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ABSTRACT

This supplementary material contains additional material to support the results presented in
the paper “ArCo: An Artificial Counterfactual Approach for High-Dimensional Panel Time-
Series Data” co-authored by Ricardo P. Carlos Carvalho, Ricardo P. Masini and Marcelo C.
Medeiros. The supporting material consists of more detailed simulation results, proofs of the
lemmas in the main paper and additional empirical results.
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1. INTRODUCTION

This supplementary material contains additional material to support the results presented
in the paper “ArCo: An Artificial Counterfactual Approach for High-Dimensional Panel Time-
Series Data” co-authored by Ricardo P. Carlos Carvalho, Ricardo P. Masini and Marcelo C.
Medeiros. The supporting material consists of more detailed simulation results, proofs of the
lemmas in the main paper and additional empirical results.

The supplementary material is organized as follows. In Section [2] we describe a data gen-
erating process to motivate the usefulness of the ArCo method. Section [3] contains additional
simulation results. The proofs of the lemmas in the main paper are presented in Section [4]

Finally, complementary empirical results are included in Section [5]

!The views expressed in this paper are those of the authors and do not necessarily reflect the position of the
Central Bank of Brazil.
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2 ARCO
2. A POSSIBLE DATA GENERATING PROCESS

Even though we do not impose any specific DGP, the link between the treated unit and its

peers can be easily motivated by a very simple, but general, common factor model:
(S.1) 20—+ O (Dey, i=1,....nt>1
(5.2) it = Nify + M,

where f, € R/ is a vector of common unobserved factors such that sup, E(f,f}) < oo and A, is
a (¢; X f) matrix of factor loadings. Therefore, we allow for heterogeneous determinist trends of
the form ((t/T'), where ( is a integrable function on [0, 1] as in [Bai (2009). {n,.},i=1,...,n,
t =1,...,T, is a sequence of uncorrelated zero mean random variables. Finally, L is the
lag operator and the polynomial matrix W.,;(L) = (I,, + ¥;L + 15, L* + ---) is such that
Z;io 'gb?i < oo foralli=1,...,n. I is the identity matrix. Usually, we have f < n. Thus, as
long as we have a “truly common” factor in the sense of having some rows of A; non zero, we
expect correlation among the units.

The DGP originated by is fairly general and nests several models as by the multivariate
Wold decomposition and under mild conditions, any second-order stationary vector process can
be written as an infinite order vector moving average process; see Niemi (1979). Furthermore,
under a modern macroeconomics perspective, reduced-form for Dynamic Stochastic General
Equilibrium (DSGE) models are written as vector autoregressive moving average (VARMA)
processes, which, in turn, are nested in the general specification in (Fernandez-Villaverde,
Rubio-Ramirez, Sargent, and Watson, [2007; |/An and Schortheide, 2007)). |Gobillon and Magnac
(2016)) is a special case of the general model described above.

In case of Gaussian errors, the above model will imply that ]E[y,go) |Z | = I1Z ;. Otherwise,
we can choose model M to be a linear approximation of the conditional expectation. The
strategy is to define x; as a set of transformations of Z;, such as, for instance, polynomials or

splines, and write y,EO’ as a linear function of x;.

3. SUPPLEMENTARY MONTE CARLO RESULTS

Figures present the smoothed histograms for the different estimators considered in
the Monte Carlo study.
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FIGURE S.1. Kernel Density - Estimator Comparison with no Trend and no
Serial Correlation
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FIGURE S.2. Kernel Density - Estimator Comparison with no Trend
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FIGURE S.3. Kernel Density - Estimator Comparison with Common Linear Trend
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FIGURE S.4. Kernel Density - Estimator Comparison with Idiosyncratic Linear Trend
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FIGURE S.5. Kernel Density - Estimator Comparison with Common Quadratic Trend
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FIGURE S.6. Kernel Density - Estimator Comparison with Idiosyncratic Qua-
dratic Trend
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4. SUPPLEMENTARY THEORETICAL RESULTS

4.1. Proof of Lemma . From the definition of our estimator in we have:

~ 1 - ]_ 0 - 1
AT_AT:_E [yt_AT_Mt,T1i|:_§ |:y2(5)_Mt’Tli|:_§:[Vt_ntaTl}'
T T, T
t>Tp t>To t2>To
After multiplying the last expression by v/T we can rewrite it as:

t<Ti t>To t<Ti

Vv
EVQ,T EVl,T

By condition (a) in the proposition, the last term in the right hand side converges to zero
uniformly in P € P. Under conditions (b) and (c), each one of the first two terms individually
converges in distribution to a Gaussian random variable uniformly in P € P, which is not
enough to ensure that the joint distribution is also Gaussian. However, notice that both V'
and Vi are defined with respect to the same random sequence. Hence, not only they are

jointly Gaussian but also they are also asymptotically independent since they are summed over

uniformly in P € P, where I'' = limy_,, I'7.
It follows from Lemma (a) that Vor —Vir 4, Zy — Z1, uniformly in P € P. By Lemma
(a), VT <£T - AT) N [0, ﬁ}, uniformly in P € P.

non-overlapping intervals:

AT 0

V= (Vi Var) -5 (21,2, =Z ~ N0,
T ( 1,T 2,T) ( 1 2) { [ 0 (1_>\0)—1I1

4.2. Proof of Lemma The proof is similar to the classical Continuous Mapping Theorem
proof but with continuity replaced by uniform continuity. For (a), by the definition of uniform
continuity, for any ¢ > 0, there is a § > 0 such that for all ,y € C if dp(z,y) < § =
de [g(x), g(y)] < € for some metric dp and dg, defined on D and & respectively. Therefore,

Pp {dg [g(XT),g(X>] > 6} < PP[dD(XT,X) > 5] + PP(X ¢ C)

The result follows since the first term on the right hand side converges to zero uniformly in
P € P by assumption and the second is zero for all P € P also by assumption.

For (b), given a set E € £ we have its closure denoted by E, its complement by E° and
the preimage of g by g7'(F) = {x € D : g(xz) € E}. For closed F' € £ we have that
g (F) c g~'(F) C g~ (F)UC® due to the continuity of g on C. Clearly, the event {g(X 1) € F'}
is the same of {X7 € g7'(F)}, then we can write

limsup sup P[X 1 € g ' (F)] < limsup sup P[ X € g~'(F)]
pPep pep

< supP[X € g7(F)] < sup P[X € g7 (F)] + sup P(X ¢ C),
Pep Pep PeP

N————
=0
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where the second inequality is a consequence of the uniform convergence in distribution of X1
to X and the Portmanteau Lemma (van der Vaart| (1998, Lemma 2.2). The result follows again

by the Portmanteau Lemma in the other direction.

4.3. Proof of Lemma . If X; -5 C uniformly in P € P, then X1 NYe: uniformly in
P € P Let Zy = (vec X1,vec Y1), then Zy -5 Z = (vecC’,vec Y'Y uniformly in P € P.
Now the sum of two real number seen as the mapping (z,y) — x + y is uniformly continuous.
The product mapping (z,y) — x.y is also uniformly continuous provided that the domain of
one of the arguments is bounded. The inverse mapping x — 1/x can also be made uniformly
continuous if the argument is bounded away for zero. Since all the transformations above
applied to Zp are (entrywise) compositions of uniform continuous mapping (hence uniformly
continuous), the results follow from Lemma [2(b)

We now state some auxiliary lemmas that will provide bounds in probability used throughout

the proof of the main theorem:

4.4. Proof of Lemma . Since 0 is a minimizer, by definition we have that

T T

2D (e — 202 +<)10ll < 2> (5 — x,80)* + <601

t=1 t=1

Rewriting the expression above using y; = 0, + v; yields

16 — 6613, +<116]11 < 2(6 — 60)' 2 Zpt+€||90||1

We can then bound the first term after the inequality using Hélder’s inequality as

0 90 Zpt‘<”2 ZpthaXHO 00H1

and, on the set <7 (a), we have
(5-4) 16— 6ol + <1181 < allf — 81 + <6l
By the triangle inequality we have
1011 = [|8[So]llx + [1O[SE]]I1 = [|60[So]ll1 — [[0[So] — o[Solllx + [1O[SE]]Ix
Using the above expression as a lower bound in the left hand side of (S.4)) and
16 = Boll1 = [16]So] — o[ Sol[l1 + [[€[S]l[x
on the right hand side of (S.4)) yields
18 — 0ol1% + (s — ) |0[Scll < (s + a)[|8]So] — Bo[So] |
or, equivalently,

(S.5) 16 — 8012 + (s — a) ]| — 8|1 < 26]18[So] — 8o[So] |1
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Given the compatibility condition for the set Sy with matrix 3, we can bound the left hand

side of the above expression as, by definition, there is a ¥y > 0 such that

181S0] — Bo[Solllx < 218 — o]l

Therefore,

(S.6) 16 — B6]|% + (s — @) [[6 — Bols < 262216 — 6| x.

To relate the norm H@—eoui to the norm ||5—00H)3 we use the set Z(b) = {||Z =% ||max < b}
Notice that combining (S.5) with the compatibility condition results in

16 — 6olli < 2116[S0] — 8o[Sollli < 22116 — 0|5,

— s—a o

which, condition on #(b), yields the following bound

19 = 8012~ 16 - 661

= |(®-60)(£ - =)(8 - 60)
< 1S~ Sllumal|® — 002
< b]6 - 6o}

R
< bl 26 - 6%

Now we use the previous bound to write
19— 8l1% = 118 — 8o1% + (118 — 6oll3, — 118 — 60112

< 18— 6oll% + |18 - 8013 — 18 - 60|

S HO - 00“% + b(ﬁf)zi—%ﬂe - OOH%'

Rearranging terms we get

~ 1
(S7) 10— 00ll3 < (1 - 2528) 118 - 6oll%.
Using the bound (S.7)) in (S.6)) yields

R . . 2 -1/2 <
18— B0l% + (s — )16 — Bolly < 22 (1 - 2016 o5,

0 (s—a)? 1/13

If we multiply the last expression by 2 and since ¢ > 2a and 32bsg /12 < 1, the last inequality
reduces to
216 — B0|% + <16 — Boll1 < 4V22(|0 — 65|
Using the fact that 4uv < u? + 4v? yields

216 — 0013 + <116 — Bolli < 16 — G0l + 85> 2%

4.5. Proof of Lemma |§| From Lemma [5| on «/(a) N 2(b), we have that |8 — 6, <

2
8;‘30, provided that ¢ > 2a, b < 2 and the compatibility constraint is satisfied for X
0

E (1% 221 a:ta:;) with constant ¥y > 0 (Assumption . For convenience set a = § and

32s0

2
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b= 5%, then P(||6

) < P(e/¢ U H°) and
P/ U %) <P 2 i:
S T - y 2

S
> — P
1

1 &
T 2 M

0
> —_—
3280
max

T a 2T
1 ) )
< .
< dg?g}flp < 1 ) +d 1221?>S<dIP’ ( ;_1 miji| > 3250>
32s Q! 7
2 0 Z )
: d(§T1> o Zp” td (¢§T1) Jax E P s
d d?s]
< 01(7) T7/2 (7 ,QZ)O) 7/02

= 03(’7, )\0) —|' 0(1)

where the second inequality follows from the union bound. The third inequality follows from the
Markov inequality applied for some v > 2. The forth inequality is a consequence of Lemma 3,
since (i) by Assumption [3|(a) both {p,} and {M,} are strong mixing sequences with exponential
decay as measurable functions of {w,}; and (ii) by Cauchy-Schwartz inequality combined with

Assumption [3(b) we have for some § > 0:
~+6/2
Elpi e[ < (Elag TR [7) 7 < e, 1<i<dit>1
y+6/2
E|mij. — E(ﬂfi,tﬂﬂj,t)‘wém < (E\xi,t‘27+5E|1’j,tt|27+6) e <e,, 1<i4,5<d;t>1.

Finally, the last equality follows because by Assumption (a) we have ¢ = m% for some k > 0

which implies for the first term

v/2 —v/2
a—t— = cuy) (5) 1 GONT

T /2 Ty KY K

where we define Cs(y, A\g) = C1(7)\ 72 and the second term ;2;5/32 = o(1) as a direct conse-
1

quence of Assumption (b) since so% = o(1).
4.6. Proof of Lemmal7 For a given e > 0, By the union bound, followed by Markov inequality

P % >¢) <dmaxP |Si,T| >e) < maXlSiSdE|Si,T| :
dV/r\/T 1<i<d dV/r\/T Tr/2¢r

where S;r = u;1 + -+ + u;r is a (scalar) random variable such that by assumption fulfills
the condition of Lemma 4] for all 1 < i < d, therefore we can write 1II<1&<}§ E|S;r|" < C,.T"/? by

we have:

Lemma [4] which concludes the proof.

5. ADDITIONAL EMPIRICAL RESULTS
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TABLE S.1. ESTIMATED EFFECTS ON FOOD AWAY FROM HOME (FAH) INFLA-
TION: PLACEBO ANALYSIS.
Placebos
(1) (2) (3) (4) (5) (6) (7)
Goiéas (GO) —0.0113 0.1624 0.1606 0.1888 —0.1477 —0.1931 —0.0979
(0.1811) (0.1707)  (0.1557) (0.1642) (0.2334) (0.2331) (0.2032)
Para (PA) 0.1328 0.2714 0.1933 —0.1419 0.3690 0.3690 0.2789
(0.2021)  (0.1640)  (0.1708)  (0.2085) (0.2407) (0.2407) (0.2052)
Ceara (CE) —0.0380 0.2657 0.2223 0.2092 0.1972 0.1972 0.1358
(0.1484)  (0.1547)  (0.1349)  (0.1368) (0.1613) (0.1613) (0.2506)
Pernambuco (PE) 0.1769 0.1895 0.2698 0.5322 0.1586 0.1586 0.5021
(0.1949)  (0.1687)  (0.1718)  (0.1741) (0.2073) (0.2073) (0.2174)
Bahia (BA) 0.0125 0.0756 0.1001 0.5707 0.2800 0.2800 0.1737
(0.2655)  (0.2228)  (0.2433)  (0.3547) (0.3201) (0.3201) (0.2932)
Minas Gerais (MG) —0.0706 0.1265 0.1417 0.3472 —0.1089 —0.1089 0.0736
(0.1198)  (0.1007)  (0.1083)  (0.1705) (0.1560) (0.1560) (0.1554)
Rio de Janeiro (RJ) 0.2245 0.2992 0.3126 0.2484 0.1723 0.1723 0.0724
(0.1165)  (0.1278)  (0.1230)  (0.1245) (0.1111) (0.1111) (0.1300)
Parana (PR) 0.1409 0.3400 0.2238 0.1441 0.2373 0.2373 0.1732
(0.2527)  (0.1904)  (0.1582)  (0.2658) (0.2939) (0.2939) (0.2131)
Rio Grande do Sul (RS) 0.4292 0.5422 0.5315 0.4996 0.5325 0.5325 0.4450
(0.1614)  (0.1653)  (0.1599)  (0.1580) (0.1627) (0.1627) (0.2430)
Inflation Yes No No No Yes Yes Yes
GDP No Yes No No Yes Yes Yes
Retail Sales No No Yes No No Yes Yes
Credit No No No Yes No No Yes

The table presents the estimated effect of the intervention on the untreated units. Values between parenthesis

are the standard error of the estimates.
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Arco estimates: CPI inflation (food outside home)
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FIGURE S.7. Actual and counterfactual data without RS. The conditioning vari-
ables are inflation, DGP growth, and retail sales growth. Panel (a) monthly
inflation. Panel (b) accumulated monthly inflation.
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