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Abstract

Yurinskii’s coupling is a popular tool for finite-sample distributional approximation in
mathematical statistics and applied probability, offering a Gaussian strong approximation for
sums of random vectors under easily verified conditions with an explicit rate of approximation.
Originally stated for sums of independent random vectors in `2-norm, it has recently been
extended to the `p-norm, where 1 ≤ p ≤ ∞, and to vector-valued martingales in `2-norm under
some rather strong conditions. We provide as our main result a generalization of all of the
previous forms of Yurinskii’s coupling, giving a Gaussian strong approximation for martingales in
`p-norm under relatively weak conditions. We apply this result to some areas of statistical theory,
including high-dimensional martingale central limit theorems and uniform strong approximations
for martingale empirical processes. Finally we give a few illustrative examples in statistical
methodology, applying our results to partitioning-based series estimators for nonparametric
regression, distributional approximation of `p-norms of high-dimensional martingales, and local
polynomial regression estimators. We address issues of feasibility, demonstrating implementable
statistical inference procedures in each section.
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1 Introduction

Yurinskii’s coupling (Yurinskii, 1978) has proven to be an important tool for developing non-
asymptotic distributional approximations in high-dimensional statistics and applied probability.
For a sum S of n independent zero-mean d-dimensional random vectors, this coupling technique
constructs (on a suitably enlarged probability space) a d-dimensional Gaussian vector T with the
same covariance structure as S (Var[S] = Var[T ]) and which is close to S in probability, bounding
the discrepancy ‖S − T‖ as a function of n, d, the norm used and some features of the underlying
distribution. See, for example, Pollard (2002, Chapter 10) for a textbook introduction.

When compared to other coupling approaches, such as the celebrated Hungarian construction
(Komlós et al., 1975) or Zaitsev’s coupling (Zaitsev, 1987a,b), Yurinskii’s coupling stands out
for its simplicity, robustness and wide applicability, while also offering tighter couplings in some
applications (see below for more discussion and examples). These features have led many authors to
use Yurinskii’s coupling to study the distributional features of high-dimensional statistical procedures
in a variety of settings, often with the end goal of developing uncertainty quantification or hypothesis
testing methods. For example, in recent years, Yurinskii’s coupling has been used (i) to construct
Gaussian approximations for the suprema of empirical processes (Chernozhukov et al., 2014b); (ii) to
establish distribution theory for non-Donsker stochastic t-processes generated in nonparametric series
regression (Belloni et al., 2015); (iii) to prove distributional approximations for high-dimensional
`p-norms (Biau and Mason, 2015); (iv) to derive a law of the iterated logarithm for stochastic
gradient descent optimization methods (Anastasiou et al., 2019); (v) to establish uniform distribution
theory for nonparametric high-dimensional quantile processes (Belloni et al., 2019); (vi) to develop
distribution theory for non-Donsker stochastic t-processes generated in partitioning-based series
regression (Cattaneo et al., 2020); (vii) to deduce Bernstein–von Mises theorems in high-dimensions
(Ray and van der Vaart, 2021); and (viii) to develop distribution theory for non-Donsker U-processes
based on dyadic network data (Cattaneo et al., 2022). There are also many other early applications
of Yurinskii’s coupling: Dudley and Philipp (1983) and Dehling (1983) establish invariance principles
for Banach space-valued random variables, and Le Cam (1988) and Sheehy and Wellner (1992)
obtain uniform Donsker results for empirical processes, to name just a few.

One limitation of Yurinskii’s coupling, which also afflicts the other coupling methods mentioned
above, is that it can only be applied to sums of independent random vectors. This paper addresses
said shortcoming by presenting a new Yurinskii coupling for sums of vector-valued martingale
differences (Hall and Heyde, 2014). We then harness this result to obtain general-purpose Gaussian
strong approximations for high-dimensional random vectors and stochastic processes based on
martingale data. A key feature of our Yurinskii coupling for martingales is that it does not impose
any restriction on the eigenvalues of the variance of the vector-valued martingale. As such, our
result improves upon that of Li and Liao (2020), who recently established a Yurinskii-type coupling
for martingales under the assumption that the minimum eigenvalue of the variance is bounded away
from zero. As discussed below, their possibly high-dimensional eigenvalue restriction can be difficult
or impossible to verify in some important applications.

The main coupling result of this paper (Theorem 1) is presented in Section 2, where we also
specialize it in a slightly weaker formulation, which is much easier to use (Proposition 1). Our
Yurinskii coupling for martingales is a strict generalization of all of the previous Yurinskii couplings
available in the literature, offering a Gaussian strong approximation for martingale vectors in `p-norm
with no assumptions on the spectrum of the variance matrix. The key innovation underlying the
proof of Theorem 1 is that we explicitly account for the possibility that the minimum eigenvalue of
the variance may be zero or that its lower bound may be unknown, with the argument proceeding
by means of a carefully tailored regularization. Proposition 1 then explicitly tunes the regularization
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parameter to obtain a simpler and regularization-free Yurinskii coupling for martingales. This
specialization of our main result takes an agnostic approach to potential singularities in the variance
of the martingale, and as such may be improved in specific applications where additional knowledge
of the covariance structure is available.

Section 3 illustrates the broad applicability of our Yurinskii coupling for martingale vectors
with two substantive applications to statistical theory. Firstly, we obtain a distributional Gaus-
sian approximation for possibly high-dimensional martingale vectors (Proposition 2). This result
complements a recent literature on probability and statistics studying the same problem but with
independent data (see Buzun et al., 2022; Chernozhukov et al., 2022, and references therein). Our
result also improves upon Belloni and Oliveira (2018) by offering a simpler central limit theorem
for high-dimensional martingales which is easier to apply. Secondly, we present a general-purpose
strong approximation for martingale empirical processes (Proposition 4), combining classical results
in the empirical process literature (van der Vaart and Wellner, 1996) with our Proposition 1. This
statement appears to be the first of its kind for martingale data, and when specialized to independent
data it is shown to be superior to the best known strong approximation result available in the
literature (Berthet and Mason, 2006). Our improvement comes from using Yurinskii’s coupling for
the `∞-norm, where Berthet and Mason (2006) apply Zaitsev’s coupling with the larger `2-norm.

Section 4 is dedicated to showcasing some more practical examples which build upon the preceding
theory. Firstly, we apply our main result (Proposition 1) directly to deduce a strong approximation
for partitioning-based least squares series estimators based on time series data, additionally imposing
only a mild mixing condition on the regressors. We show that our Yurinskii coupling for martingale
vectors delivers the same approximation rate as the best known rate for independent data, and
then discuss how the strong approximation can be leveraged to yield a feasible statistical inference
procedure. Secondly, we apply our martingale central limit theorem (Proposition 2) to deduce
Gaussian-based approximations of martingale `p-norms in Kolmogorov–Smirnov distance, relying on
recent results concerning Gaussian perimetric inequalities. Thirdly, we use our result on martingale
empirical processes (Proposition 4) to deduce a strong approximation for local polynomial estimators
(Fan and Gijbels, 1996) with time series data, again imposing a mild mixing assumption. The
bandwidth restrictions we require are relatively mild, and as far as we know have not been improved
upon even with independent data.

Finally, Section 5 concludes the paper. All proofs are collected in Appendix A, which also
includes other technical lemmas of potential independent interest.

1.1 Notation

We write ‖x‖p for p ∈ [1,∞] to denote the `p-norm if x is a (possibly random) vector or the induced
operator `p–`p norm if x is a matrix. For X a real-valued random variable and an Orlicz function
ψ, we use |||X|||ψ to denote the Orlicz ψ-norm (van der Vaart and Wellner, 1996, Section 2.2) and
|||X|||p for the Lp(P) norm where p ∈ [1,∞]. For a matrix M , we write ‖M‖max for the maximum
absolute entry and ‖M‖F for the Frobenius norm. We denote positive semi-definiteness by M � 0.

For scalar sequences xn and yn, write xn . yn if there exists a positive constant C such that
|xn| ≤ C|yn| for sufficiently large n. Write xn � yn to indicate both xn . yn and yn . xn, and
xn → x for limits. Similarly, for random variables Xn and Yn, write Xn .P Yn if for every ε > 0
there exists a positive constant C such that P(|Xn| ≤ C|Yn|) ≤ ε, and Xn →P X for limits in
probability. For real numbers a and b we use a ∨ b = max{a, b}.

Since our results concern couplings, some statements must be made on a new or enlarged
probability space. We omit the details of this for clarity of notation, but technicalities are handled
by the Vorob’ev–Berkes–Philipp Theorem (Dudley, 1999, Theorem 1.1.10).

3



2 Main results

We begin with our Yurinskii-type Gaussian strong approximation for vector-valued martingales in
`p-norm. Our main result is presented in Theorem 1 while Proposition 1 gives a simplified and
slightly weaker version which is easier to use in applications.

Theorem 1 (Strong approximation for martingale vectors)
Let X1, . . . , Xn be Rd-valued square-integrable random variables adapted to a filtration H1, . . . ,Hn,
with H0 the trivial σ-algebra. Suppose E[Xi | Hi−1] = 0 for all 1 ≤ i ≤ n and let Vi = Var[Xi | Hi−1].
Define the martingale S =

∑n
i=1Xi and let Σ = Var[S] and Ω =

∑n
i=1

(
Vi − E[Vi]

)
. Then for each

η > 0 and p ∈ [1,∞] there exists T ∼ N (0,Σ) such that

P
(
‖S − T‖p > 6η

)
≤ 2 inf

t>0

{
αp(t) +

βp
η3
t2
}

+ inf
M�0

{
2γ(M) + δp(M,η) + εp(M,η)

}
, (1)

where the second infimum is taken over all positive semi-definite d× d non-random matrices, and

αp(t) = P
(
‖Z‖p > t

)
, βp =

n∑
i=1

E
[
‖Xi‖22‖Xi‖p + ‖V 1/2

i Zi‖22‖V
1/2
i Zi‖p

]
,

γ(M) = P
(
Ω �M

)
, δp(M,η) = P

(∥∥((Σ +M)1/2 − Σ1/2
)
Z
∥∥
p
≥ η

)
,

εp(M,η) = P
(∥∥(M − Ω)1/2Z

∥∥
p
≥ η, Ω �M

)
,

with Z,Z1, . . . , Zn i.i.d. standard Gaussian variables on Rd independent of Hn.

The second term on the right-hand side of (1) controls for the randomness of the quadratic
variation

∑n
i=1 Vi. If this quantity is almost surely constant then Ω = 0 ∈ Rd×d a.s. and we may

take M = 0 ∈ Rd×d so that (1) simplifies to

P
(
‖S − T‖p > 6η

)
≤ 2 inf

t>0

{
αp(t) +

βp
η3
t2
}
.

If further Vi = E[Vi] almost surely for every 1 ≤ i ≤ n then we recover the same bound as for
independent random variables, namely Yurinskii’s coupling for p = 2 as in Yurinskii (1978) and
Pollard (2002, Theorem 10); and the more general version for p ∈ [1,∞] given by Belloni et al.
(2019, Lemma 38).

More broadly, the second term on the right-hand side of (1) emerges from a regularization
scheme designed to account for potential degeneracy of the variance Σ of the martingale. Setting
M = ν2Id in Theorem 1 and minimizing the right-hand side of (1) over t, ν > 0 yields the following
proposition, which is arguably the main result of our paper because of its simplicity and utility in
statistical applications.

Proposition 1 (Simplified strong approximation for martingale vectors)
Assume the setup of Theorem 1. For each η > 0 and p ∈ [1,∞] there exists T ∼ N (0,Σ) such that

P
(
‖S − T‖p > η

)
≤ 24

(
βpφp(d)2

η3

)1/3

+ 17

(
φp(d)

√
E[‖Ω‖2]
η

)2/3

where φp(d) =
√
pd2/p for p ∈ [1,∞) and φ∞(d) =

√
2 log 2d, and

βp =
n∑
i=1

E
[
‖Xi‖22‖Xi‖p + ‖V 1/2

i Zi‖22‖V
1/2
i Zi‖p

]
.
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In particular, this implies that

‖S − T‖p .P β1/3p φp(d)2/3 + φp(d)
√
E[‖Ω‖2].

The probability bound in Proposition 1 gives the same rate of strong approximation as that
in Theorem 1 of Li and Liao (2020) when p = 2. However we make no assumptions about the
non-degeneracy of S, whereas Li and Liao (2020) impose a lower bound on the eigenvalues of Σ.

In Section 4.1 we use Proposition 1 to obtain strong approximations for partitioning-based
series estimators in the nonparametric regression setting. Despite the fact that such estimators
are function-valued rather than vector-valued, Proposition 1 still applies due to a certain linear
separability property of the underlying structure of the estimators.

3 Applications to statistical theory

In Section 3.1 we present two substantive applications of our main result to high-dimensional central
limit theorems for martingales. Proposition 2 reduces the problem to that of establishing anti-
concentration results for Gaussian vectors and Proposition 3 demonstrates a feasible implementation
via the Gaussian multiplier bootstrap. In Section 3.2 we deduce results for strong approximation of
martingale empirical processes. These processes may be indexed by functions, and we state our
results in terms of metric entropy under Orlicz norms.

3.1 High-dimensional central limit theorems for martingales

We begin this section with some notation. Let A be a class of measurable subsets of Rd and
T ∼ N (0,Σ) be as in Theorem 1. For η > 0 and p ∈ [1,∞] define the Gaussian perimetric quantity

∆p(A, η) = sup
A∈A

{
P(T ∈ Aηp \A) ∨ P(T ∈ A \A−ηp )

}
,

where Aηp = {x ∈ Rd : ‖x−A‖p ≤ η} and A−ηp = Rd \ (Rd \A)ηp and ‖x−A‖p = infx′∈A ‖x− x′‖p.
Denote by Γp(η) the rate of strong approximation attained in Proposition 1:

Γp(η) = 24

(
βpφp(d)2

η3

)1/3

+ 17

(
φp(d)

√
E[‖Ω‖2]
η

)2/3

.

Proposition 2 (High-dimensional central limit theorem for martingales)
Assume the same setup as in Theorem 1. For any class A of measurable subsets of Rd,

sup
A∈A

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ ≤ inf

p∈[1,∞]
inf
η>0

{
Γp(η) + ∆p(A, η)

}
. (2)

Note that the term ∆p(A, η) in (2) is a Gaussian anti-concentration quantity so it depends on
the law of S only through the covariance matrix Σ. A few results are available in the literature for
bounding this term. For instance, in the case A = C = {A ⊆ R is convex}, Nazarov (2003) showed

∆2(C, η) � η
√
‖Σ−1‖F (3)

whenever Σ is invertible. Then Proposition 2 with p = 2 combined with (3) yields

sup
A∈C

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ . inf

η>0


(
β2d

η3

)1/3

+

(√
dE[‖Ω‖2]
η

)2/3

+ η‖Σ−1‖F

 . (4)
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Alternatively one can take A = R, the class of axis-aligned rectangles in Rd. By Nazarov’s
Gaussian perimetric inequality (Nazarov, 2003; Buzun et al., 2022),

∆∞(R, η) ≤ η(
√

2 log d+ 2)

σmin
(5)

if minj Σjj ≥ σ2min for some σmin > 0. Then Proposition 2 with p =∞ along with (5) yields

sup
A∈R

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ . inf

η>0


(
β∞ log 2d

η3

)1/3

+

(√
E[‖Ω‖2] log 2d

η

)2/3

+
η
√

log 2d

σmin

 . (6)

In situations where lim infn minj Σjj = 0, it may be possible in certain cases to regularize the
minimum variance away from zero and then apply a Gaussian–Gaussian rectangular approximation
result such as Lemma 2.1 from Chernozhukov et al. (2022).

The literature on Gaussian approximations for high-dimensional sums of independent random
vectors has developed rapidly in recent years (see Buzun et al., 2022; Chernozhukov et al., 2022,
and references therein). For example, if Xi are i.i.d. and bounded a.s. and if Var[Xi] has minimum
eigenvalue bounded away from zero, Chernozhukov et al. (2022, Theorem 2.1) recently showed

sup
A∈R

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ . (log d)5/2√

n
.

For comparison, under the same conditions, we have Ω = 0 by independence, β∞ . nd
√

log d and
σmin &

√
n; our closest comparable result (6) yields

sup
A∈R

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ . (d(log d)3√

n

)1/6

.

Thus our results are substantially weaker for i.i.d. data, an inherent issue due to our approach
of first constructing a coupling for the high-dimensional vector S and only then specializing to
a distributional approximation. In contrast, sharper results in the literature directly target the
distribution via Stein’s method and Slepian interpolation. The main contribution of this section is
therefore to obtain a Gaussian distributional approximation for sums of high-dimensional martingale
difference data, for which alternative high-dimensional central limit theorem proof strategies are not
readily available.

We remark that it may be possible to somewhat improve our approach to high-dimensional
central limit theorems by adjusting the proof of Theorem 1. If the family of sets under consideration
(e.g., the class of rectangles R) is substantially smaller than the family of Borel sets, one might be
able to improve the smoothing argument (Lemma 2) on this smaller class and skip the Strassen
argument entirely (Lemma 1).

Next, we present a version of Proposition 2 where the covariance matrix Σ is replaced by an
estimator Σ̂. This ensures that the associated conditionally Gaussian vector is feasible and can be
resampled, allowing Monte Carlo estimation with a Gaussian multiplier bootstrap.

Proposition 3 (Bootstrap central limit theorem for martingales)
Assume the same setup as in Theorem 1 and let Σ̂ be an X-measurable random d× d matrix which
is a.s. positive semi-definite, where X = (X1, . . . , Xn). For any class A of measurable subsets of Rd,

sup
A∈A

∣∣∣P(S ∈ A)− P(Σ̂1/2Z ∈ A
∣∣ X
)∣∣∣

≤ inf
p∈[1,∞]

inf
η>0

{
Γp(η) + 2∆p(A, η) + 2d exp

(
−η2

2d2/p
∥∥Σ̂1/2 − Σ1/2

∥∥2
2

)}
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where Z ∼ N (0, Id) is independent of X.

A natural choice for Σ̂ is the sample covariance matrix
∑n

i=1XiX
T
i . In general, whenever Σ̂

does not depend on unknown quantities, we can sample from the law of T̂ = Σ̂1/2Z conditional
on X to approximate the distribution of S. Proposition 3 verifies that this Gaussian multiplier
bootstrap approach is valid whenever Σ̂ and Σ are sufficiently close. To this end, Theorem X.1.1

in Bhatia (1997) gives
∥∥Σ̂1/2 − Σ1/2

∥∥
2
≤
∥∥Σ̂ − Σ

∥∥1/2
2

and Problem X.5.5 in Bhatia (1997) gives∥∥Σ̂1/2 − Σ1/2
∥∥
2
≤
∥∥Σ−1/2

∥∥
2

∥∥Σ̂− Σ
∥∥
2

when Σ is invertible. The latter often gives a tighter bound
when the minimum eigenvalue of Σ can be bounded away from zero.

In Section 4.2 we apply Proposition 2 to the special case of approximating the distribution of
the `p-norm of a high-dimensional martingale. Proposition 3 is then used to ensure that feasible
distributional approximations are also available.

3.2 Strong approximation for martingale empirical processes

Our next result gives a strong approximation for martingale empirical processes, obtained by
applying Proposition 1 with p = ∞ to a discretization of the empirical process. We control the
increments in the stochastic processes using chaining with Orlicz norms, but note that other tools
are available, including generalized entropy with bracketing (van de Geer, 2000) and sequential
symmetrization (Rakhlin et al., 2015).

A class of functions is said to be pointwise measurable if it contains a countable subclass which
is dense under the pointwise convergence topology. For a finite class F , we use the notation
F(x) =

(
f(x) : f ∈ F

)
. Define the set of Orlicz functions

Ψ =

{
ψ : [0,∞)→ [0,∞) convex nondecreasing, ψ(0) = 0, lim sup

x,y→∞

ψ(x)ψ(y)
ψ(Cxy) <∞ for some C

}
.

Proposition 4 (Strong approximation for martingale empirical processes)
Let Xi be random variables for 1 ≤ i ≤ n taking values in a measurable space X . Let F be a
pointwise measurable class of functions from X to R. For each i let Hi be a σ-algebra such that
X1, . . . , Xi are Hi-measurable, with H0 the trivial σ-algebra, and suppose that E[f(Xi) | Hi−1] = 0
for all f ∈ F . Define S(f) =

∑n
i=1 f(Xi) for f ∈ F and suppose that we have, for some non-random

metric d on F , constant L and ψ ∈ Ψ,∣∣∣∣∣∣S(f)− S(f ′)
∣∣∣∣∣∣
2

+
∣∣∣∣∣∣S(f)− S(f ′)

∣∣∣∣∣∣
ψ
≤ Ld(f, f ′). (7)

Then for all t, η > 0 there exists a zero-mean Gaussian process T (f) indexed by f ∈ F satisfying
E
[
S(f)S(f ′)

]
= E

[
T (f)T (f ′)

]
for all f, f ′ ∈ F and

P

(
sup
f∈F

∣∣S(f)− T (f)
∣∣ ≥ Cψ(t+ η)

)
≤ Cψ inf

δ>0
inf
Fδ

{
β
1/3
δ (log 2|Fδ|)1/3

η

+

(√
log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

+ ψ

(
t

LJψ(δ)

)−1
+ exp

(
−t2

L2J2(δ)2

)}

where Fδ is any finite δ-cover of (F , d) and Cψ is a constant depending only on ψ, with

βδ =
n∑
i=1

E
[
‖Fδ(Xi)‖22‖Fδ(Xi)‖∞ + ‖Vi(Fδ)1/2Zi‖22‖Vi(Fδ)1/2Zi‖∞

]
,
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Vi(Fδ) = E
[
Fδ(Xi)Fδ(Xi)

T | Hi−1
]
, Ωδ =

n∑
i=1

(
Vi(Fδ)− E[Vi(Fδ)]

)
,

Jψ(δ) =

∫ δ

0
ψ−1

(
Nε

)
dε+ δψ−1

(
Nδ

)
, J2(δ) =

∫ δ

0

√
logNε dε,

where Nδ = N(δ,F , d) is the δ-covering number of (F , d) and Zi are i.i.d. N (0, I|Fδ|) independent
of Hn. Note that if Fδ is a minimal δ-cover of (F , d) then |Fδ| = Nδ.

Proposition 4 is given in a rather general form to accommodate different settings and applications.
In particular, as is well known in the literature, consider the following common Orlicz functions.

Polynomial: ψ(x) = xa for a ≥ 2 has |||X|||2 ≤ |||X|||ψ and
√

log x ≤
√
aψ−1(x).

Exponential: ψ(x) = exp(xa)− 1 for a ∈ [1, 2] has |||X|||2 ≤ 2|||X|||ψ and
√

log x ≤ ψ−1(x).

Bernstein: ψ(x) = exp
((√

1+2ax−1
a

)2)
−1 for a > 0 has |||X|||2 ≤ (1+a)|||X|||ψ and

√
log x ≤ ψ−1(x).

For these Orlicz functions the first term in (7) can be controlled by bounding the second term;
similarly, J2 is bounded by Jψ. Further, Cψ can be replaced by a universal constant C which does
not depend on the parameter a. See Section 2.2 in van der Vaart and Wellner (1996) for details.

A similar approach was taken by Berthet and Mason (2006), who used a Gaussian coupling
due to Zaitsev (1987a,b) along with a discretization method to obtain strong approximations for
empirical processes with independent data. They handle fluctuations in the stochastic processes with
uniform L2 covering numbers and bracketing numbers where we opt for chaining with Orlicz norms.
Our version using the (martingale) Yurinskii coupling can improve upon theirs in approximation rate
for independent data under certain circumstances, as follows. Suppose the setup of Proposition 1 in
Berthet and Mason (2006); that is, X1, . . . , Xn are i.i.d. and supF ‖f‖∞ ≤ M , with the VC-type
assumption supQN(ε,F , dQ) ≤ c0ε−ν0 where dQ(f, f ′)2 = EQ

[
(f − f ′)2

]
for a measure Q on X and

M, c0, ν0 are constants. Then using uniform L2 covering numbers rather than Orlicz norm chaining
in our Proposition 4 gives the following. Firstly as Xi are i.i.d. we have Ωδ = 0. Let Fδ be a minimal
δ-cover of (F , dP) with cardinality Nδ where δ → 0. By Lemma 6 we have βδ . nδ−ν0

√
log(1/δ).

Theorem 2.14.1 and Theorem 2.2.8 in van der Vaart and Wellner (1996) give

E

[
sup

dP(f,f ′)≤δ

(
|S(f)− S(f ′)|+ |T (f)− T (f ′)|

)]
. sup

Q

∫ δ

0

√
n logN(ε,F , dQ) dε . δ

√
n log(1/δ)

where we used the VC-type property to bound the entropy integrals. Therefore

sup
f∈F

∣∣S(f)− T (f)
∣∣ .P n1/3δ−ν0/3√log(1/δ) + δ

√
n log(1/δ) .P n

2+ν0
6+2ν0

√
log n,

where we minimized over δ in the last step. In contrast, Berthet and Mason (2006) achieve

sup
f∈F

∣∣S(f)− T (f)
∣∣ .P n 5ν0

4+10ν0 (log n)
4+5ν0
4+10ν0 .

Comparing these shows that our approach achieves a better approximation rate whenever ν0 > 4/3.
In particular, our method is superior in richer function classes with larger VC-type dimension.
For example, if F is smoothly parametrized by θ ∈ Θ ⊆ Rd where Θ contains an open set, then
ν0 > 4/3 corresponds to d ≥ 2 and our rate is better as soon as the parameter space is more than
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one-dimensional. The difference in approximation rate is due to Zaitsev’s coupling having better
dependence on the sample size but worse dependence on the dimension. In particular, Zaitsev’s
coupling is stated only in `2-norm and hence Berthet and Mason (2006) are compelled to use the
inequality ‖·‖∞ ≤ ‖·‖2 in the coupling step, a bound which is loose when the dimension (here on the
order of δ−ν0) is even moderately large. We exploit the fact that our version of Yurinskii’s coupling
applies directly to the supremum norm, yielding much sharper dependence on the dimension.

A Gaussian multiplier bootstrap analog of Proposition 4 could be given to parallel Proposition 3,
but is omitted to conserve space; there is no fundamental innovation relative to Proposition 4 and
the statement would be cumbersome.

In Section 4.3 we apply Proposition 4 to obtain strong approximations for local polynomial
estimators in the nonparametric regression setting. In contrast with the series estimators of
Section 4.1, local polynomial estimators are not linearly separable and hence cannot be analyzed
directly using Proposition 1.

4 Illustrative examples

We illustrate the applicability of our previous results with three distinct examples. In the first, an
analysis of partitioning-based series estimators for nonparametric regression, we are able to apply
Proposition 1 directly due to the intrinsic linear separability of the estimator. The second relies on
Propositions 2 and 3 and concerns the distributional approximation of `p-norms of high-dimensional
martingale vectors. In the third and final example we consider local polynomial estimators for
nonparametric regression, using Proposition 4 due to the presence of a non-linearly separable
martingale empirical process.

4.1 Partitioning-based series estimators

Partitioning-based least squares methods are important tools for estimation and inference in nonpara-
metric regression, encompassing splines, piecewise polynomials, compactly supported wavelets and
decision trees as special cases. See Cattaneo et al. (2020) for details and references throughout this
section. We illustrate the usefulness of Proposition 1 by deriving a Gaussian strong approximation
for partitioning series estimators based on multivariate martingale data. Proposition 5 shows that
we achieve the best known rate of strong approximation for independent data by imposing an
additional mild α-mixing condition to control the time series dependence of the regressors.

Consider the nonparametric regression setup Yi = µ(Wi) + εi for 1 ≤ i ≤ n where the
regressors Wi have compact connected support W ⊆ Rm, Hi is the σ-algebra generated by
(W1, . . . ,Wi+1, ε1, . . . , εi), E[εi | Hi−1] = 0 and µ : W → R is the estimand. Let p(Wi) be a
k-dimensional vector of bounded basis functions on W which are locally-supported on a quasi-
uniform partition. Under minimal regularity conditions, the least-squares partitioning-based series
estimator is µ̂(w) = p(w)TĤ−1

∑n
i=1 p(Wi)Yi with Ĥ =

∑n
i=1 p(Wi)p(Wi)

T. The approximation
power of the estimator µ̂(w) derives from letting k → ∞ as n → ∞. With decision trees, for
example, p(w) is comprised of indicator functions over k axis-aligned rectangles forming a partition
of W (a Haar basis).

Our goal is to approximate the law of the stochastic process (µ̂(w)− µ(w) : w ∈ W), which is
not asymptotically tight and thus does not converge weakly. Nevertheless, exploiting the intrinsic
linearity of the estimator µ̂(w), we can apply Proposition 1 directly to construct a Gaussian strong
approximation. Specifically,

µ̂(w)− µ(w) = p(w)TH−1S + p(w)T
(
Ĥ−1 −H−1

)
S + Bias(w)

9



where H =
∑n

i=1 E[p(Wi)p(Wi)
T] is the regressor variance matrix, S =

∑n
i=1 p(Wi)εi is the score

vector and Bias(w) = p(w)TĤ−1
∑n

i=1 p(Wi)µ(Wi)− µ(w). Imposing some mild time series restric-

tions and assuming stationarity for simplicity, it is not difficult to show that ‖Ĥ −H‖2 .P
√
nk and

supw∈W |Bias(w)| .P k−γ for some γ > 0 depending on the specific structure of the basis functions,
the dimension m of the regressors and the smoothness of the regression function. Thus it remains
to study the mean-zero martingale S by applying Proposition 1 with Xi = p(Wi)εi. Controlling
the convergence of the quadratic variation term E[‖Ω‖2] also requires some time series dependence
assumptions; we impose an α-mixing condition on (W1, . . . ,Wn) for illustration.

Proposition 5 (Strong approximation for partitioning series estimators)
Consider the nonparametric regression setup described above and further assume the following:

(i) (Wi, εi)1≤i≤n is strictly stationary.

(ii) W1, . . . ,Wn is α-mixing with mixing coefficients satisfying
∑∞

j=1 α(j) <∞.

(iii) Wi has a Lebesgue density on W which is bounded above and away from zero.

(iv) E
[
|εi|3

]
<∞ and E

[
ε2i | Hi−1

]
= σ2(Wi) is bounded away from zero.

(v) p(w) forms a basis with k features satisfying Assumptions 2 and 3 in Cattaneo et al. (2020).

Then there exists a zero-mean Gaussian process G(w) indexed on W with Var[G(w)] � k
n satisfying

Cov[G(w), G(w′)] = Cov[p(w)TH−1S, p(w′)TH−1S] and

sup
w∈W

|µ̂(w)− µ(w)−G(w)| .P

√
k

n

(
k3(log k)3

n

)1/6

+ sup
w∈W

|Bias(w)|

provided that the number of basis functions satisfies k3/n→ 0.

The core of the proof of Proposition 5 involves applying Proposition 1 with S =
∑n

i=1 p(Wi)εi
to construct T ∼ N

(
0,Var[S]

)
such that ‖S − T‖∞ .P

(
n1/3 + (nk)1/4

)√
log k. So long as the bias

can be appropriately controlled, this result allows for uniform inference procedures such as uniform
confidence bands or shape specification testing. The condition k3/n→ 0 is the same (up to logs) as
that imposed by Cattaneo et al. (2020); we do not require any extra restrictions for α-mixing time
series compared with i.i.d. data. The assumptions made on p(w) are mild enough to accommodate
splines, wavelets, piecewise polynomials and decision trees constructed independently of the data.
Furthermore, in the case of martingale data, our result improves on Li and Liao (2020, Theorem 2)
by offering faster strong approximation rates under weaker sufficient conditions.

To illustrate the statistical applicability of Proposition 5, consider constructing a feasible uniform
confidence band for the regression function µ, using standardization and Studentization for statistical
power improvements. We assume throughout that the bias is negligible. Proposition 5 and anti-
concentration for Gaussian suprema (Chernozhukov et al., 2014a, Corollary 2.1) can be combined to
obtain a distributional approximation for the supremum statistic whenever k3(log n)6/n→ 0, giving

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)∣∣∣∣∣→ 0

where ρ(w,w′) = E[G(w)G(w′)]. Furthermore, using a Gaussian–Gaussian comparison result
(Chernozhukov et al., 2013, Lemma 3.1) and anti-concentration again, it is not difficult to show (see
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the proof of Proposition 5) that with W = (W1, . . . ,Wn) and Y = (Y1, . . . , Yn),

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t
∣∣∣∣ W,Y

)∣∣∣∣∣→P 0,

where Ĝ(w) is a zero-mean Gaussian process conditional on W and Y with conditional covariance

function ρ̂(w,w′) = E
[
Ĝ(w)Ĝ(w′) |W,Y

]
= p(w)TĤ−1V̂ar[S]Ĥ−1p(w′) for some estimator V̂ar[S]

satisfying k(logn)2

n

∥∥V̂ar[S] − Var[S]
∥∥
2
→P 0. For example, one could use the plug-in estimator

V̂ar[S] =
∑n

i=1 p(Wi)p(Wi)
Tσ̂2(Wi) where σ̂2(w) satisfies (log n)2 supw∈W |σ̂2(w) − σ2(w)| →P 0.

This leads to the following feasible and asymptotically valid 100(1− τ)% uniform confidence band
for partitioning-based series estimators based on martingale data:

P
(
µ(w) ∈

[
µ̂(w)± q̂(τ)

√
ρ̂(w,w)

]
for all w ∈ W

)
→ 1− τ

where

q̂(τ) = inf

{
t ∈ R : P

(
sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t ∣∣∣ W,Y

)
≥ τ

}
is the conditional quantile of the supremum of the Studentized Gaussian process. This quantile can
be estimated by Monte Carlo resampling, drawing from the conditional law of Ĝ(w) |W,Y with
an appropriate discretization of w ∈ W.

We take the opportunity here to compare our rate of strong approximation for series estimation
with that of Li and Liao (2020). Using the notation of our Theorem 1, they derive the martingale
Yurinskii coupling

‖S − T‖2 .P
√
drn + (Bnd)1/3

where Bn =
∑n

i=1 E[‖Xi‖32] and rn is a term controlling the convergence of the quadratic variation,
playing a similar role to our Ω term. Under the assumptions of our Proposition 5, applying this
result with S =

∑n
i=1 p(Wi)εi yields a rate no better than ‖S − T‖2 .P (nk)1/3. As such, they

attain a rate of strong approximation no faster than

sup
w∈W

|µ̂(w)− µ(w)−G(w)| .P

√
k

n

(
k5

n

)1/6

+ sup
w∈W

|Bias(w)|.

Hence for this approach to yield a valid strong approximation, the number of basis functions must
satisfy k5/n→ 0, a more restrictive assumption than our k3/n→ 0 (up to logs). This difference is
due to Li and Liao (2020) using the `2 version of Yurinskii’s coupling rather than the more recently
established `∞ version.

4.2 Distributional approximation of martingale `p-norms

In some empirical applications, including nonparametric significance tests (Lopes et al., 2020) and
nearest-neighbor search procedures (Biau and Mason, 2015), an estimator or test statistic can be
expressed (under the null hypothesis) as the `p-norm of a zero-mean martingale for some p ∈ [1,∞],
possibly in high dimension. In the notation of Theorem 1, it is therefore of interest to bound
quantities of the form

sup
t≥0

∣∣P(‖S‖p ≤ t)− P(‖T‖p ≤ t)
∣∣.
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We use this setup to illustrate the applicability of Propositions 2 and 3. Using the notation of
Section 3.1, let Bp be the class of closed `p-balls centered at the origin and set

∆p(η) = ∆p(Bp, η) = sup
t≥0
P(t < ‖T‖p ≤ t+ η).

Proposition 6 (Distributional approximation of martingale `p-norms)
Assume the setup of Theorem 1 and define Γp(η) as in Section 3.1. Then for T ∼ N (0,Σ),

sup
t≥0

∣∣P(‖S‖p ≤ t)− P (‖T‖p ≤ t)
∣∣ ≤ inf

η>0

{
Γp(η) + ∆p(η)

}
. (8)

The right-hand side of (8) can be controlled in various ways. For the case of p = 2, Götze et al.

(2019) give ∆2(η) . η‖Σ‖−1/2F . When p =∞, note that `∞-balls are rectangles so B∞ ⊆ R and (5)
applies so that ∆∞(η) ≤ η(

√
2 log d+ 2)/σmin whenever minj Σjj ≥ σ2min. More generally ∆p(η) can

be bounded using anti-concentration of the `p-norm of a Gaussian random vector whenever such
results are available. We note that alongside the `p-norms, other functionals can be analyzed in this
manner, including the maximum statistic and other order statistics (Kozbur, 2021).

To conduct inference in this situation, we need to feasibly approximate the quantiles of ‖S‖p.
To that end, take a significance level τ ∈ (0, 1) and define

q̂p(τ) = inf
{
t ∈ R : P(‖T̂‖p ≤ t | X) ≥ τ} where T̂ | X ∼ N (0, Σ̂),

with Σ̂ any X-measurable positive semi-definite estimator of Σ. Note that for the canonical estimator
Σ̂ =

∑n
i=1XiX

T
i we can write T̂ =

∑n
i=1XiZi with Z1, . . . , Zn i.i.d. standard Gaussian independent

of X, yielding the Gaussian multiplier bootstrap. Now assuming the law of ‖T̂‖p | X has no atoms,
we can apply Proposition 3 to see

sup
τ∈(0,1)

∣∣P (‖S‖p ≤ q̂p(τ))− τ
∣∣ ≤ E [sup

t≥0

∣∣P(‖S‖p ≤ t)− P(‖T̂‖p ≤ t | X)
∣∣]

≤ inf
η>0

{
Γp(η) + 2∆p(η) + 2dE

[
exp

(
−η2

2d2/p
∥∥Σ̂1/2 − Σ1/2

∥∥2
2

)]}

and hence the bootstrap is valid whenever ‖Σ̂1/2 −Σ1/2
∥∥2
2

is sufficiently small. See the discussion at
the end of Section 3.1 regarding methods for bounding this object.

Belloni and Oliveira (2018) obtained a central limit theorem for the maximum of a multivariate
martingale using a coupling due to Chernozhukov et al. (2014b). Assuming the martingale differences
Xi are bounded and the minimum eigenvalue of Var[T ]/n is bounded away from zero, using Markov’s
inequality to bound Vn − V (in their notation) and by Gaussian anti-concentration, their results
establish that for all η > 0,

sup
t∈R

∣∣∣∣P(max
1≤j≤d

Sj ≤ t
)
− P

(
max
1≤j≤d

Tj ≤ t
)∣∣∣∣ .

√
E[‖Ω‖2] log 2d

η
+
n(log 2d)7/2

η3
+ η

√
log 2d

n
,

requiring that E[‖Ω‖2]/n→ 0 up to logs whenever d is at most polynomial in n. On the other hand,
following the approach of our Proposition 6 gives

sup
t∈R

∣∣∣∣P(max
1≤j≤d

Sj ≤ t
)
− P

(
max
1≤j≤d

Tj ≤ t
)∣∣∣∣ . (nd)1/3

√
log 2d

η
+

(E[‖Ω‖2] log 2d)1/3

η2/3
+ η

√
log 2d

n
,

which requires both E[‖Ω‖2]/n → 0 and d2/n → 0 up to logs. While our assumptions are more
restrictive than those of Belloni and Oliveira (2018), our approach is valid not only for the maximum
statistic but also more generally for the `p-norm where 1 ≤ p ≤ ∞.
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4.3 Local polynomial estimators

As a third and final example we consider nonparametric regression estimation with martingale data
again but now employing classical local polynomial methods (Fan and Gijbels, 1996). In contrast
with the partitioning-based series methods of Section 4.1, local polynomial methods induce stochastic
processes which are not linearly separable, allowing us to show the applicability of Proposition 4.

As before, suppose that Yi = µ(Wi) + εi for 1 ≤ i ≤ n where Wi has compact connected
support W ⊆ Rm, Hi is the σ-algebra generated by (W1, . . . ,Wi+1, ε1, . . . , εi), E[εi | Hi−1] = 0 and
µ :W → R is the estimand. Let K be a kernel function on Rm and Kh(w) = h−mK(w/h) for some
bandwidth h > 0. Take γ ≥ 0 a fixed polynomial order and let k = (m+ γ)!/(m!γ!) be the number
of monomials. Using multi-index notation, let p(w) be the k-dimensional vector collecting the
monomials wν/ν! for 0 ≤ |ν| ≤ γ, where wν = wν11 · · ·wνmm and ν! = ν1 · · · νm and |ν| = ν1 + · · ·+νm.
Set ph(w) = p(w/h). The local polynomial regression estimator of µ(w) is

µ̂(w) = eT1 β̂(w) where β̂(w) = arg min
β∈Rk+1

n∑
i=1

(
Yi − ph(Wi − w)Tβ

)2
Kh(Wi − w),

with e1 ∈ Rk being the first standard unit vector.
The goal is again to approximate the distribution of the non-Donsker process (µ̂(w)− µ(w) :

w ∈ W), which can be decomposed as follows:

µ̂(w)− µ(w) = eT1H(w)−1S(w) + eT1
(
Ĥ(w)−1 −H(w)−1

)
S(w) + Bias(w)

where H(w) =
∑n

i=1 E[Kh(Wi − w)ph(Wi − w)ph(Wi − w)T], Ĥ(w) =
∑n

i=1Kh(Wi − w)ph(Wi −
w)ph(Wi − w)T, S(w) =

∑n
i=1Kh(Wi − w)ph(Wi − w)εi and Bias(w) = eT1 Ĥ(w)−1

∑n
i=1Kh(Wi −

w)ph(Wi−w)µ(Wi)−µ(w). A key distinctive feature of local polynomial regression is that both the
Ĥ(w) and S(w) are functions of the evaluation point w ∈ W; contrast this with the partitioning-
based series estimator discussed in Section 4.1 for which neither Ĥ nor S are functions of w.
Therefore we need to use Proposition 4 to obtain a Gaussian strong approximation.

Under some mild regularity conditions, including stationarity for simplicity and an α-mixing
assumption on the time-dependence of the data, we first show supw∈W ‖Ĥ(w) − H(w)‖2 .P√
nh−2m log n. Further, supw∈W |Bias(w)| .P hγ provided that the regression function is sufficiently

smooth. Thus it remains to analyze the martingale empirical process
(
eT1H(w)−1S(w) : w ∈ W

)
via

Proposition 4 by setting

F =
{

(Wi, εi) 7→ eT1H(w)−1Kh(Wi − w)ph(Wi − w)εi : w ∈ W
}
.

With this approach, we obtain the following result.

Proposition 7 (Strong approximation for local polynomial estimators)
Under the nonparametric regression setup described above, assume further that

(i) (Wi, εi)1≤i≤n is strictly stationary.

(ii) (Wi, εi)1≤i≤n is α-mixing with mixing coefficients α(j) ≤ e−2j/Cα for some constant Cα > 0.

(iii) Wi has a Lebesgue density on W which is bounded above and away from zero.

(iv) E
[
e|εi|/Cε

]
<∞ for some Cε > 0 and E

[
ε2i | Hi−1

]
= σ2(Wi) is bounded away from zero.

(v) K is a non-negative Lipschitz compactly supported kernel function satisfying
∫
K(w) dw = 1.
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Then there exists a zero-mean Gaussian process T (w) indexed on W with Var[T (w)] � 1
nhm satisfying

Cov[T (w), T (w′)] = Cov[eT1H(w)−1S(w), eT1H(w′)−1S(w′)] and

sup
w∈W

|µ̂(w)− µ(w)− T (w)| .P
1√
nhm

(
(log n)m+4

nh3m

) 1
2m+6

+ sup
w∈W

|Bias(w)|

provided that the bandwidth sequence satisfies nh3m →∞.

For completeness, the proof of Proposition 7 verifies that if the regression function µ(w) is
γ times continuously differentiable on W then supw |Bias(w)| .P hγ . Further, the assumption
that p(w) is a vector of monomials is unnecessary in general; any collection of bounded linearly
independent functions which exhibit appropriate approximation power will suffice (Eggermont and
LaRiccia, 2009). As such, we can encompass local splines and wavelets as well as polynomials, and
also choose whether or not to include interactions between the regressor variables. The bandwidth
restriction of nh3m →∞ is analogous to that imposed in Proposition 5 for partitioning-based series
estimators, and as far as we know has not been improved upon for martingale data. With i.i.d. data
in the multidimensional setting, a coupling due to Rio (1994) can offer improvements, while with
i.i.d. data in the one-dimensional setting (m = 1) the Komlós–Major–Tusnády coupling (Komlós
et al., 1975) may attain unimprovable strong approximation rates.

Applying an anti-concentration result for Gaussian process suprema, such as Corollary 2.1
in Chernozhukov et al. (2014a), allows one to write a Kolmogorov–Smirnov bound comparing
supw∈W |µ̂(w)− µ(w)| to supw∈W |T (w)|. With an appropriate covariance estimator, we can further

replace T (w) by a feasible version T̂ (w) or its Studentized counterpart, enabling procedures for
uniform inference analogous to the confidence bands constructed in Section 4.1. We omit the details
to conserve space. Chernozhukov et al. (2014b, Remark 3.1) achieve better rates for i.i.d. data in
Kolmogorov–Smirnov distance by bypassing the step where we first approximate the entire stochastic
process. Jacod et al. (2021) take a similar approach to us in first providing a strong approximation
for the t-statistic process and the deducing a coupling for the supremum t-statistic, in the context
of volatility estimation for semimartingales in financial asset pricing.

We finally remark that in this setting of kernel-based local empirical processes it is essential
that our initial strong approximation result (Theorem 1) does not impose a lower bound on the
eigenvalues of the variance matrix Σ. This is because the proof of Proposition 7 applies the Gaussian
coupling on a δ-cover Wδ of (W, ‖ · ‖2) where δ/h→ 0, and it is not clear how to control the size
of the smallest eigenvalue of the discretized covariance matrix Cov[µ̂(w), µ̂(w′)]w,w′∈Wδ

. As such,
the result of Li and Liao (2020) is unsuited for this application due to its minimum eigenvalue
assumption.

5 Conclusion

We introduced a new version of Yurinskii’s coupling which strictly generalizes all previous forms of the
result, giving a Gaussian strong approximation for martingale data in `p-norm where 1 ≤ p ≤ ∞. We
demonstrated the applicability of our main result to some areas of statistical theory, including high-
dimensional martingale central limit theorems and uniform strong approximations for martingale
empirical processes. We also gave illustrative examples in statistical methodology, applying our
results to partitioning-based series estimators, distributional approximation of `p-norms of high-
dimensional martingales, and local polynomial estimators. At each stage we addressed issues of
feasibility and provided implementable inference procedures.
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A Proofs

A.1 Main results

The proof of Theorem 1 depends on several auxiliary results. First, we require Strassen’s theorem for
the `p-norm (Pollard, 2002, Theorem 8), stated for completeness as Lemma 1. Next, we present an
analytic result about smooth approximation of indicator functions (Belloni et al., 2019, Lemma 39),
given as Lemma 2. We then establish Lemma 3, a Yurinskii-type coupling result for martingales with
non-random terminal quadratic variation. Our approach is similar to that used in modern versions
of Yurinskii’s coupling for independent data, as in Theorem 1 in Le Cam (1988) and Theorem 10 in
Pollard (2002). The proof of Theorem 1 relies on constructing a “modified” martingale, which is
close to the original martingale, but which has a non-random terminal quadratic variation. Lemma 3
is then applied to this modified martingale.

Lemma 1 (Strassen’s theorem for the p-norm)
Let PX and PY be Borel probability distributions on Rd and take η, ρ > 0 and p ∈ [1,∞]. There are
X ∼ PX and Y ∼ PY with

P
(
‖X − Y ‖p > η

)
≤ ρ ⇐⇒ PX(A) ≤ PY (Aη) + ρ for all Borel sets A.

Proof (Lemma 1)
By Theorem 8 in Pollard (2002), noting that every law on Rd is tight. �

Lemma 2 (Smooth approximation of indicator functions)
Let A ⊆ Rd be a Borel set and Z ∼ N (0, Id). For σ, η > 0 and p ∈ [1,∞] define

gA,η(x) =
(
1− η−1‖x−Aη‖p

)
∨ 0, fA,σ,η(x) = E [gA,η(x+ σZ)] .

Then for all x, y ∈ Rd,∣∣∣∣fA,σ,η(x+ y)− fA,σ,η(x)− yT∇fA,σ,η(x)− 1

2
yT∇2fA,σ,η(x)y

∣∣∣∣ ≤ ‖y‖22‖y‖pσ2η
, (9)

(1− ε)I
{
x ∈ A

}
≤ fA,σ,η(x) ≤ ε+ (1− ε)I

{
x ∈ A3η

}
(10)

where ε = P(‖Z‖p > η/σ).

Proof (Lemma 2)
See Lemma 39 in Belloni et al. (2019). �

Lemma 3 (Strong approximation for martingale vectors with non-random quadratic variation)
Let X1, . . . , Xn be Rd-valued random variables adapted to a filtration H1, . . . ,Hn, with H0 the trivial
σ-algebra. Suppose that E[Xi | Hi−1] = 0 for each 1 ≤ i ≤ n. Let Vi = Var[Xi | Hi−1] and assume it
exists and is finite. Suppose that

∑n
i=1 Vi = Σ almost surely where Σ ∈ Rd×d is non-random. Then

for each δ > 0 and p ∈ [1,∞] there exists T ∼ N (0,Σ) such that

P
(
‖S − T‖p > 3δ

)
≤ inf

t>0

{
2αp(t) +

βp
δ3
t2
}
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where

αp(t) = P
(
‖Z‖p > t

)
, βp =

n∑
i=1

E
[
‖Xi‖22‖Xi‖p + ‖V 1/2

i Zi‖22‖V
1/2
i Zi‖p

]
with Z,Z1, . . . , Zn i.i.d. standard Gaussian on Rd independent of Hn.

Proof (Lemma 3)

Let Z1, . . . , Zn be i.i.d. N (0, Id) and independent of X1, . . . , Xn. Define X̃i = V
1/2
i Zi and S̃ =∑n

i=1 X̃i. Fix a Borel set A ⊆ Rd and σ, η > 0 and let f = fA,σ,η be the function defined in Lemma 2.
By the Lindeberg method, write the telescoping sum

E
[
f(S)− f(S̃)

]
=

n∑
i=1

E
[
f(Yi +Xi)− f(Yi + X̃i)

]
where Yi = X1 + · · ·+Xi−1 + X̃i+1 + · · ·+ X̃n. Take second-order Taylor expansions to obtain

E
[
f(Yi +Xi)

]
= E

[
f(Yi)

]
+ E

[
XT
i ∇f(Yi)

]
+

1

2
E
[
XT
i ∇2f(Yi)Xi

]
+Ri1,

E
[
f(Yi + X̃i)

]
= E

[
f(Yi)

]
+ E

[
X̃T
i ∇f(Yi)

]
+

1

2
E
[
X̃T
i ∇2f(Yi)X̃i

]
+Ri2

where Ri1 and Ri2 denote the Taylor approximation errors. Subtracting the expressions yields

E
[
f(Yi +Xi)− f(Yi + X̃i)

]
= E

[
(Xi − X̃i)

T∇f(Yi)
]

+
1

2
E
[
XT
i ∇2f(Yi)Xi − X̃T

i ∇2f(Yi)X̃i

]
+Ri1 −Ri2 (11)

and we now bound each term on the right-hand side. Define

Ỹi = X1 + · · ·+Xi−1 + (Vi+1 + · · ·+ Vn)1/2 Zi

= X1 + · · ·+Xi−1 + (Σ− (V1 + · · ·+ Vi))
1/2 Zi

and let Gi be the σ-algebra generated by Hi−1 and Zi. Note that Ỹi is Gi-measurable and that Yi
and Ỹi have the same distribution conditional on Hn. Also Zi is zero-mean and independent of Xi,
Yi and Vi and Xi is a martingale difference sequence with respect to Gi. So for the first term in (11),

E
[
(Xi − X̃i)

T∇f(Yi)
]

= E
[
XT
i ∇f(Ỹi)

]
− E[Zi]

TE
[
V

1/2
i ∇f(Yi)

]
= E

[
E[Xi | Gi]T∇f(Ỹi)

]
− 0 = 0.

For the second term in (11) by conditioning on Hi−1 and Yi we have

E
[
X̃T
i ∇2f(Yi)X̃i

]
= E

[
Tr∇2f(Yi)X̃iX̃

T
i

]
= E

[
Tr∇2f(Yi)E[X̃iX̃

T
i | Hi−1]

]
= E

[
Tr∇2f(Yi)Vi

]
and, by the same properties used above,

E
[
XT
i ∇2f(Yi)Xi

]
= E

[
Tr∇2f(Ỹi)E[XiX

T
i | Gi]

]
= E

[
Tr∇2f(Yi)Vi)

]
.

Hence the second term also vanishes. For the third and fourth terms in (11), we use (9) to obtain

|Ri1|+ |Ri2| ≤
1

σ2η

(
E
[
‖Xi‖22‖Xi‖p

]
+ E

[
‖X̃i‖22‖X̃i‖p

])
.
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Combining the three terms and summing over i yields

E
[
f(S)− f(S̃)

]
≤ 1

σ2η

n∑
i=1

(
E
[
‖Xi‖22‖Xi‖p

]
+ E

[
‖X̃i‖22‖X̃i‖p

])
=

βp
σ2η

.

Along with (10) we conclude that

P(S ∈ A) = E
[
I{S ∈ A} − f(S)

]
+ E

[
f(S)− f(S̃)

]
+ E

[
f(S̃)

]
≤ εP(S ∈ A) +

βp
σ2η

+ ε+ (1− ε)P
(
S̃ ∈ A3η

)
≤ P

(
S̃ ∈ A3η

)
+ 2ε+

βp
σ2η

.

Set σ = η/t for t > 0 to obtain

P(S ∈ A) ≤ P
(
S̃ ∈ A3η

)
+ 2P

(
‖Z‖p > t

)
+
βp
η3
t2.

Finally, since S̃ =
∑n

i=1 V
1/2
i Zi ∼ N (0,Σ) by the non-random quadratic variation property,

Strassen’s theorem (Lemma 1) ensures the existence of S and T ∼ N (0,Σ) such that

P(‖S − T‖p > 3η) ≤ inf
t>0

{
2αp(t) +

βp
η3
t2
}
.

�

Proof (Theorem 1)
Part 1: constructing the modified martingale
Take M � 0 a fixed positive semi-definite d× d matrix. We start by constructing a new martingale
based on S whose quadratic variation is non-random and equals Σ +M . Take m ≥ 1 and define

Hk =

n∑
i=1

E[Vi]−
k∑
i=1

Vi +M, τ = sup
{
k ∈ {0, 1, . . . , n} : Hk � 0

}
,

X̃i = XiI{i ≤ τ}+
1√
m
H1/2
τ ZiI{n+ 1 ≤ i ≤ n+m}, S̃ =

n+m∑
i=1

X̃i,

where Zn+1, . . . Zn+m is an i.i.d. sequence of standard Gaussian vectors in Rd independent of Hn.
Also define the filtration (Gi : 1 ≤ i ≤ n+m), where Gi = Hi for 0 ≤ i ≤ n and Gi is the σ-algebra
generated by Fn and Zn+1, . . . , Zi for n+ 1 ≤ i ≤ n+m.

We now show that S̃ satisfies the conditions of Lemma 3 with terminal quadratic variation
Σ+M . Firstly, τ is a stopping time with respect to Fi. To see this note that Hi+1−Hi = −Vi+1 � 0
almost surely so that {τ ≤ i} = {Hi+1 � 0} for 0 ≤ i < n. This depends only on V1, . . . , Vi+1 which
are Hi-measurable. Similarly, {τ = n} = {Hn � 0} ∈ Hn−1.

Next, Hτ is Hn-measurable so X̃i is Gi-measurable for every 1 ≤ i ≤ n + m. Further, by the
martingale difference property of Xi, we have E

[
X̃i | Gi−1

]
= I{i ≤ τ}E[Xi | Hi−1] = 0 for 1 ≤ i ≤ n

and E
[
X̃i | Gi−1

]
= m−1/2H

1/2
τ E[Zi | Gi−1] = 0 for n + 1 ≤ i ≤ n + m. So X̃i form martingale

differences with respect to Gi.
Finally, let Ṽi = E

[
X̃iX̃

T
i | Gi−1

]
so that Ṽi = ViI{i ≤ τ} for 1 ≤ i ≤ n and Ṽi = Hτ/m

for n + 1 ≤ i ≤ n + m. Thus the terminal quadratic variation is
∑n+m

i=1 Ṽi =
∑τ

i=1 Vi + Hτ =∑n
i=1 E[Vi] +M = Σ +M by definition of Hτ .
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Part 2: Gaussian coupling for the modified martingale

By Lemma 3 with p ∈ [1,∞] and η > 0, there is a random vector T̃ ∼ N (0,Σ + M) (on some
probability space) such that

P
(
‖S̃ − T̃‖p > 3η

)
≤ inf

t<0

{
2αp(t) +

β̃p
η3
t2

}
,

with αp(t) as defined in Lemma 3 and

β̃p =

n∑
i=1

E
[
‖X̃i‖22‖X̃i‖p + ‖Ṽ 1/2

i Zi‖22‖Ṽ
1/2
i Zi‖p

]
+

1

m3/2

n+m∑
i=n+1

E
[
‖H1/2

τ Zi‖22‖H1/2
τ Zi‖p

]
.

Clearly, for the first term (1 ≤ i ≤ n) we have ‖X̃i‖p ≤ ‖Xi‖p and ‖Ṽ 1/2Zi‖p ≤ ‖V 1/2
i Zi‖p, while the

second term is equal to m−1/2E
[
‖H1/2

τ Z‖22‖H
1/2
τ Z‖p

]
where Z is an independent standard Gaussian

variable. Since Hi is weakly decreasing under the semi-definite partial order, we have Hτ � H0

implying that maxj |(Hτ )jj | ≤ ‖H0‖max. Write qZ = H
1/2
τ Z so max1≤j≤d E

[
qZ2
j | Hn

]
≤ ‖H0‖max

and E
[
| qZj |3

]
≤
√

8/π ‖H0‖3/2max. Hence as p ≥ 1,

E
[
‖H1/2

τ Z‖22‖H1/2
τ Z‖p

]
≤ E

[
‖ qZ‖31

]
≤ d3 max

1≤j≤d
E
[
| qZj |3

]
≤ d3

√
8/π ‖H0‖3/2max.

We may assume that βp =
∑n

i=1 E[‖Xi‖22‖Xi‖p + ‖V 1/2
i Zi‖22‖V

1/2
i Zi‖p] is finite as otherwise the

theorem is vacuous. Take m ≥ 8d6‖H0‖3max/(πβ
2
p) so that β̃p ≤ 2βp and

P
(
‖S̃ − T̃‖p > 3η

)
≤ 2 inf

t>0

{
αp(t) +

βp
η3
t2
}
. (12)

Part 3: bounding the difference between the original and modified martingales
By the triangle inequality,

‖S − S̃‖p ≤

∥∥∥∥∥
n∑

i=τ+1

Xi

∥∥∥∥∥
p

+

∥∥∥∥∥ 1√
m

m∑
i=n+1

H1/2
τ Zi

∥∥∥∥∥
p

.

The first term on the right vanishes on {τ = n} = {Hn � 0} = {Ω � M}. For the second

term, note that 1√
m

∑m
i=n+1H

1/2
τ Zi is distributed as H

1/2
τ Z, where Z is an independent standard

Gaussian variable. Also P
(
‖H1/2

τ Z‖p > η
)
≤ P

(
‖H1/2

n Z‖p > η, Ω � M) + P
(
Ω � M

)
, where we

used {Ω �M} = {τ = n}. Therefore

P
(
‖S − S̃‖p > 2η

)
≤ 2P

(
Ω �M

)
+ P

(
‖(M − Ω)1/2Z‖p > η, Ω �M

)
. (13)

Part 4: conclusion

We will show how to write T̃ = (Σ + M)1/2W where W ∼ N (0, Id) and use this representation
to construct T . By the spectral theorem, let Σ + M = UΛUT where U is a d × d orthogonal
matrix and Λ is a diagonal d × d matrix with diagonal entries satisfying λ1 ≥ · · · ≥ λr > 0 and
λr+1 = · · · = λd = 0 where r = rank(Σ + M). Let Λ+ be the Moore–Penrose pseudo-inverse

of Λ (obtained by simply inverting its non-zero elements) and define W = U(Λ+)1/2UTT̃ + UW̃ ,

where the first r elements of W̃ are zero and the last d− r elements are i.i.d. N (0, 1) independent
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from T̃ . Then it is easy to check that W ∼ N (0, Id) and that T̃ = (Σ + M)1/2W . Now define
T = Σ1/2W ∼ N (0,Σ) so that

P
(
‖T − T̃‖p > η

)
= P

(∥∥((Σ +M)1/2 − Σ1/2
)
W
∥∥
p
> η

)
. (14)

Finally (12), (13), (14), the triangle inequality and a union bound conclude the proof since by taking
an infimum over M � 0,

P
(
‖S − T‖p > 6η

)
≤ P

(
‖S̃ − T̃‖p > 3η

)
+ P

(
‖S − S̃‖p > 2η

)
+ P

(
‖T − T̃‖p > η

)
≤ 2 inf

t>0

{
αp(t) +

βp
η3
t2
}

+ inf
M�0

{
2γ(M) + δ(M,η) + ε(M,η)

}
.

�

Before proving Proposition 1 we provide an `p-norm bound for Gaussian variables in Lemma 4.

Lemma 4 (Gaussian p-norm bound)
Let X ∼ N (0,Σ) where Σ ∈ Rd×d is positive semi-definite. Then

E [‖X‖p] ≤ φp(d) max
1≤j≤d

√
Σjj

where φp(d) =
√
pd2/p for p ∈ [1,∞) and φ∞(d) =

√
2 log 2d.

Proof (Lemma 4)

For p ∈ [1,∞), since each Xj is Gaussian, we have
(
E
[
|Xj |p

])1/p ≤√pE[X2
j ] =

√
pΣjj . Therefore

E
[
‖X‖p

]
≤

 d∑
j=1

E
[
|Xj |p

]1/p

≤

 d∑
j=1

pp/2Σ
p/2
jj

1/p

≤
√
pd2/p max

1≤j≤d

√
Σjj .

For p =∞, with σ2 = maxj Σjj , for t > 0,

E
[
‖X‖∞

]
≤ t log

d∑
j=1

E
[
e|Xj |/t

]
≤ t log

d∑
j=1

E
[
2eXj/t

]
≤ t log(2deσ

2/(2t2)) ≤ t log 2d+
σ2

2t
.

Setting t = σ√
2 log 2d

gives E
[
‖X‖∞

]
≤ σ
√

2 log 2d. �

Proof (Proposition 1)
We set M = ν2Id and bound each term appearing on the right-hand side of (1).

Part 1: bounding αp(t)
By Markov’s inequality and Lemma 4, we have αp(t) = P

(
‖Z‖p > t

)
≤ E[‖Z‖p]/t ≤ φp(d)/t.

Part 2: bounding γ(M)
With M = ν2Id and by Markov’s inequality, γ(M) = P

(
Ω �M

)
= P

(
‖Ω‖2 > ν2

)
≤ ν−2E[‖Ω‖2].

Part 3: bounding δ(M,η)
By Markov’s inequality and Lemma 4, using maxj |Mjj | ≤ ‖M‖2 for M � 0,

δp(M,η) = P
(∥∥((Σ +M)1/2 − Σ1/2

)
Z
∥∥
p
≥ η

)
≤ φp(d)

η

∥∥(Σ +M)1/2 − Σ1/2
∥∥
2
.

For semi-definite matrices the eigenvalue operator commutes with smooth matrix functions so

‖(Σ +M)1/2 − Σ1/2‖2 = max
1≤j≤d

∣∣∣∣√λj(Σ) + ν2 −
√
λj(Σ)

∣∣∣∣ ≤ ν
and hence δp(M,η) ≤ φp(d)ν/η.
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Part 4: bounding ε(M,η)

Since (M − Ω)1/2Z is a centered Gaussian conditional on Hn and {Ω �M}, We have by Markov’s
inequality, Lemma 4 and Jensen’s inequality that

εp(M,η) = P
(∥∥(M − Ω)1/2Z

∥∥
p
≥ η, Ω �M

)
≤ 1

η
E
[
I{Ω �M}E

[∥∥(M − Ω)1/2Z
∥∥
p
| Hn

]]
≤ φp(d)

η
E
[
I{Ω �M} max

1≤j≤d

√
(M − Ω)jj

]
≤ φp(d)

η
E
[√
‖M − Ω‖2

]
≤ φp(d)

η
E
[√
‖Ω‖2 + ν

]
≤ φp(d)

η

(√
E[‖Ω‖2] + ν

)
.

Part 5: conclusion
Thus by Theorem 1 and the previous parts,

P
(
‖S − T‖p > 6η

)
≤ 2 inf

t>0

{
αp(t) +

βp
η3
t2
}

+ inf
M�0

{
2γ(M) + δ(M,η) + ε(M,η)

}
≤ 2 inf

t>0

{
φp(d)

t
+
βp
η3
t2
}

+ inf
ν>0

{
2E[‖Ω‖2]

ν2
+

2φp(d)ν

η

}
+
φp(d)

√
E[‖Ω‖2]
η

.

Balancing the terms by setting t = φp(d)1/3β
−1/3
p η and ν = E[‖Ω‖2]1/3φp(d)−1/3η1/3 yields

P
(
‖S − T‖p > 6η

)
≤ 4

(
βpφp(d)2

η3

)1/3

+ 4

(
φp(d)

√
E[‖Ω‖2]
η

)2/3

+
φp(d)

√
E[‖Ω‖2]
η

.

The result follows by noting that either the last term is greater than one, in which case the result is
vacuous, or it is less than one and is dominated by the second term. Finally replace η by η/6. �

A.2 Applications to statistical theory

Proof (Proposition 2)
This follows from Strassen’s theorem (Lemma 1), but we provide a proof for completeness. Note

P(S ∈ A) ≤ P(T ∈ A) + P(T ∈ Aηp \A) + P(‖S − T‖ > η)

and applying this to Rd \A gives

P(S ∈ A) = 1− P(S ∈ Rd \A)

≥ 1− P(T ∈ Rd \A)− P(T ∈ (Rd \A)ηp \ (Rd \A))− P(‖S − T‖ > η)

= P(T ∈ A)− P(T ∈ A \A−ηp )− P(‖S − T‖ > η).

Since this holds for all p ∈ [1,∞],

sup
A∈A

∣∣P(S ∈ A)− P(T ∈ A)
∣∣ ≤ sup

A∈A

{
P(T ∈ Aηp \A) ∨ P(T ∈ A \A−ηp )

}
+ P(‖S − T‖ > η)

≤ inf
p∈[1,∞]

inf
η>0

{
Γp(η) + ∆p(A, η)

}
.

�

Before proving Proposition 3 we give a Gaussian–Gaussian `p-norm approximation as Lemma 5.
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Lemma 5 (Gaussian–Gaussian approximation in p-norm)
Let Σ1,Σ2 ∈ Rd×d be positive semi-definite and take Z ∼ N (0, Id). For p ∈ [1,∞] we have

P
(∥∥∥(Σ

1/2
1 − Σ

1/2
2

)
Z
∥∥∥
p
> t

)
≤ 2d exp

(
−t2

2d2/p
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥2
2

)
.

Proof (Lemma 5)
Let Σ ∈ Rd×d be positive semi-definite and write σ2j = Σjj . For p ∈ [1,∞) by a union bound and
Gaussian tail probabilities,

P
(∥∥∥Σ1/2Z

∥∥∥
p
> t

)
= P

 d∑
j=1

∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣p > tp

 ≤ d∑
j=1

P

(∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣p > tpσpj
‖σ‖pp

)

=
d∑
j=1

P

(
|σjZj |p >

tpσpj
‖σ‖pp

)
=

d∑
j=1

P
(
|Zj | >

t

‖σ‖p

)
≤ 2d exp

(
−t2

2‖σ‖2p

)
.

The same result holds for p =∞ since

P
(∥∥∥Σ1/2Z

∥∥∥
∞
> t
)

= P
(

max
1≤j≤d

∣∣∣∣(Σ1/2Z
)
j

∣∣∣∣ > t

)
≤

d∑
j=1

P
(∣∣∣∣(Σ1/2Z

)
j

∣∣∣∣ > t

)

=
d∑
j=1

P (|σjZj | > t) ≤ 2
d∑
j=1

exp

(
−t2

2σ2j

)
≤ 2d exp

(
−t2

2‖σ‖2∞

)
.

Now we apply this with the matrix Σ =
(
Σ
1/2
1 − Σ

1/2
2

)2
. For p ∈ [1,∞),

‖σ‖pp =

d∑
j=1

(Σjj)
p/2 =

d∑
j=1

((
Σ
1/2
1 − Σ

1/2
2

)2)p/2
jj
≤ d max

1≤j≤d

((
Σ
1/2
1 − Σ

1/2
2

)2)p/2
jj

≤ d
∥∥∥(Σ1/2

1 − Σ
1/2
2

)2∥∥∥p/2
2

= d
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥p
2

Similarly for p =∞ we have

‖σ‖∞ = max
1≤j≤d

(Σjj)
1/2 = max

1≤j≤d

((
Σ
1/2
1 − Σ

1/2
2

)2)1/2
jj
≤
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥
2
.

Thus for all p ∈ [1,∞] we have ‖σ‖p ≤ d1/p
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥
2
, with d1/∞ = 1 by convention. Hence

P
(∥∥∥(Σ

1/2
1 − Σ

1/2
2

)
Z
∥∥∥
p
> t

)
≤ 2d exp

(
−t2

2‖σ‖2p

)
≤ 2d exp

(
−t2

2d2/p
∥∥Σ

1/2
1 − Σ

1/2
2

∥∥2
2

)
.

�

Proof (Proposition 3)
Since T = Σ1/2Z is independent of X,∣∣∣P(S ∈ A)− P(Σ̂1/2Z ∈ A

∣∣ X
)∣∣∣

≤
∣∣P(S ∈ A)− P(T ∈ A)∣∣+

∣∣∣P(Σ1/2Z ∈ A
)
− P

(
Σ̂1/2Z ∈ A

∣∣ X
)∣∣∣ .
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The first term is bounded by Proposition 2 and the second by applying Lemma 5 conditional on X.∣∣∣P(S ∈ A)− P(Σ̂1/2Z ∈ A
∣∣ X
)∣∣∣

≤ Γp(η) + ∆p(A, η) + ∆p′(A, η′) + 2d exp

(
−η′2

2d2/p′
∥∥Σ̂1/2 − Σ1/2

∥∥2
2

)
for all A ∈ A and any p, p′ ∈ [1,∞] and η, η′ > 0. Taking a supremum over A and infima over p = p′

and η = η′ yields the result. Note that we need not insist that p = p′ and η = η′ in general. �

Proof (Proposition 4)
Let Fδ be a δ-cover of (F , d). Using a union bound, we can write

P

(
sup
f∈F

∣∣S(f)− T (f)
∣∣ ≥ 2t+ η

)
≤ P

(
sup
f∈Fδ

∣∣S(f)− T (f)
∣∣ ≥ η)

+ P

(
sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣ ≥ t)+ P

(
sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣ ≥ t) .

Part 1: bounding the error on Fδ
We apply Proposition 1 with p =∞ to the martingale difference sequence Fδ(Xi) =

(
f(Xi) : f ∈ Fδ

)
which takes values in R|Fδ|. Square integrability can be assumed as otherwise βδ = ∞. Note∑n

i=1Fδ(Xi) = S(Fδ) and φ∞(Fδ) ≤
√

2 log 2|Fδ|. Therefore there exists a Gaussian vector T (Fδ)
with the same covariance structure as S(Fδ) satisfying

P

(
sup
f∈Fδ

∣∣S(f)− T (f)
∣∣ ≥ η) ≤ 24β

1/3
δ

√
2 log 2|Fδ|

2/3

η
+ 17

(√
2 log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

.

Part 2: bounding the fluctuations in S(f)
Since

∥∥S(f)− S(f ′)
∥∥
ψ
≤ Ld(f, f ′), by Theorem 2.2.4 in van der Vaart and Wellner (1996)∥∥∥∥∥ sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣∥∥∥∥∥
ψ

≤ CψL
(∫ δ

0
ψ−1(Nε) dε+ δψ−1(Nδ)

2

)
= CψLJψ(δ).

Then by Markov’s inequality and the definition of the Orlicz norm,

P

(
sup

d(f,f ′)≤δ

∣∣S(f)− S(f ′)
∣∣ ≥ t) ≤ ψ( t

CψLJψ(δ)

)−1
.

Part 3: bounding the fluctuations in T (f)
By the Vorob’ev–Berkes–Philipp theorem (Dudley, 1999), T (Fδ) extends to a Gaussian process
T (f). Firstly since

∣∣∣∣∣∣T (f)− T (f ′)
∣∣∣∣∣∣
2
≤ Ld(f, f ′) and T (f) is a Gaussian process, we have

∥∥T (f)−
T (f ′)

∥∥
ψ2
≤ 2Ld(f, f ′) by van der Vaart and Wellner (1996, Chapter 2.2, Complement 1), where

ψ2(x) = exp(x2)− 1. Thus again by Theorem 2.2.4 in van der Vaart and Wellner (1996),∥∥∥∥∥ sup
d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣∥∥∥∥∥
ψ2

≤ C1L

∫ δ

0

√
logNε dε = C1LJ2(δ)

for some universal constant C1 > 0, where we used ψ−12 (x) =
√

log(1 + x) and monotonicity of
covering numbers. Then by Markov’s inequality and the definition of the Orlicz norm,

P

(
sup

d(f,f ′)≤δ

∣∣T (f)− T (f ′)
∣∣ ≥ t) ≤ (exp

(
t2

C2
1L

2J2(δ)2

)
− 1

)−1
∨ 1 ≤ 2 exp

(
−t2

C2
1L

2J2(δ)2

)
.
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Part 4: conclusion
The result follows by combining the parts, scaling t and η and enlarging constants if necessary. �

A.3 Illustrative examples

Before proving the results of Section 4, we provide a useful result (Lemma 6) which helps bound the
βp term from Theorem 1 in applications. We also include for completeness some variance bounds
(Lemma 7) and exponential inequalities (Lemma 8) for α-mixing random variables.

Lemma 6 (A useful Gaussian inequality)
Let X ∼ N (0,Σ) where σ2j = Σjj ≤ σ2 for all 1 ≤ j ≤ d. Then

E
[
‖X‖22‖X‖∞

]
≤ 4σ

√
log 2d

d∑
j=1

σ2j .

Proof (Lemma 6)

By the Cauchy–Schwarz inequality, E
[
‖X‖22‖X‖∞

]
≤ E

[
‖X‖42

]1/2E[‖X‖2∞]1/2. For the first term,
by Cauchy–Schwarz and the fourth moment of a normal distribution,

E
[
‖X‖42

]
= E

[( d∑
j=1

X2
j

)2
]

=
d∑
j=1

d∑
k=1

E
[
X2
jX

2
k

]
≤
( d∑
j=1

√
E
[
X4
j

])2

= 3

( d∑
j=1

σ2j

)2

.

For the second term, by Jensen’s inequality and the χ2 moment generating function,

E
[
‖X‖2∞

]
= E

[
max
1≤j≤d

X2
j

]
≤ 4σ2 log

d∑
j=1

E
[
eX

2
j /(4σ

2)
]
≤ 4σ2 log

d∑
j=1

√
2 ≤ 4σ2 log 2d.

�

Lemma 7 (Variance bounds for α-mixing random variables)
Let X1, . . . , Xn be real-valued α-mixing random variables with mixing coefficients α(j). Then

(i) If for constants Mi we have |Xi| ≤Mi a.s. then

Var

[
n∑
i=1

Xi

]
≤ 4

∞∑
j=1

α(j)

n∑
i=1

M2
i .

(ii) If α(j) ≤ e−2j/Cα then for any r > 2 there is a constant Cr depending only on r such that

Var

[
n∑
i=1

Xi

]
≤ CrCα

n∑
i=1

E
[
|Xi|r

]2/r
.

Proof (Lemma 7)
Define α−1(t) = inf{j ∈ N : α(j) ≤ t} and Qi(t) = inf{s ∈ R : P(|Xi| > s) ≤ t}. By Corollary 1.1 in
Rio (2017) and Hölder’s inequality for r > 2,

Var

[
n∑
i=1

Xi

]
≤ 4

n∑
i=1

∫ 1

0
α−1(t)Qi(t)

2 dt ≤ 4

n∑
i=1

(∫ 1

0
α−1(t)

r
r−2 dt

) r−2
r
(∫ 1

0
|Qi(t)|r dt

) 2
r

dt.
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Now note that if U ∼ U(0, 1) then Qi(U) has the same distribution as Xi. Therefore

Var

[
n∑
i=1

Xi

]
≤ 4

(∫ 1

0
α−1(t)

r
r−2 dt

) r−2
r

n∑
i=1

E[|Xi|r]
2
r .

If α(j) ≤ e−2j/Cα then α−1(t) ≤ −Cα log t
2 so for some constant Cr depending only on r,

Var

[
n∑
i=1

Xi

]
≤ 2Cα

(∫ 1

0
(− log t)

r
r−2 dt

) r−2
r

n∑
i=1

E[|Xi|r]
2
r ≤ CrCα

n∑
i=1

E[|Xi|r]
2
r .

Alternatively, if for constants Mi we have |Xi| ≤Mi a.s. then

Var

[
n∑
i=1

Xi

]
≤ 4

∫ 1

0
α−1(t) dt

n∑
i=1

M2
i ≤ 4

∞∑
j=1

α(j)

n∑
i=1

M2
i .

�

Proof (Proposition 5)
We proceed according to the decomposition given in Section 4.1. By stationarity and Lemma SA-2.1
in Cattaneo et al. (2020), we have supw ‖p(w)‖1 . 1 and also ‖H‖1 . n/k and ‖H−1‖1 . k/n.

Part 1: bounding β∞
Set Xi = p(Wi)εi so S =

∑n
i=1Xi and set σ2i = σ2(Wi) and Vi = Var[Xi | Hi−1] = σ2i p(Wi)p(Wi)

T.
Recall from Theorem 1 that

β∞ =
n∑
i=1

E
[
‖Xi‖22‖Xi‖∞ + ‖V 1/2

i Zi‖22‖V
1/2
i Zi‖∞

]
with Zi ∼ N (0, 1) i.i.d. and independent of Vi. For the first term we use Hölder’s inequality, the
fact that supw ‖p(w)‖2 . 1 and bounded third moments of εi:

E
[
‖Xi‖22‖Xi‖∞

]
≤ E

[
‖Xi‖32

]2/3 E [‖Xi‖3∞
]1/3 ≤ E [‖p(Wi)εi‖32

]2/3 E [‖p(Wi)εi‖3∞
]1/3

≤ E
[
|εi|3

]
. 1.

For the second term, we apply Lemma 6 conditionally on Hn and again use supw ‖p(w)‖2 . 1 to see

E
[
‖V 1/2

i Zi‖22‖V
1/2
i Zi‖∞

]
≤ 4
√

log 2k E

 max
1≤j≤k

(Vi)
1/2
jj

k∑
j=1

(Vi)jj


≤ 4
√

log 2k E

σ3i max
1≤j≤k

p(Wi)j

k∑
j=1

p(Wi)
2
jj


≤ 4
√

log 2k E
[
σ3i
]
.
√

log 2k.

Putting these together yields

β∞ . n
√

log 2k.
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Part 2: bounding Ω

Set Ω =
∑n

i=1

(
Vi − E[Vi]

)
as in Theorem 1 so Ω =

∑n
i=1

(
σ2i p(Wi)p(Wi)

T − E
[
σ2i p(Wi)p(Wi)

T
] )

.
Observe that Ωjl is the sum of a zero-mean strictly stationary α-mixing sequence and so E[Ω2

jl] . n
by Lemma 7(i). Since the basis functions satisfy Assumption 3 in Cattaneo et al. (2020), Ω has a
bounded number of non-zero entries in each row, and so by Jensen’s inequality

E [‖Ω‖2] ≤ E [‖Ω‖F] ≤

 k∑
j=1

k∑
l=1

E
[
Ω2
jl

]1/2

.
√
nk.

Note that we could have controlled ‖ · ‖2 more tightly by using ‖ · ‖1 rather than ‖ · ‖F, but this
term will be seen to be negligible either way.

Part 3: strong approximation
By Proposition 1 and the previous parts,

‖S − T‖∞ .P β1/3∞ (log 2k)1/3 +
√

log 2k
√
E[‖Ω‖2] .P n1/3

√
log 2k + (nk)1/4

√
log 2k.

by Hölder’s inequality and with ‖H−1‖1 . k/n we have

sup
w∈W

∣∣∣p(w)TH−1S − p(w)TH−1T
∣∣∣ ≤ sup

w∈W
‖p(w)‖1‖H−1‖1‖S − T‖∞

. n−1k
(
n1/3

√
log 2k + (nk)1/4

√
log 2k

)
. n−2/3k

√
log 2k + n−3/4k5/4

√
log 2k.

Part 4: convergence of Ĥ

We have Ĥ −H =
∑n

i=1

(
p(Wi)p(Wi)

T − E
[
p(Wi)p(Wi)

T
] )

. Observe that (Ĥ −H)jl is the sum of

a zero-mean strictly stationary α-mixing sequence and so E[(Ĥ −H)2jl] . n by Lemma 7(i). Since

the basis functions satisfy Assumption 3 in Cattaneo et al. (2020), Ĥ −H has a bounded number of
non-zero entries in each row and so by Jensen’s inequality

E
[
‖Ĥ −H‖1

]
= E

max
1≤i≤k

k∑
j=1

∣∣(Ĥ −H)ij
∣∣ ≤ E

 ∑
1≤i≤k

(
k∑
j=1

|(Ĥ −H)ij |

)2
1/2

.
√
nk.

Part 5: bounding the matrix term

Note ‖Ĥ−1‖1 ≤ ‖H−1‖1 + ‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1 so by the previous part, we deduce that

‖Ĥ−1‖1 ≤
‖H−1‖1

1− ‖Ĥ −H‖1‖H−1‖1
.P

k/n

1−
√
nk k/n

.P
k

n

as k3/n→ 0. Also, note that by the martingale structure, since p(Wi) is bounded and supported on
a region with volume at most of the order 1/k, and as Wi has a Lebesgue density,

Var[Tj ] = Var[Sj ] = Var

[
n∑
i=1

εip(Wi)j

]
=

n∑
i=1

E
[
σ2i p(Wi)

2
j

]
.
n

k
.
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So by the Gaussian maximal inequality in Lemma 4, ‖T‖∞ .P
√

n log 2k
k . Therefore

sup
w∈W

∣∣∣p(w)T(Ĥ−1 −H−1)S
∣∣∣ ≤ sup

w∈W
‖p(w)T‖1‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1‖S − T‖∞

+ sup
w∈W

‖p(w)T‖1‖Ĥ−1‖1‖Ĥ −H‖1‖H−1‖1‖T‖∞

.P
k

n

√
nk
k

n

(
n1/3

√
log 2k + (nk)1/4

√
log 2k

)
+
k

n

√
nk
k

n

√
n log 2k

k

.P
k2

n

√
log 2k

since k3/n→ 0.

Part 6: conclusion of the main result

By the previous parts, with G(w) = p(w)TH−1T ,

sup
w∈W

∣∣∣µ̂(w)− µ(w)− p(w)TH−1T
∣∣∣

= sup
w∈W

∣∣∣p(w)TH−1(S − T ) + p(w)T(Ĥ−1 −H−1)S + Bias(w)
∣∣∣

.P n
−2/3k

√
log 2k + n−3/4k5/4

√
log 2k +

k2

n

√
log 2k + sup

w∈W
|Bias(w)|

.P n
−2/3k

√
log 2k + sup

w∈W
|Bias(w)|

since k3/n → 0. Finally, we verify the upper and lower bounds on the variance of the Gaussian
process. Since σ2(w) is bounded above,

Var[G(w)] = p(w)TH−1 Var

[
n∑
i=1

p(Wi)εi

]
H−1p(w)

= p(w)TH−1E

[
n∑
i=1

p(Wi)p(Wi)
Tσ2(Wi)

]
H−1p(w)

. ‖p(w)‖22‖H−1‖22‖H‖2 . k/n.

Similarly, since σ2(w) is bounded away from zero,

Var[G(w)] & ‖p(w)‖22‖H−1‖22‖H−1‖−12 & k/n.

Part 7: infeasible supremum approximation
Provided that the bias is negligible, for all s > 0 we have

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)
− P

(
sup
w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)∣∣∣∣∣

≤ sup
t∈R

P

(
t ≤ sup

w∈W

∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t+ s

)
+ P

(
sup
w∈W

∣∣∣∣∣ µ̂(w)− µ(w)−G(w)√
ρ(w,w)

∣∣∣∣∣ > s

)
.

By the Gaussian anti-concentration result given as Corollary 2.1 in Chernozhukov et al. (2014a)
applied to a discretization of W, the first term is at most s

√
log n up to a constant factor, and

the second term converges to zero whenever 1
s

(
k3(log k)3

n

)1/6
→ 0. Thus a suitable value of s exists

whenever k3(logn)6

n → 0.
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Part 8: feasible supremum approximation
By Chernozhukov et al. (2013, Lemma 3.1) and discretization, with ρ(w,w′) = E[ρ̂(w,w′)],

sup
t∈R

∣∣∣∣∣P
(

sup
w∈W

∣∣∣∣∣ Ĝ(w)√
ρ̂(w,w)

∣∣∣∣∣ ≤ t
∣∣∣∣W,Y

)
− P

(∣∣∣∣∣ G(w)√
ρ(w,w)

∣∣∣∣∣ ≤ t
)∣∣∣∣∣

.P sup
w,w′∈W

∣∣∣∣∣ ρ̂(w,w′)√
ρ̂(w,w)ρ̂(w′, w′)

− ρ(w,w′)√
ρ(w,w)ρ(w′, w′)

∣∣∣∣∣
1/3

(log n)2/3

.P
(n
k

)1/3
sup

w,w′∈W
|ρ̂(w,w′)− ρ(w,w′)|1/3(log n)2/3

.P

(
n(log n)2

k

)1/3

sup
w,w′∈W

∣∣∣p(w)TĤ−1
(

V̂ar[S]−Var[S]
)
Ĥ−1p(w′)

∣∣∣1/3
.P

(
k(log n)2

n

)1/3 ∥∥∥V̂ar[S]−Var[S]
∥∥∥1/3
2

,

and goes to zero in probability whenever k(logn)2

n

∥∥V̂ar[S]−Var[S]
∥∥
2
→P 0. For the plug-in estimator,

∥∥∥V̂ar[S]−Var[S]
∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

p(Wi)p(W
T
i )σ̂2(Wi)− nE

[
p(Wi)p(W

T
i )σ2(Wi)

]∥∥∥∥∥
2

.P sup
w∈W

|σ̂2(w)− σ2(w)|
∥∥Ĥ∥∥

2

+

∥∥∥∥∥
n∑
i=1

p(Wi)p(W
T
i )σ2(Wi)− nE

[
p(Wi)p(W

T
i )σ2(Wi)

]∥∥∥∥∥
2

.P
n

k
sup
w∈W

|σ̂2(w)− σ2(w)|+
√
nk,

where the second term is bounded by the same argument used to bound ‖Ĥ − H‖1. Thus the

feasible approximation is valid whenever (log n)2 supw∈W |σ̂2(w)− σ2(w)| →P 0 and k3(logn)4

n → 0.

Recall that the infeasible version requires that also k3(logn)6

n → 0. �

Proof (Proposition 6)
Applying Proposition 2 with A = Bp gives

sup
t≥0

∣∣P(‖S‖p ≤ t)− P (‖T‖p ≤ t)
∣∣ = sup

A∈Bp

∣∣P(S ∈ A)− P(T ∈ A)
∣∣

≤ inf
η>0

{
Γp(η) + ∆p(Bp, η)

}
≤ inf

η>0

{
Γp(η) + ∆p(η)

}
.

�

Lemma 8 (Exponential inequalities for α-mixing random variables)
Let X1, . . . , Xn be zero-mean real-valued random variables with α-mixing coefficients α(j) ≤ e−2j/Cα .

(i) Suppose |Xi| ≤M a.s. for each 1 ≤ i ≤ n. Then for all t > 0 there is a constant C1 such that

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > C1M
(√
nt+ (log n)(log log n)t

))
≤ C1e

−t.
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(ii) Suppose further that
∑n

j=1 |Cov[Xi, Xj ]| ≤ σ2. Then for all t > 0 there is a constant C2 with

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ C2

(
(σ
√
n+M)

√
t+M(log n)2t

))
≤ C2e

−t.

Proof (Lemma 8)
We apply results from Merlevède et al. (2009), adjusting constants where necessary.

(i) By Theorem 1 in Merlevède et al. (2009),

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ exp

(
− C1t

2

nM2 +Mt(log n)(log log n)

)
.

Replace t by M
√
n
√
t+M(log n)(log logn)t.

(ii) By Theorem 2 in Merlevède et al. (2009),

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤ exp

(
− C2t

2

nσ2 +M2 +Mt(log n)2

)
.

Replace t by σ
√
n
√
t+M

√
t+M(log n)2t.

�

Proof (Proposition 7)
We apply Proposition 4 with the metric d(fw, fw′) = ‖w − w′‖2 and the function class

F =
{

(Wi, εi) 7→ eT1H(w)−1Kh(Wi − w)ph(Wi − w)εi : w ∈ W
}
,

with ψ chosen as a suitable Bernstein Orlicz function.

Part 1: bounding H(w)−1

Recall that H(w) =
∑n

i=1 E[Kh(Wi−w)ph(Wi−w)ph(Wi−w)T] and let a(w) ∈ Rk with ‖a(w)‖2 = 1.
Since the density of Wi is bounded away from zero on W,

a(w)TH(w)a(w) = nE
[(
a(w)Tph(Wi − w)

)2
Kh(Wi − w)

]
& n

∫
W

(
a(w)Tph(u− w)

)2
Kh(u− w) du & n

∫
W−w
h

(
a(w)Tp(u)

)2
K(u) du.

This is continuous in a(w) on the compact set ‖a(w)‖2 = 1 and p(u) forms a polynomial basis so
a(w)Tp(u) has finitely many zeroes. Since K(u) is compactly supported and h → 0, the above
integral is eventually strictly positive for all x ∈ W, and hence is bounded below uniformly in
w ∈ W by a positive constant. Therefore supw∈W ‖H(w)−1‖2 . 1/n.
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Part 2: bounding βδ
Let Fδ be a δ-cover of (F , d) with cardinality |Fδ| � δ−m and let Fδ(Wi, εi) =

(
f(Wi, εi) : f ∈ Fδ

)
.

Define the truncated errors ε̃i = εiI{−a log n ≤ εi ≤ b log n} and note that E
[
e|εi|/Cε

]
<∞ implies

that P(∃i : ε̃i 6= εi) . n1−(a∨b)/Cε . Hence, by choosing a and b large enough, with high probability,
we can replace all εi by ε̃i. Further, it is always possible to increase either a or b along with some
randomization to ensure that E[ε̃i] = 0. Since K is bounded and compactly supported, Wi has a
bounded density and |ε̃i| . log n,∣∣∣∣∣∣f(Wi, ε̃i)

∣∣∣∣∣∣
2

= E
[∣∣∣eT1H(w)−1Kh(Wi − w)ph(Wi − w)ε̃i

∣∣∣2]1/2
≤ E

[
‖H(w)−1‖22Kh(Wi − w)2‖ph(Wi − w)‖22σ2(Wi)

]1/2
. n−1E

[
Kh(Wi − w)2

]1/2
. n−1h−m/2,∣∣∣∣∣∣f(Wi, ε̃i)

∣∣∣∣∣∣
∞ ≤

∣∣∣∣∣∣‖H(w)−1‖2Kh(Wi − w)‖ph(Wi − w)‖2|ε̃i|
∣∣∣∣∣∣
∞

. n−1
∣∣∣∣∣∣Kh(Wi − w)

∣∣∣∣∣∣
∞ log n . n−1h−m log n.

Therefore

E
[
‖Fδ(Wi, ε̃i)‖22‖Fδ(Wi, ε̃i)‖∞

]
≤
∑
f∈Fδ

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣2
2

max
f∈Fδ

∣∣∣∣∣∣f(Wi, ε̃i)
∣∣∣∣∣∣
∞ . n

−3δ−mh−2m log n.

Let Vi(Fδ) = E
[
Fδ(Wi, ε̃i)Fδ(Wi, ε̃i)

T | Hi−1
]

and Zi ∼ N (0, Id) be i.i.d. and independent of Hn.
Note that Vi(f, f) = E[f(Wi, ε̃i)

2 |Wi] . n−2h−2m and E[Vi(f, f)] = E[f(Wi, ε̃i)
2] . n−2h−m. Thus

by Lemma 6,

E
[∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞] = E

[
E
[∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞ | Hn]]

≤ 4
√

log 2|Fδ|E

[
max
f∈Fδ

√
Vi(f, f)

∑
f∈Fδ

Vi(f, f)

]
. n−3h−2mδ−m

√
log(1/δ).

Thus since log(1/δ) � log(1/h) � log n,

βδ =
n∑
i=1

E
[
‖Fδ(Wi, ε̃i)‖22‖Fδ(Wi, ε̃i)‖∞ +

∥∥Vi(Fδ)1/2Zi∥∥22∥∥Vi(Fδ)1/2Zi∥∥∞] . log n

n2h2mδm
.

Part 3: bounding Ωδ

Let CK > 0 be the radius of a `2-ball containing the support of K and note that∣∣Vi(f, f ′)∣∣ =
∣∣∣E [eT1H(w)−1ph(Wi − w)eT1H(w′)−1ph(Wi − w′)Kh(Wi − w)Kh(Wi − w′)ε̃2i

∣∣∣ Hi−1]∣∣∣
. n−2Kh(Wi − w)Kh(Wi − w′) . n−2h−mKh(Wi − w)I{‖w − w′‖2 ≤ 2CKh}.

Since Wi are α-mixing with α(j) < e−2j/Cα , Lemma 7(ii) with r = 3 gives

Var

[
n∑
i=1

Vi(f, f
′)

]
.

n∑
i=1

E
[
|Vi(f, f ′)|3

]2/3
. n−3h−2mE

[
Kh(Wi − w)3

]2/3 I{‖w − w′‖2 ≤ 2CKh}
. n−3h−2m(h−2m)2/3I{‖w − w′‖2 ≤ 2CKh}
. n−3h−10m/3I{‖w − w′‖2 ≤ 2CKh}.
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Therefore, by Jensen’s inequality,

E
[
‖Ωδ‖2

]
≤ E

[
‖Ωδ‖F

]
≤ E

[ ∑
f,f ′∈Fδ

(Ωδ)
2
f,f ′

]1/2
≤

 ∑
f,f ′∈Fδ

Var

[
n∑
i=1

Vi(f, f
′)

]1/2

. n−3/2h−5m/3

 ∑
f,f ′∈Fδ

I{‖w − w′‖2 ≤ 2CKh}

1/2

. n−3/2h−5m/3
(
hmδ−2m

)1/2
. n−3/2h−7m/6δ−m.

Note that we could have used ‖ · ‖1 rather than ‖ · ‖F, but this term is negligible either way.

Part 4: regularity of the stochastic processes
For each f, f ′ ∈ F , define the mean-zero and α-mixing random variables

ui(f, f
′) =

(
eT1H(w)−1Kh(Wi − w)ph(Wi − w)− eT1H(w′)−1Kh(Wi − w′)ph(Wi − w′)

)
ε̃i.

To bound this we use that for all 1 ≤ j ≤ k, by the Lipschitz property of the kernel and monomials,∣∣Kh(Wi − w)−Kh(Wi − w′)
∣∣ . h−m−1‖w − w′‖2(I{‖Wi − w‖ ≤ CKh}+ I{‖Wi − w′‖ ≤ CKh}

)
,∣∣ph(Wi − w)j − ph(Wi − w′)j

∣∣ . h−1‖w − w′‖2,
to deduce that for any 1 ≤ j, l ≤ k,∣∣H(w)jl −H(w′)jl

∣∣
=
∣∣nE [Kh(Wi − w)ph(Wi − w)jph(Wi − w)l −Kh(Wi − w′)ph(Wi − w′)jph(Wi − w′)l

]∣∣
≤ nE

[∣∣Kh(Wi − w)−Kh(Wi − w′)
∣∣ |ph(Wi − w)jph(Wi − w)l|

]
+ nE

[∣∣ph(Wi − w)j − ph(Wi − w′)j
∣∣ ∣∣Kh(Wi − w′)ph(Wi − w)l

∣∣]
+ nE

[∣∣ph(Wi − w)l − ph(Wi − w′)l
∣∣ ∣∣Kh(Wi − w′)ph(Wi − w′)j

∣∣]
. nh−1‖w − w′‖2.

Therefore as the dimension of the matrix H(w) is fixed,

∥∥H(w)−1 −H(w′)−1
∥∥
2
≤
∥∥H(w)−1

∥∥
2

∥∥H(w′)−1
∥∥
2

∥∥H(w)−H(w′)
∥∥
2
.
‖w − w′‖2

nh
.

Hence ∣∣ui(f, f ′)∣∣ ≤ ∥∥H(w)−1Kh(Wi − w)ph(Wi − w)−H(w′)−1Kh(Wi − w′)ph(Wi − w′)ε̃i
∥∥
2

≤
∥∥H(w)−1 −H(w′)−1

∥∥
2

∥∥Kh(Wi − w)ph(Wi − w)ε̃i
∥∥
2

+
∣∣Kh(Wi − w)−Kh(Wi − w′)

∣∣∥∥H(w′)−1ph(Wi − w)ε̃i
∥∥
2

+
∥∥ph(Wi − w)− ph(Wi − w′)

∥∥
2

∥∥H(w′)−1Kh(Wi − w′)ε̃i
∥∥
2

.
‖w − w′‖2

nh

∣∣Kh(Wi − w)ε̃i
∣∣+

1

n

∣∣Kh(Wi − w)−Kh(Wi − w′)
∣∣ |ε̃i|

.
‖w − w′‖2 log n

nhm+1
,
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and from the penultimate line, we also deduce that

Var[ui(f, f
′)] .

‖w − w′‖22
n2h2

E
[
Kh(Wi − w)2σ2(Xi)

]
+

1

n2
E
[(
Kh(Wi − w)−Kh(Wi − w′)

)2
σ2(Xi)

]
.
‖w − w′‖22
n2hm+2

.

Further, E[ui(f, f
′)uj(f, f

′)] = 0 for i 6= j so by Lemma 8(ii), for a constant C1 > 0,

P

(∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣ ≥ C1‖w − w′‖2√

nhm/2+1

(
√
t+

√
(log n)2

nhm

√
t+

√
(log n)6

nhm
t

))
≤ C1e

−t.

Therefore, adjusting the constant if necessary and since nhm & (log n)7,

P

(∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣ ≥ C1‖w − w′‖2√

nhm/2+1

(√
t+

t√
log n

))
≤ C1e

−t.

By Lemma 2 in van de Geer and Lederer (2013) with ψ(x) = exp
((√

1 + 2x/
√

log n−1
)2

log n
)
−1,

∣∣∣∣∣∣∣∣∣ n∑
i=1

ui(f, f
′)
∣∣∣∣∣∣∣∣∣
ψ
.
‖w − w′‖2√
nhm/2+1

so we take L = 1√
nhm/2+1 . Noting ψ−1(t) =

√
log(1 + t) + log(1+t)

2
√
logn

and Nδ . δ−m,

Jψ(δ) =

∫ δ

0
ψ−1

(
Nε

)
dε+ δψ−1

(
Nδ

)
.
δ log(1/δ)√

log n
+ δ
√

log(1/δ) . δ
√

log n,

J2(δ) =

∫ δ

0

√
logNε dε . δ

√
log(1/δ) . δ

√
log n.

Part 5: strong approximation
Recalling that ε̃i = εi for all i with high probability, by Proposition 4, for all t, η > 0 there exists a
zero-mean Gaussian process T (w) satisfying

E

[(
n∑
i=1

fw(Wi, εi)

)(
n∑
i=1

fw′(Wi, εi)

)]
= E

[
T (w)T (w′)

]
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for all w,w′ ∈ W and

P

(
sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣ ≥ Cψ(t+ η)

)

≤ Cψ inf
δ>0

inf
Fδ

{
β
1/3
δ (log 2|Fδ|)1/3

η
+

(√
log 2|Fδ|

√
E [‖Ωδ‖2]

η

)2/3

+ ψ

(
t

LJψ(δ)

)−1
+ exp

(
−t2

L2J2(δ)2

)}

≤ Cψ

{( logn
n2h2mδm

)1/3
(log n)1/3

η
+

(√
log n

√
n−3/2h−7m/6δ−m

η

)2/3

+ ψ

(
t

1√
nhm/2+1Jψ(δ)

)−1
+ exp

 −t2(
1√

nhm/2+1

)2
J2(δ)2

}

≤ Cψ

{
(log n)2/3

n2/3h2m/3δm/3η
+

(
n−3/4h−7m/12δ−m/2

√
log n

η

)2/3

+ ψ

(
t
√
nhm/2+1

δ
√

log n

)−1
+ exp

(
−t2nhm+2

δ2 log n

)}
.

Noting that ψ(x) ≥ ex2/4 for x ≤ 4
√

log n gives the probability bound

sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣ .P (log n)2/3

n2/3h2m/3δm/3
+

√
log n

n3/4h7m/12δm/2
+

δ
√

log n
√
nhm/2+1

.

Optimizing over δ gives δ �
(

logn
nhm−6

) 1
2m+6

= h
(

logn
nh3m

) 1
2m+6

and so

sup
w∈W

∣∣∣∣∣
n∑
i=1

fw(Wi, εi)− T (w)

∣∣∣∣∣ .P
(

(log n)m+4

nm+4hm(m+6)

) 1
2m+6

.

Part 6: convergence of Ĥ(w)
For 1 ≤ j, l ≤ k define the zero-mean random variables

uijl(w) = Kh(Wi − w)ph(Wi − w)jph(Wi − w)l − E
[
Kh(Wi − w)ph(Wi − w)jph(Wi − w)l

]
and note that |uijl(w)| . h−m. By Lemma 8(i) for a constant C2 > 0 and all t > 0,

P

(∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣ > C2h
−m(√nt+ (log n)(log logn)t

))
≤ C2e

−t.

Further note that by Lipschitz properties,∣∣∣∣∣
n∑
i=1

uijl(w)−
n∑
i=1

uijl(w
′)

∣∣∣∣∣ . h−m−1‖w − w′‖2
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so there is a δ-cover of (W, ‖ · ‖2) with cardinality at most naδ−a for some a > 0. Adjusting C2,

P

(
sup
w∈W

∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣ > C2h
−m(√nt+ (log n)(log logn)t

)
+ C2h

−m−1δ

)
≤ C2n

aδ−ae−t

and hence

sup
w∈W

∣∣∣∣∣
n∑
i=1

uijl(w)

∣∣∣∣∣ .P h−m√n log n+ h−m(log n)3 .P

√
n log n

h2m
.

Therefore

sup
w∈W

‖Ĥ(w)−H(w)‖2 .P

√
n log n

h2m
.

Part 7: bounding the matrix term

Firstly note that, since
√

logn
nh2m

→ 0, we have that uniformly in w ∈ W

‖Ĥ(w)−1‖2 ≤
‖H(w)−1‖2

1− ‖Ĥ(w)−H(w)‖2‖H(w)−1‖2
.P

1/n

1−
√

n logn
h2m

1
n

.P
1

n
.

Therefore

sup
w∈W

∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣ ≤ sup
w∈W

∥∥Ĥ(w)−1 −H(w)−1
∥∥
2
‖S(w)‖2

≤ sup
w∈W

∥∥Ĥ(w)−1
∥∥
2

∥∥H(w)−1
∥∥
2

∥∥Ĥ(w)−H(w)
∥∥
2
‖S(w)‖2

.P

√
log n

n3h2m
sup
w∈W

‖S(w)‖2.

Now for 1 ≤ j ≤ k write uij(w) = Kh(Wi − w)ph(Wi − w)j ε̃i so that S(w)j =
∑n

i=1 uij(w) with
high probability. Note that uij(w) are zero-mean with Cov[uij(w), ui′j(w)] = 0 for i 6= i′. Also
|uij(w)| . h−m log n and Var[uij(w)] . h−m. Thus by Lemma 8(ii) for a constant C3 > 0,

P

(∣∣∣ n∑
i=1

uij(w)
∣∣∣ ≥ C3

(
(h−m/2

√
n+ h−m log n)

√
t+ h−m(log n)3t

))
≤ C3e

−t,

P

(∣∣∣ n∑
i=1

uij(w)
∣∣∣ > C3

(√
tn

hm
+
t(log n)3

hm

))
≤ C3e

−t,

where we used nhm & (log n)2 and adjusted the constant if necessary. As before, uij(w) is Lipschitz
in w with a constant which is at most polynomial in n, so for some a > 0

P

(
sup
w∈W

∣∣∣ n∑
i=1

uij(w)
∣∣∣ > C3

(√
tn

hm
+
t(log n)3

hm

))
≤ C3n

ae−t,

sup
w∈W

‖S(w)‖2 .P

√
n log n

hm
+

(log n)4

hm
.P

√
n log n

hm

as nhm & (log n)7. Finally

sup
w∈W

∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣ .P √ log n

n3h2m

√
n log n

hm
.P

log n√
n2h3m

.
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Part 8: bounding the bias
Since µ ∈ Cγ , we have by the multivariate version of Taylor’s theorem,

µ(Wi) =

γ−1∑
|ν|=0

1

ν!

∂|ν|µ(w)

∂wν
(Wi − w)ν +

∑
|ν|=γ

1

ν!

∂γµ(w′)

∂wν
(Wi − w)ν

for some w′ on the line segment connecting w and Wi. Now since ph(Wi − w)1 = 1,

eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)µ(w)

= eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)ph(Wi − w)Te1µ(w) = eT1 e1µ(w) = µ(w).

Therefore

Bias(w) = eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)µ(Wi)− µ(w)

= eT1 Ĥ(w)−1
n∑
i=1

Kh(Wi − w)ph(Wi − w)

×

 γ−1∑
|ν|=0

1

ν!

∂|ν|µ(w)

∂wν
(Wi − w)ν +

∑
|ν|=γ

1

ν!

∂γµ(w′)

∂wν
(Wi − w)ν − µ(w)


=

γ−1∑
|ν|=0

1

ν!

∂|ν|µ(w)

∂wν
eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)ν

+
∑
|ν|=γ

1

ν!

∂γµ(w′)

∂wν
eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)ν

=
∑
|ν|=γ

1

ν!

∂γµ(w′)

∂wν
eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)ν ,

where we used that ph(Wi − w) is a vector containing all monomials in Wi − w of order up to γ, so
eT1 Ĥ(w)−1

∑n
i=1Kh(Wi − w)ph(Wi − w)(Wi − w)ν = 0 whenever 1 ≤ |ν| ≤ γ. Finally

sup
w∈W

|Bias(w)| = sup
w∈W

∣∣∣∣∣∣
∑
|ν|=γ

1

ν!

∂γµ(w′)

∂wν
eT1 Ĥ(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)(Wi − w)ν

∣∣∣∣∣∣
.P sup

w∈W
max
|ν|=γ

∣∣∣∣∂γµ(w′)

∂wν

∣∣∣∣ ‖Ĥ(w)−1‖2

∥∥∥∥∥
n∑
i=1

Kh(Wi − w)ph(Wi − w)

∥∥∥∥∥
2

hγ

.P
hγ

n
sup
w∈W

∥∥∥∥∥
n∑
i=1

Kh(Wi − w)ph(Wi − w)

∥∥∥∥∥
2

.

Now write ũij(w) = Kh(Wi − w)ph(Wi − w)j and note that |ũij(w)| . h−m and E[ũij(w)] . 1. By
Lemma 8(i), for a constant C4,

P

(∣∣∣∣∣
n∑
i=1

ũij(w)− E

[
n∑
i=1

ũij(w)

]∣∣∣∣∣ > C4h
−m(√nt+ (log n)(log log n)t

))
≤ C4e

−t.
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As in previous parts, by Lipschitz properties, this implies

sup
w∈W

∣∣∣∣∣
n∑
i=1

ũij(w)

∣∣∣∣∣ .P n
(

1 +

√
log n

nh2m

)
.P n.

Therefore supw∈W |Bias(w)| .P nhγ/n .P hγ .

Part 9: conclusion
By the previous parts,

sup
w∈W

|µ̂(w)− µ(w)− T (w)|

≤ sup
w∈W

∣∣∣eT1H(w)−1S(w)− T (w)
∣∣∣+ sup

w∈W

∣∣∣eT1 (Ĥ(w)−1 −H(w)−1
)
S(w)

∣∣∣+ sup
w∈W

|Bias(w)|

.P

(
(log n)m+4

nm+4hm(m+6)

) 1
2m+6

+
log n√
n2h3m

+ hγ .P
1√
nhm

(
(log n)m+4

nh3m

) 1
2m+6

+ hγ ,

where the last inequality follows because nh3m →∞ and 1
2m+6 ≤

1
2 . Finally, we verify the upper and

lower bounds on the variance of the Gaussian process. Since the spectrum of H(w)−1 is bounded
above and below by 1/n,

Var[T (w)] = Var

[
eT1H(w)−1

n∑
i=1

Kh(Wi − w)ph(Wi − w)εi

]

= eT1H(w)−1 Var

[
n∑
i=1

Kh(Wi − w)ph(Wi − w)εi

]
H(w)−1eT1

. ‖H(w)−1‖22 max
1≤j≤k

n∑
i=1

Var
[
Kh(Wi − w)ph(Wi − w)jσ(Wi)

]
.

1

n2
n

1

hm
.

1

nhm
.

Similarly Var[T (w)] & 1
nhm by the same argument given to bound the eigenvalues of H(w)−1. �

References

Anastasiou, A., Balasubramanian, K., and Erdogdu, M. A. (2019). Normal approximation for
stochastic gradient descent via non-asymptotic rates of martingale CLT. In Conference on
Learning Theory, pages 115–137. PMLR.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Fernández-Val, I. (2019). Conditional quantile
processes based on series or many regressors. Journal of Econometrics, 213(1):4–29.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Some new asymptotic theory
for least squares series: Pointwise and uniform results. Journal of Econometrics, 186(2):345–366.

Belloni, A. and Oliveira, R. I. (2018). A high dimensional central limit theorem for martingales,
with applications to context tree models. arXiv preprint arXiv:1809.02741.

Berthet, P. and Mason, D. M. (2006). Revisiting two strong approximation results of Dudley and
Philipp. Lecture Notes–Monograph Series, pages 155–172.

Bhatia, R. (1997). Matrix Analysis, volume 169. Springer, New York, NY.

35



Biau, G. and Mason, D. M. (2015). High-dimensional p-norms. In Mathematical statistics and limit
theorems, pages 21–40. Springer.

Buzun, N., Shvetsov, N., and Dylov, D. V. (2022). Strong Gaussian approximation for the sum of
random vectors. In Conference on Learning Theory, pages 1693–1715. PMLR.

Cattaneo, M. D., Farrell, M. H., and Feng, Y. (2020). Large sample properties of partitioning-based
series estimators. The Annals of Statistics, 48(3):1718–1741.

Cattaneo, M. D., Feng, Y., and Underwood, W. G. (2022). Uniform inference for kernel density
estimators with dyadic data. arXiv preprint arXiv:2201.05967.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2013). Gaussian approximations and multiplier
bootstrap for maxima of sums of high-dimensional random vectors. The Annals of Statistics,
41(6):2786–2819.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2014a). Anti-concentration and honest, adaptive
confidence bands. The Annals of Statistics, 42(5):1787–1818.

Chernozhukov, V., Chetverikov, D., and Kato, K. (2014b). Gaussian approximation of suprema of
empirical processes. The Annals of Statistics, 42(4):1564–1597.

Chernozhukov, V., Chetverikov, D., and Koike, Y. (2022). Nearly optimal central limit theorem
and bootstrap approximations in high dimensions. Annals of Applied Probability, forthcoming.

Dehling, H. (1983). Limit theorems for sums of weakly dependent Banach space valued random
variables. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 63(3):393–432.

Dudley, R. and Philipp, W. (1983). Invariance principles for sums of Banach space valued random
elements and empirical processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete, 62(4):509–552.

Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press.

Eggermont, P. P. B. and LaRiccia, V. N. (2009). Maximum Penalized Likelihood Estimation: Volume
II: Regression. Springer.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman &
Hall/CRC, New York.

Götze, F., Naumov, A., Spokoiny, V., and Ulyanov, V. (2019). Large ball probabilities, Gaussian
comparison and anti-concentration. Bernoulli, 25(4A):2538–2563.

Hall, P. and Heyde, C. C. (2014). Martingale Limit Theory and its Application. Academic Press.

Jacod, J., Li, J., and Liao, Z. (2021). Volatility coupling. The Annals of Statistics, 49(4):1982–1998.
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