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a b s t r a c t

We consider a new, flexible and easy-to-implement method to estimate the causal effects
of an intervention on a single treated unit when a control group is not available and which
nests previous proposals in the literature. It is a two-step methodology where in the first
stage, a counterfactual is estimated based on a large-dimensional set of variables from a
pool of untreated units bymeans of shrinkagemethods, such as the least absolute shrinkage
and selection operator (LASSO). In the second stage, we estimate the average intervention
effect on a vector of variables, which is consistent and asymptotically normal. Our results
are valid uniformly over a wide class of probability laws. We show that these results hold
even when the exact date of the intervention is unknown. Tests for multiple interventions
and for contamination effects are derived. By a simple transformation of the variables, it is
possible to test for multivariate intervention effects on several moments of the variables
of interest. Existing methods in the literature usually test for intervention effects on a
single variable and assume that the time of the intervention is known. In addition, high-
dimensionality is frequently ignored and inference is either conducted under a set of more
stringent hypotheses and/or by permutation tests. AMonte Carlo experiment evaluates the
properties of the method in finite samples and compares it with other alternatives. As an
application, we evaluate the effects on inflation, GDP growth, retail sales and credit of an
anti tax-evasion program.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We propose a methodology to evaluate the impact of interventions which nests previous proposals of the literature.
Our approach is especially useful in situations where there is a single treated unit and no available ‘‘controls’’, is easy to
implement in practice and is robust to the presence of confounding effects, such as a global shock.3 The idea is to construct
an artificial counterfactual based on a large-dimensional panel of observed time-series data from a pool of untreated peers.
The methodology shares roots with the panel factor (PF) model of Hsiao et al. (2012) and the Synthetic Control (SC) method
pioneered by Abadie and Gardeazabal (2003) and Abadie et al. (2010). Nevertheless, our proposal differs from prior methods
in several dimensions as will become clear in the next paragraphs.

* Corresponding author.
E-mail addresses: cvianac@econ.puc-rio.br (C. Carvalho), ricardo.masini@fgv.br (R. Masini), mcm@econ.puc-rio.br (M.C. Medeiros).

1 The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Central Bank of Brazil.
2 The research of Marcelo C. Medeiros is partially funded by CNPq and FAPERJ.
3 Although the results in this paper are derived under the assumption of single treated unit, they can be easily generalized to the case of multiple units

subjected to the treatment.

https://doi.org/10.1016/j.jeconom.2018.07.005
0304-4076/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jeconom.2018.07.005
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2018.07.005&domain=pdf
mailto:cvianac@econ.puc-rio.br
mailto:ricardo.masini@fgv.br
mailto:mcm@econ.puc-rio.br
https://doi.org/10.1016/j.jeconom.2018.07.005


C. Carvalho et al. / Journal of Econometrics 207 (2018) 352–380 353

Causality is a topic of major interest in economics. Causal statements with respect to a given treatment usually rely on
the construction of counterfactuals based on the outcomes from a similar group of individuals not affected by the treatment.
Notwithstanding, definitive cause-and-effect statements are often hard to formulate given the constraints that economists
face in finding sources of exogenous variation. However, in micro-econometrics, there has been major advances in the
literature and the estimation of treatment effects is part of the toolbox of applied economists (Angrist and Imbens, 1994;
Heckman and Vytlacil, 2005; Belloni et al., 2014, 2017).

On the other hand, the econometric tools for cases where there is a single treated unit and no controls, which is usually
the case with aggregate data, have evolved at a slower pace andmuch of the work has focused on simulating counterfactuals
from structural models. Recently, some authors have proposed new techniques that are able, under some assumptions, to
estimate counterfactuals with aggregate data (Hsiao et al., 2012; Pesaran and Smith, 2012).

1.1. Contributions of the paper

This paper fits into the literature of counterfactual analysis when a control group is not available and only one element is
subjected to the treatment.We propose a two-step approach called the artificial counterfactual (ArCo)method to estimate
the average multivariate treatment (intervention) effects on the treated unit. In contrast to the cross-section literature,
the average is taken over the post-intervention period and not over the treated units. In the first step, we estimate a
multivariate model based on a high-dimensional panel of time-series data from a pool of untreated peers without any
stringent assumptions about the data generating process (DGP). Then, we compute the counterfactual by extrapolating the
model with data after the intervention. High-dimensionality is relevant when the number of parameters to be estimated is
large compared to the sample size. This can occur either when the number of peers and/or the number of variables for each
peer is large or when the sample size is small. We use the least absolute shrinkage and selection operator (LASSO) proposed
by Tibshirani (1996) to estimate the parameters. Nonlinearities can be handled by including some transformations of the
explanatory variables, such as polynomials or splines, in themodel. Furthermore, we propose a test of no intervention effects
with a standard limiting distribution that is uniformly valid in awide class of DGPs, without imposing any strong restrictions
on the model parameters, as is usually the case when the LASSO is the estimation method, or modifying the estimator, as
in Belloni et al. (2017). We also show that it is not necessary to consider two-step extensions of the LASSO, such as the
adaptive LASSO of Zou (2006), to handle highly collinear regressors. Contrary to other methods, the ArCo methodology is
able to simultaneously test for effects on different variables and onmultiple moments of a set of variables, such as the mean
and the variance. In addition, we accommodate situations where the exact time of the intervention is unknown, which is
important in the case of anticipation effects. We also propose an Lp statistic inspired by the literature on structural breaks
and show that the asymptotic properties of the method remain unchanged. Finally, we extend the methodology to the cases
of multiple interventions and to contamination effects among units.

The identification of the intervention effect relies on the common assumption of independence between the intervention
and treated peers. Our results are derived under asymptotic limits on the time dimension (T ). We allow the number of peers
(n) and the number of observed variables for each peer to grow as a function of T . We derive the consistency of the estimator,
even in the presence of heterogeneous, possibly nonlinear, deterministic time trends among units.

A Monte Carlo experiment is conducted to evaluate the small-sample performance of the methodology in comparison to
well-established alternatives, namely, the before-and-after (BA) estimator, the differences-in-differences (DiD) estimator,
the panel factormodel of Gobillon andMagnac (2016) (PF-GM) and the SCmethod.We show that the bias of the ArComethod
is negligible andmuch smaller than some of the alternatives. Simulations show that the variance and themean squared error
of the ArCo estimator are smaller than those of its competitors and that the test for the null hypothesis of no intervention
effect has good size and power properties.

As an illustration,we evaluate the impacts on inflation and othermacroeconomic variables of an anti tax-evasion program
implemented in Brazil. The mechanism works by giving tax rebates for consumers who ask for sales receipts. Additionally,
the registered sales receipts give the consumer the right to participate in monthly lotteries promoted by the government.
Under the assumptions that (i) a certain degree of tax evasion was occurring before the intervention, (ii) the seller has some
degree of market power and (iii) the penalty for tax evasion is sufficient to alter seller behavior, one is expected to see an
upwardmovement in prices due to an increase inmarginal cost. Compared to the counterfactual, the program caused a price
increase of 10.72% over 23months. This is an important result as most of the studies in the literature focus only of the effects
of such policies on reducing tax evasion and neglect the effects on inflation. To highlight the multivariate nature of the ArCo
methodology we also test for joint effects on GDP, retail sales and credit. We find no effect of the program on these variables.

1.2. Connections to the literature

Hsiao et al. (2012) considered a two-stepmethodwhere in the first step, the counterfactual for a single treated variable is
constructed as a linear combination of a low-dimensional set of covariates from pre-selected elements from a pool of peers.
The model is estimated by ordinary least squares using pre-intervention data. Their theoretical results are derived under
the hypothesis of correct specification of a linear panel data model with common factors and no covariates. The selection of
the included peers in the linear combination is performed by information criteria. Recently, several extensions have been
proposed. Ouyang and Peng (2015) relaxed the linear conditional expectation assumption. Du and Zhang (2015) and Li and
Bell (2017) improved the selection mechanism for the donor pool.
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The ArCo method generalizes the above papers in important directions. First, we do not restrict the analysis to a single
treated variable.We canmeasure the impact of interventions on several variables of the treated unit simultaneously.We also
allow for tests on several moments of a set of variables. For example, consider the case where the interest is on measuring
the effects of a new policy on the first two moments of inflation or on inflation and output growth simultaneously. A test
for joint effects is not possible with the previously proposed methods and the econometrician can only test the effects on
each series separately. Second, we demonstrate that our methodology can be applied even when the intervention time
is unknown. Third, we develop tests for multiple interventions and contamination effects. Finally, all previous results are
derived in a high-dimensional frameworkwhere the first step estimation is carried out by LASSO, allowing for a large number
of covariates/peers to be included and do not require any pre-estimation selection, which can bias the estimates. Shrinkage
estimation is appealing when the sample size is small compared to the number of parameters to be estimated. Although Li
and Bell (2017) have advocated the use of LASSO as a selection mechanism, the authors do not provide any theoretical
results. We not only derive the asymptotic properties of the estimators but also show that all our convergence results are
uniform on a wide class of probability laws under mild conditions. All our theoretical results are derived under no stringent
assumptions about the DGP. We do not need to estimate the true conditional expectation as we consider the estimation of a
linear projection on a set of conditioning variables. This is a positive feature of the ArCo methodology as models are usually
misspecified.

Compared to DiD estimators, the advantages of the ArCo method are threefold. First, we do not need the number of
treated units to grow. In fact, the workhorse situation is when there is a single treated unit. The second, and most important
difference, is that theArComethodologyhas beendeveloped for situationswhere then−1untreatedunits differ substantially
from the treated unit and cannot form a control group, even after conditioning on a set of observables. Finally, the ArCo
estimator is consistent even without the parallel trends hypothesis.4

More recently, Gobillon and Magnac (2016) generalize DiD estimators by estimating a correctly specified linear panel
model with strictly exogenous regressors and interactive fixed effects represented as a number of common factors with
heterogeneous loadings. Their theoretical results rely on double asymptotics when both T and n go to infinity. The authors
allow the common confounding factors to have nonlinear deterministic trends, which is a generalization of the linear parallel
trend hypothesis assumed when DiD estimation is considered.

The ArCo method differs from Gobillon and Magnac (2016) in many ways. First, as mentioned previously, we do not
assume the model to be correctly specified, and we do not need to estimate the common factors. Consistent estimation of
factors requires both the time-series and cross-section dimensions diverge to infinity and can be severely biased in small
samples. The ArCo methodology requires only the time-series dimensions to diverge. Furthermore, we do not require the
regressors to be strictly exogenous, which is an unrealistic assumption in most applications with aggregate (time-series)
data. We also provide consistency results under heterogeneous nonlinear trends, but there is no need to estimate them
(either explicitly or via common factors). Finally, as in the DiD case, we do not require the number of treated units to grow
or to have a reliable control group (after conditioning on covariates).

Although, both the ArCo and the SC methods construct a counterfactual as a function of observed variables from a pool
of peers, the two approaches have important differences. First, the SC method relies on a convex combination of peers to
construct the counterfactual, which as pointed out by Ferman and Pinto (2016), biases the estimator. This is clearly evidenced
in our simulation experiment. The ArCo solution is a general, possibly nonlinear, function. Even in the case of linearity, the
method does not impose restrictions on the parameters. For example, the restriction that the weights in the SC method
are all positive appear to be too strong. The SC method also requires an unrealistic identification assumption about the
(perfect-)fit of the model in the pre-intervention period. Furthermore, the weights in the SC method are usually estimated
using time averages of the observed variables for each peer. Therefore, all the time-series dynamics are removed, and the
weights are determined in a pure cross-sectional setting. In some applications of the SCmethod, the number of observations
used to estimate the weights is much smaller than the number of parameters to be determined. For example, in Abadie and
Gardeazabal (2003), the authors have 13 observations to estimate 16 parameters.5 In addition, the SCmethod was designed
to evaluate the effects of the intervention on a single variable: the method has to be applied several times to evaluate the
effects on a vector of variables. The ArCo methodology can be directly applied to a vector of variables of interest. In addition,
there is no formal inferential procedure for hypothesis testing in the SCmethod, whereas in the ArComethodology, a simple,
uniformly valid and standard test can be applied. Finally, as discussed in Ferman et al. (2016), the SCmethod does not provide
any guidance on how to select the variables that determine the optimal weights.6

With respect to the methodology of Pesaran and Smith (2012), the major difference is that the authors construct the
counterfactual based on variables that belong to the treated unit and do not rely on a pool of untreated peers. Their key
assumption is that a subset of variables of the treated unit is invariant to the intervention. Although this could be a reasonable
hypothesis in some specific cases, in a general framework, this assumption is clearly restrictive.

Angrist et al. (2018) propose a semiparametricmethod to evaluate the effects ofmonetary policy. The authors rely on only
information about the treated unit, and no donor pool is available. As before, this is a major difference from our approach.

4 The first difference can be attenuated in light of the recent results of Conley and Taber (2011) and Ferman and Pinto (2015), who proposed inferential
procedures when the number of treated groups is small.

5 In these cases, the estimation is only possible due to the imposed restrictions, which can be seen as a sort of shrinkage. A similar issue appears in Abadie
et al. (2010, 2015).

6 Doudchenko and Imbens (2016) advocate the use of shrinkage methods to estimate the pre-intervention model, but no theory is provided.
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Furthermore, their methodology seems to be particularly appealing to monetary economics but is difficult to apply in other
settings without major modifications.

It is important to compare the ArCo methodology with the work of Belloni et al. (2014) and Belloni et al. (2017). Both
papers consider the estimation of intervention effects in large dimensions. The first one consider a pure cross-sectional
setting where the intervention is correlated with a large set of regressors and the approach is to consider an instrumental
variable estimator to recover the intervention effect as there is no control group available. In the ArCo framework, instead
of relying on instrumental variables, a set of peers is used to construct an artificial counterfactual, and the intervention is
assumed to be exogenouswith respect to this set of peers. Notwithstanding, the interventionmaynot be (andprobably is not)
independent of the variables belonging to the treated unit. This key assumption enables us to construct honest confidence
bands by using the LASSO to estimate the conditional model in the first step. In the second paper the authors proposed
a general and flexible extension of the DiD approach for program evaluation in high dimensions. They provide efficient
estimators and honest confidence bands for a large number of treatment effects. However, they do not consider the case
when an artificial (synthetic) counterfactual must be computed to evaluate the intervention effects. Finally, it is not clear
how to apply their methods to aggregate (macro) data where time-series dynamics must be considered.

Finally, it is worth comparing the ArCo method with the structural change literature. The intervention considered here
can be viewed as a structural break in the DGP of the variables of interest and a possible test for its effects is to check for
parameter instability. However, the difficulty of this approach is to control for confounding effects as there is no control
group available, not even a synthetic one, and this test is equivalent to a ‘‘before-and-after’’ comparison.

1.3. Applications

There is a number of studies that require the estimation of intervention effectswith no group of controls. TheArComethod
can be applied to the same types of applications as SC or PFmethods, which have beenwidely used (Athey and Imbens, 2016).

Measuring the impacts of regional policies is a potential application. Hsiao et al. (2012) measured the impact of the
economic and political integration of Hong Kong with mainland China on Hong Kong’s economy, and Abadie et al. (2015)
estimated the spillover of the 1990 German reunification in West Germany. Pesaran et al. (2007) study the effects of the
launching of the Euro. Gobillon and Magnac (2016) considered the impact on unemployment of a new policy implemented
in France in the 1990s. The effects of trade agreements were discussed in Billmeier and Nannicini (2013) and Jordan et al.
(2014). The rise of a new government is also a relevant ‘‘intervention’’ to study. Grier and Maynard (2013) considered the
economic impacts of the Chavez era.

Other applications are new regulations on housing prices, as in Bai et al. (2014) and Du and Zhang (2015), new labor
laws, as considered in Du et al. (2013), and the macroeconomic effects of economic stimulus programs (Ouyang and Peng,
2015). The effects of different monetary policies have been discussed in Pesaran and Smith (2012) and Angrist et al. (2018).
Estimating the economic consequences of natural disasters, as in Belasen and Polachek (2008), Cavallo et al. (2013), Fujiki
and Hsiao (2015), and Caruso and Miller (2015), is also a promising area of research.

The effects ofmarket regulation and the introduction of new financial instruments on the risk and returns of stockmarkets
have been considered in Chen et al. (2013) and Xie and Mo (2013). Testing the intervention effects on multiple moments of
the data is a special interest in finance, where the goal could be to determine the effects of different corporate governance
policies on the returns and risk of firms (Johnson et al., 2000).

1.4. Plan of the paper

In Section 2, we present the ArCo method and discuss the conditional model used in the first step. In Section 3, we derive
the asymptotic properties of the ArCo estimator. Sub-Section 3.3 addresses the test for the null hypothesis of no causal effect.
Extensions for trending regressors, unknown intervention time, multiple interventions and possible contamination effects
are described in Section 4. In Section 5, we discuss potential sources of bias in the method. AMonte Carlo study is conducted
in Section 6, and Section 7 considers an empirical exercise. Section 8 concludes the paper. Tables, figures and proofs are
provided in the Appendix. A supplementary material provides additional results. Equations, tables and figures numbered
with an ‘‘S’’ refer to this supplement.

2. The artificial counterfactual estimator

Suppose we have n units (countries, states, firms, etc.) indexed by i = 1, . . . , n. For each unit and for every time period
t = 1, . . . , T , we observe a realization of a set of variables zit = (z1it , . . . , z

qi
it )

′
∈ Rqi , qi ≥ 1. Furthermore, assume that an

intervention occurred in unit i = 1 and only unit 1 at time T0 = ⌊λ0T⌋, where λ0 ∈ (0, 1) and ⌊·⌋ is the floor function.
LetDt be a binary variable indicating periodswhen the interventionwas in place.We can express the observable variables

of unit 1 as z1t = Dtz
(1)
1t + (1 − Dt )z

(0)
1t , where Dt = I(t ≥ T0), I(A) is an indicator function that equals 1 if the event A is true

or equals 0 otherwise, z (1)1t denotes the outcomewhen unit 1 is exposed to the intervention, and z (0)1t is the potential outcome
of unit 1 when there is no intervention.

We are concerned with testing hypotheses on the effects of the intervention on unit 1 for t ≥ T0. In particular, we are
interested in measuring the effects on a transformation of z1t defined as yt ≡ h(z1t ), where h : Rq1 ↦→ Rq is a measurable
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function of z1t . The choice of transformation h(·) depends on which moments of the data the econometrician is interested in
testing for effects of the intervention. In other words, the goal is to test for a break in a set of unconditional moments of the
data and to check whether this break is solely due to the intervention or has other (global) causes. Typical choices for h(·)
are presented below.

Example 1. For the univariate case (q1 = 1), we can use the identity function h(a) = a to test for changes in the mean. In
fact, provided that the pth moment of the data is finite, we can use h(a) = ap to test for any change in the pth unconditional
moment.

Example 2. In the multivariate case (q1 > 1), we can consider

h(z1t ) =

{
z1t for testing for changes in the mean,
vech

(
z1tz ′

1t

)
for testing for changes in the second moments.

vech (A) is the half vectorization of a symmetric matrix A (a column vector obtained by vectorizing only the lower triangular
part of A).

Example 3. We can also conduct joint tests by combining the different choices of h. For example, to simultaneously test for
a change in the mean and variance in the univariate case, we can set h(a) = (a, a2)′.

Set yt = Dty
(1)
t + (1 − Dt )y

(0)
t . As before, y(1)

t denotes the outcome when unit 1 is exposed to the intervention, and y(0)
t

is the potential outcome of unit 1 when there is no intervention. The exact dimensions of yt depend on the chosen h(·).
However, regardless of the choice of h(·), we consider, without loss of generality, that yt ∈ Y ⊂ Rq, q > 0 and that we have
a sample {yt}Tt=1, where the first T0 − 1 observations are before the intervention and the T − T0 + 1 remaining observations
are after the intervention.

We consider interventions of the form

y(1)
t =

{
y(0)
t , t = 1, . . . , T0 − 1,

δt + y(0)
t , t = T0 . . . , T ,

(1)

where {δt}
T
t=T0

is a deterministic sequence. Due to the flexibility of the mapping h(·), interventions modeled as (1) are quite
general and include interventions affecting the mean, variance, covariances or any combination of moments of z1t . The null
hypothesis of interest is

H0 : ∆T =
1

T − T0 + 1

T∑
t=T0

δt = 0. (2)

The quantity ∆T in (2) is similar to the traditional average treatment effect on the treated (ATET) vastly discussed in the
literature.7 Furthermore, the null hypothesis (2) encompasses the case where the intervention is a sequence {δt}

T
t=T0

under
the alternative, which is a special case of uniform treatments by setting δt = δ,∀t ≥ T0.

Clearly, we do not observe y(0)
t after T0−1.We call y(0)

t the counterfactual, i.e., what yt would have been like had there been
no intervention (potential outcome). To construct the counterfactual, let z0t = (z ′

2t , . . . , z
′
nt )

′ and Z0t =
(
z ′

0t , . . . , z
′

0t−p

)′ be
the collection of all the untreated units’ observables up to an arbitrary lag p ≥ 0. The exact dimensions of Z0t depend upon
the number of peers (n− 1), the number of variables per peer, qi, i = 2, . . . , n, and the choice of p. However, without loss of
generality, we assume that Z0t ∈ Z0 ⊆ Rd, d > 0.

Consider the following approximating model for yt in the absence of the intervention

y(0)
t = M(Z0t , θ0) + νt , t = 1, . . . , T , (3)

where M : Z0 × Θ → Y is a measurable mapping for each θ ∈ Θ , a finite dimensional parametric space and we assume
E(νt ) = 0.8 We defer the discussion about the functional form ofM(·, ·) and the precise definition of θ0 ∈ Θ until Section 3.

Set T1 ≡ T0 − 1 and T2 ≡ T − T0 + 1 as the number of observations before and after the intervention, respectively. As y(0)
t

is observed for t < T0, we can thus define:

Definition 1. The artificial counterfactual (ArCo) estimator is

∆̂T =
1

T − T0 + 1

T∑
t=T0

δ̂t , (4)

where δ̂t ≡ yt − M(Z0t , θ̂T1 ), for t = T0, . . . , T and θ̂T1 is a consistent estimator for θ0 using only the first T1 observations of
the data (pre-intervention).

7 However, as noted in the Introduction, the average is taken over time periods and not over cross-section elements.
8 Which can be ensured by either including a constant in the model M or by centering the variables in a linear specification. Please note that Eq. (3)

does not necessarily represent the true data generating process for y(0)
t but rather an approximating model.
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Therefore, the ArCo is a two-stage estimator where in the first stage, we choose and estimate the parameters in themodel
M using the pre-intervention sample, and in the second, we compute ∆̂T defined by (4). At this point, the following remarks
are in order.

Remark 1. The ArCo estimator in (4) is defined under the assumption that λ0 (consequently T0) is known. However, in some
cases, the exact time of the intervention might be unknown due to anticipation effects. On the other hand, the effects of a
policy change may take some time to be noticed. Although the main results are derived under the assumption of known λ0,
we later show they remain valid when λ0 is unknown.

There are two major advantages of applying the ArCo estimator instead of computing a simple difference in the mean of
yt before and after the intervention. The first is an efficiency argument. Note that the ‘‘before-and-after’’ estimator defined
as ∆̂BA

T ≡
1

T−T0+1

∑T
t=T0

yt −
1

T0−1

∑T0−1
t=1 yt is a particular case of our estimator when there are ‘‘bad peers’’ as they are

uncorrelated with the unit of interest. In this case, M(·) = constant and ∆̂T = ∆̂BA
T . In fact, the additional information

provided by the peers helps to reduce the variance of the ArCo estimator. The second argument in favor of the ArCo method
is related to its capability to isolate the intervention from aggregate shocks. When attempting to measure the effect of an
intervention, we are usually in a scenario that other aggregate shocks occurred at the same time. The ability to disentangle
these effects is vital to provide a meaningful estimation of the intervention effect.

To recover the effects of the intervention by the ArCo we need the following key assumption.

Assumption 1. z0t is independent of Ds for all t, s.

The assumption above is sufficient for the peers to be unaffected by the intervention. Assumption 1 has also been assumed
in the case of SC and PF methods.

3. Asymptotic properties and inference

3.1. Choice of the pre-intervention model

The first stage of the ArCo method requires the choice of the model M which should capture most of the information
from the available peers. Once the choice is made, the model must be estimated using the pre-intervention sample. We do
not assume that the selected model is the true model and we consider it only as an approximation to the conditional mean
m(Z0t ) ≡ E(y(0)

t |Z0t ).
Motivated by the fact that the dimensions of Z0t can grow quite fast (by either including more peers, more covariates, or

simply considering more lags), we propose a fully parametric specification to approximate m(·) as opposed to attempting
to estimate it non-parametrically. In particular, we approximate it by a linear model (q linear models to be precise) of some
transformation of Z0t . Consequently, the model is linear in xt = hx(Z0t ), where in xt we include a constant term. Specifically,
hx could be a dictionary of functions, such as polynomials, splines, interactions, dummies or any another family of elementary
transformations of Z0t , in the spirit of sieve estimation (Chen, 2007).

Therefore, M(Z0t , θ0) = (θ′

0,1x1,t , . . . , θ
′

0,qxq,t )′ in (3) where both xj,t and θ0,j are dj-dimensional vectors for j = 1, . . . , q.
We allow dj to be a function of T . Hence, xj,t and θ0,j depend on T , but the subscript T is omitted. Set rt ≡ m(Z0t )−M(Z0t , θ0)
as the approximation error and εt ≡ y(0)

t −m(Z0t ) as the projection error.We canwrite themodel as in (3), with νt = rt +εt .
Hence,

y(0)jt = θ′

0,jxj,t + νjt , j = 1, . . . , q, (5)

where θ0,j are the best (in terms of MSE) linear projection parameters, which are properly identified as long as we rule out
multicollinearity among xt (Assumption 2).

We consider the sample (in the absence of intervention) as a single realization of the random process {z (0)t }
T
t=1 defined on

a common measurable space (Ω,F) with a probability law (joint distribution) PT ∈ PT , where PT is (for now) an arbitrary
class of probability laws. The subscript T makes the dependence of the joint distribution on the sample size T explicit, but
we omit it in what follows. We write PP and EP to denote the probability and expectation with respect to the probability
law P ∈ P , respectively.

We establish the asymptotic properties of the ArCo estimator by considering the whole sample increasing, while the
proportion between the pre-intervention to the post-intervention sample size is constant. The limits of the summations
are from 1 to T whenever left unspecified. Recall that T1 ≡ T0 − 1 and T2 ≡ T − T0 + 1 are the number of pre- and
post-intervention periods, respectively, and T0 = ⌊λ0T⌋. Hence, for fixed λ0 ∈ (0, 1), we have T0 ≡ T0(T ). Consequently,
T1 ≡ T1(T ) and T2 ≡ T2(T ). All the asymptotics are taken as T → ∞.9

9 We denote convergence in probability and in distribution by ‘‘
p

−→’’ and ‘‘
d

−→’’, respectively.
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3.2. Assumptions and asymptotic theory in high dimensions

The dimensions dj of xj,t can be very large, even larger than the sample size T , whenever the number of peers and/or the
number of variables per peer is large. In these cases, it is standard to allow dj, and consequently θ0,j, j = 1 . . . , q, to be a
function of the sample size, such that dj ≡ dj,T and θ0,j ≡ θ0,j,T . To make estimation feasible, regularization (shrinkage) is
usually adopted, which is justified by some sparsity assumption on the vector θ0,j, j = 1 . . . , q, in the sense that only a small
portion of its entries are different from zero.

We propose the estimation of (5), equation by equation, by the LASSO, allowing the dimension of dj > T to grow
faster than the sample size. We drop the subscript j from now on to focus on a generic equation. Therefore, we estimate θ0
via

θ̂ = argmin

⎧⎨⎩ 1
T1

∑
t<T0

(yt − x′

tθ)
2
+ ς∥θ∥1

⎫⎬⎭ , (6)

where ς > 0 is a penalty term and ∥ · ∥1 denotes the ℓ1 norm.
Let θ[A] denote the vector of parameters indexed by A, and let S0 = {i : θ0,i ̸= 0} with cardinality s0. We consider the

following set of assumptions.10

Assumption 2 (Design). LetΣ ≡
1
T1

∑T1
t=1E(xtx

′
t ). There exists a constant ψ0 > 0 such that

∥θ[S0]∥2
1 ≤

θΣθs0
ψ2

0
,

for all ∥θ[Sc0]∥1 ≤ 3∥θ[S0]∥1.

Assumption 3 (Heterogeneity and Dependency). Letwt ≡ (νt , x′
t )

′, then:

(a) {wt} is fourth-order stationary, strong mixing with α(m) = exp(−cm) for some c ≥ c > 0.
(b) E|wit |

2γ+δ
≤ cγ for some γ > 2 and δ > 0 for all 1 ≤ i ≤ d, 1 ≤ t ≤ T and T ≥ 1.

(c) E(ν2t ) ≥ ϵ > 0, for all 1 ≤ t ≤ T and T ≥ 1.

Assumption 4 (Regularity).

(a) The regularization parameter ς = κ d1/γ
√
T
, for some constant κ > 0.

(b) s0 d2/γ
√
T

= o(1).

Assumption 2 is known as the compatibility condition, which is extensively discussed in Bülhmann and van der Geer
(2011). It is similar to the restriction of the smallest eigenvalue of Σ when ∥θ[S0]∥2

1 is replaced with its upper bound
s0∥θ[S0]∥2

2. Note that we make no compatibility assumption regarding the sample counterpart Σ̂ ≡
1
T1

∑T1
t=1xtx

′
t .

Assumption 3 controls for the heterogeneity and the dependence structure of the process that generates the sample.
Specifically, Assumption 3(a) requires {wt} to be an α-mixing process with exponential decay. It could be replaced by more
flexible forms of dependence, such as near epoch dependence or Lp-approximability on an α-mixing process, as long as we
control for the approximation error term. Second-order stationarity would be sufficient for asymptotic normality, but we
require fourth-order stationarity to consistently estimate the covariancematrix of the estimator. Assumption 3(b) uniformly
bounds some higher moments, which ensures an appropriate law of large numbers, and Assumption 3(c) is sufficient for the
central limit theorem. The latter bounds the variance of the regression error away from zero,which is plausible if we consider
that the fit will never be perfect regardless of how many relevant variables we have in (5). Assumption 4 impose regularity
conditions on the growth rate of the penalty parameter and the number of parameters, respectively. They are smaller than
the analogous results in the literature for the Gaussian case with fixed design.11

We can now define P as the class of probability laws that satisfies Assumptions 2, 3 and 4(b). Here is our main result.

Theorem 1 (Main). Consider the estimator in (4) with the model given by M(Z0t , θ0) = (θ′

0,1x1,t , . . . , θ
′

0,qxq,t )′ as in (5) whose
parameters are estimated by (6) using only the pre-intervention sample (t < T0), i.e.,

∆̂T =
1

T−T0+1

T∑
t=T0

yt − (̂θ
′

1,T1x1,t , . . . , θ̂
′

q,T1xq,t )
′,

10 Recall that since we drop the equation subscript j, the assumptions below must be understood separately for each equation j = 1, . . . , q.
11 Under those conditions, 4(a) and (b) become ς = O

(√
log d
T

)
and s0 log d

√
T

= o(1), respectively.
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where θ̂j,T1 for j = 1, . . . , q is a minimizer of

θ ↦→
1
T1

∑
t<T0

(yjt − x′

jtθ)
2
+ ς∥θ∥1.

Then, under Assumptions 1–4,

sup
P∈P

sup
a∈Rq

⏐⏐⏐PP

[√
TΩ−1/2

T (∆̂T − ∆T ) ≤ a
]

−Φ(a)
⏐⏐⏐ → 0, as T → ∞,

where the event {a ≤ b} ≡ {ai ≤ bi,∀i}, Φ(·) is the cumulative distribution function of a zero-mean normal random vector
with identity variance–covariance matrix,ΩT ≡

ΓT1
T1/T

+
ΓT2
T2/T

, ΓT1 = EP

[
1
T1
(
∑

t≤T1
νt )(

∑
t≤T1

ν′
t )
]
, and ΓT2 = EP

[
1
T2
(
∑

t≥T0
νt )

(
∑

t≥T0
ν′
t )
]
.

The results above are uniform with respect to the class of probability laws P , which we believe to be sufficiently large
to be of interest. Note that we do not require any strong separation of the parameters away from zero, which is usually
accomplished in the literature by imposing a θmin that is uniformly bounded away from zero. Uniform convergence above is
possible, in our case, as a consequence of the LASSO estimation error in the first step being negligible. Writing xt = (1, x̃t )′
and θ0 = (α0,β

′

0)
′, careful review of the proof of Theorem 1 in Appendix A reveals that the LASSO estimation effect appears

through the term

∥̂β − β0∥1


√
T

T2

∑
t≥T0

x̃t −

√
T

T1

∑
t<T0

x̃t


max

.

We show that, under the Assumptions of Theorem 1, the first term is OP (d1/γ s0/
√
T ) and the second OP (d1/γ ). Therefore,

the term is OP (d2/γ s0/
√
T ) = oP (1) uniformly in P ∈ P . Informally, the potential non-uniformity issues regarding the

estimation of the parameters of θ0 do not contaminate the estimation of ∆T , even if the coefficients of the conditional
model are of order O(T−1/2), as discussed in Leeb and Pötscher (2005, 2008, 2009).

In a different setup, Belloni et al. (2014) consider the case where the treatment is correlated with the set of regressors.
Consequently, they propose estimation via a moment condition with the so-called orthogonality property to achieve uniform
convergence. Further, Belloni et al. (2016) generalize this idea to conduct uniform inference in a broad class of Z-estimators.

Recall that if M = α0, the estimator is equivalent to the BA estimator. Therefore, one advantage of ArCo is to provide a
systematicway to extract asmuch information as possible from the peers to reduce the asymptotic variance of the prediction
error. We can make the peers’ contribution in reducing the asymptotic variance of the ArCo estimator more explicit by the
following matrix inequality (in terms of positive definiteness)

0 ≤ lim
T→∞

ΩT ≡ Ω ≤ lim
T→∞

TV

⎛⎝ 1
T2

∑
t≥T0

y(0)
t −

1
T1

∑
t≤T1

y(0)
t

⎞⎠ ≡ Ω̃,

where V is the variance operator defined for any random vector v as V(v) = E(vv ′) − E(v)E(v ′).
The upper bound Ω̃ is the long-run variance of the variables of the unit of interest (unit 1) weighted by the intervention

fraction time λ0. Therefore, our estimator variance for any given λ0 lies between the two polar cases: when there is a perfect
artificial counterfactual and when the peers contribute no information. Thus, the peers’ contribution to reducing the ArCo
estimator asymptotic variance can be represented by an R2-type statistic measuring the ‘‘ratio’’ between the explained long-
run varianceΩ and the total long-run variance Ω̃ .

3.3. Hypothesis testing under the asymptotic results

Given the asymptotic normality of ∆̂T , it is straightforward to conduct hypothesis testing. It is important, however, to
remember the dependence of the results on knowing the exact point of a possible break and the assurance that the peers are
in fact untreated. Fortunately, both conditions can be tested, which is the topic of the next sections. For now, we consider
that unit 1 is the only potentially treated unit and that the moment of intervention, T0, is known for certain.

First, we need a consistent estimator for the varianceΩT . More precisely, we need estimators for bothΓT1 andΓT2 . If the
errors are uncorrelated, and given the consistency of θ̂, we can simply estimate the quantities of interest by the average of
the squared residuals in the pre-intervention model. On the other hand, the results in Newey andWest (1987) and Andrews
(1991) can be used for serially correlated errors. In this case,

Γ̂Ti = V̂0i +

Ti−1∑
k=1

φ(k/ST )
(
V̂ki + V̂ ′

ki

)
, i = {1, 2}, (7)

where V̂k1 ≡
1
T1

∑T1
t=1+k̂νt ν̂

′

t−k, V̂k2 ≡
1
T2

∑T
t=T0+k̂νt ν̂

′

t−k and ν̂t = yt − M̂T0 (xt ) − ∆̂T I(t ≥ T0).



360 C. Carvalho et al. / Journal of Econometrics 207 (2018) 352–380

In practice, we need to specify the bandwidth parameter ST and the weight function φ. The latter is usually a kernel func-
tion centered at zero. A common choice is a Bartlett kernel,where theweights are given simply byφ(k) = 1−

k
M+1 , whereM is

a positive constant. Theorem2 of Newey andWest (1987) and Proposition 1 of Andrews (1991) give general conditions under
which the estimator is consistent in the low-dimensional setup. Moreover, Andrews (1991) discusses the choice of kernels
andpresents a sizeable list of options. To state our result,weborrow thedefinition of a classK of allowable kernelsK = {φ(·) :

R → [−1, 1]|φ(0) = 1, φ(x) = φ(−x),∀x ∈ R,
∫
φ2(u)du < ∞, φ is continuous at 0 and at all but finite many points in R}.

It includes the most commonly used kernels in the literature, such as truncated, Bartlett, Parzen, Tukey–Hanning and
quadratic spectral.

Theorem 2. Under Assumptions 1–4, consider further for the estimator defined by (7)

(a) φ(·) is in the class K (defined above) and
∫
|φ(u)|du < ∞.

(b) ST = o
( √

T
s0d1/γ

)
and ST → ∞.

Then, Γ̂Ti − ΓTi = op(1) uniformly in P ∈ P for i = {1, 2}.

Therefore, if we replaceΩT with Ω̂T ≡
Γ̂T1
T1/T

+
Γ̂T2
T2/T

, we have a uniform consistent estimator, which allows us to construct
honest (uniform) asymptotic confidence intervals and perform hypothesis testing as follows.

Proposition 1 (Uniform Confidence Interval). Let Ω̂T be a consistent estimator for ΩT uniformly in P ∈ P . Under the same
conditions as those of Theorem 1, for any given significance level α,

Iα ≡

[
∆̂j,T ±

ω̂j
√
T
Φ−1(1 − α/2)

]
for each j = 1, . . . , q, where ω̂j =

√
[Ω̂]jj and Φ−1(·) is the quantile function of a standard normal distribution. The confidence

interval Iα is uniformly valid (honest) in the sense that for a given ϵ > 0, there exists a Tϵ such that for all T > Tϵ

sup
P∈P

⏐⏐PP
(
∆j,T ∈ Iα

)
− (1 − α)

⏐⏐ < ϵ.

Proposition 2 (UniformHypothesis Test). Let Ω̂T be a consistent estimator for ΩT uniformly in P ∈ P . Under the same conditions
of Theorem 1, for a given ϵ > 0, there exists a Tϵ such that for all T > Tϵ :

sup
P∈P

|PP (WT ≤ cα)− (1 − α)| < ϵ,

where WT ≡ T∆̂′

T Ω̂
−1
T ∆̂T , P(χ2

q ≤ cα) = 1 − α and χ2
q is a chi-square distributed random variable with q degrees of freedom.

4. Extensions

We consider extensions of the previously developed framework. Section 4.1 presents two results for the case of trend-
stationary units. In Section 4.2, we propose a procedure to account for the problem of an unknown intervention time and
develop a consistent estimator for the most likely intervention time. The case of multiple intervention points is considered
in Section 4.3. Finally, Section 4.4 investigates the presence of a treated unit among the controls, which is particularly useful
for testing for spillover effects.

4.1. Deterministic trends

For clarity, we consider the case where q1 = · · · = qn = 1 and h(a) = a, such that yt = z(0)1t . Furthermore, we let the
units have a (not necessarily common) deterministic trend. In particular, we assume that in the absence of the intervention,
z(0)it = sit + ζi(t/T ), i = 1, . . . , n, where ζi(·) is an integrable function on [0,1], as in Bai (2009). Note that since the
deterministic term is normalized by T , it does not dominate the stochastic component sit asymptotically. Let xt = (1, z ′

0t )
′

and z0t = (z2t , . . . , znt )′. In this setup, the pre-interventionmodel becomes a single-equation version of (5). However, due to
the deterministic trend, (yt , x′

t )
′ is non-stationary, which is ruled out by Assumption 3. Hence, we consider a less restrictive

assumption as follows.

Assumption 5 (Trending Regressors). In model (5):

(a) xt = st + ζ(t/T ), where ζ = (ζ1, . . . , ζd)′ and ζi(t/T ) is an integrable function on [0,1] for i = 1, . . . , d, such that
supi≤d,d≥1ζi(t/T ) < ∞.

(b) {wt ≡ (νt , s′
t )

′
} fulfills Assumption 3.
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Generally, Assumption 5 requires the regressors to be trend-stationary, i.e., stationary except for the deterministic trend.
Therefore, we have the following result:

Theorem 3. Under Assumptions 1, 2, 4 and 5

(a) ∆̂T −∆T = oP (1).
(b)

√
TΩ−1/2

T (∆̂T −∆T + bT )
d

−→ N(0, 1), where N(0, 1) denotes the standard normal distribution, bT = rT (ζ)′ (̂β − β0),

rT (ζ) ≡

⎡⎣ 1
T2

∑
t≥T0

ζ(t/T ) −
1
T1

∑
t≤T1

ζ(t/T )

⎤⎦ ,
and β̂ is the LASSO estimator for the vector of coefficients β0 of the non-constant regressors.

As a consequence, the consistency is preserved in the case of trending regressors since bT = oP (1) under the assumptions
above. However, the bias term bT appears in the asymptotic normality expression since, in general,

√
TbT does not vanish in

probability.
An exact expression for the limiting distribution of the estimator in the high-dimensional settingwith trending regressors

does not appear to be straightforward. In contrast to the stationary case, the influence of the pre-intervention estimation
does not vanish asymptotically. Hence, the limiting distribution is likely to be influenced by the limiting distribution of the
LASSO estimator.

To gain some intuition about the limiting distribution of our estimator under this scenario, we consider the low-
dimensional case where d < T1 is fixed, and we estimate the pre-intervention model by ordinary least squares (OLS) to
obtain the following result:

Theorem 4. For a fixed number of regressors d < T1, if the parameters in model (5) are estimated via OLS; then, under
Assumptions 1, 3 and 5, and provided that Σ ≡ limT→∞

1
T1

∑T1
t=1E(xtx

′
t ) is non-singular,

√
TΥ −1/2

T (∆̂T −∆T )
d

−→ N(0, 1),

where ΥT ≡
ΛT1
T1/T

+
ΓT2
T2/T

, ΓT2 is defined in Theorem 1, ΛT1 = a′M1a, a = [1, rT (ζ)′M−1
2 ]

′, M1 = EP

[
1
T1
(
∑

t≤T1
ž0tνt )

(
∑

t≤T1
ž ′

0tνt )
]
, M2 = EP

[
1
T1

∑
t≤T1

z̃0t z̃ ′

0t

]
, rT (ζ) is defined in Theorem 3, z̃0t = z0t − EP

[
1
T1

∑
t≤T1

z0t
]
, and ž0t = (1, z̃ ′

0t )
′.

Recall that xt = (1, z ′

0t )
′ and z0t = (z2n, . . . , znt )′.

From Theorem 4, we can recover the low-dimensional version of Theorem 1 since we can set rT (ζ) = 0 in the absence of
a deterministic trend. In this case, ΛT1 = ΓT1 and, consequently, ΥT = ΩT . Moreover, we conjecture that the same result
can be obtained in the high-dimensional setup if we use the adaptive LASSO of Zou (2006) instead of the LASSO estimator
for the pre-interventionmodel. Provided conditions to ensure consistent model selection, the non-zero coefficient would be
estimated in the same way as the OLS asymptotically due to its oracle property.

Furthermore, the variance ΥT that appears in Theorem 4 can be consistently estimated by Υ̂T ≡
Λ̂T1
T1/T

+
Γ̂T2
T2/T

, where
Γ̂T2 is defined by (7), Λ̂T1 = d ′M−1

3 M4M−1
3 d with d =

1
T2

∑
t≥T0

xt , M3 =
1
T1

∑
t<T0

xtx′
t , M4 =

∑
|k|<T1

φ(k/ST )Dk with
Dk =

1
T1

∑T1
t=1+kxtx

′

t−k̂νt ν̂t−k for k ≥ 0 and Dk = D′

−k for k < 0, and ν̂t = yt − θ̂
′xt for t = 1, . . . , T1. The result holds as long

as the kernel φ(·) belongs to the class K defined in condition (a) of Theorem 2 and the bandwidth parameter is chosen such
that ST/

√
T = o(1).

4.2. Unknown intervention timing

There are reasons why the intervention timing might not be known with certainty, for example, anticipation effects
related to rational expectations regarding an announced change in future policy or a simple delay in the response of the
variable of interest. Regardless of the cause of uncertainty in the timing of the intervention, we propose a way to apply the
methodology when T0 is unknown.

We start by reinterpreting our estimator as a function of λ (or Tλ ≡ ⌊λT⌋), where λ ∈ Λ, a compact subset of (0, 1):

∆̂T (λ) =
1

T − Tλ + 1

∑
t≥Tλ

δ̂t,T (λ), ∀λ ∈ Λ, (8)

where δ̂t,T (λ) = yt − M̂T (λ)(xt ) for t = Tλ, . . . , T , and M̂T (λ) is the estimate of the model M based on the first Tλ − 1
observations. Moreover, consider a λ-dependent version of our average treatment effect, given by

∆T (λ) =
1

T − Tλ + 1

T∑
t=Tλ

δt .
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Table 1
Critical values for unknown intervention time inference: P(∥S∥p > c) = 1 − α.

Λ = [λ, λ̄] Confidence Level

α = 0.2 0.15 0.1 0.05 0.0025 0.001

p = 1 [0.5, 0.95] 2.5679 2.7824 3.0732 3.5457 3.9844 4.5346
[0.1, 0.9] 2.4332 2.6569 2.9550 3.4530 3.9218 4.4805
[0.15, 0.85] 2.3786 2.6164 2.9375 3.4482 3.9138 4.4728
[0.2, 0.8] 2.3366 2.5833 2.9167 3.4399 3.9115 4.4655

p = 2 [0.5, 0.95] 3.0633 3.2814 3.5706 4.0228 4.4378 4.9674
[0.1, 0.9] 2.8230 3.0441 3.3340 3.8138 4.2602 4.7792
[0.15, 0.85] 2.7052 2.9400 3.2448 3.7391 4.1859 4.7235
[0.2, 0.8] 2.6169 2.8579 3.1795 3.6787 4.1466 4.7159

p = ∞ [0.5, 0.95] 8.6192 9.1867 9.9400 11.1562 12.2190 13.5604
[0.1, 0.9] 6.4807 6.8974 7.4353 8.2781 9.0400 10.0020
[0.15, 0.85] 5.6000 5.9506 6.4041 7.1014 7.7328 8.5187
[0.2, 0.8] 5.0630 5.3815 5.7957 6.4303 7.0047 7.7473

NB: All critical values were obtained as the quantile of the empirical distribution using 100,000 draws from a multivariate normal distribution with
covarianceΣΛ via a grid of 500 points between λ and λ̄ inclusive.

For fixedλ, provided that the conditions of Lemma1 are satisfied for Tλ (as opposed to just T0 ≡ Tλ0 ),wehave convergence
in distribution to a Gaussian. Hence, it is sufficient to consider the following additional assumption.

Assumption 6. {(y ′
t , x′

t )
′
} is a strictly stationary process.

Assumption 6 is clearly stronger than necessary. For instance, it would be sufficient to have {νt} as a weakly stationary
process. However, to avoid assumptions that are model-dependent (via the choice of M) we state Assumption 6 as it is.
It follows, for instance, if the process that generates the observable data in the absence of the intervention {z (0)t } is strictly
stationary and both transformations h(·) and hx(·) are measurable.

To analyze the properties of the estimator (8), it is convenient to define the stochastic process {ST } indexed by λ ∈ Λ

such that for each λ ∈ Λ, we have ST (λ) ≡
√
TΓ−1/2

T [∆T (λ) − ∆T (λ)]. Note that unlike the notation used in Lemma 1, we
do not include the factors T1/T and T2/T inside the asymptotic variance term, and since all the results are under stationarity
(Assumption 6), we replace ΓT1 and ΓT2 with its asymptotic equivalent ΓT , which is independent of λ ∈ Λ.

Therefore, the convergence in distribution of ST (λ) to a Gaussian for any finite dimension λ = (λ1, . . . , λk)′ follows
directly from Theorem 1 combined with Assumption 6 and the Cramèr–Wold device. Furthermore, the next theorem shows
that ST converges uniformly in λ ∈ Λ.

Theorem 5. Under the conditions of Lemma 1 and Assumption 6:

ST (λ) ≡
√
TΓ−1/2

T [∆T (λ) − ∆T (λ)]
d

−→ S ∼ N (0,ΣΛ),

whereΣΛ(λ, λ′) =
Iq

(λ∨λ′)(1−λ∧λ′) , ∀(λ, λ
′) ∈ Λ2. For p ∈ [1,∞], ∥ST∥p

d
−→ ∥S∥p, where ∥f ∥p =

(∫
|f (x)|pdx

)1/p if 1 ≤ p ≤ ∞

and ∥f ∥∞ = supx∈X |f (x)|.

The second part of Theorem 5 gives us a direct approach to conduct inference in the case of an unknown intervention
time.We can replaceΓT with a consistent estimator Γ̂T (for instance, the one discussed in Section 3.3) and conduct inference
on ∥̂ST∥p under a slightly stronger version of H0 (which clearly implies H0):

Hλ
0 : δt = 0, ∀t ≥ 1.

In practice, as is the case for the structural breaks tests, we trim the sample to avoid finite sample bias close to the
boundaries and select Λ = [λ, λ̄]. Table 1 presents the critical values for common choices of p = {1, 2,∞} and trimming
values.

The procedure above suggests a natural estimator for the unknown intervention time, whichmight be useful in situations
such as the one discussed in Section 4.3, where treatment occurs at multiple unknown intervention times.

We assume a constant intervention, such as

Assumption 7. δt = ∆, for t = T0, . . . , T , where∆ ∈ Rq is non-random.

Remark 2. Recall that Assumption 7 is not overly restrictive due to the flexibility provided by the transformation h(.). The
mean of yt can represent the variance, covariances or any other moment of interest of the original z1t variable.

Remark 3. Assumption 7 implies an instantaneous treatment effect (step function) at t = T0. Inmost cases, however, we en-
counter a continuous intervention effect, possibly reaching a distinguishable new steady-state value. We can accommodate



C. Carvalho et al. / Journal of Econometrics 207 (2018) 352–380 363

these cases by trimming this transitory part of the sample, provided we have enough data, and then apply the methodology
to the trimmed sample where Assumption 7 holds.

Proposition 3. Under the conditions of Lemma 1 and Assumptions 6 and 7, ∆̂T (λ)
p

−→ φ(λ)∆, where

φ(λ) =

⎧⎪⎨⎪⎩
1 − λ0

1 − λ
if λ ≤ λ0,

λ0

λ
if λ > λ0.

Since both 1−λ0
1−λ and λ0

λ
are bounded between 0 and 1, we have that ∥plim ∆̂T (λ)∥p ≤ ∥∆∥p for all λ ∈ Λ, where

∥ · ∥p denotes the ℓp norm. Under the maintained hypothesis that ∆ ̸= 0, we can establish the identification result that
plim ∆̂T (λ) = ∆ if and only if λ = λ0. This result suggests a natural estimator for λ0:

λ̂0,p = argmax
λ∈Λ

JT ,p(λ) and JT ,p(λ) ≡ ∥∆̂T (λ)∥p. (9)

Theorem 6. Let p ∈ [1,∞]. Under the conditions of Lemma 1 and Assumptions 6 and 7, for ∆ ̸= 0, λ̂0,p = λ0 + op(1). If
∆ = 0, λ̂0,p converges in probability to any λ ∈ Λ with equal probability.

4.3. Multiple intervention points

We can readily extend our analysis to the case of more than one intervention affecting the unit of interest as long as
Assumption 7 is valid for each intervention. Suppose we have S ordered known intervention points corresponding to the
fractions of the sample given by λ0 ≡ 0 < λ1 < · · · < λS < 1 ≡ λS+1.

For each intervention point s = {1, . . . , S}, we can define the time of each intervention by Ts ≡ ⌊λsT⌋ and construct our
estimator in the same way as for the single intervention case. To simplify the notation, we define the set of all periods after
intervention s but before intervention s + 1 as τs = {Ts, Ts + 1, . . . , Ts+1 − 1} and define #{A} as the number of elements in
the set A. Then, we have S estimators given by

∆̂s
T ≡ ∆̂T (λs, θ̂s) =

1
#{τs}

∑
t∈τs

[
yt − Mp(xt , θ̂s,T )

]
, s = 1, . . . , S,

where θ̂s,T is the LASSO estimator for the sample indexed by t ∈ τs−1. Note thatwe could allow the linearmodel to depend on
s, i.e., differ from one intervention point to another. However, a much more parsimonious estimate is obtained by choosing
the same model for all intervention periods.

Under the same set of assumptions as for the single intervention case plus Assumption 7, the sequence of estimators
{∆̂s

T }
S
s=1 are consistent for their respective intervention effects {∆s

}
S
s=1 and are also asymptotically normal. However, we

need to make a minor adjustment to the asymptotic covariance matrix to reflect the intervention timing:
√
TΓ−1/2

T

(
∆̂s

T − ∆s) d
−→ N

[
0,

1
(λs − λs−1)(λs+1 − λs)

]
, s = 1, . . . , S.

Since under Assumption 7 all the interventions are constant, the asymptotic varianceΓ is the same across all intervention
points. Therefore, we can apply the inference for each breaking point as described for the single intervention case.

On the other hand, if the intervention points are unknown, we first need to estimate their location, as in the single
intervention case. Since the intervention points are assumed to be distinct, i.e., λi ̸= λj, ∀i, j, it follows from Proposition 3
that there exists an interval of size ϵ > 0 around every intervention point such that

∆̂p
T (λ)

p
−→

⎧⎪⎨⎪⎩
1 − λp

1 − λ
∆ if λ ∈ [λp − ϵ/2, λp],

λp

λ
∆ if λ ∈ (λp, λp + ϵ/2].

Nonetheless, in contrast to the single intervention scenario, in the case of multiple intervention points, we first need to
estimate the number and respective locations to construct {∆̂p

T }
P
p=1. One approach is to start with the null hypothesis of

no intervention (s = 0) against the alternative of a single intervention. We can then compute λ̂1 as in (9) and test the null
using ∆̂0

T (̂λ1). In the case that we can reject the null, we split the sample at λ̂1 and repeat the procedure in each of the two
subsamples. Each time we reject the null, we split the sample in λ̂s and proceed sequentially until we can no longer reject
the null in any subsample.

The sequential procedure described above was advocated by Bai and Perron (1998). It is based on the observation that
given a non-zero number of true intervention points, the first loop will encounter the most significant one (in terms of SSR
reduction) and proceed sequentially until it finds the final one. When there are multiple intervention points with the same
magnitude, the method converges to any of them with equal probability.
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Formally, starting from an arbitrary number of s ≥ 0 intervention points and for a given significance level α, we test for
each of the s + 1 subsamples as:

H(s)
0 : ∆ = 0 for all λ ∈

[
λj, λj+1

)s
j=0,

H(s+1)
1 : ∆ ̸= 0 for any λ ∈

[
λj, λj+1

)s
j=0.

Note that the overall significance level of the test is no longer the individual significance level, and it has to be adjusted to
account for the sequential nature of the procedure.

4.4. Testing for the unknown treated unit/untreated peers

All the analyses conducted so far rely on the knowledge of which unit is the treated unit and, more importantly, on the
assumption that the remaining units are in fact untreated during the sample period (Assumption 1). However, cases may
occur where we are either unsure of or would like to test for those conditions. Given any finite subset I of available units,
we would like to test the following hypothesis:

Hn
0 : ∆(i)

T = 0 ∀i ∈ I ⊆ {1, . . . , n}

Hn
1 : ∆(i)

T ̸= 0 for some i ∈ I.

Nothing prevents us from running the same procedure considering each unit i ∈ I to be the treated one to obtain ∆̂(i)
T , as

in (4) for i = 1, . . . , nI , where nI < ∞ is the cardinality of the set I. We can then stack all of them in a vector as Π̂T (I) ≡(
∆̂(1)′

T . . . ∆̂(nI )′
T

)′

as an average estimator for the true average intervention effect vectorΠT (I) ≡

(
∆(1)′

T . . .∆((I))′
T

)′

, where

∆(i)
T is defined for each unit. Hence,

Proposition 4. Under the conditions of Lemma 1, for any finite subset I ⊆ {1, . . . , n}
√
TΣ−1/2

I
[
Π̂T (I) − ΠT (I)

] d
−→ N (0, I),

whereΣI is a covariance matrix with typical (matrix) element (i, j) ∈ I2 given by

Ω ij
T ≡ TE

[(
∆̂(i)

T − ∆(i)
T

)(
∆̂(j)

T − ∆(j)
T

)′
]
,

withΩ ij
T =

Γ ij
T1

T1/T
+

Γ ij
T2

T2/T
, Γ ij

T1
= E

[
(
∑

t≤T1
νit )(

∑
t≤T1

ν
j
t
′

)

T1

]
, and Γ ij

T2
= E

[
(
∑

t≥T0
νit )(

∑
t≥T0

ν
j
t
′

)

T2

]
.

Therefore, for a given consistent estimator Σ̂ , under Hn
0, we have:

Wπ
T ≡ TΠ̂ ′

T Σ̂
−1
I Π̂T

d
−→ χ2

nq.

We can obtain a consistent estimator for ΣI by repeating the procedure described in Section 3.3 for each pair (ij) ∈ I2

to obtain Ω̂ ij and finally construct the matrix Σ̂I . Then, for a desired significance level, we can use Wπ
T to test Hn

0. The test
becomes evenmore useful after the (likely) treated unit is removed and the test is repeatedwith the remaining units (peers).
In the case where we fail to reject the null, we can interpret the result as direct evidence in favor of the hypothesis that the
peers are in fact untreated, considering the sample at hand, which ultimately provides support to our key Assumption 1.

5. Contamination and other issues

In this sectionwe investigate the consequences when Assumption 1 fails. We consider without loss of generality a simple
DGP. Each unit i = 1, . . . , n under no intervention is represented by z(0)it = lift + ηit , where ηit is a zero-mean independent
and identically distributed (iid) idiosyncratic shock with variance σ 2

ηi
. Furthermore, E(ηitηjt ) = 0, for all i ̸= j. Additionally,

the common factor vector ft is an iid random variable with zero mean and variance σ 2
f .

Set yt = z1t , xt = (z2t , . . . , znt )′, l0 = (l2, . . . , ln)′ and σ2
η0

= (σ 2
η2
, . . . , σ 2

ηn
)′. In this setup we, can write(

yt
xt

)
∼

[
0, σ 2

f

(
l21 + r1 l1l ′0
l1l0 l0l ′0 + diag (r0)

)]
,

where ri ≡
σ2
ηi
σ2
f
is the noise-to-signal ratio of unit i = 1, . . . , n and r0 = (r2, . . . , rn)′.

The best linear projection model is given by L(yt |xt ) = x′
tβ0, where β0 =

[
l0l ′0 + diag (r0)

]−1
(l1l0). Furthermore,

yt = x′
tβ0 + νt , where E(xtνt ) = 0 by definition, and σ 2

ν ≡ E(ν2t ) = σ 2
f

(
l21 + r1 − β′

0l1l0
)
. Therefore, β0 ≡ β0(l, r) and

σ 2
ν ≡ σ 2

ν (l, r, σ
2
f ), where r = (r1, r ′

0)
′ and l = (l1, . . . , ln)′.
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Suppose now that we have an intervention that affects all units from T0 onwards, i.e., Assumption 1 does not hold. We
consider two situations, one where the intervention is a change in the common factor given by a deterministic sequence
{c ft }t≥T0 and one where it is completely idiosyncratic {c it}t≥T0 for i = 1, . . . , n, z(1)it = z(0)it + 1{t ≥ T0}

(
c it + lic

f
t

)
.

Consequently, for t = T0, . . . , T :

δt = yt − x′

tβ0 = y(0)t + c1t + l1c
f
t −

(
x(0)t + c0t + l0c

f
t

)′

β0 = c1t + νt − c0t
′
β0 +

(
l1 − l ′0β0

)
c ft .

Under Assumption 1, we have that c (0)t = c ft = 0, ∀t; thus, E(δt ) = c1t and, ignoring the sampling error of estimating
β0, the ArCo estimator is unbiased for the average of c1t for the post-intervention period. On the other hand, without these
assumptions, we have the following bias in the normalized statistic

bt ≡ E
(
δt − c1t
σν

)
=

(
l1 − l ′0β0

σν

)
  

≡φf

c ft −
c0t

′
β0

σν
(10)

The factor in the first term of the bias φf = φf (l, r, σ 2
f ) is a non-linear expression that is difficult to express in closed form.

However, regardless of the choice of the factor loads l and idiosyncratic shock variances σ2
η = (σ 2

η1
, . . . , σ 2

ηn
)′, as σ 2

f → ∞,
r → 0 and, consequently, R2

→ 1. Hence, wewrite φf = φf (R2). Moreover, φf (R2) is strictly decreasing in R2 and approaches
zero quite fast, as seen in the left scale of Fig. 1. Additionally, φf = φ(s0) is decreasing in the number of relevant variables s0
for fixed R2.

Therefore, if c0t = 0 but c ft ̸= 0, even with moderate R2, we have a reasonably small bias, which causes the inference to
be valid with minor overrejection. This is in contrast to the case where we do not include relevant peers in our analysis.
In fact, as mentioned previously in the Introduction, that is the main motivation for using the present methodology as
opposed to an alternative that does not involve peers (for instance, a simple before-and-after estimation of averages). ArCo
can effectively isolate the intervention of interest, even in the case of partial fulfillment of Assumption 1. In the limit of a
perfect counterfactual, the bias is zero, and the higher the correlation among the treated unit and the peers is, the smaller
the bias is.

The second bias term in (10) can be seen as a result, for instance, of a global shock that induces breaks in peers in a
non-systematic way, which makes this source of bias difficult to handle. To gain a better understanding, consider the case
where the idiosyncratic shock is a fixed proportion of the standard deviation of each unit, i.e., c it = kσi,∀i for some k ∈ R.
In that case, φg = (σ ′β0/σν)k, where σ = (σ1, . . . , σn)′. Here, the opposite occurs, namely, φg (R2) is zero when R2

= 0 and
increases in the overall fit of the model. The bias increase is quite sharp, as can been seen in the right scale of Fig. 1.

Therefore, when one expects c0t ̸= 0, the ArCo methodology does not work properly, but the BA estimator does, as it can
be seen as a particular case of the ArCo estimator with R2

= 0 (for instance, by not including any peers). Hence, the bias is
zero. In general, the ArCo estimator gives the difference between the actual break in the treated unit and what is expected
from the peers. A standard solution is to assume that the ‘‘treatment assignment’’ is independent of z0t = (z2t , . . . , znt )′,
which is our Assumption 1, and the ArCo approach is not subject to selection bias. However, it is important to stress that
the ‘‘treatment assignment’’ might be dependent on z1t , and our approach is still valid.12 One way to check if there is no
‘‘treatment contamination’’ is to test the peers for possible breaks after T0, as discussed in Section 4.4.

6. Monte Carlo simulation

We conduct size and power simulations to investigate the finite sample properties of the test as well as a ‘‘horse race’’ to
compare the ArCo estimator with potential alternatives, namely, the SC, PF, DiD and BA estimators.

6.1. Size and power simulations

The DGP is a version of the model (S.1) with the following baseline scenario: T = 100, n = 100, q = 1, λ0 = 0.5
(intervention at the middle of the sample), s0 = 5 relevant parameters with loading factor equal to 1 and f = 1. The
common factor and all idiosyncratic shocks are iid and normally distributed with zero mean and unit variance. We perform
10,000 simulations.

First, we analyze the influence of the underlying distribution on the test size by holding all the other parameters above
fixed and performing the simulation for a chi-square distributionwith 1 degree of freedom for asymmetry issues, a t-Student
distributionwith 3 degrees of freedom for fat-tails and amixed normal distribution for bimodality.13 As shown in first panel
of Table 2, little influence on the overall size of the test is perceived.

Next, we consider T = {25, 50, 75, 100}. The size distortions are small even with only 50 observations, as shown in the
second panel of Table 2.

12 The result is analogous to the average treatment effect on the treated not being biased by selection on (un)observables.
13 All innovations are standardized to zero mean and unit variance.
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We also investigate the influence of increasing the number of covariates. We set d = {100, 200, 500, 1000}. The third
panel of Table 2 shows that the test size appears to be unaffected by the increase in model complexity. This is not surprising
since consistent model selection is not an issue for the methodology. We also study a change in the number of relevant
covariates (units) in the model. We consider a case where all the regressors are irrelevant, which (asymptotically) reduces
the ArCo to the BA estimator, and we further increase s0. In the last scenario, we consider all regressors non-zero but with
decreasing magnitude 1/

√
j, j = 1, . . . , 100. In all cases, the LASSO does not overfit the pre-intervention data and the size

distortions are small, as displayed in Table 2.
Finally, we consider the case where each unit follows a first-order autoregressive process to investigate issues that arise

in the presence of serial correlation. In this scenario, we include lags of the relevant covariates instead of new peers. The
results are shown in the last panel of Table 2. We note a persistent oversized test, which becomes more pronounced as the
autoregressive coefficient (ρ) approaches 1. The empirical distribution of the estimator (not shown) is, however, very close
to normal, and the distortion is a sole consequence of the poor finite sample properties of the variance estimator. Specifically,
it underestimatesΩ . We test several alternatives for Ω̂T , including Newey and West (1987), Andrews (1991), Andrews and
Monahan (1992), and Haan and Levin (1996), and we obtain the best results using the procedure proposed in Andrews and
Monahan (1992). It is worth noting that the slightly oversized tests are a direct consequence of the persistence of {νt} and
not necessarily of the persistence of {(yt , x′

t )}. The problem is attenuated, for instance, when enough lags are included to
make {νt} closer to a white noise process or when a linear combination of (potentially highly persistent) {(yt , x′

t )} is almost
uncorrelated. For pure finite MA processes, the usual kernel HAC estimators are known to perform well, and the tests are
not oversized.

6.2. Estimator comparison

To conduct the ‘‘horse race’’ among competitors for the counterfactual analysis, we consider the following DGP:

z (0)it = ρAiz
(0)
it−1 + εit , i = 1, . . . , n, ; t = 1, . . . , T , (11)

where εit = Λift + ηit , ft = [1, (t/T )ϕ, vt ], zit ∈ Rq, ρ ∈ [0, 1), ϕ > 0, Ai(q × q) is a diagonal matrix with diagonal elements
strictly between −1 and 1, {vt} is a sequence of iid standardized normal random variables, {ηit} is a sequence of iid normal
random vectors with zero mean and covariance matrix r2f Inq, where rf > 0 can be interpreted as the noise-to-signal ratio,
which controls the overall correlation among the units, andΛi is a (q × 3) matrix of factor loadings.

Let zt be the nq-dimensional vector obtained by stacking all the z (0)it , and letΛ be the (nq×3) matrix after stacking all the
Λi. Similarly, define εt by stacking εit and A as the (nq × nq) diagonal matrix composed by the block diagonals Ai. We use
the notationΛ(j) to denote the jth column ofΛ; thus, µε,t ≡ E(εt ) = Λ(1) + Λ(2)(t/T )ϕ ,Ω ≡ V(εt ) = Λ(3)Λ(3)′ + r2f Inq,
µt ≡ E(zt ) = (Inq − ρA)−1µε,t , and vec (Σ ) ≡ vec [(Vzt )] = [I(nq)2 − ρ2A ⊗ A]

−1vec (Ω ).
We set y(1)it = y(0)it + δt1{t ≥ T0 and i = 1}, and for simplicity, we set δt = δ constant and equal to one standard deviation

from the unit of interest (unit 1). We are interested in estimating the average treatment effect:∆ =
1

T−T0+1

∑T
t=T0

δt = δ.
We nowbriefly state the estimators considered in theMonte Carlo study.Whenever it is convenient, we use the following

partition scheme: zit = (yit , x′

it )
′ and z0t = (z ′

2t , . . . z
′
nt ).

Before-and-after (BA)
The BA estimator is defined as:

∆̂BA =
1

T − T0 + 1

T∑
t=T0

y1t −
1

T0 − 1

T0−1∑
t=1

y1t .

Differences-in-differences (DiD)
The OLS estimator of the dummy coefficient in the following regression models. For the case with covariates,

yit = α0 + x′

itβ + α1I(i = 1) + α2I(t ≥ T0) +∆DD∗ I(i = 1, t ≥ T0) + εit ,

and for the case without covariates,

yit = α0 + α1I(i = 1) + α2I(t ≥ T0) +∆DDI(i = 1, t ≥ T0) + εit .

Gobillon and Magnac (GM)
The estimator is defined as per Gobillon and Magnac (2016):

∆̂GM =
1

T − T0 + 1

T∑
t=T0

(y1t − ŷ1t) ,

where ŷ∗

1t = x1t β̂ + f̂tΛ̂1 and without including the covariates, ŷ1t = f̂tΛ̂1. We choose r , the number of factors, to be 2 (or 3
if a trend is included).
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Synthetic control (SC)
We use the Synth package.14 We choose on top of all covariates (xit ), the average of the dependent variable (yit ) during

the pre-intervention period as a matching variable.

∆̂SC =
1

T−T0+1

T∑
t=T0

(y1t − ŷ1t) ,

where ŷ1t = w∗′y0t . The weight vectorw must contain non-negative entries that sum to one. It comes from a minimization
process involving only values of the selected variables prior to the intervention. In our particular case, we take the pre-
intervention average z̄ =

1
T0−1

∑T0−1
t=1 zt , partition as z̄ = (z̄1, z̄0′)′ and reshape z̄0 to a matrix Z̄0(n − 1 × q), where each row

is composed of the variables of each of the remaining n − 1 units

w∗(V ) = argmin
w≥0,∥w∥1=1

∥z̄1 − w ′z̄0∥V ,

where ∥ · ∥V is the norm induced by a positive definite matrix V .
Finally, V is chosen as

V ∗
= argmin

1
T0 − 1

T0−1∑
t=1

[
y1t − w∗(V )′y0t

]2
, (12)

and we setw∗
≡ w∗(V ∗).

The results are presented in Table 4. The smoothed histograms can be found in figures S.1–S.6. Overall, the SC and the
GM are heavily biased in most of the considered cases. For the former, this might be a consequence of the instability of the
algorithm to find the minimizer of (12) since the bias persists even in the absence of time trends, where any fixed linear
combination of peers should give us an unbiased estimator. For the latter, it is most likely a consequence of the poor finite
sample properties of the common factor estimator. It is well understood from Bai (2009) that the consistency depends on
the double asymptotics on n and T . On the other hand, BA, DiD and the ArCo appear to have comparable small bias, at least
in the absence of deterministic trends, regardless of the presence of serial correlation. The ArCo seems to have better MSE
performance, which is not surprising since by definition our estimator in the first stage searches for the linear combination
that minimizes the MSE.

For the cases with trends, the BA estimator is severely biased since, without the information from the peers, it cannot
account for the trend effect. For the common trend case, the DiD estimator have relatively small bias. Again, the ArCo
estimators have comparable bias to the DiD estimators for the common trend cases but with significantly smaller variance
(ranging from 6 to 16 times smaller). The clear advantage of ArCo estimation can be seen in the idiosyncratic time trend
cases. Even though some small bias appears, it is clearly much smaller than that of all the other alternatives.

7. The effects of an anti tax evasion program on inflation

We apply the ArCo methodology to estimate the effects of an anti tax-evasion program in Brazil on inflation, economic
growth, retail sales and credit. Although, the causes of business non-compliance and tax evasion have been extensively
studied in the literature (Slemrod, 2010), little attention has been devoted tomeasure the indirect effects from enforcing tax
compliance.

In Brazil, tax evasion is a major fiscal concern and both the federal and local governments have been proposing new
strategies to reduce evasion. In October 2007, the state government of São Paulo, Brazil, implemented an anti tax-evasion
scheme called Nota Fiscal Paulista (NFP) program. The program consists of a tax rebate from a state tax named ICMS (tax
on circulation of products and services). ICMS is similar to the European VAT and the Canadian GST. However, unlike VAT
and GST, ICMS does not apply to services other than those corresponding to interstate and intercity transportation and
communication services. The program works as an incentive to the consumer to ask for electronic sales receipts, which
give the consumer the right to participate in monthly lotteries promoted by the government. According to the rules of the
program, registered consumers have also the right to receive part of the ICMS paid by the seller as tax rebate when their
tax identifier numbers (CPF) are included in the electronic sales receipts. Similar initiatives relying on consumer auditing
schemes were proposed in the European Union and in China (Wan, 2010). The effectiveness of such programs has been
discussed in Fatas et al. (2015) and Brockmann et al. (2016). In São Paulo, the program has received extensive support from
the population. In January 2008, 413 thousand people were registered in program while in October 2013 there were more
than 15 million participants. The amount in Brazilian Reais distributed as rebates also grew rapidly from 44 thousand Reais
in January 2008 to an average of 70 million Reais distributed monthly by the end of the same year; see Fig. 2.

Souza (2014) was the first author to discuss whether retailers increased prices in response to the NFP program and
consequently whether the program impacted negatively consumers’ purchasing power. By using the SCmethod to construct
a counterfactual to São Paulo, the author showed that one year after the launching of the NFP program, the accumulated

14 R package maintained by Jens Hainmueller.
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inflation on food away from home (FAH) was 5% higher in São Paulo when compared to the synthetic control. In September
2009, the differences raised to 6.5%. We extend the analysis of Souza (2014) by considering the ArCo methodology as an
alternative to the SC method and we also test for effects on other macro variables. We also consider the BA, GM, and DiD
estimators.

7.1. Effects on inflation

Under the assumptions that (i) a certain degree of tax evasion was occurring before the intervention, (ii) the sellers have
some degree of market power and (iii) the penalty for tax evasion is large enough to alter the seller behavior, one is expected
to see an upwardmovement in prices due to an increase in marginal cost. Wewould like to investigate whether the NFP had
an impact on consumer prices. The answer to this kind of question has important implications regarding socialwelfare effects
that are usually neglected in the fiscal debate whenever the aim is to enforce tax compliance. To highlight the potential of
the ArCo methodology to test for joint effects, we also run the multivariate version of the test including GDP growth, retail
sales growth and credit growth.

The NFPwas not implemented throughout the sectors in the economy at once. The first sector were restaurants, followed
by bakeries, bars and other food service retailers. We do not possess a perfect match for a general consumer price index
(IPCA - IBGE) and the sector where the NFP was implemented. However, we can take the IPCA component of food away
from home (FAH) as a good indicator for price levels in those sectors. The sample then consists of monthly FAH index for 10
metropolitan areas15 including São Paulo from January 1995 to September 2009. As a matter of comparison, Souza (2014)
estimated a counterfactual by the SC method with assigning the following weights to Belo Horizonte, Recife, Goiânia, and
Porto Alegre, respectively: 0.40, 0.27, 0.19, and 0.14. All other donors were assigned zero weights.

In order to compute the counterfactual by the ArCo methodology we consider the following variables from the pool of
donors: monthly inflation (FAH), monthly GDP growth, monthly retail sales growth andmonthly credit growth. All variables
are stationary and no lags or additional transformations are considered. The conditional model is linear and is estimated by
LASSO, where the penalty parameter is selected by the Hannan and Quinn (HQ) criterion. The choice of the HQ instead of the
BIC, for example, is driven by the fact that the latter delivers conditional models with no variables in most of the cases. The
in-sample period (pre-intervention) consists of 33 months while the size of the out-of-sample period is 23.

The factors in the GM methodology are computed by principal components. The number of factors is determined as to
explain 80% of the total variance in the data.

The results are depicted in Table 5. The upper panel reports, for different choices of conditioning variables, the estimated
average effect after the adoption of the NFP. The standard errors are reported between parenthesis. Diagnostic tests do not
evidence any residual autocorrelation and the standard errors are computed without any correction. The table also shows
the R-squared of the first stage estimation, the number of included regressors in each case as well as the number of selected
regressors by the LASSO. In all cases, the average effect is significant at the 1% level. The highest R-squared is achieved when
inflation and GDP are used as conditioning variables, followed by a model with inflation, GDP and retail sales. In the first
case, column (5) of Table 5, the monthly average effect is 0.4478%. The aggregate effect during the out-of-sample period is
10.72%. In the second case, column (6) of Table 5, the monthly average effect is 0.3796% and the aggregate effect is 9.04%.
Two facts worth discussing. The first one is the much higher estimated effect when only credit variables are included. This
is due to huge outliers (huge increase) observed in credit series in the out-of-sample period for the states of Pernambuco
and Rio de Janeiro. If these two states are removed from the donors pool, the monthly average effect drops to 0.5768%. The
second point that deserves attention is the much lower effect when only inflation is considered, although the in-sample fit
is good.

Figs. 3 and S.7 show the actual and counterfactual data, both in-sample and out-of-sample. Fig. 3 considers the casewhere
only inflation and GDP growth are considered as conditioning variables while the plots in Figure S.7 consider the case where
retail sales growth are also included as a potential regressor in the first stage model.

The lower panel of Table 5 presents some alternativemeasures of the average effects. In all cases the estimated effects are
smaller than the ones estimated with the ArCo. The DiD estimators are closer to the SC. The GM falls somehow in between
the SC/DiD and the ArCo.

We also run a placebo ArCo estimator to check the robustness of the method. When we do this we find that Porto Alegre
seems to have nontrivial breaks after October 2007; see Table S.1. For this reasonwe re-run the analysis without Porto Alegre
in the donor pool. The results are reported in Table S.2. The overall picture seems unchanged.

7.2. Effects on GDP, retail sales and credit

In order to illustrate the multivariate nature of the ArCo methodology we also test for effects of the NFP program on GDP
growth, retail sales growth and credit growth. Based on the results of the previous section, we remove Porto Alegre from the
sample of donors. The results are shown in Table 6. The table reports the individual effects for all the seven different set of
regressors as well as the joint Wald-type test for the null of no-effects on any of the variables jointly. As can be seen from
the table, the program has significant effects only on inflation.

15 Goiânia-GO, Fortaleza-CE, Recife-PE, Salvador-BA, Rio de Janeiro-RJ, São Paulo-SP, Porto Alegre-RS, Curitiba-PR, Belém-PA, Belo Horizonte-MG.
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8. Conclusions and future research

We proposed a flexible method to conduct counterfactual analysis with aggregate data which is specially relevant in
situations where there is a single treated unit and ‘‘controls’’ are not available, such as in regional policy evaluation. The
ArCo methodology is easy to implement and extends and generalize previous proposals in the literature in several aspects:
(1) the distribution of test for no-intervention effect is standard and asymptotically honest confidence regions for the average
intervention effect can be constructed; (2) although the results rely on the number of time-series observations diverging,
the LASSO estimator has good finite sample properties, even when the number of estimated parameters are much larger
than the sample size; (3) we allow for nonlinear, heterogeneous confounding effects; (4) we provide a complete asymptotic
theory which can be used to jointly test for intervention effects on a group of variables; (5) the methodology can be applied
even if the time of the intervention is not known; (6) multiple interventions can be handled; and (7) we also propose a test
for the presence of spillover effects among the units.

The current research can be extended in several directions as, for example, the casewhere the variables are nonstationary
(either with cointegration or not). A non-parametric or semiparametric estimation in the pre-interventionmodel can be also
considered.
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Appendix A. Proofs

Model choice and a general result

The theoretical results in the paper are based on a linear model to construct the counterfactual. However, we provide a
general lemma to show that any statistical model satisfying a set of assumptions will deliver consistent and asymptotically
normal estimates for the average intervention effect. For t ≥ T0, letM̂t,T1 ≡ M(Z0t , θ̂T1 ), be an estimator ofMt ≡ M(Z0t , θ0)
using only the first T1 = T0 − 1 observations to obtain θ̂T1 as an estimator of θ0. Define ηt,T1 ≡ M̂t,T1 − Mt , t ≥ T0 and
νt = yt − Mt , then we state:

Lemma 1. Assume that, uniformly in P ∈ P (an arbitrary class of probability laws):

(a)
√
T
(

1
T2

∑
t≥T0

ηt,T1 −
1
T1

∑
t≤T1

νt

)
p

−→ 0

(b) 1
√
T1
Γ

−1/2
T1

∑
t≤T1

νt
d

−→ N (0, Iq), where ΓT1 = EP

[
1
T1
(
∑

t≤T1
νt )(

∑
t≤T1

ν′
t )
]
.

(c) 1
√
T2
Γ

−1/2
T2

∑
t≥T0

νt
d

−→ N (0, Iq), where ΓT2 = EP

[
1
T2
(
∑

t≥T0
νt )(

∑
t≥T0

ν′
t )
]
.

Under Assumption 1 and conditions (a)–(c), uniformly in P ∈ P , it holds that:
√
TΩ−1/2

T

(
∆̂T − ∆T

) d
−→ N

(
0, Iq

)
,

where N (·, ·) is the multivariate normal distribution andΩT ≡
ΓT1
T1/T

+
ΓT2
T2/T

.

Condition (a) ensures that the estimation error to be asymptotic negligible, ensuring the
√
T rate of convergence of the

estimator. Under (a) we can write:

∆̂T − ∆T =
1
T2

∑
t≥T0

νt −
1
T1

∑
t≤T1

νt + op(T−1/2).
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Conditions (b) and (c) ensure the asymptotic normality of the terms above after appropriate normalization. Finally, given a
model for the first stage of the ArCo method, one must verify that conditions (a)–(c) in the lemma hold in order to prove the
converge results for ∆̂T .

Proof. See supplementary material. □

Auxiliary lemmas

In the next 2 Lemmas,XT ,YT ,X andY are randomelements taking values on a subsetD of the Euclidean space (real-valued
scalar, vector or matrix) defined over the same probabilistic space with distribution P index by P .

Lemma 2 (Uniform Continuous Mapping Theorem). Let g : D → E be uniformly continuous at every point of a set C ⊆ D where
PP (X ∈ C) = 1 for all P ∈ P .

(a) If XT
p

−→ X uniformly in P ∈ P , then g(XT )
p

−→ g(X) uniformly in P ∈ P .
(b) If XT

d
−→ X uniformly in P ∈ P , then g(XT )

d
−→ g(X) uniformly in P ∈ P .

Proof. See supplementary material. □

Lemma 3 (Uniform Slutsky Theorem). Let XT
p

−→ C uniformly in P ∈ P , where C ≡ C (P) is a non random conformable matrix
and YT

d
−→ Y uniformly in P ∈ P , then

(a) XT + YT
d

−→ C + Y uniformly in P ∈ P
(b) XTYT

d
−→ CY uniformly in P ∈ P , if C is bounded uniformly in P ∈ P .

(c) X−1
T YT

d
−→ C−1Y uniformly in P ∈ P , if det(C ) is bounded away from zero uniformly in P ∈ P .

Proof. See supplementary material. □

We now state some auxiliary lemmas that will provide bounds in probability used throughout the proof of the main
theorem:

Lemma 4. Let {ut}t∈N be strong mixing sequence of centered random variables with mixing coefficient with exponential decay.
Also for some real r > 2, suptE|ut |

r+δ < ∞ for some δ > 0, then there exist a positive constant Cr (not depending on n) such
that E|u1 + · · · + uT |

r
≤ CrT r/2.

Proof. See Doukhan and Louhichi (1999) and Rio (1994). □

Lemma5. OnA (a)∩B(b), provided that ς ≥ 2a, b ≤
ψ2
0

32s0
, and the compatibility constraint is satisfied for Σ with constant ψ0 >

0, we have that ∥̂θ − θ0∥
2
Σ̂ +ς ∥̂θ−θ0∥1 ≤ 8ς2 s0

ψ2
0
, whereΣ ≡ E(Σ̂ ), Σ̂ ≡

1
T1

∑T1
t=1xtx

′
t , and ∥̂θ − θ0∥

2
Σ̂ ≡ (̂θ−θ0)′Σ̂ (̂θ−θ0).

For real constants a, b > 0, A (a) ∩ B(b) are defined as

A (a) =

{ 2
T1

T1∑
t=1

pt


max

≤ a

}
, pt (d × 1) ≡ xtνt;

B(b) =

{ 1
T1

T1∑
t=1

Mt


max

≤ b

}
, Mt (d × d) ≡ xtx′

t − E(xtx′

t ),

where ∥ · ∥max is the maximum entry-wise norm.

Proof. See supplementary material. □

Lemma 6. Under Assumptions 2–4, ∥̂θ − θ0∥1 = OP

(
s0 d1/γ

√
T

)
.

Proof. See supplementary material. □

Lemma 7. Let ST ≡
∑T

t=1ut where ut = (u1t , . . . , udt )′ ∈ U ⊂ Rd is a zero mean random vector, such that the process of each
entry (ui,t ) fulfills the conditions of Lemma 4 for some real r > 2 for all i ∈ {1, . . . , d}. Then, ∥ST∥max = OP (d1/r

√
T ).

Proof. See supplementary material. □
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Proof of Theorem 1

Proof. First we verify condition (a) of Lemma 1. In the linear case we have ηt,T1 = [x′

1t (̂θ1,T1 − θ1,0), . . . , x′
qt (̂θq,T1 − θq,0)]′ for

t ≥ T0. Since all the q components of ηt,T1 have the same linear form and q is fixed (not growing with T ) it is enough to show
that condition (a) holds for an arbitrary index j ∈ {1, . . . q}, which is omitted in what follows for clarity. Let θ0 = (α0,β

′

0)
′,

where α is the parameter of the intercept while β is the vector of remaining parameters. Similar, let xt = (1, x̃t ). From the
definition of the estimator, α̂ − α0 =

1
T1

∑
t≤T1

νt −
1
T1

∑
t≤T1

x̃t
(̂
β − β0

)
. Combining the last two expressions we can write

ηt,T1 =
1
T1

∑
s≤T1

νs −
1
T1

∑
s≤T1

x̃s
(̂
β − β0

)
+ x̃t

(̂
β − β0

)
=

1
T1

∑
s≤T1

νs −

⎡⎣ 1
T1

∑
s≤T1

x̃s − x̃t

⎤⎦ (̂β − β0
)
.

Taking the average over t = T0, . . . , T , multiplying by
√
T and rearranging yields:

√
T

⎛⎝ 1
T2

∑
t≥T0

ηt,T −
1
T1

∑
t≤T1

νt

⎞⎠ =

⎛⎝√
T

T2

∑
t≥T0

x̃t −

√
T

T1

∑
t≤T1

x̃t

⎞⎠′ (̂
β − β0

)
. (13)

We now show that the last expression is oP (1) uniformly in P ∈ P . First, we bound it in absolute term by:
√
T

T2

∑
t≥T0

x̃t −

√
T

T1

∑
t≤T1

x̃t


max

β̂ − β0


1 .

Adding and subtracting the mean, the first term is the sum of two OP
(
d1/γ

)
terms by Lemma 7 combined with Assump-

tion 3(a)–(b). The second term is OP

(
s0 d1/γ

√
T

)
by Lemma 6. Hence, the last term is OP

(
s0 d2/γ

√
T

)
= oP (1) by Assumption 4(b),

which verifies condition (a) of Lemma 1.
Now {νt} is a strong mixing process with mixing coefficient with exponential decay and suptE|νt |

r < ∞ for some r > 4
by Assumption 3(a) and (b). Also, E(ν2t ) is bounded below uniformly by Assumption 3(c). Hence, we have a Central Limit
Theorem as per Theorem 10.2 of Pötscher and Prucha (1997). Therefore, conditions (b) and (c) of Lemma 1 are verified and
the result follows directly from Lemma 1. □

Proof of Theorem 2

Proof. The consistency proof is practically the same for both Γ̂T1 and Γ̂T2 , so we focus on the first one and drop the subscript
i = 1 for notation convenience. Let Γ̃T =

∑
|k|<Tφ

(
k
ST

)
Ṽk, where Ṽk is the same as V̂k but with ν̂t replaced by the

(unobservable) νt . Thus V̂k − Ṽk is a q × q matrix with typical element given by(
V̂k − Ṽk

)
ij = η′

i

(
1
T

T∑
t>k

p(i,j,k)
t

)
+ η′

j

(
1
T

T∑
t>k

p(j,i,k)
t

)
+ η′

i

(
1
T

T∑
t>k

M (i,j,k)
t

)
ηj

+
T−k
T

[
η′

iEνi,txj,t−k + η′

jEνj,t−kxi,t + η′

iE(xi,tx
′

j,t−k)ηj
]
,

where to further simply notation we define

ηi = (̂θi − θ0,i), p(i,j,k)
t = νi,txj,t−k − E(νi,txj,t−k), and M (i,j,k)

t = xi,tx′

j,t−k − E(xi,tx′

j,t−k).

We now show that each of the terms in the right hand side is oP (1). First, by Assumption 3(b) and Cauchy–Schwarz
inequality we have for some δ > 0,

E|p(i,j,k)l,t |
γ+δ/2

≤ cγ and E|M (i,j,k)
l,m,t |

γ+δ/2
≤ cγ ,

where 1 ≤ l ≤ d and 1 ≤ l,m ≤ d index the elements of p(i,j,k)
t and M (i,j,k)

t respectively. Since this bound is uniform across
all equations 1 ≤ i, j ≤ q, for all lags 0 ≤ k ≤ T − 1, for all elements 1 ≤ l,m ≤ dT and for all T ≥ 1 we drop the superscript
(i, j, k) for clarity.

Note that
∑T

t>kpt


∞

= OP (
√
Td1/γ ) since by the union bound followed by the Markov’s inequality and Lemma 3

P

(
T∑

t>k

pt


∞

> ϵ
√
Td1/γ

)
≤ d max

1≤l≤d
P

(
T∑

t>k

pl,t > ϵ
√
Td1/γ

)

≤
d

dT γ /2ϵγ
max
1≤l≤d

E

⏐⏐⏐⏐⏐
T∑

t>k

pl,t

⏐⏐⏐⏐⏐
γ

≤
1

T γ /2ϵγ
Cγ (T − k)γ /2 ≤

Cγ
ϵγ
,

where Cγ denote a generic constant only depending on γ of Assumption 3.
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Following the same procedure we can shown that
∑T

t>kMt


max

= OP (
√
Td2/γ ) because

P

(
T∑

t>k

Mt


max

> ϵ
√
Td2/γ

)
≤

d2

d2T γ /2ϵγ
max

1≤l,m≤d
E

⏐⏐⏐⏐⏐
T∑

t>k

Ml,m,t

⏐⏐⏐⏐⏐
γ

≤
Cγ
ϵγ

Now, the first and second terms of (V̂k − Ṽk)ij expression can be bounded using Holder’s inequality by 1
T ∥ηi∥1∥

∑T
t>kpt∥∞,

where ∥ηi∥1 = OP (s0 d1/γ
√
T
) by Lemma 6 and ∥

∑T
t>kpt∥∞ = OP (

√
Td1/γ ), hence the first and second terms are OP (s0 d2/γ

T ). The

third term can be bounded by 1
T

ηi


1

∑T
t>kMt


max

ηj


1. Once again, the terms at the ends are OP (s0 d1/γ

√
T
) and the term in

between is OP (
√
Td2/γ ), thus the third is OP (s20

d4/γ

T3/2
).

The forth and fifth terms of (V̂k − Ṽk)ij expression can be bounded by ∥ηi∥1∥E(νi,txj,t−k)∥∞ using Holder’s inequality.
The last term is bounded by

ηi


1

E(xi,tx′

j,t−k)

max

ηj


1 Since both E(νi,txj,t−k) and E(xi,tx′

j,t−k) are uniformly bounded by

Assumption 3(b),16 the forth and fifth terms are OP (s0 d1/γ
√
T
) and the last term is OP (s20

d2/γ
T ).

Careful review of the bounds above show they are independent of k, hence we can state that uniformly in k ≥ 0

(V̂k − Ṽk)ij = OP

(
max

{
s0d2/γ

T ,
s20d

4/γ

T3/2
,

s0d1/γ√
T
,

s20d
2/γ

T

})
, 1 ≤ i, j ≤ q

Under Assumption 4(b), the maximum above is dominated by the term s0d1/γ√
T

asymptotically. Also, since the number of

equation q is fixed it is equivalent to say that converge holds for an arbitrary norm supk≥0∥V̂k − Ṽk∥ = OP

(
s0d1/γ√

T

)
.

Now the argument runs parallel to the proof of Theorem 1(a) in Andrews (1991). From the triangle inequality we have
∥Γ̂T − ΓT∥ ≤ ∥Γ̂T − Γ̃T∥ + ∥Γ̃T − ΓT∥. For the first term, using the last result we have

√
T

s0d1/γ ST
(Γ̂T − Γ̃T ) =

1
ST

∑
|k|<T

φ(k/S)

√
T

s0d1/γ
(
V̂k − Ṽk

)
= OP (1),

wherewe use the uniform (in k) boundedness in probability derived above and the fact that 1
ST

∑
|k|<T |φ(k/ST )| →

∫
|φ(u)|du,

which is finite by condition (a) of Theorem 2.
For the second term we have that Assumption 3(a) and (b) implies assumption A of Andrews (1991). Hence, under

condition (a), ST → ∞ and ST/T → 0 (which are implied by condition (b) of Theorem 2) we have that ∥Γ̃T − ΓT∥ = oP (1).
Therefore, ∥Γ̂T − ΓT∥ = OP

(
s0d1/γ ST√

T

)
.

This completes the proof by choosing the bandwidth parameters as per condition (b) of Theorem2. Notice thatwe recover
the low dimension (fixed s0 and d) result of Andrews (1991) where it is required that S2T /T = o(1). □

Proof of Propositions 1 and 2

Proof. Both follows directly from Theorem 1 combined with Lemma 3(c) □

Proof of Theorem 3

Proof. Combine expression (S.3) with (13) prior to the
√
T multiplication we are left with

∆̂T − ∆T =
1
T2

∑
t≥T0

νt −
1
T1

∑
t≤T1

νt −

⎛⎝ 1
T2

∑
t≥T0

x̃t −
1
T1

∑
t≤T1

x̃t

⎞⎠′ (̂
β − β0

)
(14)

the first two terms are Op(1/
√
T ), the last term can be rewritten as⎛⎝ 1

T2

∑
t≥T0

x̌t −
1
T1

∑
t≤T1

x̌t

⎞⎠′

(̂β − β0) +

⎛⎝ 1
T2

∑
t≥T0

Ẽxt −
1
T1

∑
t≤T1

Ẽxt

⎞⎠′

(̂β − β0),

where x̌t ≡ x̃t − Ẽxt .
The first term of the last display is OP (s0d2/γ /T ) for the same argument used in the proof of Theorem 1. The difference

in second term (which is zero under stationarity) is only due to the deterministic trend ζ(t/T ) that would make Ẽxt differ

16 E(νi,txj,t−k) = 0 and for i = j and k = 0 by assumption.
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across t , then we can rewrite it as

bT ≡

⎛⎝ 1
T2

∑
t≥T0

ζ(t/T ) −
1
T1

∑
t≤T1

ζ(t/T )

⎞⎠′

(̂β − β0) ≡ rT (ζ)′ (̂β − β0)

We can then bound bT by ∥rT (ζ)∥∞∥̂β−β0∥1 using Holder’s inequality. By Lemma 6we have ∥̂β−β0∥1 = OP (s0d1/γ /
√
T )

and ∥rT (ζ)∥∞ is uniformly bounded by Assumption 5(a), which completes the proof of result (a). For (b) we canmultiply (14)
by

√
T and use the definition of bT to write
√
T (∆̂T − ∆T + bT ) =

√
T

T2

∑
t≥T0

νt −

√
T

T1

∑
t≤T1

νt + OP (s0 d2/γ
√
T
) (15)

where the last term is oP (1) under Assumption 4(b) and the result follows. □

Proof of Theorem 4

SetΥT ≡
ΛT1
T1/T

+
ΓT2
T2/T

, where ΓT2 is defined in Theorem 1,ΛT1 = a′M1a, a = (1, rT (ζ)′M−1
2 )′, M1 = EP

[
1
T1
(
∑

t≤T1
ž0tνt )

(
∑

t≤T1
ž ′

0tνt )
]
, M2 = EP

[
1
T1
(
∑

t≤T1
z̃0t z̃ ′

0t )
]
, rT (ζ) is defined in Theorem 3, z̃0t = z0t − EPz0t , ž0t = (1, z̃ ′

0t )
′. Recall that

xt = (1, z ′

0t )
′ and z0t = (z2n, . . . , znt )′.

Proof. We take from (15) to write
√
T (∆̂T −∆T ) =

√
T

T2

∑
t≥T0

νt −

√
T

T1

∑
t≤T1

νt − rT (ζ)′ (̂β − β0) + oP (1)

and use the fact that β̂ − β0 = M̂−1
2 M̂1 where M̂2 =

1
T1

∑
t≤T1

z∗

0tz
∗

0t
′, M̂1 =

1
T1

∑
t≤T1

z∗

0tνt and z∗

0t = z0t −
1
T1

∑
t≤T1

z0t for
t = 1, . . . , T1, to rewrite as

√
T (∆̂T −∆T ) =

√
T

T2

∑
t≥T0

νt −

√
T

T1

∑
t≤T1

νt − rT (ζ)′M̂−1
2

√
T

T1

∑
t≤T1

z∗

0tνt + oP (1)

Let ż0t = (1, z∗

0t
′)′ and â = (1, rT (ζ)′M̂−1

2 )′, then the expression above becomes

√
T (∆̂T −∆T ) =

√
T
T2

⎛⎝ 1
√
T2

∑
t≥T0

νt

⎞⎠−

√
T
T1
â′

⎛⎝ 1
√
T1

∑
t≤T1

ż0tνt

⎞⎠+ oP (1)

now M̂2 = M2 + oP (1) by the law of large numbers and 1
√
T1

∑
t≤T1

(ž0t − ż0t )νt = oP (1) then by the continuous mapping
theorem we have

√
T (∆̂T −∆T ) =

√
T
T2

⎛⎝ 1
√
T2

∑
t≥T0

νt

⎞⎠−

√
T
T1
a′

⎛⎝ 1
√
T1

∑
t≤T1

ž0tνt

⎞⎠+ oP (1).

The result then follows by the Central Limit Theorem and the fact that the two summations are over non-overlapping
intervals as per part (b) and (c) of Lemma 1. □

Proof of Theorem 5

Proof. From (S.3) in the Proof of Lemma 1, we have for Tλ = ⌊λT⌋, λ ∈ Λ

Γ 1/2ST (λ) =

√
T

T − Tλ + 1

∑
t≥Tλ

νt −

√
T

Tλ − 1

∑
t<Tλ

νt −

√
T

T − Tλ + 1

∑
t≥Tλ

ηt,T +

√
T

Tλ − 1

∑
t<Tλ

ηt,T .

The last two terms are op(1) uniformly in λ ∈ Λ, under the conditions of Lemma 1, Assumption 6 and the fact that Λ is
compact.

For fix λ ∈ Λ, the pointwise convergence in distribution follows under the conditions of Lemma 1 (for instance under the
assumptions of Theorem 1). The uniform convergence result then follows from the invariance principle in McLeish (1974)
applied to VT (λ) ≡

1
√
T

∑
t≥Tλ

νt and the Continuous Mapping Theorem.
To obtain the covariance structure let Γs−t = E(νtν

′
s) for all s, t and note that for any pair (λ, λ′) ∈ Λ2 we have that

1
T

∑
t≥Tλ

∑
s≥Tλ′

Γs−t =
T − Tλ∨λ′ + 1

T

⎡⎣ 1
T − Tλ∨λ′ + 1

∑
t≥Tλ

∑
s≥Tλ′

Γs−t

⎤⎦ = (1 − λ ∨ λ′)
Γ

λ ∨ λ
+ op(1),
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Table 2
Rejection rates under the null (Test size).

Bias Vara ŝ0 α = 0.1 0.05 0.01

Innovation Distribution b

Normal 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
χ2(1) −0.0014 1.1004 5.9287 0.1227 0.0652 0.0154
t-stud(3) 0.0035 1.1026 5.6437 0.1077 0.0543 0.0103
Mixed-Normal 0.0069 1.1267 5.5457 0.1134 0.0607 0.0136

Sample Size

T = 100 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
75 −0.0030 1.1449 6.3992 0.1075 0.0546 0.0124
50 0.0021 1.1747 6.1219 0.1092 0.0626 0.0155
25 −0.0050 0.8324 3.2463 0.1330 0.0763 0.0226

Number of Total Covariates

d = 100 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
200 −0.0016 1.1655 5.7314 0.1102 0.0565 0.0135
500 −0.0043 1.2112 5.6625 0.1119 0.0556 0.0114
1000 0.0012 1.2477 5.5275 0.1054 0.0566 0.0115

Number of Relevant (non-zero) Covariates

s0 = 0 0.0038 1.0981 0.6105 0.1059 0.0550 0.0136
5 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
10 0.0003 1.0373 9.5813 0.1103 0.0581 0.0120
100 0.0003 – 20.1624 0.1114 0.0574 0.0145

Deterministic Trend (t/T )ϕ

ϕ = 0 0.0006 1.1304 5.4076 0.1057 0.0555 0.0128
0.5 0.0142 1.1245 5.6285 0.1101 0.0598 0.0199
1 0.0183 1.1313 5.5030 0.1188 0.0613 0.0168
2 0.0221 1.1398 5.4259 0.1273 0.0675 0.0261

Serial Correlationc

ρ = 0.2 −0.0001 1.4109 5.5246 0.1160 0.0640 0.0158
0.4 0.0002 1.6909 5.9276 0.1223 0.0678 0.0184
0.6 0.0031 1.8895 6.9012 0.1440 0.0871 0.0283
0.8 0.0033 1.9977 7.9464 0.1546 0.0927 0.0329

Baseline DGP: (S.1) with T = 100, iid normally distributed innovations; T0 = 50; n = 100 units; d = n = 100 covariates (including the constant); s0 = 5,
q = 1; 10,000 Monte-Carlo simulations per case. The penalization parameter is chosen via Bayesian Information Criteria (BIC). We set the maximum
number of included variables to be T 0.8 in the glmnet package in R.
a Relative to the variance of the oracle/OLS estimator in the first stage knowing the relevant regressors.
b All distributions are standardized (zeromean and unit variance);Mixed normal equal to 2Normal distributionswith probability (0.3, 0.7),mean (−10, 10)
and variance (2, 1).
c All units are simulated as AR(1) processes. The variance estimator is computed as Andrews and Monahan (1992) with an AR(1) pre-whitening followed
by a standard HAC estimator with Quadratic Spectral Kernel on the residuals. Optimal bandwidth selection for AR(1) as per Andrews (1991).

where λ ∨ λ′
= max(λ, λ′) and λ ∧ λ′

= min(λ, λ′). Finally, we have

E[ST (λ)S ′

t (λ
′)] = Γ−1/2

⎡⎣ T 2

(T − Tλ + 1)(T − Tλ′ + 1)
1
T

∑
t≤Tλ

∑
s≤Tλ′

Γs−t

⎤⎦Γ−1/2
+ op(1)

=

[
1

(1 − λ)(1 − λ′)

]
(1 − λ ∨ λ′)
λ ∨ λ

+ op(1) =
1

(λ ∨ λ)(1 − λ ∧ λ′)
+ op(1) ≡ Σλ + op(1) □

Proof of Proposition 3

Proof. Below we write Tλ we mean ⌊λT⌋. All the convergence in probability are a direct consequence of the Weak Law of
Large Numbers ensured by the conditions of Proposition 1 combined with Assumption 6: Let λ ≤ λ0:

∆̂T (λ) ≡
1

T − Tλ + 1

T∑
t=Tλ

δ̂t (λ) =

(
T0 − Tλ

T − Tλ + 1

) ∑T0−1
t=Tλ

∆̂t (λ)

T0 − Tλ
+

(
T − T0 + 1
T − Tλ + 1

) ∑T
t=T0

δ̂t (λ)

T − T0 + 1

= op(1) +

(
1 − λ0

1 − λ

)
∆.
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Table 3
Rejection rates under the alternative (Test power).

α = 0.1 0.075 0.05 0.025 0.01
Step Interventiona

δt = c σ11{t ≥ T0}

c = 0.15 0.2045 0.1695 0.1287 0.0805 0.0436
0.25 0.3783 0.3266 0.2686 0.1890 0.1108
0.35 0.5769 0.5235 0.4545 0.3465 0.2414
0.5 0.8314 0.7945 0.7440 0.6478 0.5227
0.75 0.9876 0.9831 0.9741 0.9520 0.9094
1 0.9998 0.9995 0.9992 0.9983 0.9943

Linear Increasing
δt = c σ1

t−T0+1
T−T0+1 1{t ≥ T0}

c = 1 0.8318 0.7938 0.7379 0.6397 0.5121
1.25 0.9877 0.9813 0.9717 0.9459 0.8948
1.5 0.9997 0.9997 0.9990 0.9969 0.9922

Linear Decreasing
δt = c σ1 T−t+1

T−T0+1 1{t ≥ T0}

c = 1 0.8298 0.7956 0.7434 0.6492 0.5107
1.25 0.9868 0.9818 0.9720 0.9490 0.8985
1.5 0.9995 0.9994 0.9989 0.9968 0.9933

All simulations above as per DGP in (S.1) with the parameters in the baseline
scenario as described in the footnote of Table 2.
a All interventions intensity are measured as a factor c > 0 of the standard
deviation of unit of interest, σ1 .

Table 4
Estimators comparison.

BA SC DiDa DiD GMa GM ArCoa ArCo
No Time Trend (ϕ = 0) and No Serial Correlation (ρ = 0)

Biasb −0.001 −0.678 0.005 0.008 −0.280 −0.273 0.000 0.000
Var 3.151 50.555 17.870 51.444 0.544 0.510 1.001 1.000
MSE 3.152 86.075 17.871 51.449 6.601 6.255 1.001 1.000

No Time Trend (ϕ = 0)

Bias −0.003 −0.596 0.000 0.000 −0.353 −0.294 −0.002 −0.002
Var 2.997 12.293 7.215 18.506 3.057 0.705 0.998 1.000
MSE 2.996 27.634 7.214 18.502 8.438 4.427 0.998 1.000

Common Linear Time Trend (ϕ = 1)

Bias 0.218 −0.579 0.034 0.033 −0.128 −0.195 0.028 0.029
Var 2.900 19.590 6.741 17.720 0.522 0.499 1.007 1.000
MSE 4.677 32.165 6.558 17.159 1.151 1.985 1.004 1.000

Idiosyncratic Linear Time Trend (ϕ = 1)

Bias 0.744 1.391 0.597 0.577 0.766 0.766 0.161 0.158
Var 0.288 0.564 0.392 1.720 1.499 1.113 0.996 1.000
MSE 2.270 7.544 1.651 2.771 3.493 3.142 0.999 1.000

Common Quadratic Time Trend (ϕ = 2)

Bias 0.288 −0.562 0.051 0.053 −0.170 −0.170 0.049 0.048
Var 2.809 18.486 6.571 17.199 0.512 0.488 1.007 1.000
MSE 5.583 28.407 6.105 15.837 1.520 1.498 1.010 1.000

Idiosyncratic Quadratic Time Trend (ϕ = 2)

Bias 0.994 −0.179 0.780 0.758 0.465 0.465 0.154 0.153
Var 1.443 0.377 3.499 8.878 0.282 0.274 0.992 1.000
MSE 14.786 0.701 10.868 14.002 3.216 3.210 0.998 1.000

S = 10, 000 simulations from DGP (11); T = 100 observations; Intervention at T0 = 50 only on the first variable of the first unit of intensity one standard
deviation; rf chosen such that R2

= 0.5; n = 5 units; q = 3 variables per unit; innovations are iid normally distributed; ρ = 0.5 and diag (A) are
independent draws from uniform [−1, 1]; All the loads (for the constant, the time trend and the stochastic factor) are independent draws from uniform
distribution [−5, 5], except for the common trend cases where the time trend loads are equal to unit for all variables of all units and for the cases with no
time trend where they are all set to zero.
a Estimators using the q − 1 covariates of unit 1. Hence, unfeasible if we expect the intervention to affect all the variables in unit 1.
b Bias measured as a ratio to the intervention intensity, defined by one standard deviation of the first variable of the first unit; Variance and MSE measured
as a ratio to the ArCo Variance and MSE, respectively.
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Table 5
Estimated effects on food away from home (FAH) inflation.

Panel (a): ArCo Estimates
(1) (2) (3) (4) (5) (6) (7) (8)
0.2500
(0.1726)

0.4441
(0.1487)

0.4870
(0.1414)

0.7973
(0.2431)

0.4478
(0.2017)

0.3796
(0.1613)

0.4046
(0.1539)

0.4422
(0.1467)

Inflation Yes No No No Yes Yes Yes No
GDP No Yes No No Yes Yes Yes No
Retail Sales No No Yes No No Yes Yes No
Credit No No No Yes No No Yes No

R-squared 0.6849 0.1240 0.3856 0.3106 0.7993 0.8948 0.8072 0
Number of regressors 10 9 10 10 19 29 39 0
Number of relevant regressors 10 3 6 9 16 15 13 0
Number of observations (t < T0) 33 33 33 33 33 33 33 33
Number of observations (t ≥ T0) 23 23 23 23 23 23 23 23

Panel (b): Alternative Estimates
(1) (2) (3) (4) (5) (6)

BA 0.4472
(0.1464)

0.4478
(0.1466)

0.4390
(0.1471)

0.4538
(0.1464)

0.4501
(0.1467)

0.4422
(0.1467)

DiD 0.2195
(0.1467)

0.2111
(0.1460)

0.2171
(0.1467)

0.2112
(0.1460)

0.2088
(0.1461)

0.2194
(0.1467)

GM 0.3699
(0.1237)

0.3785
(0.1246)

0.3759
(0.1234)

0.3759
(0.1234)

0.3607
(0.1226)

–

GDP Yes No No Yes Yes No
Retail Sales No Yes No Yes Yes No
Credit No No Yes No Yes No

The upper panel in the table reports, for different choices of conditioning variables, the estimated average intervention effect after the adoption of the
program (Nota Fiscal Paulista—NFP). The standard errors are reported between parenthesis. Diagnostic tests do not evidence any residual autocorrelation
and the standard errors are computed without any correction. The table also shows the R-squared of the first stage estimation, the number of included
regressors in each case as well as the number of selected regressors by the LASSO, and the number of observations before and after the intervention. The
lower panel of Table presents some alternative measures of the average intervention effect, namely the Before-and-After (BA), the method proposed by
Gobillon and Magnac (2016) (GM) and the difference-in-difference (DiD) estimators.

Table 6
Estimated effects on GDP growth, retail sales growth and credit growth: The Case without Porto Alegre.

ArCo Estimates
(1) (2) (3) (4) (5) (6) (7)

Inflation 0.2992
(0.1704)

0.4438
(0.1486)

0.4913
(0.1432)

0.5064
(0.1480)

0.4763
(0.2010)

0.4070
(0.1600)

0.4046
(0.1539)

GDP −0.0020
(0.0043)

−0.0002
(0.0032)

−0.0016
(0.0034)

−0.0024
(0.0034)

−0.0028
(0.0043)

0.0006
(0.0039)

−0.0001
(0.0036)

Retail 0.0020
(0.0040)

0.0016
(0.0045)

0.0020
(0.0041)

0.0012
(0.0039)

0.0027
(0.0055)

−0.0001
(0.0049)

0.0003
(0.0056)

Credit 0.0018
(0.0027)

0.0024
(0.0026)

0.0018
(0.0027)

−0.0008
(0.0017)

0.0031
(0.0027)

0.0029
(0.0027)

0.0003
(0.0017)

Inflation Yes No No No Yes Yes Yes
GDP No Yes No No Yes Yes Yes
Retail Sales No No Yes No No Yes Yes
Credit No No No Yes No No Yes

R-squared
Inflation 0.6439 0.1213 0.3928 0.1026 0.7960 0.8568 0.8072
GDP 0.2943 0.2022 0.0782 0.1017 0.7488 0.6482 0.5968
Retail Sales 0.1152 0.4180 0.5664 0.0374 0.7106 0.7695 0.8406
Credit 0 0.1132 0 0.6014 0.2085 0.1719 0.7543

Number of relevant regressors
9 3 7 5 14 17 13
8 4 1 2 17 17 15
3 6 8 1 13 13 16
0 1 0 6 5 4 14

Number of observations (t < T0) 33 33 33 33 33 33 33
Number of observations (t ≥ T0) 23 23 23 23 23 23 23

Joint χ2(4) (p-value) 0.0900 0.0356 0.0090 0.0073 0.0028 0.0235 0.0252

The table reports the estimated average intervention effect after the adoption of the program (Nota Fiscal Paulista—NFP). The standard errors are reported
between parenthesis. Diagnostic tests do not evidence any residual autocorrelation and the standard errors are computedwithout any correction. The table
also shows the R-squared of the first stage estimation, the number of included regressors in each case as well as the number of selected regressors by the
LASSO, and the number of observations before and after the intervention. Finally, the last row of the table reports the p-value of the χ2 statistic for the test
of the null of no-effects on any of the four macroeconomic variables considered.
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Fig. 1. Bias Factor defined on (10) for li = σηi = 1 for all i = 1, . . . , n.

Fig. 2. NFP Participation (left) and Value distributed (right).

Similarly, consider a guess after the true value, λ > λ0. Then:

∆̂T (λ) ≡
1

T − Tλ + 1

T∑
t=Tλ

δ̂t (λ) =
1

T − Tλ + 1

T∑
t=Tλ

[
yt − M̂(xt )

]
=

1
T − Tλ + 1

T∑
t=Tλ

[yt − M(xt )] −
λ− λ0

λ
∆ + op(1)

=
1

T − Tλ + 1

T∑
t=Tλ

[
y(0)
t − α0 − g(θ0)

]
+
λ0

λ
∆ + op(1) =

λ0

λ
∆ + op(1),

where the second equality follows fromAssumption 7, since a step interventionwill only affect (asymptotically) the constant
regressor estimation of the modelM by a factor of λ−λ0

λ0
times the intervention size∆. To see this let α0 be the constant and
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Fig. 3. Actual and counterfactual data. The conditioning variables are inflation andDGPgrowth. Panel (a)monthly inflation. Panel (b) accumulatedmonthly
inflation.

β0 the remaining parameters. Then,

α̂ =
1
Tλ

∑
t≤Tλ

y(0)
t +

1
Tλ

∑
t≤Tλ

∆I(t ≥ T0) −
1
Tλ

∑
t≤Tλ

M̃(̂β),

where M(xt; θ0) ≡ α0 + M̃(xt; β0). Since the estimation of β0 is asymptotically unaffected by a step intervention, under
the conditions of Lemma 1, β̂

p
−→ β0. Consequently, α̂(λ)

p
−→ α +

λ−λ0
λ

∆, ∀λ ∈ (0, 1). □

Proof of Theorem 6

Proof. Note that: (i) The limiting function Jp,0(λ) ≡ φ(λ)∥∆∥p is uniquely maximized at λ = λ0 under the assumption
that ∆T ̸= 0, (ii) The parametric space Λ is compact; (iii) J0,p(·) is a continuous function as consequence of the continuity
of φ(·), (iv) Jp,T (λ) converges uniformly in probability to Jp,0(λ) (shown below). Therefore, from Theorem 2.1 of Newey and
McFadden (1994) we have that λ̂0,p

p
−→ λ0.

In Theorem 5 we show that ST converges in distribution to ST . Hence, ST is uniformly tight (in particular with respect to
λ). Therefore, 1

√
T
ST (λ) is op(1) uniformly in λ. Or equivalently, ∆̂T (λ)

p
−→ ∆T (λ), uniformly in λ ∈ Λ.

Now consider any real valued function f (·) that is continuous on a compact set K ⊂ Rk. In that case f (·) is uniformly
continuous on K as every continuous function on a compact domain. By definition then, for a given ϵ > 0, there is a δ > 0
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such that for every (x, y) ∈ K 2, {|f (x) − f (y)| > ϵ} ⇒ {∥x − y∥ > δ}. Therefore, P(|∥x∥p − ∥y∥p| > ϵ) ≤ P(∥x − y∥ > δ)
+ P(K c).

Finally, note that ∥ · ∥p is a continuous function onRq so given any ϵ > 0, we can take an arbitrary large compact Kϵ ⊂ Rq

such that P(K c) ≤ ϵ. The result then follows since the first term above converges uniformly to zero in probability. □

Proof of Proposition 4

Proof. Follows directly from Theorem 1 applied to each unit of I individually combined with the Cramèr–Wold device. □

Appendix B. Figures and tables

See Tables 2–6 and Figs. 1–3.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.07.005.
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