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Series Data” co-authored by Ricardo P. Carlos Carvalho, Ricardo P. Masini and Marcelo C.
Medeiros. The supporting material consists of more detailed simulation results, proofs of the
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1. Introduction

This supplementary material contains additional material to support the results presented
in the paper “ArCo: An Artificial Counterfactual Approach for High-Dimensional Panel Time-
Series Data” co-authored by Ricardo P. Carlos Carvalho, Ricardo P. Masini and Marcelo C.
Medeiros. The supporting material consists of more detailed simulation results, proofs of the
lemmas in the main paper and additional empirical results.

The supplementary material is organized as follows. In Section 2 we describe a data gen-
erating process to motivate the usefulness of the ArCo method. Section 3 contains additional
simulation results. The proofs of the lemmas in the main paper are presented in Section 4.
Finally, complementary empirical results are included in Section 5.

1The views expressed in this paper are those of the authors and do not necessarily reflect the position of the
Central Bank of Brazil.
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2. A Possible Data Generating Process

Even though we do not impose any specific DGP, the link between the treated unit and its
peers can be easily motivated by a very simple, but general, common factor model:

z
(0)
it = µi + Ψ∞,i(L)εit, i = 1, . . . , n; t ≥ 1(S.1)

εit = Λif t + ηit,(S.2)

where f t ∈ Rf is a vector of common unobserved factors such that supt E(f tf ′t) <∞ and Λi, is
a (qi×f) matrix of factor loadings. Therefore, we allow for heterogeneous determinist trends of
the form ζ(t/T ), where ζ is a integrable function on [0, 1] as in Bai (2009). {ηit},i = 1, . . . , n,
t = 1, . . . , T , is a sequence of uncorrelated zero mean random variables. Finally, L is the
lag operator and the polynomial matrix Ψ∞,i(L) = (Iqi + ψ1iL + ψ2iL

2 + · · · ) is such that∑∞
j=0ψ

2
ji <∞ for all i = 1, . . . , n. I is the identity matrix. Usually, we have f < n. Thus, as

long as we have a “truly common” factor in the sense of having some rows of Λi non zero, we
expect correlation among the units.

The DGP originated by (S.1) is fairly general and nests several models as by the multivariate
Wold decomposition and under mild conditions, any second-order stationary vector process can
be written as an infinite order vector moving average process; see Niemi (1979). Furthermore,
under a modern macroeconomics perspective, reduced-form for Dynamic Stochastic General
Equilibrium (DSGE) models are written as vector autoregressive moving average (VARMA)
processes, which, in turn, are nested in the general specification in (S.1) (Fernández-Villaverde,
Rubio-Ramírez, Sargent, and Watson, 2007; An and Schorfheide, 2007). Gobillon and Magnac
(2016) is a special case of the general model described above.

In case of Gaussian errors, the above model will imply that E[y(0)
t |Z0t] = ΠZ0t. Otherwise,

we can choose model M to be a linear approximation of the conditional expectation. The
strategy is to define xt as a set of transformations of Z0t, such as, for instance, polynomials or
splines, and write y(0)

t as a linear function of xt.

3. Supplementary Monte Carlo Results

Figures S.1–S.6 present the smoothed histograms for the different estimators considered in
the Monte Carlo study.
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Figure S.1. Kernel Density - Estimator Comparison with no Trend and no
Serial Correlation
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Figure S.2. Kernel Density - Estimator Comparison with no Trend
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Figure S.3. Kernel Density - Estimator Comparison with Common Linear Trend
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Figure S.4. Kernel Density - Estimator Comparison with Idiosyncratic Linear Trend
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Figure S.5. Kernel Density - Estimator Comparison with Common Quadratic Trend
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Figure S.6. Kernel Density - Estimator Comparison with Idiosyncratic Qua-
dratic Trend
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4. Supplementary Theoretical Results

4.1. Proof of Lemma 1. From the definition of our estimator in (4) we have:

∆̂T −∆T =
1

T2

∑
t≥T0

[
yt −∆T − M̂t,T1

]
=

1

T2

∑
t≥T0

[
y
(0)
t − M̂t,T1

]
=

1

T2

∑
t≥T0

[
νt − ηt,T1

]
.

After multiplying the last expression by
√
T we can rewrite it as:

√
T
(
∆̂T −∆T

)
=

√
T

T2

∑
t≥T0

νt︸ ︷︷ ︸
≡V 2,T

−
√
T

T1

∑
t≤T1

νt︸ ︷︷ ︸
≡V 1,T

−
√
T

(
1
T2

∑
t≥T0

ηt,T1 −
1
T1

∑
t≤T1

νt

)
(S.3)

By condition (a) in the proposition, the last term in the right hand side converges to zero
uniformly in P ∈ P . Under conditions (b) and (c), each one of the first two terms individually
converges in distribution to a Gaussian random variable uniformly in P ∈ P , which is not
enough to ensure that the joint distribution is also Gaussian. However, notice that both V 1,T

and V 2,T are defined with respect to the same random sequence. Hence, not only they are
jointly Gaussian but also they are also asymptotically independent since they are summed over
non-overlapping intervals:

V T ≡ (V 1,T ,V 2,T )
′ d−→ (Z1,Z2)

′ ≡ Z ∼ N

{
0,

[
λ−10 Γ 0

0 (1− λ0)−1Γ

]}
,

uniformly in P ∈ P , where Γ ≡ limT→∞ ΓT .
It follows from Lemma 2(a) that V 2,T −V 1,T

d−→ Z2−Z1, uniformly in P ∈ P . By Lemma
3(a),

√
T
(
∆̂T −∆T

)
d−→ N

[
0, Γ

λ0(1−λ0)

]
, uniformly in P ∈ P .

4.2. Proof of Lemma 2. The proof is similar to the classical Continuous Mapping Theorem
proof but with continuity replaced by uniform continuity. For (a), by the definition of uniform
continuity, for any ε > 0, there is a δ > 0 such that for all x,y ∈ C if dD(x,y) ≤ δ ⇒
dE [g(x), g(y)] ≤ ε for some metric dD and dE , defined on D and E respectively. Therefore,

PP {dE [g(XT ), g(X)] > ε} ≤ PP [dD(XT ,X) > δ] + PP (X /∈ C).

The result follows since the first term on the right hand side converges to zero uniformly in
P ∈ P by assumption and the second is zero for all P ∈ P also by assumption.

For (b), given a set E ∈ E we have its closure denoted by E, its complement by Ec and
the preimage of g by g−1(E) ≡ {x ∈ D : g(x) ∈ E}. For closed F ∈ E we have that
g−1(F ) ⊂ g−1(F ) ⊂ g−1(F )∪Cc due to the continuity of g on C. Clearly, the event {g(XT ) ∈ F}
is the same of {XT ∈ g−1(F )}, then we can write

lim sup sup
P∈P

P[XT ∈ g−1(F )] ≤ lim sup sup
P∈P

P[XT ∈ g−1(F )]

≤ sup
P∈P

P[X ∈ g−1(F )] ≤ sup
P∈P

P[X ∈ g−1(F )] + sup
P∈P

P(X /∈ C)︸ ︷︷ ︸
=0

,
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where the second inequality is a consequence of the uniform convergence in distribution of XT

toX and the Portmanteau Lemma (van der Vaart, 1998, Lemma 2.2). The result follows again
by the Portmanteau Lemma in the other direction.

4.3. Proof of Lemma 3. If XT
p−→ C uniformly in P ∈ P , then XT

d−→ C uniformly in
P ∈ P Let ZT ≡ (vecXT , vecY T )

′, then ZT
d−→ Z ≡ (vecC ′, vecY ′)′ uniformly in P ∈ P .

Now the sum of two real number seen as the mapping (x, y) 7→ x+ y is uniformly continuous.
The product mapping (x, y) 7→ x.y is also uniformly continuous provided that the domain of
one of the arguments is bounded. The inverse mapping x 7→ 1/x can also be made uniformly
continuous if the argument is bounded away for zero. Since all the transformations above
applied to ZT are (entrywise) compositions of uniform continuous mapping (hence uniformly
continuous), the results follow from Lemma 2(b).

We now state some auxiliary lemmas that will provide bounds in probability used throughout
the proof of the main theorem:

4.4. Proof of Lemma 5. Since θ̂ is a minimizer, by definition we have that

1
T1

T1∑
t=1

(yt − x′tθ̂)2 + ς‖θ̂‖1 ≤ 1
T1

T1∑
t=1

(yt − x′tθ0)2 + ς‖θ0‖1.

Rewriting the expression above using yt = x′tθ0 + νt yields

‖θ̂ − θ0‖2Σ̂ + ς‖θ̂‖1 ≤ 2(θ̂ − θ0)′ 1T1
T1∑
t=1

pt + ς‖θ0‖1.

We can then bound the first term after the inequality using Hölder’s inequality as

|2(θ̂ − θ0)′ 1T1
T1∑
t=1

pt| ≤ ‖2 1
T1

T1∑
t=1

pt‖max‖θ̂ − θ0‖1

and, on the set A (a), we have

(S.4) ‖θ̂ − θ0‖2Σ̂ + ς‖θ̂‖1 ≤ a‖θ̂ − θ0‖1 + ς‖θ0‖1.

By the triangle inequality we have

‖θ̂‖1 = ‖θ̂[S0]‖1 + ‖θ̂[Sc0]‖1 ≥ ‖θ0[S0]‖1 − ‖θ̂[S0]− θ0[S0]‖1 + ‖θ̂[Sc0]‖1

Using the above expression as a lower bound in the left hand side of (S.4) and

‖θ̂ − θ0‖1 = ‖θ̂[S0]− θ0[S0]‖1 + ‖θ̂[Sc0]‖1

on the right hand side of (S.4) yields

‖θ̂ − θ0‖2Σ̂ + (ς − a)‖θ̂[Sc0]‖1 ≤ (ς + a)‖θ̂[S0]− θ0[S0]‖1

or, equivalently,

(S.5) ‖θ̂ − θ0‖2Σ̂ + (ς − a)‖θ̂ − θ0‖1 ≤ 2ς‖θ̂[S0]− θ0[S0]‖1.
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Given the compatibility condition for the set S0 with matrix Σ, we can bound the left hand
side of the above expression as, by definition, there is a ψ0 > 0 such that

‖θ̂[S0]− θ0[S0]‖1 ≤
√
s0
ψ0
‖θ̂ − θ0‖Σ.

Therefore,

(S.6) ‖θ̂ − θ0‖2Σ̂ + (ς − a)‖θ̂ − θ0‖1 ≤ 2ς
√
s0
ψ0
‖θ̂ − θ0‖Σ.

To relate the norm ‖θ̂−θ0‖Σ̂ to the norm ‖θ̂−θ0‖Σ we use the set B(b) = {‖Σ̂−Σ‖max ≤ b}.
Notice that combining (S.5) with the compatibility condition results in

‖θ̂ − θ0‖1 ≤ 2ς
ς−a‖θ̂[S0]− θ0[S0]‖1 ≤ 2ς

ς−a

√
s0
ψ0
‖θ̂ − θ0‖Σ,

which, condition on B(b), yields the following bound∣∣∣‖θ̂ − θ0‖2Σ̂ − ‖θ̂ − θ0‖2Σ∣∣∣ = ∣∣∣(θ̂ − θ0)′(Σ̂−Σ)(θ̂ − θ0)
∣∣∣

≤ ‖Σ̂−Σ‖max‖θ̂ − θ0‖21
≤ b‖θ̂ − θ0‖21
≤ b 4ς2

(ς−a)2
s0
ψ2
0
‖θ̂ − θ0‖2Σ

Now we use the previous bound to write

‖θ̂ − θ0‖2Σ = ‖θ̂ − θ0‖2Σ̂ +
(
‖θ̂ − θ0‖2Σ − ‖θ̂ − θ0‖2Σ̂

)
≤ ‖θ̂ − θ0‖2Σ̂ +

∣∣∣‖θ̂ − θ0‖2Σ − ‖θ̂ − θ0‖2Σ̂∣∣∣
≤ ‖θ̂ − θ0‖2Σ̂ + b 4ς2

(ς−a)2
s0
ψ2
0
‖θ̂ − θ0‖2Σ.

Rearranging terms we get

(S.7) ‖θ̂ − θ0‖2Σ ≤
(
1− 4bς2

(ς−a)2
s0
ψ2
0

)−1
‖θ̂ − θ0‖2Σ̂.

Using the bound (S.7) in (S.6) yields

‖θ̂ − θ0‖2Σ̂ + (ς − a)‖θ̂ − θ0‖1 ≤ 2ς
√
s0
ψ0

(
1− 4bς2

(ς−a)2
s0
ψ2
0

)−1/2
‖θ̂ − θ0‖Σ̂.

If we multiply the last expression by 2 and since ς ≥ 2a and 32bs0/ψ
2
0 ≤ 1, the last inequality

reduces to
2‖θ̂ − θ0‖2Σ̂ + ς‖θ̂ − θ0‖1 ≤ 4

√
2ς
√
s0
ψ0
‖θ̂ − θ0‖Σ̂.

Using the fact that 4uv ≤ u2 + 4v2 yields

2‖θ̂ − θ0‖2Σ̂ + ς‖θ̂ − θ0‖1 ≤ ‖θ̂ − θ0‖2Σ̂ + 8ς2 s0
ψ2
0

4.5. Proof of Lemma 6. From Lemma 5 on A (a) ∩ B(b), we have that ‖θ̂ − θ0‖1 ≤
8ςs0
ψ2
0
, provided that ς ≥ 2a, b ≤ ψ2

0

32s0
and the compatibility constraint is satisfied for Σ ≡

E
(

1
T1

∑T1
t=1 xtx

′
t

)
with constant ψ0 > 0 (Assumption 2). For convenience set a = ς

2
and
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b =
ψ2
0

32s0
, then P(‖θ̂ − θ0‖1 > 8ςs0

ψ2
0
) ≤ P(A c ∪Bc) and

P(A c ∪Bc) ≤ P

(∥∥∥∥∥ 2

T1

T1∑
t=1

pt

∥∥∥∥∥
max

>
ς

2

)
+ P

(∥∥∥∥∥ 1

T1

T1∑
t=1

M t

∥∥∥∥∥
max

>
ψ2
0

32s0

)

≤ d max
1≤i≤d

P

(∣∣∣∣∣
T1∑
t=1

pi,t

∣∣∣∣∣ > ςT1
4

)
+ d2 max

1≤i,j≤d
P

(∣∣∣∣∣
T1∑
t=1

mij,t

∣∣∣∣∣ > ψ2
0T1

32s0

)

≤ d

(
4

ςT1

)γ
max
1≤i≤d

E

∣∣∣∣∣
T1∑
t=1

pi,t

∣∣∣∣∣
γ

+ d2
(
32s0
ψ2
0T1

)γ
max

1≤i,j≤d
E

∣∣∣∣∣
T1∑
t=1

mij,t

∣∣∣∣∣
γ

≤ C1(γ)
d

T
γ/2
1 ςγ

+ C2(γ, ψ0)
d2sγ0

T
γ/2
1

= C3(γ, λ0)
1

κγ
+ o(1),

where the second inequality follows from the union bound. The third inequality follows from the
Markov inequality applied for some γ > 2. The forth inequality is a consequence of Lemma 3,
since (i) by Assumption 3(a) both {pt} and {M t} are strong mixing sequences with exponential
decay as measurable functions of {wt}; and (ii) by Cauchy-Schwartz inequality combined with
Assumption 3(b) we have for some δ > 0:

E|pi,t|γ+δ/2 ≤
(
E|xi,t|2γ+δE|νt|2γ+δ

) γ+δ/2
2γ+δ ≤ cγ, 1 ≤ i ≤ d; t ≥ 1

E|mij,t − E(xi,txj,t)|γ+δ/2 ≤
(
E|xi,t|2γ+δE|xj,tt|2γ+δ

) γ+δ/2
2γ+δ ≤ cγ, 1 ≤ i, j ≤ d; t ≥ 1.

Finally, the last equality follows because by Assumption 4(a) we have ς = κd
1/γ
√
T

for some κ > 0

which implies for the first term

C1(γ)
d

T
γ/2
1 ςγ

= C1(γ)

(
T

T1

)γ/2
1

κγ
≤ C1(γ)λ

−γ/2
0

κγ
+ o(1)

where we define C3(γ, λ0) ≡ C1(γ)λ
−γ/2
0 ; and the second term d2sγ0

T
γ/2
1

= o(1) as a direct conse-

quence of Assumption 4(b) since s0 d
2/γ
√
T

= o(1).

4.6. Proof of Lemma 7. For a given ε > 0, By the union bound, followed by Markov inequality
we have:

P
(
‖ST‖max

d1/r
√
T

> ε

)
≤ d max

1≤i≤d
P
(
|Si,T |
d1/r
√
T
> ε

)
≤ max1≤i≤d E|Si,T |r

T r/2εr
,

where Si,T ≡ ui,1 + · · · + ui,T is a (scalar) random variable such that by assumption fulfills
the condition of Lemma 4 for all 1 ≤ i ≤ d, therefore we can write max

1≤i≤d
E|Si,T |r ≤ CrT

r/2 by

Lemma 4, which concludes the proof.

5. Additional Empirical Results
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Table S.1. Estimated Effects on food away from home (FAH) Infla-
tion: Placebo Analysis.

Placebos
(1) (2) (3) (4) (5) (6) (7)

Goiás (GO) −0.0113
(0.1811)

0.1624
(0.1707)

0.1606
(0.1557)

0.1888
(0.1642)

−0.1477
(0.2334)

−0.1931
(0.2331)

−0.0979
(0.2032)

Pará (PA) 0.1328
(0.2021)

0.2714
(0.1640)

0.1933
(0.1708)

−0.1419
(0.2085)

0.3690
(0.2407)

0.3690
(0.2407)

0.2789
(0.2052)

Ceará (CE) −0.0380
(0.1484)

0.2657
(0.1547)

0.2223
(0.1349)

0.2092
(0.1368)

0.1972
(0.1613)

0.1972
(0.1613)

0.1358
(0.2506)

Pernambuco (PE) 0.1769
(0.1949)

0.1895
(0.1687)

0.2698
(0.1718)

0.5322
(0.1741)

0.1586
(0.2073)

0.1586
(0.2073)

0.5021
(0.2174)

Bahia (BA) 0.0125
(0.2655)

0.0756
(0.2228)

0.1001
(0.2433)

0.5707
(0.3547)

0.2800
(0.3201)

0.2800
(0.3201)

0.1737
(0.2932)

Minas Gerais (MG) −0.0706
(0.1198)

0.1265
(0.1007)

0.1417
(0.1083)

0.3472
(0.1705)

−0.1089
(0.1560)

−0.1089
(0.1560)

0.0736
(0.1554)

Rio de Janeiro (RJ) 0.2245
(0.1165)

0.2992
(0.1278)

0.3126
(0.1230)

0.2484
(0.1245)

0.1723
(0.1111)

0.1723
(0.1111)

0.0724
(0.1300)

Paraná (PR) 0.1409
(0.2527)

0.3400
(0.1904)

0.2238
(0.1582)

0.1441
(0.2658)

0.2373
(0.2939)

0.2373
(0.2939)

0.1732
(0.2131)

Rio Grande do Sul (RS) 0.4292
(0.1614)

0.5422
(0.1653)

0.5315
(0.1599)

0.4996
(0.1580)

0.5325
(0.1627)

0.5325
(0.1627)

0.4450
(0.2430)

Inflation Yes No No No Yes Yes Yes
GDP No Yes No No Yes Yes Yes
Retail Sales No No Yes No No Yes Yes
Credit No No No Yes No No Yes

The table presents the estimated effect of the intervention on the untreated units. Values between parenthesis
are the standard error of the estimates.
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Figure S.7. Actual and counterfactual data without RS. The conditioning vari-
ables are inflation, DGP growth, and retail sales growth. Panel (a) monthly
inflation. Panel (b) accumulated monthly inflation.
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