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ABSTRACT
Optimal pricing, that is determining the price level that maximizes profit or revenue of a given product, is a
vital task for the retail industry. To select such a quantity, one needs first to estimate the price elasticity from
the product demand. Regression methods usually fail to recover such elasticities due to confounding effects
and price endogeneity. Therefore, randomized experiments are typically required. However, elasticities
can be highly heterogeneous depending on the location of stores, for example. As the randomization
frequently occurs at the municipal level, standard difference-in-differences methods may also fail. Possible
solutions are based on methodologies to measure the effects of treatments on a single (or just a few)
treated unit(s) based on counterfactuals constructed from artificial controls. For example, for each city in the
treatment group, a counterfactual may be constructed from the untreated locations. In this article, we apply
a novel high-dimensional statistical method to measure the effects of price changes on daily sales from a
major retailer in Brazil. The proposed methodology combines principal components (factors) and sparse
regressions, resulting in a method called Factor-Adjusted Regularized Method for Treatment evaluation
(FarmTreat). The data consist of daily sales and prices of five different products over more than 400
municipalities. The products considered belong to the sweet and candies category and experiments have
been conducted over the years of 2016 and 2017. Our results confirm the hypothesis of a high degree
of heterogeneity yielding very different pricing strategies over distinct municipalities. Supplementary
materials for this article are available online.
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1. Introduction

The evaluation of treatment effects on a single (or just a few)
treated unit(s) based on counterfactuals (i.e., the unobservable
outcome had there been no intervention) constructed from
artificial controls has become a popular practice in applied
statistics since the proposal of the synthetic control (SC) method
by Abadie and Gardeazabal (2003) and Abadie, Diamond, and
Hainmueller (2010). Usually, these artificial (synthetic) controls
are built from a panel of untreated peers observed over time,
before and after the intervention.

The majority of methods based on artificial controls relies on
the estimation of a statistical model between the treated unit(s)
and a potentially large set of explanatory variables coming from
the peers and measured before the intervention. The construc-
tion of counterfactuals poses a number of technical and empir-
ical challenges. Usually, the dimension of the counterfactual
model to be estimated is large compared to the available number
of observations and some sort of restrictions must be imposed.
Furthermore, the target variables of interest are nonstationary.
Finally, conducting inference on the counterfactual dynamics is
not straightforward. Although the original work by Abadie and
Gardeazabal (2003) is able to handle some of these challenges,

CONTACT Ricardo Masini rmasini@princeton.edu Center for Statistics and Machine Learning (CSML), Princeton University, 26 Prospect Ave, Princeton, NJ 08544
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a number of extensions has been proposed; see Doudchenko
and Imbens (2016), Athey and Imbens (2017), or Abadie (2021)
for recent discussions. Motivated by an application to the retail
industry where the optimal prices of different products have to
be determined, we develop a new methodology to construct
counterfactuals which nests several other methods and effi-
ciently explores all the available information. Our proposed
method is well-suited for both stationary and nonstationary data
as well as for high- or low-dimensional settings.

1.1. Heterogeneous Elasticities and Optimal Prices

The determination of the optimal price of products is of great
importance in the retail industry. By optimal price we mean the
one that either maximizes profit or revenue. To determine such
quantity we need first to estimate the price elasticity from the
demand side. This is not an effortless task as standard regression
methods usually fail to recover the parameter of interest due to
confounding effects and the well-known endogeneity of prices.

Our novel dataset consists of daily prices and quantities sold
of five different products for a major retailer in Brazil, aggregated
at the municipal level. The company has more than 1400 stores
distributed in over 400 municipalities, covering all the states of
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the country.1 The chosen products differ in terms of magnitude
of sales and in importance as a share of the company’s total
revenue. The overarching goal is to compute optimal prices
at a municipal level via counterfactual analysis. Our method
determines the effects in sales due to price changes and provides
demand elasticities estimates which will be further used to
compute the optimal prices.

To determine the optimal price of each of the products, a
randomized controlled experiment has been carried out. More
specifically, for each product, the price was changed in a group
of municipalities (treatment group), while in another group, the
prices were kept fixed at the original level (control group). The
magnitudes of price changes across products range from 5% up
to 20%. Furthermore, for three out of five products, the prices
were increased, and for the other two products there was a price
decrease. The selection of the treatment and control groups was
carried out according to the socioeconomic and demographic
characteristics of each municipality as well as to the distribution
of stores in each city. Nevertheless, it is important to emphasize
three facts. First, we used no information about the quantities
sold of the product in each municipality, which is our out-
put variable, in the randomization process. This way, we avoid
any selection bias and can maintain valid the assumption that
the intervention of interest is independent of the outcomes.
Second, although according to municipality characteristics, we
keep a homogeneous balance between groups, the parallel trend
hypothesis is violated, and there is strong heterogeneity with
respect to the quantities sold and consumer behavior in each
city, even after controlling for observables. This implies that
price elasticities are quite heterogeneous and optimal prices can
be remarkably different among municipalities. Finally, there are
a clear seasonal pattern in the data as well as common factors
affecting the dynamics of sales across different cities.

Our results confirm the heterogeneous patterns in the inter-
vention effects, yielding different elasticities and optimal prices
across municipalities. In addition, the impacts also differ across
products. Overall, the effects of price changes are statistical sig-
nificant in more than 20% of the municipalities in the treatment
group and the optimal prices in terms of profit maximization
are usually below the actual ones. Therefore, we recommend
that the optimal policy in terms of profit maximization is to
change the prices in the cities where the effects were statistically
significant. Further experiments may be necessary to evaluate
the effects of price changes in the cities were it was not possible
to find statistically significant results.

1.2. Methodological Innovations

Driven by the empirical application discussed in the previous
subsection, this paper proposes a methodology that includes
both principal component regression (factors) and sparse linear
regression for estimating counterfactuals for better evaluation of
the effects on the sales of a set of products after price changes.
It does not impose either sparsity or approximate sparsity in
the mapping between the peers and the treated by using the
information from hidden but estimable idiosyncratic compo-

1Due to a confidentiality agreement, we are not allowed to disclosure either
the name of the products or the name of the retail chain.

nents. Furthermore, we show that when the number of postin-
tervention observations is fixed, tests like the ones proposed in
Masini and Medeiros (2021) or Chernozhukov, Wüthrich, and
Zhu (2020), can be applied. Finally, we also consider a high-
dimensional test to answer the question whether the use of
idiosyncratic component actually leads to better estimation of
the treatment effect. Our framework can be applied to much
broader context in prediction and estimation and hence we
leave more abstract and general theoretical developments to a
different paper (Fan, Masini, and Medeiros 2021).

The proposed method consists of four steps, called FarmTreat.
In the first one, the effects of exogenous (to the intervention
of interest) variables are removed, for example, heterogeneous
deterministic (nonlinear) trends, seasonality and other calendar
effects, and/or known outliers. In the second step, a factor
model is estimated based on the residuals of the first-step
model. The idea is to uncover a common component driving
the dynamics of the treated unit and the peers. This second
step is key when relaxing the sparsity assumption. To explore
potential remaining relation among units, in the third step a
LASSO regression model is established among the residuals of
the factor model, which are called the idiosyncratic components
in the factor model. Sparsity is only imposed in this third
step and it is less restrictive than the sparsity assumption in
the second step. Note that all these three steps are carried
out in the preintervention period. Finally, in the fourth step,
the model is projected for the postintervention period under
the assumption that the peers do not suffer the intervention.
Inspired by Fan, Ke, and Wang (2020), we call the methodology
developed here FarmTreat, the factor-adjusted regularized
method for treatment evaluation.

The procedure described above is well suited either for sta-
tionary data or in the case of deterministic nonlinear and hetero-
geneous trends. In case of unit-roots, the procedure should be
carried out in first-differences under the assumption that factors
follow an integrated process (with or without drift). In this case,
our result follows from sec. 7 in Bai and Ng (2008). After the final
step, the levels of both the target variable and the counterfactual
can be recovered and the inference conducted.

We show that the estimator of the instantaneous treatment
is unbiased. This result enables the use of residual ressampling
procedures, as the ones in Masini and Medeiros (2021) or Cher-
nozhukov, Wüthrich, and Zhu (2020), to test hypotheses about
the treatment effect without relying on any asymptotic result for
the postintervention period. The testing procedures proposed in
Masini and Medeiros (2021) or Chernozhukov, Wüthrich, and
Zhu (2020) are similar with the crucial difference that the first
paper considers models estimated just with the preintervention
sample, while the second paper advocates the use of the full
sample to estimate the models. As shown by the authors and
confirmed in our simulations, using the full data yields much
better size properties in small samples.

We believe our results are of general importance for the
following reasons. First and most importantly, the sparsity or
approximate sparsity assumptions on the regression coefficients
do not seem reasonable in applications where the cross-
dependence among all units in the panel are high. In addition,
due to the cross-dependence, the conditions needed for the
consistency of LASSO or other high-dimensional regularization
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methods are violated (Fan, Ke, and Wang 2020). Second,
first filtering for trends, seasonal effects and/or outliers seem
reasonable in order to highlight the potential intervention
effects by removing uninformative terms. Finally, modeling
remaining cross-dependence among the treated unit and a
sparse set of peers are also important to gather all relevant
information about the correlation structure about the units.

Under the hypothesis that the treatment is exogenous which
is standard in the synthetic control literature, we have an unbi-
ased estimator for the treatment effect on the treated unit for
each period after the intervention. In the case the treatment is
exogenous with respect only to the peers, we can identify the
effects of a specific intervention on the treated unit, that is, the
time of a single intervention is fully known. This might be the
quantity of interest in several macroeconomic applications as,
for instance, the effects of Brexit on the UK economy fixing the
date of the event.

We conduct a simulation study to evaluate the finite-
sample properties of the estimators and inferential procedures
discussed in the article. We show that the proposed method
works reasonably well even in very small samples. Furthermore,
as a case study, we estimate the impact of price changes on
product sales by using a novel dataset from a major retail chain
in Brazil with more than 1400 stores in the country. We show
how the methods discussed in the paper can be used to estimate
heterogeneous demand price elasticities, which can be further
used to determine optimal prices for a wide class of products. In
addition, we demonstrate that the idiosyncratic components do
provide useful information for better estimation of elasticities.

1.3. Comparison to the Literature

Several papers in the literature extend the original SC method
and derive estimators for counterfactuals when only a single
unit is treated. We start by comparing with Carvalho, Masini,
and Medeiros (2018). Differently from this article, we do neither
impose sparsity nor our results are based on preintervention
and postintervention asymptotics. We just require the prein-
tervention sample to diverge in order to prove our results.
Furthermore, by combing a factor structure with sparse regres-
sion we relax the (weak) sparsity assumption on the relation
between the treated unit and its peers. In addition, we allow for
heterogeneous trends which may not be bounded as in the case
of the aforementioned article; for a similar setup to Carvalho,
Masini, and Medeiros (2018), see Li and Bell (2017). Masini and
Medeiros (2021, 2022) consider a synthetic control extension
when the data are nonstationary, with possibly unit-roots. How-
ever, the former paper imposes weak-sparsity on the relation
between the treated unit and the peers and the later only handles
the low-dimensional case. The low-dimensional nonstationary
case is discussed in many other papers. See, for example, Hsiao,
Ching, and Wan (2012), Ouyang and Peng (2015), Du and
Zhang (2015), and Li (2020), among many others.

Compared to Differences-in-Differences (DiD) estimators,
the advantages of the many estimators based on the SC method
are three folds. First, we do not need the number of treated units
to grow. In fact, the workhorse situation is when there is a single
treated unit. The second, and most important difference, is that
our methodology has been developed for situations where the

n − 1 untreated units may differ substantially from the treated
unit and cannot form a control group, even after conditioning
on a set of observables. For instance, in the application in this
paper, the dynamics of sales in a specific treated municipality
cannot be perfectly matched by any other city exclusively. On the
other hand, there may exist a set of cities where the combined
sales are close enough to ones of the treated unit in the absence
of the treatment. Another typical example in the literature if to
explain the gross domestic product (GDP) of a specific region
by a linear combination of GDP from several untreated regions;
see Abadie and Gardeazabal (2003). Finally, SC methods and
their extensions are usually consistent even without the parallel
trends hypothesis.

More recently, Gobillon and Magnac (2016) generalize DiD
estimators by estimating a correctly specified linear panel model
with strictly exogenous regressors and interactive fixed effects
represented as a number of common factors with heterogeneous
loadings. Their theoretical results rely on double asymptotics
when both T (sample size) and n (number of peers) go to infin-
ity. The authors allow the common confounding factors to have
nonlinear deterministic trends, which is a generalization of the
linear parallel trend hypothesis assumed when DiD estimation
is considered. Our method differs from Gobillon and Magnac
(2016) in a very important way as we consider cross-dependence
among the idiosyncratic units after the common factors have
been accounted for.

Finally, we should compare our results with Chernozhukov
and Wüthrich and Zhu (2021b). Chernozhukov, Wüthrich, and
Zhu (2020) propose a general conformal inference method to
test hypotheses on the counterfactuals which can be applied
to our model setup as discussed above. When the sample
size is small we strongly recommend the use of the approach
described in Chernozhukov, Wüthrich, and Zhu (2020) to
conduct inference on the intervention effects. Chernozhukov,
Wüthrich, and Zhu (2021a) propose a very nice generalization
of Carvalho, Masini, and Medeiros (2018) with a new inference
method to test hypotheses on intervention effects under high
dimensionality and potential nonstationarity. However, their
approach differs from ours in three aspects. First, and more
importantly, their results are based on both preintervention and
postintervention samples diverging. Second, their inferential
procedure is designed to test hypothesis only on the average
effect. Our procedure can be applied to a wide class of
hypothesis tests. Finally, they impose that exactly the same
(stochastic) trend is shared among all variables in the model.
This is a more restricted framework than the one considered
here.

1.4. Organization of the Paper

The rest of the article is organized as follows. We give an
overview of the proposed method and the application in
Section 2. We present the setup and assumptions in Section 3
and state the key theoretical result in Section 3.2. Inferential
procedures are presented in Section 3.3. We present the results
of a simulation experiment in Section 5. Section 4 is devoted
to provide guidance to practitioners and a discussion of the
empirical application can be found in Section 6. Section 7
concludes the article. Finally, the proof of our theoretical
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result and additional empirical results are relegated to the
supplementary material.

2. Methodology

The dataset is a realization of {Zit , W it : 1 ≤ i ≤ n, 1 ≤ t ≤ T},
in which Zit is the variable of interest and Wit describes potential
covariates, including seasonal terms and/or deterministic (non-
linear and heterogeneous) trends, for example. Suppose we are
interested in estimating the effects on the variable Z1t of the first
unit after an intervention that occurred at T0 + 1. We estimate
a counterfactual based on the peers Z−1t := (Z2t , . . . , Znt)′
that are assumed to be unaffected by the intervention. We allow
the dimension of Z−1t to grow with the sample size T, that
is, n := nT . We also assume that W it are not affected by the
intervention. Our key idea is to use both information in the
latent factors and idiosyncratic components and we name the
methodology as FarmTreat.

The procedure is, thus, summarized by the following steps:

1. For each unit i = 1, . . . , n, run the regression:

Zit = γ ′
iW it + Rit , t = 1, . . . , T∗,

and compute R̂it := Zit − γ̂ ′
iW it , where T∗ = T0 for i = 1

and T∗ = T, otherwise. This step removes heterogeneity due
to W it . As mentioned before, W it may include an intercept,
any observable factors, dummies to handle seasonality and
outliers, and determinist (polynomial) trends, for example.
In the case of our particular application, Zit represents the
daily quantity of a product sold per store in a municipality i
and W it includes a constant, six dummy variables for the days
of the week and a linear trend.

2. Write Rt := (R1t , . . . , Rnt)′, which is the cross-sectional data
Zt := (Z1t , · · · , Z′

nt)
′ after the heterogeneity adjustments. Fit

the factor model

Rt = �Ft + U t ,

where Ft is an r-dimensional vector of unobserved factors,
and � is an unknown n × r loading matrix and U t is an
n-dimensional idiosyncratic component. The second step
consists of using the panel data {R̂t}T

t=1 to learn the common
factors Ft and factor loading matrix � and compute the
estimated idiosyncratic components by

Û t = R̂t − �̂F̂t ,

where Û t = (
Û1t , . . . , Ûnt

)′. There is a large literature on
high-dimensional factor analysis; see, chap. 10 of the book
by Fan et al. (2020) for details. One important point is that
we should not use data after T0 for the treated unit. There are
many possibilities to handle this issue that are discussed in
Section 4.

3. The third step is to use the idiosyncratic component to fur-
ther augment the prediction on the treatment unit. It consists
of first testing for the null of no remaining cross-sectional
dependence (optional). If the null is rejected, fit the model
in the preintervention period

Û1t = θ ′
1Û−1t + Vt , t = 1, . . . , T0,

by using LASSO, where Û−1t = (
Û2t , . . . , Ûnt

)′. Namely,
compute

θ̂1 = arg min

[ T0∑
t=1

(
Û1t − θ ′

1Û−1t
)2 + ξ ||θ1||1

]
. (1)

This step uses cross-sectional regression of the idiosyn-
cratic components to estimate the effects in the treated unit.
It is approximately the same as using F̂t and Û−1t to predict
R̂1t with the sparse regression coefficients for Û−1t , due to
the orthogonality between {̂Ft}T

t=1 and {Û t}T
t=1. The model

includes sparse linear model on Rt as a specific example
(see (4) below) and the required model selection conditions
are more easily met due to the factor adjustments. It also
encompasses the principal component regression (PCR) in
which θ̂1 = 0, namely, using no cross-sectional prediction.

4. Finally, the intervention effect δt is estimated for t > T0 as

δ̂t = Z1t −
(
γ̂ ′

1W1t + λ̂
′
1F̂t + θ̂

′
1Û−1t

)
. (2)

where λ̂1 is the estimated loading of unit 1, the first row of �̂.
During the post treatment period, the realized factors F̂ are
learned without using R1,t .

5. Use the estimator (2) to test for null hypothesis of no inter-
vention effect in the form described by (5).

The innovations of our approach in estimating counterfac-
tuals are multi-folds. For simplicity, let us suppose that we
have no W it component, so that Rt = Zt . First of all, the
proposed procedure explores both the common factors and the
dependence among idiosyncratic components. This not only
makes use of more information, but also makes the newly trans-
formed predictors less correlated. The latter makes the variable
selection much easier and prediction more accurate. Note that
factor regression (principal component regression) to estimate
counterfactuals is a special case when θ1 = 0. Clearly, the
method explores the sparsity of θ1 to improve the performance
and also includes the case of sparse regression on Z−1t to esti-
mate counterfactuals as in Masini and Medeiros (2021), where
counterfactuals are estimated as

Z1t = θ ′
1Z−1t + εt , t = 1, . . . , T0. (3)

However, the variables Z−1t are highly correlated in high dimen-
sions as they are driven by common factors, which makes vari-
able selection procedures inconsistent and prediction ineffec-
tive. Instead, Fan, Ke, and Wang (2020) introduces the idea of
lifting, called factor adjustments. Using the factor model in step
2, we can write the linear regression model (3) as

Z1t = θ ′
1�−1Ft + θ ′

1U−1t + εt , (4)

where �−1 and U−1t are defined as � and U t without the first
row. When we take λ1 = θ ′

1�−1, this reduces to use sparse
regression to estimate the counterfactuals, but now use more
powerful FarmSelect of Fan, Ke, and Wang (2020) to fit the
sparse regression. Again, FarmSelect imposes the condition
θ ′

1�−1 as the regression coefficients of Ft . Our method does not
require this constraint. This flexibility allows us to apply our new
approach even when the sparse linear model does not hold.
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Finally, we also consider a test for the contribution of the
idiosyncratic components by testing the null hypothesis that
θ1 = 0. Note that this is a high-dimensional hypothesis test,
which is equivalent to testing the uncorrelatedness between the
idiosyncratic component U1t for the treated unit and those from
the untreated units U−1t in the preintervention period.

3. Assumptions and Theoretical Result

3.1. Assumptions

Suppose we have n units (municipalities, firms, etc.) indexed by
i = 1, . . . , n. For every time period t = 1, . . . , T, we observe a
realization of a real valued random vector Zt := (Z1t , . . . , Znt)′.2
We assume that an intervention took place at T0 + 1, where
1 < T0 < T. Let Dt ∈ {0, 1} be a binary variable flagging
the periods where the intervention for unit 1 was in place.
Therefore, following Rubin’s potential outcome framework, we
can express Zit as

Zit = DtZ(1)
it + (1 − Dt)Z(0)

it ,

where Z(1)
it denote the potential outcome when the unit i is

exposed to the intervention and Z(0)
it is the potential outcome

of unit i when it is not exposed to the intervention.
We are ultimately concerned with testing the hypothesis on

the potential effects of the intervention in the unit of interest,
that is, the treatment effect on the treated. Without loss of
generality, we set unit 1 to be the one of interest. The null
hypothesis to be tested is:

H0 : g(δT0+1, . . . , δT) = 0, (5)

where δt := Z(1)
1t − Z(0)

1t , ∀t > T0, and g(·) is a vector-
valued continuous function. The general null hypothesis (5) can
be specialized to many cases of interest, as for example:

H0 :
1

T − T0

T∑
t=T0+1

δt = 0 or H0 : δt = 0, ∀t > T0.

It is evident that for each unit i = 1, . . . , n and at each
period t = 1, . . . , T, we observe either Z(0)

it or Z(1)
it . In particular,

Z(0)
1t is not observed from t = T0 + 1 onwards. For this

reason, we henceforth call it the counterfactual—that is, what Z1t
would have been like had there been no intervention (potential
outcome).

The counterfactual is constructed by considering a model in
the absence of an intervention:

Z(0)
1t = M

(
Z(0)

−1t ; θ
)

+ Vt , t = 1, . . . , T, (6)

where Z(0)
−1t := (Z(0)

2t , . . . , Z(0)
nt )′ be the collection of all control

variables (all variables in the untreated units).3, M : Z ×
� → R, Z ⊆ R

n−1, is a known measurable mapping up to

2We consider a scalar variable for each unit for the sake of simplicity, and the
results in the paper can be easily extended to the multivariate case.

3We could also have included lags of the variables and/or exogenous regres-
sors into Z−1t , but again, to keep the argument simple, we have consid-
ered only contemporaneous variables; see Carvalho, Masini, and Medeiros
(2018) for more general specifications.

a vector of parameters indexed by θ ∈ � and � is a parameter
space. A linear specification (including a constant) for the model
M(Z0t ; θ) is the most common choice among counterfactual
models for the preintervention period. FarmTreat uses a
more sophisticated model.

Roughly speaking, in order to recover the effects of the
intervention, we need to impose that the peers are unaffected
by the intervention in the unit of interest. Otherwise our coun-
terfactual model would be invalid. Specifically we consider the
following key assumption

Assumption 1 (Intervention Independence). Z(0)
t is independent

of Ds for all 1 ≤ s, t ≤ T.

Remark 1. Assumption 1 identifies the treatment effect on the
treated. If only Z(0)

−1t is independent of Ds for all 1 ≤ s, t ≤ T,
we can recover the effect of the intervention on the treated unit
given that T0 is deterministic and known. This later case is
typical in papers on SC.

The main idea is to estimate (6) using just the preintervention
sample, t = 1, . . . , T0, since under Assumption 1, Z(0)

t =
(Z(0)

t |Dt = 0) = (Zt|Dt = 0) for all t. Consequently,
the estimated counterfactual for the postintervention period,
t = T0 + 1, . . . , T, becomes Ẑ(0)

1t := M(Z−1t ; θ̂T0). Under
some sort of stationary assumption on Zt , in the context of
a linear model, Hsiao, Ching, and Wan (2012) and Carvalho,
Masini, and Medeiros (2018), show that δ̂t := Z1t − Ẑ(0)

1t is
an unbiased estimator for δt as the preintervention sample size
grows to infinity in the low and high dimensional sparse case,
respectively.

We model the units in the absence of the intervention as
follows.

Assumption 2 (DGP). The process {Z(0)
it : 1 ≤ i ≤ n, t ≥ 1} is

generated by

Z(0)
it = γ ′

iW it + λ′
iFt + Uit (7)

where γ i ∈ R
k is the vector of coefficients of the k-dimensional

observable random vector W it of attributes of unit i, Ft is a
r-dimensional vector of common factors and λi its respective
vector of loads for unit i; and Uit is a zero mean idiosyncratic
shock. Finally, we assume that W it , Ft and Uit are mutually
uncorrelated.

The reason to include W it is to accommodate an intercept,
heterogeneous deterministic trends, seasonal dummies or any
other exogenous (possibly random) characteristic of unit i that
the practitioner judges to be helpful in the construction of the
counterfactual. As mentioned before we include an intercept,
dummies to account for the effects of different days of the week
and a linear trend. Other possibilities could be dummies of
nation-wide promotions and/or holidays, for example.

In case of stochastic heterogeneous trends, we let the factors
follow a random walk with (or without) drift: Ft = μ +
Ft−1+ηt , where {ηt} is a second-order stationary vector process.
When this is the case, the methodology must be applied in
first-differences and levels should be reconstructed in the end.
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Therefore, our approach can be directly applied even if the units
have heterogeneous and stochastic trends.

Our counterfactual model is the sample version of the projec-
tion of Z(0)

1t onto the space spanned by (W1t , Ft , U−1,t)′. Under
Assumption 2 the counterfactual can be taken as

Z(0)
1t = γ ′

1W1t + λ′
1Ft + θ ′

1U−1t + Vt , (8)
where θ1 is the coefficient of the linear regression of U1t onto
U−1t and Vt the respective projection error.

3.2. Theoretical Guarantees

In order to state our result in a precise manner we consider
the technical assumption below. First, let WS,it denotes the sub-
vector of W it after the exclusion of all deterministic (nonran-
dom) components (constant, dummies, trends, etc). We state
the assumption for the case where the unobserved factors are
stationary. For nonstationary (unit-root) factors, the only dif-
ference is to state the conditions for the first-differences of the
variables involved: �WS,it , �Ft , and �U t . In this case, our
results can be derived following in sec. 7 Bai and Ng (2008). Note
that, as mentioned before, if the interest lies on the intervention
effects on the levels of the series, after the final step, the levels of
both the target variable and the counterfactual can be recovered
and the inferential procedures can be applied unaltered.

Assumption 3 (Regularity Conditions). There is a constant 0 <

C < ∞ such that:

(a) The covariance matrix of WS,it is nonsingular;
(b) E|WS,it|p ≤ C andE|Uit|p+ε ≤ C for some p ≥ 6 and ε > 0

for i = 1, . . . , n, t = 1, . . . , T;
(c) The process {(W ′

S,t , F′
t , U ′

t)
′, t ∈ Z} is weakly station-

ary with strong mixing coefficient α satisfying α(m) ≤
exp(−2cm) for some c > 0 and for all m ∈ Z;

(d) ||θ1||∞ ≤ C;
(e) κ0 := κ

[
E(U tU ′

t),S0, 3
] ≥ C−1 where κ[·] is the com-

patibility condition defined in (S.1) in the supplementary
material and S0 := {i : θ1,i �= 0}.

Condition (a) is necessary for the parameters γ i, i = 1, . . . , n,
to be well defined. Conditions (b) and (c) taken together allow
the law of large numbers for strong mixing processes to be
applied to appropriately scaled sums. In particular, (b) bounds
the p-th plus moment uniformly. However, if Uit has exponential
tails as contemplated in Assumption 3 in Fan, Masini, and
Medeiros (2021), we could state a stronger result in terms of
the allowed number of nonzero coefficients as a fraction of the
sample size. The mixing rate in condition (c) can be weaken to
polynomial rate at the expense of an interplay between (c) and
the conditions appearing in Proposition 1.

Finally, conditions (d) and (e) in Assumption 3 are regu-
larity conditions on the high-dimensional linear model to be
estimated by the LASSO in step 3. Condition (e) ensures the
(restricted) strong convexity of the objective function, which
is necessary for consistently estimate θ1 when n > T. In
effect, it uniformly lower bounds the minimum restricted 	1-
eigenvalue of the covariance matrix of U t . For simplicity, the
bounds appearing in (d) and (e) are assumed to hold uni-
formly. However, both conditions could be somewhat relaxed

to allow ||θ1||∞ to grow slowly and/or κ0 decreases slowly to 0
as n diverges. Once again, at the expense of having both terms
included in the conditions of Proposition 1.

Proposition 1. Under Assumptions 1–3, assume further that:

(a) There is a bounded sequence η := ηn,T such that ||Û −
U||max = OP(η); and

(b) |S0| = O
({

η
[
(nT)1/p + η

] + n4/p√
T

}−1
)

.

If the penalty parameter ξ in (1) is set to be at the order of n2/p√
T

+
ηT1/p then, as T0 → ∞, ||̂θ1−θ1||1 = OP (ξ |S0|), and for every
t > T0:

δ̂t − δt = Vt + OP

{
|S0|

[
η(nT)1/p + n3/p

√
T

]}
,

where Vt is the stochastic component not explainable by
untreated units defined by (8)

Remark 2. Conditions (a) and (b) are high level assumptions
that translate into a restriction on the estimation rate in steps 1
and 2 of the proposed methodology, which in turn puts an upper
bound on the number of nonzero coefficients in θ1 (sparsity)
in order for the estimation error to be negligible. The rate η

can be explicitly obtained in terms of n and T by imposing
conditions on projection matrix of W it and the factor model.
For the former, we need uniform consistencies of both the
factor and the loadings estimators that take into account the
projection error in the previous step. In a more general setup,
Fan, Masini, and Medeiros (2021) state conditions under which
η = n6/p

T1/2−6/p + T1/p√
n .

Proposition 1 is key for our inference procedure discussed in
Section 3.3. For instance, it can be used to argue that δ̂t − δt =
Vt + op(1) provided that |S0|

[
η(nT)1/p + n3/p√

T

]
= o(1). Since

Vt is zero mean by construction, as T0 → ∞, δ̂t is an unbiased
estimator for δt for every postintervention period. Furthermore,
as described below, we can estimate the quantiles of Vt using the
preintervention residuals to conduct a valid inference on δt .

3.3. Testing for Intervention Effect

We test the null of no intervention effects based on estimators
{̂δt}t>T0 and the results of Masini and Medeiros (2019, 2022) and
Chernozhukov, Wüthrich, and Zhu (2020). Let T2 := T − T0 be
the number of observations after the intervention and define a
generic continuous mapping φ : RT2 → R

b whose argument is
the T2-dimensional vector (̂δT0+1 − δT0+1, . . . , δ̂T − δT)′ with
given treatment effects δT0+1, · · · , δT .

We are interested in the distribution of ̂φ := φ(̂δT0+1 −
δT0+1, . . . , δ̂T − δT) under the null (5), where φ is a given statis-
tic. The typical situation is the one where the preintervention
period is much longer than the post intervention period, T0 

T2. Frequently, it could be well the case that T2 = 1. However,
Vt does not vanish as in most cases there is a single treated
unit. Nevertheless, under strict stationarity of the process {Vt}
and unbiasedness of the treatment effect estimator, it is possible
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to resample the pre-intervention residuals following either the
procedure described in Masini and Medeiros (2019, 2022) or the
one in Chernozhukov, Wüthrich, and Zhu (2020) to compute the
sample quantile of the statistic of interest. As pointed out earlier,
the main difference between the two approaches is that the for-
mer estimate the counterfactual model using only pretreatment
observations while the later considers the estimation using the
full sample.

Under the asymptotic limit taken on the preinvention period
(T0 → ∞), by Proposition 1, we have that ̂φ − φ0 = oP(1),
where φ0 := φ(VT0+1, . . . , VT). Thus, the distribution of ̂φ

can be estimated by that of φ0. Consider the construction of ̂φ

using only blocks of size T2 of consecutive observations from
the preintervention sample. There are T0 − T2 + 1 such blocks
denoted by ̂φj := φ(V̂j, . . . , V̂j+T2−1), j = 1, . . . , T0 − T2 + 1,
where V̂t := Z1t −

(
γ̂ ′

1W1t + λ̂
′
1F̂t + θ̂

′
1Û−1t

)
for the prein-

tervention period. The estimators γ̂ 1, λ̂1, F̂t , θ̂
′
1, and Û−1t use

either the preintervention or the full sample depending on the
inferential approach chosen by the practitioner.

For each j, we have that ̂φj − φj = oP(1) where φj :=
φ(Vj, . . . , Vj+T2−1) and φj is equal in distribution to φ0 for all j.
Hence, we propose to estimate the distributionQT(x) := ¶(̂φ ≤
x) by its empirical distribution

Q̂T(x) := 1
T0 − T2 + 1

T0−T2+1∑
j=1

1(̂φj ≤ x),

where, for a pair of vectors a, b ∈ R
d, we say that a ≤ b ⇔ ai ≤

bi, ∀i. See Masini and Medeiros (2019, 2022) and Chernozhukov,
Wüthrich, and Zhu (2020) for further details.

3.4. Testing for Idiosyncratic Contributions

The question of statistical and practical interest is if the idiosyn-
cratic component contributes the estimation of the treatment
effect. To answer this question, write (7) as:

Zt = 	Wt + �Ft + U t , t ∈ {1, . . . , T},
where Zt := (Z1t , . . . , Znt)′, U t := (U1t , . . . , Unt)′, and Wt :=
(W ′

1t , . . . , W ′
nt)

′. The (n × nk) block diagonal matrix 	 has
blocks given by (γ ′

1, . . . γ ′
n). Finally, � := (λ1, . . . , λn)′.

Let 
 := (πij)1≤i,j≤n denote the (n × n) covariance matrix
of U t . Our method exploits the sparsity of the off-diagonal
elements of 
. In particular, we are interested in testing whether
U−1t has linear prediction power on the treated unit U1t . This
amounts to the following high-dimensional hypothesis test:H0 :
π1j = 0, ∀ 2 ≤ j ≤ n.

In order to conduct the test we propose the following test
statistic S := ||Q||∞, where Q := 1√

T0

∑T0
t=1 Dt , Dt :=

Û1tÛ−1t , and Ûit := R̂it − λ̂i
′F̂t . Also let c∗(τ ) be the τ -quantile

of the Gaussian bootstrap S∗ := ||Q∗||∞, where Q∗|Z, W ∼
N (0, ϒ̂). For a given symmetric kernel k(·) with k(0) = 1 and
bandwidth h > 0 (determining the number of lags), we have
that

ϒ̂ :=
∑

|	|<T0

k(	/h)M̂	 with M̂	 := 1
T0

T0∑
t=	+1

DtD′
t−	

is the estimator of the long-run covariance matrix ϒ := VQ̃,
where Q̃ := 1√

T0

∑T0
t=1 U1tU−1t . Notice that ϒ̂ is just the

Newey-West estimator if k(·) is chosen to be the triangular
kernel. More generally, the choice of kernels can be made in class
of kernels described in Andrews (1991). The validity of such a
method has been proved in Fan, Masini, and Medeiros (2021)
under a more general setting. In particular, the authors show
under some regularity conditions

sup
τ∈(0,1)

|¶(S ≤ c∗(τ )) − τ | = o(1) under H0.

4. Guide to Practice

In this section we provide practical guidance to the implemen-
tation of the FarmTreat method.

The first step involves the definition of the variables in W it .
This is, of course, application dependent. Nevertheless, typical
candidates are deterministic functions of time, that is, f (t), in
order to capture trends, an intercept to remove the mean, sea-
sonal dummies or other calendar effects, or any other dummies
to remove potential outliers. Unit-root tests on the variable of
interest may also be important in order to decide whether first-
differences of the data should be taken or not.

The second step is the estimation of � and the sequence
of factors {Ft , t ∈ Z} for the full sample, before and after the
intervention. Therefore, we cannot just rely on preintervention
period to estimate the factors. On the other hand, if we use all the
observations from the treated unit, we will bias our estimation
under the alternative of nonzero treatment effects. Therefore,
there are two possible ways to estimate the factors and the factor
loadings:

1. A simple approach is to estimate the factors and factor load-
ings without the treated unit. In order to estimate the loadings
λ̂1 of the first unit, we then regress R1t on the estimated
factors. This is the approach adopted in both simulations and
in the empirical application.

2. The imputed approach is to use the imputation λ̂
′
1F̂t for the

post intervention period of the treated unit 1 and then apply
the whole data to reestimate the factor and factor loadings.
λ̂1 and F̂t are estimated with just the preintervention period.

3. Note that E(Rt) = 0 by definition. Hence, we can replace
the postintervention observations of R1t by 0 in order to
carry the factor analysis. As the number of postintervention
observations is expected to be quite small, this replacement
will have negligible effects. It is important to notice, however,
that we do this just to estimate the factors.

To determine the number of factors we advocate the use
of the eigenvalue ratio test (Ahn and Horenstein 2013). Other
possibility is the use of one of the information criteria discussed
in Bai and Ng (2002).

After the estimation of the common factor structure, we can
test for remaining cross-dependence using the test described in
Section 3.3. In the case of rejection of the null of no remaining
dependence, the last step consists of a LASSO regression. This
step of testing is optional for evaluating the treatment effect, as
the sparsity of LASSO includes no effect as a specific example.
Nevertheless, it is an interesting statistical problem whether the
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idiosyncratic component contributes to the prediciton power.
For selecting the penalty parameter in LASSO, we recommend
the use of an information criterion, such as the BIC as in Masini
and Medeiros (2021).

The final step is to test the null hypothesis concerning the
intervention effects. When the preintervention sample is small,
we follow Chernozhukov, Wüthrich, and Zhu (2020) and esti-
mate the models under the null. Note that in this case we should
reestimate the model using the full sample.

5. Simulations

In this section we report simulations results to study the finite
sample behavior of the method proposed in this article. We
consider the following data generating process:

Zit = δit + γ ′
iWt + Rit , Rit = λ′

iFt + Uit ,

Ft = 0.8Ft−1 + V t , Uit =
{
β ′U−1t + εit , if i = 1,
εit , otherwise,

(9)
where {εit} is a sequence of independent and normally dis-
tributed zero-mean random variables with variance equal to
0.25 if i = 1 and β �= 0 or variance equal to 1 if i > 1 or β = 0.
V t is a sequence of independent and normally distributed zero-
mean random vectors taking values on R

2 such that E(V tV ′
t) =

0.25 × I, and E(εitV s) = 0, for all i, t, and s. W it consists of a
constant, a linear trend, and two independent Gaussian random
variables with mean and variance equal to 1. The parameters
are set as follows: γ i is (p + 2)-dimensional vector where, for
each replication, the first entry is randomly pick from a Gaussian
random variable with zero mean and variance 1; the second term
is randomly selected from an Uniform distribution between −5
and 5; and the last two elements are Gaussian distributed with
mean 0.5 and variance 1. For each replication, the elements of
λi, i > 1, are drawn independently from a normal distribution
with mean two and unit variance and, for i = 1, the elements
of λi are drawn from a normal distribution with mean −6
and variance 0.04. The first two elements of β are either set
to 0.5 and the rest is set to zero or we set all the elements
equal to zero. We consider the following sample sizes: T0 =
50, 75, 100, 150, 250, 500 and 1000; and T2 = 1. For each sample
size, n is set as n = {T, 2T, 3T}. The number of factors is set
to two. For size simulations, δit = 0 for all i and t. For power
simulations, δit = 2 for i = 1 and t = T0 + 1.

Tables 1 and 2 show descriptive statistics for the counterfac-
tual estimation. The table depicts the mean, the median and the
mean squared error (MSE) for δT0+1 under the null and alterna-
tive hypotheses, respectively. Three cases are considered. In the
first one, the factor structure is neglected and a sparse LASSO
regression of the first unit against the remaining ones is esti-
mated. This is the ArCo methodology put forward by Carvalho,
Masini, and Medeiros (2018). The second one is equivalent to
the approach of Gobillon and Magnac (2016), where a pure
factor model is considered. Finally, the FarmTreat approach
is considered, which encompasses the previous two methods as
a specific example. We also report, between brackets, the same
statistics when the full sample is used to estimate the counterfac-
tual model as advocated by Chernozhukov, Wüthrich, and Zhu
(2020).

Tables 1 and 2 show descriptive statistics for the counterfac-
tual estimation. The table depicts the mean, the median and the
mean squared error (MSE) for δT0+1 under the null and alterna-
tive hypotheses, respectively. Three cases are considered. In the
first one, the factor structure is neglected and a sparse LASSO
regression of the first unit against the remaining ones is esti-
mated. This is the ArComethodology put forward by Carvalho,
Masini, and Medeiros (2018). The second one is equivalent to
the approach of Gobillon and Magnac (2016), where a pure fac-
tor model is considered; we call this method the Principal Com-
ponent Regression (PCR). Finally, the FarmTreat approach
is considered, which encompasses the previous two methods as
a specific example. We also report, between brackets, the same
statistics when the full sample is used to estimate the counterfac-
tual model as advocated by Chernozhukov, Wüthrich, and Zhu
(2020).

From the inspection of the results in the tables, it is clear
that the biases for estimating of the treatment effect are small
and MSEs decrease as the sample size increase, as expected. Fur-
thermore, the ArCo delivers very robust estimates, but the MSE
can be substantially reduced by the FarmTreat methodology.
Therefore, there is strong evidence supporting methodology
derived in this paper, which is consistency with our theoretical
results. Second, as already shown in the simulations in Car-
valho, Masini, and Medeiros (2018), the performance of the
pure factor model is poor in terms of MSE. This is particu-
larly the case when n or T is small, since the factors are not
well estimated. When this happens, the prediction power of
the idiosyncratic components comes to rescue (comparing the
performance with FarmSelect). This demonstrates convinc-
ingly the need of using the idiosyncratic component to augment
the prediction. When comparing with the results when the full
sample is used to estimate the model, two facts emerge from the
tables. First, when the null hypothesis is true, the gains of using
the full sample are undebatable. However, when the null is false,
using the full sample is a bad idea, specially when T0 is small.
This is somewhat expected as in the later case we are includ-
ing observations affected by the intervention in the estimation
sample.

Table 3 presents the empirical size of the ressampling test
when there is a single observation after the intervention and the
counterfactual is estimated according to the methods described
above. It is clear that size distortions are high when T0 is small.
The size converges to the nominal one as the sample increases.
On the other hand, using the full sample to estimate the models
correct the distortions and are strongly recommended in the
case of small samples.

Table 4 shows the empirical power. The ressampling
approach delivers high power, specially when ArCo and
FarmTreatmethodologies are considered. On the other hand,
the test looses a lot of power when the full sample is considered.
This is expected as the estimator of the treatment effect will be
biased, specially in small samples.

Figure 1 compares the MSEs of PCR and FarmTreatwhen
DGP has no idiosyncratic contribution, that is, β = 0. This case
favors to PCR. As we can see, FarmTreat achieves compa-
rable results to PCR, indicating that the methodology is quite
robust.
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Table 1. Average treatment (�) estimation under the null.

Panel(a): LASSO (ArCo) - Carvalho, Masini, and Medeiros (2018)

Mean Median MSE

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 −0.036 0.010 0.023 −0.073 0.023 0.074 1.114 0.975 0.901
[0.017] [0.003] [0.000] [0.024] [−0.004] [0.008] [0.254] [0.178] [0.188]

75 −0.084 0.025 −0.011 −0.080 0.025 0.015 0.832 0.785 0.763
[−0.027] [−0.018] [−0.011] [−0.035] [−0.018] [0.001] [0.383] [0.216] [0.206]

100 −0.016 0.068 0.026 −0.021 0.079 0.028 0.732 0.674 0.632
[−0.020] [−0.005] [−0.022] [0.014] [0.014] [0.009] [0.317] [0.311] [0.264]

150 0.004 0.037 −0.070 0.021 0.038 −0.083 0.608 0.655 0.590
[−0.000] [−0.020] [0.022] [−0.016] [−0.037] [−0.012] [0.362] [0.288] [0.349]

250 −0.013 −0.026 −0.028 0.021 −0.040 −0.039 0.539 0.517 0.566
[−0.000] [−0.020] [0.022] [−0.016] [−0.037] [−0.012] [0.362] [0.288] [0.349]

500 0.018 −0.028 0.052 0.032 −0.062 0.042 0.419 0.382 0.424
[0.002] [0.016] [−0.011] [0.009] [0.007] [0.005] [0.321] [0.300] [0.280]

1, 000 0.029 0.033 −0.028 0.047 0.049 0.005 0.323 0.378 0.350
[−0.026] [−0.035] [0.029] [−0.053] [−0.026] [0.054] [0.274] [0.303] [0.275]

Panel(b): PCR - Gobillon and Magnac (2016)

Mean Median MSE

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 −0.030 −0.001 0.038 −0.120 0.008 0.015 1.259 0.916 0.842
[0.032] [−0.013] [0.014] [0.004] [−0.053] [0.042] [0.605] [0.665] [0.696]

75 −0.041 0.011 −0.002 0.014 0.023 −0.005 0.957 0.958 0.893
[−0.037] [−0.047] [0.008] [−0.004] [−0.057] [0.018] [0.727] [0.767] [0.670]

100 −0.065 0.083 0.014 −0.087 0.080 −0.011 0.989 0.807 0.863
[−0.019] [−0.012] [−0.012] [−0.001] [0.024] [0.004] [0.683] [0.719] [0.636]

150 −0.045 −0.022 −0.093 −0.005 −0.040 −0.083 1.071 0.860 0.914
[−0.017] [−0.031] [0.036] [−0.004] [−0.036] [0.023] [0.732] [0.701] [0.772]

250 −0.042 −0.045 −0.038 −0.041 −0.057 −0.018 0.982 0.778 0.861
[−0.008] [−0.047] [−0.015] [−0.001] [−0.007] [−0.025] [0.728] [0.762] [0.778]

500 0.006 0.001 0.070 0.066 −0.011 0.033 0.765 0.692 0.758
[−0.018] [0.057] [−0.006] [−0.009] [0.015] [−0.078] [0.740] [0.809] [0.751]

1, 000 0.028 0.050 −0.046 0.075 0.049 −0.052 0.720 0.783 0.763
[−0.024] [−0.051] [0.057] [−0.026] [−0.053] [0.076] [0.739] [0.801] [0.790]

Panel(c): FarmTreat

Mean Median MSE

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 −0.024 −0.036 0.035 −0.080 −0.026 0.026 0.964 0.684 0.630
[0.017] [0.003] [0.000] [0.024] [−0.004] [0.008] [0.254] [0.178] [0.188]

75 −0.048 −0.017 −0.019 −0.030 −0.036 −0.015 0.607 0.529 0.471
[−0.027] [−0.018] [−0.011] [−0.035] [−0.018] [0.001] [0.383] [0.216] [0.206]

100 −0.011 0.048 0.014 −0.036 0.061 0.009 0.548 0.377 0.404
[−0.020] [−0.005] [−0.022] [0.014] [0.014] [0.009] [0.317] [0.311] [0.264]

150 −0.063 0.016 −0.055 −0.035 0.012 −0.063 0.585 0.343 0.343
[−0.000] [−0.020] [0.022] [−0.016] [−0.037] [−0.012] [0.362] [0.288] [0.349]

250 −0.033 0.003 −0.024 −0.048 0.007 −0.025 0.453 0.312 0.301
[0.002] [−0.022] [0.001] [−0.018] [−0.003] [0.025] [0.311] [0.313] [0.317]

500 0.017 −0.021 0.026 0.007 −0.010 0.019 0.301 0.260 0.269
[0.002] [0.016] [−0.011] [0.009] [0.007] [0.005] [0.321] [0.300] [0.280]

1, 000 0.031 0.036 −0.034 0.035 0.068 −0.024 0.246 0.291 0.263
[−0.026] [−0.035] [0.029] [−0.053] [−0.026] [0.054] [0.274] [0.303] [0.275]

NOTE: The table reports descriptive statistics for the average treatment estimation under the null of no effect (δT0+1 = 0). The table reports the mean, median, and mean
squared error (MSE) of the estimator �̂ for one post-intervention observation. Panel (a) considers the case where the counterfactual is estimated by a LASSO regression
of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed by Carvalho, Masini, and Medeiros (2018). Panel (b) presents the results
when the counterfactual is estimated by principal component regression (PCR), that is, an ordinary least squares (OLS) regression of the treated unit on factors computed
from the pool of peers. This is equivalent to the method of Gobillon and Magnac (2016). The number of factors is determined by the eigenvalue ratio test of Ahn and
Horenstein (2013). Finally, Panel (c) displays the results of theFarmTreatmethodology. Between brackets we report the same statistics but with the model estimated
using the full sample as advocated by Chernozhukov, Wüthrich, and Zhu (2020).

6. Price Elasticity of Demand

6.1. Data Description

As described in Section 1.1 the goal is to determine the optimal
price of products for a large retail chain in Brazil. The optimal
prices should be computed for each city. Our dataset consists
of the daily prices and quantities sold of five different products,

aggregated at the municipal level. The company’s more than
1400 stores differ substantially across and within municipalities,
ranging from small convenience stores with a limited selection
of products up to very large ones, selling everything from sweets
to home appliances and clothes. The stores can be street stores or
can be located in shopping malls. The products sold are divided
into several departments. Here, we consider products from the



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 583

Table 2. Average treatment (�) estimation under the alternative.

Panel(a): LASSO (ArCo) - Carvalho, Masini, and Medeiros (2018)

Mean Median MSE

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 1.998 2.048 2.001 1.938 2.077 1.973 0.982 0.972 0.812
[0.945] [0.830] [0.826] [0.811] [0.680] [0.694] [1.597] [1.763] [1.711]

75 2.002 2.025 1.946 1.955 2.012 1.913 0.871 0.821 0.828
[1.132] [1.013] [0.993] [1.028] [0.882] [0.866] [1.216] [1.397] [1.372]

100 2.003 1.998 2.087 2.025 2.024 2.060 0.737 0.691 0.681
[1.316] [1.250] [1.177] [1.236] [1.169] [1.093] [0.899] [1.011] [1.098]

150 2.014 2.015 1.967 2.051 2.025 1.985 0.561 0.617 0.587
[1.486] [1.435] [1.323] [1.458] [1.376] [1.262] [0.670] [0.722] [0.853]

250 2.037 1.989 2.033 2.033 2.061 2.022 0.497 0.550 0.491
[1.581] [1.532] [1.526] [1.593] [1.509] [1.476] [0.535] [0.564] [0.631]

500 2.047 2.022 1.960 2.043 2.036 1.949 0.388 0.392 0.383
[1.717] [1.639] [1.696] [1.719] [1.638] [1.694] [0.392] [0.394] [0.399]

1, 000 1.974 2.014 1.969 1.957 2.036 1.987 0.380 0.334 0.378
[1.810] [1.785] [1.715] [1.815] [1.792] [1.725] [0.297] [0.341] [0.350]

Panel(b): PCR - Gobillon and Magnac (2016)

Mean Median MSE

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 1.941 2.071 2.025 1.981 2.100 1.932 1.150 0.944 0.897
[1.524] [1.718] [1.757] [1.527] [1.682] [1.732] [1.161] [0.717] [0.652]

75 1.998 2.004 1.990 1.998 2.020 1.988 1.237 0.955 0.946
[1.637] [1.813] [1.789] [1.716] [1.812] [1.786] [0.985] [0.793] [0.741]

100 2.019 1.962 2.061 1.977 1.937 2.024 1.050 0.920 0.810
[1.662] [1.929] [1.857] [1.708] [1.926] [1.820] [1.028] [0.689] [0.750]

150 1.995 1.988 1.954 1.997 1.978 1.937 0.941 0.838 0.790
[1.776] [1.867] [1.806] [1.871] [1.859] [1.802] [1.000] [0.772] [0.838]

250 2.032 1.970 2.016 2.009 1.983 1.979 0.843 0.802 0.723
[1.893] [1.893] [1.901] [1.863] [1.890] [1.921] [0.837] [0.737] [0.814]

500 2.013 2.074 1.964 2.025 2.047 1.976 0.777 0.758 0.731
[1.969] [1.969] [2.037] [2.029] [1.971] [1.997] [0.744] [0.669] [0.731]

s1, 000 2.026 2.029 1.936 2.055 2.046 1.965 0.786 0.765 0.800
[2.010] [2.033] [1.939] [2.062] [2.037] [1.933] [0.714] [0.770] [0.751]

Panel(c): FarmTreat

Mean Median MSE

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 1.933 2.052 2.044 1.938 2.062 2.031 0.800 0.712 0.633
[0.986] [0.865] [0.796] [0.982] [0.603] [0.509] [1.595] [1.713] [1.874]

75 1.995 2.010 1.985 1.990 2.007 1.996 0.913 0.503 0.510
[1.423] [1.508] [1.439] [1.515] [1.533] [1.459] [0.828] [0.689] [0.745]

100 2.007 1.982 2.080 2.000 1.965 2.094 0.565 0.418 0.395
[1.597] [1.765] [1.752] [1.639] [1.772] [1.769] [0.660] [0.366] [0.363]

150 1.997 2.003 1.986 2.050 2.029 1.962 0.509 0.320 0.311
[1.701] [1.843] [1.789] [1.770] [1.833] [1.785] [0.567] [0.303] [0.322]

250 2.019 2.000 2.033 2.017 2.000 2.014 0.363 0.322 0.294
[1.875] [1.908] [1.887] [1.865] [1.919] [1.892] [0.332] [0.288] [0.279]

500 2.037 2.005 1.964 2.049 2.023 1.981 0.262 0.247 0.262
[1.967] [1.933] [1.980] [1.976] [1.938] [1.978] [0.290] [0.251] [0.256]

1, 000 1.993 2.008 1.985 2.005 2.003 1.968 0.278 0.264 0.271
[2.007] [2.013] [1.945] [2.008] [2.042] [1.957] [0.245] [0.283] [0.259]

NOTE: The table reports descriptive statistics for the average treatment estimation under the null of no effect (δT0+1 = 2). The table reports the mean, median, and mean
squared error (MSE) of the estimator �̂ for one post-intervention observation. Panel (a) considers the case where the counterfactual is estimated by a LASSO regression
of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed by Carvalho, Masini, and Medeiros (2018). Panel (b) presents the results
when the counterfactual is estimated by principal component regression (PCR), that is, an ordinary least squares (OLS) regression of the treated unit on factors computed
from the pool of peers. This is equivalent to the method of Gobillon and Magnac (2016). The number of factors is determined by the eigenvalue ratio test of Ahn and
Horenstein (2013). Finally, Panel (c) displays the results of theFarmTreatmethodology. Between brackets we report the same statistics but with the model estimated
using the full sample as advocated by Chernozhukov, Wüthrich, and Zhu (2020).

Sweets and Candies unit. The chosen products differ in terms of
magnitude of sales, price range, and in importance as a share of
the company’s revenue. For example, the median daily sales per
store over the available period and across municipalities vary
from 0 (Product V) to 35 units (Product II).

Our sample consists of about 50% of the municipalities where
there are stores. As the number and size of stores differ across

municipalities, we divide the daily sales at each city by the num-
ber of stores in that particular location. To determine the opti-
mal price of each of the products (in terms of profit or revenue
maximization) and avoid confounding effects, a randomized
controlled experiment has been carried out. For each product,
the price was changed in a set of municipalities (treatment
group), while in another group, the prices were kept fixed at
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Table 3. Rejection rates under the null (empirical size).

Panel(a): LASSO (ArCo) - Carvalho, Masini, and Medeiros (2018)

α = 0.01 α = 0.05 α = 0.10

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 0.294 0.398 0.326 0.398 0.490 0.430 0.452 0.562 0.492
[0.028] [0.028] [0.026] [0.052] [0.070] [0.072] [0.096] [0.102] [0.110]

75 0.156 0.244 0.254 0.260 0.408 0.372 0.354 0.476 0.452
[0.022] [0.026] [0.018] [0.054] [0.064] [0.062] [0.134] [0.114] [0.110]

100 0.096 0.160 0.220 0.210 0.282 0.316 0.288 0.366 0.394
[0.016] [0.024] [0.010] [0.050] [0.078] [0.056] [0.092] [0.124] [0.086]

150 0.090 0.114 0.118 0.166 0.228 0.220 0.252 0.304 0.290
[0.010] [0.012] [0.014] [0.046] [0.044] [0.052] [0.104] [0.086] [0.118]

250 0.064 0.050 0.060 0.146 0.146 0.142 0.198 0.218 0.230
[0.010] [0.014] [0.014] [0.044] [0.052] [0.060] [0.092] [0.116] [0.116]

500 0.032 0.024 0.040 0.110 0.102 0.108 0.172 0.150 0.176
[0.016] [0.014] [0.004] [0.062] [0.052] [0.046] [0.112] [0.106] [0.102]

1, 000 0.012 0.024 0.026 0.068 0.096 0.082 0.122 0.166 0.160
[0.010] [0.022] [0.014] [0.048] [0.048] [0.054] [0.088] [0.110] [0.106]

Panel(b): PCR - Gobillon and Magnac (2016)

α = 0.01 α = 0.05 α = 0.10

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 0.152 0.042 0.040 0.216 0.104 0.080 0.242 0.162 0.126
[0.018] [0.020] [0.022] [0.040] [0.064] [0.052] [0.084] [0.108] [0.102]

75 0.100 0.032 0.022 0.134 0.122 0.068 0.194 0.184 0.150
[0.018] [0.008] [0.012] [0.064] [0.064] [0.066] [0.130] [0.130] [0.100]

100 0.086 0.012 0.010 0.138 0.060 0.066 0.194 0.100 0.132
[0.006] [0.008] [0.008] [0.056] [0.058] [0.044] [0.110] [0.110] [0.082]

150 0.084 0.020 0.024 0.128 0.078 0.088 0.176 0.118 0.144
[0.012] [0.010] [0.016] [0.046] [0.040] [0.070] [0.116] [0.102] [0.120]

250 0.026 0.014 0.026 0.080 0.052 0.078 0.128 0.112 0.130
[0.010] [0.016] [0.014] [0.038] [0.052] [0.060] [0.102] [0.106] [0.104]

500 0.018 0.010 0.010 0.060 0.046 0.048 0.110 0.084 0.122
[0.014] [0.016] [0.006] [0.036] [0.062] [0.060] [0.090] [0.100] [0.118]

1, 000 0.008 0.002 0.010 0.050 0.056 0.052 0.096 0.102 0.104
[0.012] [0.018] [0.012] [0.058] [0.064] [0.054] [0.084] [0.114] [0.110]

Panel(c): FarmTreat

α = 0.01 α = 0.05 α = 0.10

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 0.332 0.400 0.362 0.388 0.468 0.460 0.434 0.532 0.496
[0.018] [0.020] [0.028] [0.052] [0.056] [0.058] [0.080] [0.084] [0.092]

75 0.120 0.084 0.110 0.186 0.182 0.190 0.248 0.292 0.272
[0.020] [0.010] [0.018] [0.066] [0.064] [0.048] [0.146] [0.112] [0.088]

100 0.096 0.028 0.028 0.158 0.096 0.098 0.208 0.168 0.160
[0.004] [0.024] [0.016] [0.046] [0.058] [0.052] [0.120] [0.118] [0.078]

150 0.078 0.022 0.026 0.156 0.080 0.084 0.206 0.134 0.140
[0.014] [0.012] [0.008] [0.054] [0.052] [0.070] [0.094] [0.104] [0.118]

250 0.028 0.006 0.022 0.096 0.066 0.070 0.134 0.136 0.132
[0.014] [0.012] [0.014] [0.046] [0.044] [0.056] [0.102] [0.098] [0.094]

500 0.014 0.010 0.022 0.052 0.058 0.044 0.124 0.090 0.092
[0.010] [0.012] [0.004] [0.058] [0.052] [0.044] [0.124] [0.118] [0.094]

1, 000 0.008 0.016 0.012 0.058 0.054 0.060 0.092 0.124 0.114
[0.012] [0.022] [0.008] [0.052] [0.060] [0.050] [0.110] [0.114] [0.098]

NOTE: The table reports the rejection rates of the ressampling test under the null. Panel (a) considers the case where the counterfactual is estimated by a LASSO regression
of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed by Carvalho, Masini, and Medeiros (2018). Panel (b) presents the results
when the counterfactual is estimated by principal component regression (PCR), that is, an ordinary least squares (OLS) regression of the treated unit on factors computed
from the pool of peers. This is equivalent to the method of Gobillon and Magnac (2016). The number of factors is determined by the eigenvalue ratio test of Ahn and
Horenstein (2013). Finally, Panel (c) displays the results of theFarmTreatmethodology. Between brackets we report the rejection rates but with the model estimated
using the full sample as advocated by Chernozhukov, Wüthrich, and Zhu (2020).

the original level (control group). Note that the randomization
is carried out at the city-level not at the store-level. With the
application of our methodology optimal prices can be computed
for each city in the treatment group as well as other levels of
aggregation. In order to determine the prices for the locations in
the control group, the experiment can be repeated by inverting
the groups in a second batch of experiments. Here, we will

report the results concerning the first group of randomized
experiments.

The selection of the treatment and control groups was carried
out according to the socioeconomic and demographic char-
acteristics as well as to the distribution of stores in each city.
The following variables were used: human development index,
employment, GDP per capita, population, female population,
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Table 4. Rejection rates under the alternative (empirical power).

Panel(a): LASSO (ArCo) - Carvalho, Masini, and Medeiros (2018)

α = 0.01 α = 0.05 α = 0.10

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 0.764 0.826 0.856 0.850 0.894 0.906 0.894 0.920 0.926
[0.394] [0.448] [0.448] [0.514] [0.562] [0.596] [0.616] [0.626] [0.678]

75 0.728 0.812 0.806 0.830 0.886 0.882 0.878 0.912 0.918
[0.412] [0.462] [0.494] [0.606] [0.642] [0.660] [0.702] [0.754] [0.750]

100 0.744 0.800 0.816 0.858 0.886 0.888 0.906 0.914 0.916
[0.464] [0.514] [0.540] [0.646] [0.722] [0.728] [0.736] [0.804] [0.820]

150 0.778 0.766 0.766 0.892 0.870 0.858 0.908 0.910 0.900
[0.596] [0.586] [0.554] [0.756] [0.736] [0.728] [0.824] [0.830] [0.812]

250 0.812 0.780 0.808 0.912 0.878 0.892 0.946 0.920 0.922
[0.674] [0.634] [0.602] [0.824] [0.794] [0.780] [0.872] [0.864] [0.856]

500 0.856 0.854 0.836 0.944 0.938 0.932 0.960 0.958 0.964
[0.744] [0.700] [0.756] [0.880] [0.888] [0.882] [0.930] [0.932] [0.948]

1, 000 0.860 0.878 0.838 0.948 0.944 0.942 0.962 0.974 0.972
[0.808] [0.774] [0.772] [0.922] [0.916] [0.896] [0.966] [0.954] [0.954]

Panel(b): PCR - Gobillon and Magnac (2016)

α = 0.01 α = 0.05 α = 0.10

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 0.488 0.510 0.448 0.654 0.676 0.660 0.728 0.744 0.740
[0.266] [0.308] [0.344] [0.450] [0.542] [0.562] [0.560] [0.644] [0.668]

75 0.448 0.414 0.426 0.658 0.642 0.622 0.754 0.750 0.722
[0.282] [0.322] [0.328] [0.488] [0.576] [0.570] [0.624] [0.706] [0.700]

100 0.400 0.338 0.390 0.624 0.610 0.646 0.752 0.710 0.744
[0.264] [0.320] [0.290] [0.504] [0.604] [0.570] [0.626] [0.720] [0.706]

150 0.464 0.418 0.398 0.672 0.632 0.630 0.764 0.740 0.738
[0.372] [0.362] [0.346] [0.574] [0.574] [0.560] [0.676] [0.684] [0.680]

250 0.412 0.414 0.400 0.654 0.642 0.650 0.752 0.744 0.754
[0.354] [0.368] [0.378] [0.594] [0.604] [0.612] [0.704] [0.710] [0.708]

500 0.392 0.434 0.376 0.650 0.666 0.628 0.766 0.788 0.750
[0.374] [0.360] [0.386] [0.644] [0.628] [0.664] [0.760] [0.752] [0.760]

1, 000 0.412 0.434 0.362 0.668 0.640 0.604 0.760 0.754 0.702
[0.418] [0.436] [0.344] [0.640] [0.630] [0.628] [0.734] [0.746] [0.744]

Panel(c): FarmTreat

α = 0.01 α = 0.05 α = 0.10

n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T n = T n = 2 × T n = 3 × T

T = 50 0.826 0.854 0.884 0.892 0.920 0.938 0.912 0.940 0.946
[0.458] [0.586] [0.626] [0.602] [0.712] [0.768] [0.680] [0.776] [0.838]

75 0.774 0.812 0.800 0.894 0.906 0.912 0.940 0.954 0.950
[0.618] [0.680] [0.676] [0.752] [0.834] [0.858] [0.852] [0.902] [0.920]

100 0.758 0.800 0.818 0.886 0.916 0.958 0.934 0.950 0.980
[0.662] [0.752] [0.762] [0.816] [0.910] [0.894] [0.868] [0.956] [0.940]

150 0.852 0.862 0.878 0.950 0.960 0.964 0.978 0.972 0.976
[0.764] [0.832] [0.834] [0.860] [0.946] [0.928] [0.902] [0.972] [0.952]

250 0.884 0.872 0.908 0.952 0.962 0.968 0.972 0.974 0.994
[0.872] [0.872] [0.874] [0.940] [0.956] [0.948] [0.968] [0.980] [0.976]

500 0.918 0.910 0.878 0.978 0.976 0.974 0.990 0.986 0.988
[0.878] [0.912] [0.908] [0.964] [0.968] [0.976] [0.984] [0.986] [0.984]

1, 000 0.898 0.916 0.924 0.974 0.978 0.970 0.988 0.988 0.990
[0.918] [0.890] [0.888] [0.974] [0.974] [0.968] [0.990] [0.984] [0.988]

NOTE: The table reports the rejection rates of the ressampling test under the alternative. Panel (a) considers the case where the counterfactual is estimated by a LASSO
regression of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed by Carvalho, Masini, and Medeiros (2018). Panel (b) presents
the results when the counterfactual is estimated by principal component regression (PCR), that is, an ordinary least squares (OLS) regression of the treated unit on factors
computed from the pool of peers. This is equivalent to the method of Gobillon and Magnac (2016). The number of factors is determined by the eigenvalue ratio test of
Ahn and Horenstein (2013). Finally, Panel (c) displays the results of the FarmTreat methodology. Between brackets we report the rejection rates but with the model
estimated using the full sample as advocated by Chernozhukov, Wüthrich, and Zhu (2020).

literate population, average household income (total), house-
hold income (urban areas), number of stores, and number of
convenience stores. Details about the method can be found in
the supplementary material. As mentioned in the Introduction,
we used no information about the quantities sold of the product
in each municipality to create the treatment and control groups.
Therefore, we avoid any selection bias, maintaining valid the

assumption that the intervention of interest is independent of
the outcomes.

It is important to highlight that although the experiment
is randomized, traditional differences-in-differences estimators
cannot be considered as the goal is to estimate the price elas-
ticities at the municipal level which is exactly the same level of
the randomization. Nevertheless, we can rely on differences-in-
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Figure 1. MSE ratio
The figure reports the ratio of the mean squared errors (MSE) of the FarmTreat
methodology and Principal Component Regression (PCR) when there is no cross-
dependence among idiosyncratic components.

differences to estimate the intervention effects at the country
level.

6.2. Results

In this section we report the results of the experiment described
in the previous subsection. Table 5 describes each one of the
experiments carried out for each product. The table shows
the sample date, the period of the experiment (usually two
weeks), the type of the experiment (if the price was increased or
decreased), the magnitude of the price change, and the number
of municipalities in the treatment (n1) and control groups (n0).
n is the total number of municipalities considered. n, n0, and
n1 vary according to the product, but we omit the product
identification to simplify notation.

For each day t, q(j)
it represents, for municipality i, the quanti-

ties sold of product j, where i = 1, . . . , n, t = 1, . . . , T, and j =
1, . . . , 5. For convenience of notation assume that i ∈ {1, . . . , n0}
represents cities in the control group and i ∈ {n0 + 1, . . . , n}
indexes the municipalities in the treatment group. Finally, define
q̃(j)

it = q(j)
it /ns

i , where ns
i is the number of stores at location i. The

analysis is carried on for q̃(j)
it .

Figure 2 shows the data for the first product considered in the
application. The data for the remaining products are displayed
in Figures S.1–S.4 in the supplementary material. Panel (a) in
the figures reports the daily sales at each group of municipalities
(all, treatment, and control) divided by the number of stores
in each group. More specifically, the plot shows the daily evo-
lution of q(j)

all,t· = 1
s
∑n

i=1 q(j)
it , q(j)

control,t· = 1
s0

∑n0
i=1 q(j)

it , and
q(j)

treatment,t· = 1
s1

∑n
i=n0+1 q(j)

it . The plot shows the data before
and after price changes and the intervention date is represented
by the horizontal line. Panels (b) and (c) display the distribution
across municipalities of the time averages of q̃(j)

it , before and
after the intervention and for the treatment and control groups,
respectively. Panels (d) and (e) present fan plots for the evolution

of q̃(j)
it . The black curves there represent the cross-sectional

means over time.
Several facts emerge from the plots. First, the dynamics of

sales change depending of the product and the sample con-
sidered. Second, there is a weekly seasonal pattern in the data
which is common to all products. The big spikes for Products II
and IV, observed in Panel (a), are related to major promotions.
We selected these particular products and sample to illustrate
that our methodology is robust to outliers. One point that
deserves attention is that promotions took place in both control
and treatment groups and, therefore, do not have any harmful
implication to our methodology. Eyeballing the graphs in Panel
(a) of Figures 2 and S.4, we observe a substantial drop in sales
before the start of the experiment and happened in both control
in treatment groups. This experiment clearly shows the benefits
of our method in comparison, for instance, with the before-and-
after (BA) estimator. BA estimator does not take into account
common trends or global shocks that affects both treatment and
control groups. Finally, a point to highlight concerning Products
IV and V is the fact the daily sales are quite small as compared
to the other three products. For instance, the average daily sales
per store is less than one unit for Product V. One of the reasons
for the drop in sales for Product V just before the intervention
is a large drop in the number of available units in some of the
municipalities. For example, in about 3% of the municipalities,
both in the treatment and control groups, there were not a single
unit of the product available to be sold. As we are going to see
later, this will have an impact on the results obtained for this
specific product. Finally, by observing Panels (d) and (e), we
notice a significant heterogeneity across municipalities.

The models are estimated at the municipal level. For each
product and each municipality, we run a first-stage regression
of q̃(j)

it on seven dummies for the days of the week, a linear
deterministic trend and the number of stores that are open at
municipality i on day t. For the municipalities in the control
group the above regression is estimated with the full sample.
For the municipalities in the treatment group we use data only
up to time T0. The second step consists of estimating factors
for the first-stage residuals. We select the number of factors, k,
by the eigenvalue ratio test. In the third step, we run a LASSO
regression of each idiosyncratic component of treated units on
the idiosyncratic terms of the control group. As described in
Section 4, the penalty parameter is determined by the BIC.
Finally, we compute the counterfactual for each municipality
i = 1, . . . , n1 for t = T0 + 1, . . . , T: ̂̃q(j)

it . We also compute
the instantaneous and average intervention impact as δ̂

(j)
it =

q̃(j)
it − ̂̃q(j)

it and �̂
(j)
i = 1

T−T0

∑T
t=T0+1 δ̂

(j)
it , respectively. We test

the null hypothesis of intervention effect, H0 : δ
(j)
it = 0 ∀t ≥ T0,

with the ressampling procedure with either φ(̂δT0+1, . . . , δ̂T) =∑T
t=T0+1 δ̂2

t or φ(̂δT0+1, . . . , δ̂T) = ∑T
t=T0+1 |̂δt|. We also test

the for daily effects.
Under the hypothesis of linear demand function, price elas-

ticities εij for each municipality i and product j can be recovered

as ε̂ij = β̂ijpij,T0−1
Qij

, where β̂ij = �̂ij
Ni�pj

, �̂ij is the estimated
average effect for municipality i and product j, Ni is the number
of stores, �pj is the price change, pij,T0−1 is the price before
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Table 5. Experiments.

Product Sample Experiment period Experiment type Magnitude Control group Treatment group

I Feb-13-2016–Oct-31-2016 Oct-18-2016–Oct-31-2016 Price increase 10.58% 318 97
II May-14-2016–Jan-23-2017 Jan-17-2017–Jan-23-2017 Price increase 5.01% 321 102
III Feb-13-2016–Oct-31-2016 Oct-18-2016–Oct-31-2016 Price increase 20.13% 309 106
IV May-14-2016–Jan-23-2017 Jan-17-2017–Jan-23-2017 Price reduction 18.20% 321 100
V Aug-14-2016–May-02-2017 Apr-19-2017–May-02-2017 Price reduction 10.05% 328 110

NOTE: The table shows, for each product considered in the article, the sample, the period when the experiment was carried out, the type of the experiment (price increase
or decrease), the magnitude of the price change, and the number of cities in the control and treatment groups.

Figure 2. Data for Product I.
Panel (a) reports the daily sales divided by the number of stores aggregated for all cities as well as for the treatment and control groups. The plot also indicates the date of
the intervention. Panels (b) and (c) display the distribution of the average sales per store over time across municipalities in the treatment and control groups, respectively.
Panels (d) and (e) present fan plots of sales across municipalities in the treatment and control groups for each given time point. The black curves represent the cross-sectional
mean over time and the vertical green line indicates the date of intervention.

the intervention and Qij is the average counterfactual quantity
sold. Finally, optimal prices for profit maximization can be
determined by:

p∗
ij = (1 − Taxesij)(Qij − β̂ijpij,T0−1) − β̂ij × Costsij

−2β̂ij(1 − Taxesij)
,

where Taxesij and Costsij are the municipality-product-specific
tax and costs,respectively.

Table 6 reports, for each product, the minimum, the
5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average,
and standard deviation for several statistics. We consider the
distribution over the all treated municipalities. In Panel (a) in
the table we report the results for the R-squared of the prein-
tervention model. Panel (b) displays the average intervention
effect over the experiment period. Panels (c) and (d) depict
the results for the p-values of the ressampling test described
in Section 3.3 for the null hypothesis of no intervention effect
with the square or absolute value statistic, respectively. Panel (e)
presents the results for the p-values of the null hypothesis of no

idiosyncratic contribution. Table 7 presents, for each product,
the same descriptive statistics for the estimated elasticities and
the percentage difference between the estimated optimal price
and the current price. Contrary to what we show in Table 6, in
Table 7 we report only results with respect to the municipalities
where the estimated average effects have the correct sign
(positive when there is a price reduction and negative when
there is a price increase) and are statistically significant at the
10% level. The last column in the table shows the fraction of
municipalities where the above criterium is satisfied.

Additional results are displayed in Figures 3 and S.5–S.8 in
the supplementary material. For each product, Panel (a) in the
figures displays a fan plot of the p-values of the ressampling test
for the null hypothesis H0 : δt = 0 for each given t after the
treatment, using the test statistic φ(̂δt) = |̂δt|, which is the same
as using the test statistic δ̂2

t . The black curve represents the cross-
sectional median across time t. Panel (b) shows an example for
one municipality. The panel shows the actual and counterfactual
sales per store for the posttreatment period. 95% confidence
intervals for the counterfactual path are also displayed.
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Table 6. Results: estimation and inference.

Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0.1134 0.1949 0.3605 0.4913 0.6215 0.7542 0.9077 0.4865 0.1749
II 0.4669 0.7237 0.8744 0.9298 0.9552 0.9863 0.9959 0.8984 0.0926
III 0.1190 0.3094 0.5236 0.7101 0.8341 0.9278 0.9540 0.6750 0.1981
IV 0.4028 0.6744 0.8822 0.9327 0.9633 0.9865 0.9988 0.8972 0.1073
V 0.0366 0.0527 0.1040 0.1670 0.2795 0.4258 0.6517 0.1995 0.1260

Panel (b): average treatment effect (over time): �
Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I −18.9451 −16.3384 −7.7380 −3.2545 −1.1891 1.4580 3.8921 −4.8996 5.3115
II −44.4114 −26.8298 −14.6979 −7.2601 −3.6173 3.7216 42.2832 −9.0446 11.1052
III −48.6364 −17.2678 −6.3314 −2.5950 −0.6001 0.7309 9.0886 −4.8875 7.9211
IV −2.9729 −1.7697 −0.4535 0.2842 1.3057 3.7759 6.5858 0.5660 1.7131
V −1.5141 −0.9080 −0.4308 −0.1544 0.1455 0.6984 1.6005 −0.1440 0.4949

Panel (c): p-value of the test on squared values
Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0 0 0.0755 0.2468 0.5660 0.8623 0.9617 0.3338 0.2961
II 0 0.0091 0.0826 0.3409 0.6116 0.9331 1.0000 0.3774 0.2992
III 0 0 0.0809 0.2872 0.5702 0.9191 0.9702 0.3488 0.2913
IV 0 0 0.1178 0.3781 0.7149 0.9711 1.0000 0.4151 0.3292
V 0 0.0596 0.3021 0.6234 0.9234 1.0000 1.0000 0.5998 0.3285

Panel (d): p-value of the test on absolute values
Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0 0 0.0457 0.1660 0.6053 0.8894 0.9957 0.3093 0.3128
II 0 0 0.0620 0.2831 0.6074 0.9190 0.9917 0.3500 0.3059
III 0 0 0.0511 0.2383 0.5957 0.9174 0.9787 0.3333 0.3119
IV 0 0 0.0992 0.3988 0.6860 0.9463 1.0000 0.4113 0.3311
V 0 0.0553 0.2511 0.6553 0.9234 1.0000 1.0000 0.6006 0.3346

Panel (e): p-value of the test for idiosyncratic contribution
Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev
I 0 0 0.0120 0.0700 0.2415 0.6651 0.7380 0.1570 0.1975
II 0.0120 0.0232 0.0560 0.1400 0.2540 0.5012 0.7000 0.1819 0.1531
III 0 0 0.0140 0.0720 0.1480 0.3296 0.5100 0.1041 0.1155
IV 0.0140 0.0430 0.0970 0.1770 0.3050 0.4400 0.6900 0.2082 0.1365
V 0.0040 0.0120 0.1860 0.3340 0.5120 0.7680 0.8540 0.3524 0.2208

NOTE: The table reports estimation results. In each panel we report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average,
and standard deviation for a variety of different statistics. We consider the distribution over the treated municipalities. In Panel (a) we report the results for the R-squared
of the pre-intervention model. Panel (b) displays the results for the average intervention effect over the experiment period (�). Panels (c) and (d) depict the results for
the p-values of the ressampling test for the null hypothesis H0 : δt = 0, ∀t ∈ {T0 + 1, . . . , T} using respectively the test statistic φ(̂δT0+1, . . . , δ̂T ) = ∑T

t=T0+1 δ̂2
t or

φ(̂δT0+1, . . . , δ̂T ) = ∑T
t=T0+1 |̂δt|. Finally, Panel (e) reports the results for the p-values for the test for the idiosyncratic contribution.

Table 7. Results: elasticities and optimal prices.

Panel (a): elasticities
Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev Fraction

I −6.5063 −4.9033 −3.8701 −3.2394 −2.8788 −1.6952 −0.9111 −3.3737 1.0605 0.2887
II −17.6172 −15.9339 −12.4079 −9.2212 −5.3922 −2.1923 −1.7181 −9.1675 4.2633 0.2549
III −3.3421 −3.2692 −2.8714 −2.3356 −1.7182 −1.2854 −1.1852 −2.3187 0.6597 0.2642
IV −23.7060 −20.9949 −9.8284 −7.2089 −2.9208 −1.8260 −1.7398 −8.4089 6.2820 0.2100
V −43.7705 −43.7705 −24.8448 −19.7129 −9.8875 −3.6541 −3.6541 −20.3380 13.2366 0.0636

Panel (b): price discrepancies (% difference)
Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev Fraction
I −15.9781 −13.3710 −10.7336 −8.2254 −6.2937 7.0732 31.2139 −6.8061 8.4973 0.2887
II −21.4575 −21.1495 −20.2659 −18.8623 −15.0229 −1.1660 4.8060 −16.4801 6.3444 0.2549
III −10.3946 −10.0601 −7.9305 −3.9473 3.7551 13.5708 16.8302 −1.7678 7.6748 0.2642
IV −17.6040 −17.2995 −14.5927 −12.7773 −2.5345 7.7192 9.0263 −9.1644 8.3262 0.2100
V −18.5970 −18.5970 −17.7256 −17.2029 −13.4599 −6.0562 −6.0562 −15.2362 4.5547 0.0636

NOTE: The table reports elasticities estimates as well the percentage difference between the current prices and the optimal price maximizing profit. In each panel we
report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average, and standard deviation for a given statistic. We consider the
distribution over the selected treated municipalities. We only report results concerning the cities where the estimated � has the correct sign and the effects are statistical
significance at the 10% level. The last column indicates the fraction of cities that satisfy the criterium described above. In Panel (a) we report the results for the estimated
elasticities. In Panel (b) we show the results for the difference between the current price and the optimal price.

Several facts emerge from the results. First, the average R-
squared are quite high for Products II and IV and moderate
for Products I and III. This fact provides some evidence that,
on average, the estimated models are able to properly describe

the dynamics of the sales. For Products II and IV this finding is
even more pronounced as in the worst case, the R-squared are
0.4669 and 0.4028, respectively. On the other hand, the model
for Product V yields very low R-squared. A potential reason for
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Figure 3. Results for Product I.
Panel (a) displays a fan plot, across n1 municipalities in the treatment group, of the p-values of the resampling test for the null H0 : δt = 0 at each time t after the
treatment. The black curve represents the median p-value across municipalities over t. Panel (b) shows an example for one municipality. The panel depicts the actual and
counterfactual sales per store for the posttreatment period. 95% confidence intervals for the counterfactual path is also displayed.

the poor fit is the fact that sales per store of Product I are very
small and there are some municipalities that displays no sales in
some days.

The second finding is related to the estimation of the average
intervention effect (�). As expected, the estimated mean effects
(�̂) have the correct sign for Products I–IV, on average. For
Product I, � has the correct sign (negative) for 90% of the
municipalities and is statistically significant at the 10% level in
about 37% of all treated cities. Among the cities with �̂ > 0,
in only one we find statistical significance at the 10% level.
For Product II, �̂ has the correct sign for 89% of the treated
municipalities and the results are significant in about 33% of
all the treated cities. For Product III, the numbers are similar.
However, in none of the cities where � has been estimated with
the opposite sign, the effects are significant. For Product IV, the
estimated average treatment effect has the correct sign in 59% of
the cities. Fortunately, in the 41 cases where the estimates have
the wrong sign, the results are significant in only three of them.
For Product V the estimates have the correct sign in only 35% of
the cities. However, in only four cities the results with the wrong
sign are statistically significant at the 10% level. The reasons for
poor results concerning Product V are possibly twofold. First, as
mentioned before, the sales per store are quite small and the in-
sample fit is poor. Second, there was a stock problem around the
time of the experiment. Figure S.9 in the supplementary material
displays the evolution of the distribution of available product
units across municipalities. From the inspection of Panel (a)
in the figure it is clear that the distribution changes around
the experiment dates, pointing to large decrease in stocks for
Product V.

It is worth comparing the results in Panel (b) of Table 6
with the ones if we use the before-and-after (BA) estimator to
compute the average treatment effects. The BA estimator for
each municipality is just average sales over the period after the
intervention minus the average sales over the days before the
intervention. The results are reported in Table S.9 in the sup-

plementary material. As expected from our previous discussion,
the BA over estimates the effects of the price changes, specially
for Products I and II, and yields estimates with the wrong sign
for Product IV. For Product V, the BA estimates are even more
negative that the ones from the farmTreat methodology.

A final fact from the inspection of Panel (e) is that the contri-
bution of the idiosyncratic terms to construct the counterfactual
is statistically relevant in several cases.

Now we turn attention to Table 7. If we focus only on
the cities with estimated average effects that have the correct
sign and where the such effects are statistically significant,
we estimate very high elasticities on average; see Panel (a) in
Table 7. From Panel (b), we note that on average prices must be
decreased.

7. Conclusions

In this article we proposed a new method to estimate the effects
of interventions when there is potentially only one (or just a few)
treated units. The outputs of interest are observed over time for
both the treated and untreated units, forming a panel of time
series data. The untreated units are called peers and a counter-
factual to the output of interest in the absence of intervention
is constructed by writing a model relation the unit of interest to
the peers. The novelty of this paper concerns how this model is
constructed. We combine factor models with sparse regression
on the idiosyncratic components. This model includes both the
principal component regression and sparse regression on the
original measurements as specific cases. The main advantage of
our proposal is that we avoid the usual assumption of (approxi-
mate) sparsity and make model selection consistency conditions
easier to be satisfied. A formal test is also proposed to prove the
case for using the idiosyncratic components.

In terms of practical application we show how our method-
ology can be used to compute optimal prices for products
from the retail industry in Brazil. Our results indicate optimal
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prices substantially lower than the current prices adopted by the
company.
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