 0.15 0.15 0.15 0.15 0.14 0.16 0.16 0.16
50 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.10

150 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07
200 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
500 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Panel (b): Synthetic control restriction

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.17 0.12 0.15 0.17 0.17 0.38 0.18 0.29 0.36 0.38 0.23 0.14 0.19 0.22 0.23
50 0.17 0.16 0.17 0.17 0.17 0.43 0.40 0.42 0.43 0.43 0.25 0.23 0.25 0.25 0.25

150 0.17 0.17 0.17 0.17 0.17 0.57 0.57 0.57 0.57 0.57 0.28 0.28 0.28 0.28 0.28
200 0.17 0.17 0.17 0.17 0.17 0.60 0.60 0.60 0.60 0.60 0.30 0.30 0.30 0.30 0.30
500 0.18 0.18 0.18 0.18 0.18 0.71 0.71 0.71 0.71 0.71 0.33 0.33 0.33 0.33 0.33

Panel (c): LASSO restriction

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.15 0.14 0.15 0.15 0.15 0.14 0.13 0.15 0.15 0.15 0.15 0.14 0.15 0.16 0.16
50 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.11 0.10 0.10 0.10

150 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
200 0.06 0.06 0.06 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08
500 0.05 0.05 0.05 0.05 0.05 0.18 0.18 0.18 0.18 0.18 0.16 0.16 0.16 0.16 0.16

Panel (d): Augmented synthetic control

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.15 0.13 0.15 0.16 0.16 0.20 0.14 0.18 0.20 0.20 0.17 0.14 0.16 0.18 0.18
50 0.11 0.12 0.12 0.11 0.11 0.18 0.18 0.18 0.18 0.18 0.14 0.14 0.14 0.14 0.14

150 0.09 0.09 0.09 0.09 0.09 0.20 0.20 0.20 0.20 0.20 0.13 0.13 0.13 0.13 0.13
200 0.08 0.08 0.08 0.08 0.08 0.21 0.21 0.21 0.21 0.21 0.14 0.14 0.14 0.14 0.14
500 0.08 0.08 0.08 0.08 0.08 0.31 0.31 0.31 0.31 0.31 0.20 0.20 0.20 0.20 0.20

NOTE: The table reports the rejection rates of the partial resampling test with one observation after the intervention. We consider different significance levels for the pretest
for the null of no-cointegration (α). Note that α = 0 means that pretesting is not conducted. Panel (a) refers to estimation without imposing any restriction. Panel (b)
refers to the restriction that the coefficients of the estimated model must be positive and sum one. Panel (c) reports the results when the model is estimated by LASSO
with the penalty term selected by the BIC. Finally, Panel (d) displays the case of the augmented synthetic control (ASC) estimator.

Consequently, Petrobras is not government owned, but a
semipublic company. The Brazilian government owns 54% of
the shares and two government investment funds hold a fur-
ther 10%.

6.2. Petrobras Under Dilma Rouseff and the Car Wash
Operation

Dilma Rousseff served as the 36th President of Brazil, holding
the position from 2011 until her impeachment and removal
from office on 31 August 2016. She was the first woman to hold
the Brazilian presidency and had previously served as Chief
of Staff to former president Luiz Inácio Lula da Silva from
2005 to 2010. Dilma Rousseff ’s administration was constantly
accused of using Petrobras as an instrument to control inflation
rates. Regardless of what occurred internationally, the Brazilian
government hold domestic fuel prices frozen, especially dur-
ing the 2013–2014 electoral season, when Dilma Roussef was
running for re-election. In a country as dependent on road
transportation as Brazil, if fuel prices increase, several other

prices also rise by following the upward trend due to the increase
in distribution costs. By holding down inflation rates, Dilma
Rouseff was able to cash in politically and create an impression
that Brazil was not severely affected by the 2008–2009 global cri-
sis. While that might have curbed inflation, it also accumulated
billion-dollar losses to the company. Furthermore, Petrobras
took a central role in one of the major corruption scandals
in history.

Operation Car Wash is an ongoing criminal investigation
being carried out by the Federal Police of Brazil. Initially a
money laundering investigation, it has expanded to cover alle-
gations of corruption at Petrobras, where executives allegedly
accepted bribes in return for awarding contracts to construction
firms at inflated prices. The investigation is called Operation Car
Wash because it was first uncovered at a car wash in Brasília,
and has included more than a thousand warrants for search and
seizure, temporary and preventive detention, and plea bargain
coercive measures, with the aim of ascertaining the extent of a
money laundering scheme suspected of moving more than five
billion of dollars.
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Table 3. Rejection rates under the null (empirical size): y1t not in the cointegration relation.

Panel (a): Unrestricted estimation

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.27 0.13 0.13 0.14 0.14 0.28 0.12 0.13 0.13 0.14 0.27 0.12 0.13 0.13 0.14
50 0.23 0.09 0.09 0.09 0.10 0.23 0.09 0.09 0.10 0.10 0.23 0.09 0.09 0.09 0.10

150 0.19 0.06 0.06 0.06 0.07 0.19 0.06 0.06 0.06 0.07 0.19 0.06 0.06 0.06 0.07
200 0.18 0.05 0.05 0.06 0.06 0.18 0.05 0.05 0.05 0.06 0.18 0.05 0.06 0.06 0.06
500 0.17 0.05 0.05 0.05 0.06 0.19 0.05 0.05 0.05 0.06 0.19 0.05 0.05 0.05 0.05

Panel (b): Synthetic control restriction

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.23 0.11 0.11 0.11 0.12 0.24 0.11 0.11 0.12 0.13 0.29 0.11 0.11 0.12 0.13
50 0.22 0.08 0.08 0.08 0.09 0.21 0.09 0.09 0.09 0.10 0.28 0.08 0.08 0.09 0.10

150 0.20 0.06 0.06 0.07 0.07 0.19 0.06 0.06 0.07 0.07 0.28 0.06 0.06 0.07 0.08
200 0.19 0.05 0.06 0.06 0.07 0.18 0.05 0.05 0.06 0.07 0.30 0.06 0.06 0.07 0.08
500 0.18 0.05 0.05 0.06 0.06 0.19 0.05 0.05 0.06 0.06 0.34 0.05 0.05 0.06 0.08

Panel (c): LASSO restriction

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.26 0.09 0.09 0.10 0.11 0.27 0.08 0.09 0.10 0.11 0.26 0.09 0.09 0.10 0.10
50 0.22 0.07 0.07 0.07 0.08 0.23 0.07 0.07 0.08 0.09 0.23 0.06 0.07 0.07 0.08

150 0.19 0.05 0.05 0.06 0.06 0.18 0.05 0.06 0.06 0.06 0.19 0.05 0.05 0.05 0.06
200 0.18 0.05 0.05 0.05 0.06 0.18 0.05 0.05 0.05 0.05 0.18 0.05 0.05 0.05 0.06
500 0.17 0.05 0.05 0.05 0.05 0.19 0.05 0.05 0.05 0.06 0.19 0.05 0.05 0.05 0.06

Panel (d): Augmented synthetic control

No drift (μi = 0) Homogeneous (μi = 0.5) Heterogeneous (μi ∼ N[0, 0.25])
α = NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10 NA 0.001 0.01 0.05 0.10

T = 30 0.24 0.10 0.10 0.11 0.12 0.25 0.10 0.10 0.11 0.12 0.28 0.10 0.10 0.11 0.12
50 0.22 0.07 0.08 0.08 0.09 0.22 0.08 0.08 0.09 0.10 0.26 0.07 0.08 0.08 0.09

150 0.19 0.06 0.06 0.06 0.07 0.19 0.06 0.06 0.07 0.07 0.25 0.05 0.06 0.06 0.07
200 0.18 0.05 0.05 0.06 0.06 0.18 0.05 0.05 0.06 0.06 0.26 0.05 0.06 0.06 0.07
500 0.18 0.05 0.05 0.06 0.06 0.19 0.05 0.05 0.06 0.06 0.29 0.05 0.05 0.06 0.07

NOTE: The table reports the rejection rates of the partial resampling test with one observation after the intervention. We consider different significance levels for the pretest
for the null of no-cointegration (α). Note that α = 0 means that pretesting is not conducted. Panel (a) refers to estimation without imposing any restriction. Panel (b)
refers to the restriction that the coefficients of the estimated model must be positive and sum one. Panel (c) reports the results when the model is estimated by LASSO
with the penalty term selected by the BIC. Finally, Panel (d) displays the case of the augmented synthetic control (ASC) estimator.

6.3. Results

To estimate the potential losses after the election of Dilma
Rousseff and the company’s policy to freeze domestic fuel
prices, we consider January 2011 as the intervention date.
To construct the counterfactual, we consider the prices of
other oil companies, stock indexes as well as international oil
prices. The oil companies considered are: British Petroleum
(BP), CNOOC (CEO), ConocoPhillips (COP), Chevron (CVX),
Lukoil (LUKOY), Shell (RDSB), Total (TOT), Exxon Mobil
(XOM). The indexes are: Crude oil prices (MCOILBRENTEU),
S&P500 (GSPC), and Nasdaq (IXIC). Our sample starts in
August 2000 and ends in August 2016.

Table 4 shows the estimated coefficients and the standard
errors of the pre-intervention model. Both the dependent and
independent variables are in natural logarithms and the model
is estimated by OLS. The standard errors are heteroscedastic
and autocorrelation robust and are computed with the quadratic
spectral kernel with the bandwidth selected by Andrew’s
method. The table also reports the in-sample R-squared as well

as the results for the Phillips–Ouliaris cointegration test. The
number between parentheses is the p-value of the test.

The estimated counterfactual is presented in Figure 1. The
left panel reports the actual and counterfactual log prices,
whereas the right panel of Figure 1 displays the 95% confidence
interval after the intervention date computed from the results in
Theorem 2. The results suggest that the price policy and the cor-
ruption scandals involving Petrobras influenced the company’s
prices very negatively despite the drop of international oil prices.

7. Conclusions

In this article, we considered the asymptotic properties of pop-
ular counterfactual estimators when the data are nonstation-
ary. Our econometric framework encapsulates the panel based
methods of Hsiao, Ching, and Wan (2012), the ArCo approach
of Carvalho, Masini, and Medeiros (2018), and the SC and its
extensions Abadie and Gardeazabal (2003), Abadie, Diamond,
and Hainmueller (2010), and Doudchenko and Imbens (2016).
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Figure 1. (Left panel) Price evolution: actual and counterfactual. (Right panel) Estimation results: actual and counterfactual prices plus a 95% confidence interval.

Table 4. Pre-intervention model estimation.

Pre-intervention model

Variable Coefficient Std. error

Constant 3.53 2.20
British Petroleum (BP) 0.39 0.29
CNOOC (CEO) 0.07 0.21
ConocoPhillips (COP) 1.80 0.43
Chevron (CVX) 0.33 0.57
Lukoil (LUKOY) 0.66 0.26
Shell (RDSB) −2.26 0.55
Total (TOT) 3.12 0.73
Exxon Mobil (XOM) 0.30 0.65
Crude oil prices (MCOILBRENTEU) −0.17 0.28
S&P500 (GSPC) −6.69 0.74
Nasdaq (IXIC) 4.17 0.70

R-squared 0.99
P-O (τ -statistic) −6.85(0.02)

P-O (z-statistic) −66.18(0.02)

NOTE: The table shows the estimated coefficients as well as the standard errors
of the pre-intervention regression model. Both the dependent and independent
variables are in natural logarithms and the model is estimated by ordinary least
squares. The standard errors are heteroscedastic and autocorrelation robust and
are computed with the quadratic spectral kernel with the bandwidth selected
by Andrew’s automatic method. The table also reports the in-sample R-squared
as well as the results for the Phillips–Ouliaris cointegration test. The number
between parentheses is the p-value of the test.

Two cases are considered. In the first case, there is at least
one cointegrating relationship in the data while in the sec-
ond one the data are formed by a set of independent ran-
dom walks. The results in the article show that the estimators
either diverge or have nonstandard asymptotic distributions.
We show strong over-rejection of the null hypothesis of no
intervention effect when the nonstationary nature of the data is
ignored. Our theoretical results are corroborated by a simulation
experiment.

Supplementary Materials

In the online supplements, we report additional material to support the
results in the article, which includes additional lemmas and simulation
results. In addition to the references already cited in the article, the proofs in

the supplement make use of the results in Davidson (1994), Hansen (1992),
and Kurtz and Protter (1991). The online appendices contain auxiliary
results, details on the notation of Theorem 1, and proof of the main results.
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