
Higher-order Refinements of Small Bandwidth Asymptotics for

Density-Weighted Average Derivative Estimators∗

Matias D. Cattaneo† Max H. Farrell‡ Michael Jansson§ Ricardo Masini¶

December 31, 2022

Abstract

The density weighted average derivative (DWAD) of a regression function is a canonical

parameter of interest in economics. Classical first-order large sample distribution theory for

kernel-based DWAD estimators relies on tuning parameter restrictions and model assumptions

leading to an asymptotic linear representation of the point estimator. Such conditions can

be restrictive, and the resulting distributional approximation may not be representative of the

underlying sampling distribution of the statistic of interest, in particular not being robust to

bandwidth choices. Small bandwidth asymptotics offers an alternative, more general distribu-

tional approximation for kernel-based DWAD estimators that allows for, but does not require,

asymptotic linearity. The resulting inference procedures based on small bandwidth asymptotics

were found to exhibit superior finite sample performance in simulations, but no formal theory

justifying that empirical success is available in the literature. Employing Edgeworth expan-

sions, this paper shows that small bandwidth asymptotics lead to inference procedures with

demonstrable superior higher-order distributional properties relative to procedures based on

asymptotic linear approximations.
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1 Introduction

Identification, estimation and inference in the context of two-step semiparametric models has a long

tradition in econometrics (Powell, 1994). Canonical two-step semiparametric parameters are finite

dimensional functionals of some other unknown infinite dimensional parameters in the model (e.g.,

a density or regression function), a leading example being the density weighted average derivative

(DWAD) of a regression function (Stoker, 1986). This paper seeks to honor the many contri-

butions of Jim Powell to semiparametric theory in econometrics by juxtaposing the higher-order

distributional properties of Powell et al. (1989)’s two-step kernel-based DWAD estimator under

two alternative large sample approximation regimes: one based on the classical asymptotic linear

representation, and the other based on a more general quadratic distributional approximation.1

In a landmark contribution, Powell et al. (1989) proposed a kernel-based DWAD estimator and

obtained first-order, asymptotically linear distribution theory employing ideas from the U-statistics

literature, along with plug-in standard error estimators, to develop valid inference procedures in

large samples. This work sparked a wealth of subsequent developments in the econometrics litera-

ture: Robinson (1995) obtained Berry-Esseen bounds, Powell and Stoker (1996) considered mean

square error expansions, Nishiyama and Robinson (2000, 2001, 2005) developed Edgeworth expan-

sions, and Newey et al. (2004) investigated bias properties, just to mention a few contributions. The

two-step semiparametric estimator in this literature employs a preliminary kernel-based estimator

of a density function, which requires choosing two main tuning parameters (a bandwidth and a

kernel function), and their “optimal” choices depend on the goal of interest (e.g., point estimation

vs. inference) as well as the features of the underlying data generating process (e.g., smoothness of

the unknown density and dimensionality of the covariates).

Classical first-order distribution theory for kernel-based DWAD estimators has focused on cases

where tuning parameter restrictions and model assumptions lead to an asymptotic linear repre-

sentation of the two-step semiparametric point estimator (Newey and McFadden, 1994; Ichimura

and Todd, 2007, for overviews), that is, the two-step estimator is approximated by a sample aver-

age based on the so-called influence function. This approach can lead to semiparametric efficient

inference procedures in large samples, but the implied distributional approximation may not be

“robust” to tuning parameter choices and/or model features. More specifically, the limiting dis-

tribution obtained based on the asymptotic linear representation is invariant to the way that the

preliminary nonparametric estimators are constructed, and requires potentially high smoothness

levels of the underlying unknown functions and thus the use of higher-order kernels. At its core,

asymptotic linear approximations assume away the contribution of additional terms forming the

statistic of interest, despite the fact that these terms do contribute to the sampling variability of the

two-step semiparametric estimator and, more importantly, do reflect the effect of tuning parameter

1Jim Powell’s contributions to semiparametric theory are numerous. Honoré and Powell (1994), Powell and Stoker
(1996), Blundell and Powell (2004), Aradillas-Lopez et al. (2007), Ahn et al. (2018), and Graham et al. (2023) are some
of the most closely connected to the our work. These papers employ U-statistics methods for two-step kernel-based
estimators similar to those considered herein. See Powell (2017) for more discussion and references.
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choices in finite samples.

Cattaneo et al. (2014a) proposed an alternative distributional approximation for kernel-based

DWAD estimators that allows for, but does not require, asymptotic linearity. The key idea is

to capture the joint contribution to the sampling distribution of both linear and quadratic terms

forming the kernel-based DWAD estimator. To operationalize this idea, Cattaneo et al. (2014a)

introduced an asymptotic experiment where the bandwidth sequence is allowed to vanish at a speed

that would render the classical asymptotic linear representation invalid because the quadratic term

becomes first order even in large samples, which they termed “small bandwidth” asymptotics. This

framework was carefully developed to obtain a distributional approximation that explicitly depends

on both linear and quadratic terms, thereby forcing a more careful analysis of how the quadratic

term contributes to the sampling distribution of the statistic.

Small bandwidth asymptotics inference methods for kernel-based DWAD estimators were found

to perform well in simulations (Cattaneo et al., 2010, 2014a,b), but no formal justification for its

finite sample success is available in the literature. Methodologically, this alternative distributional

approximation leads to a new way of conducting inference (e.g., constructing confidence interval

estimators) because the original standard error formula proposed by Powell et al. (1989) must be

modified to make the asymptotic approximation valid across the full range of allowable bandwidths

(including the region where asymptotic linearity fails). Theoretically, however, the empirical success

of small bandwidth asymptotics could in principle come from two distinct sources: (i) it could deliver

a better distributional approximation to the sampling distribution of the point estimator; or (ii) it

could deliver a better distributional approximation to the sampling distribution of the Studentized

t-statistic because the standard error formula was modified.

Employing Edgeworth expansions (Bhattacharya and Rao, 1976; Hall, 1992), this paper shows

that the small bandwidth asymptotics approximation framework leads to inference procedures with

demonstrable superior higher-order distributional properties relative to procedures based on asymp-

totic linear approximations. We study both standardized and Studentized t-statistics, under both

asymptotic linearity and small bandwidth asymptotic regimes, and show that both standardized

and Studentized t-statistics emerging from the small bandwidth regime offer higher-order correc-

tions as measured by the second cummulant underlying their Edgeworth expansions. An immediate

implication of our results is that the small bandwidth asymptotic framework delivers both a better

distributional approximation (Theorem 1, standardized t-statistic) and leads to a better standard

error construction (Theorem 2, Studentized t-statistic). Therefore, our results have both theoretical

and practical implications for empirical work in economics, in addition to providing a theory-based

explanation for prior simulation-based findings exhibiting better numerical performance of infer-

ence procedures constructed using small bandwidth asymptotics relative to those constructed using

classical distributional approximations.

The closest antecedent to our work is Nishiyama and Robinson (2000, 2001), who also studied

Edgeworth expansions for kernel-based DWAD estimators. Their expansions, however, were moti-

vated by the asymptotic linear approximation to the point estimator, and hence can not be used
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to compare and contrast to the distributional approximation emerging from the alternative small

bandwidth asymptotic regime. Therefore, from a technical perspective, this paper also offers novel

Edgeworth expansions that allow for different standardization and Studentization schemes, thereby

allowing us to plug-and-play when comparing the two competing asymptotic frameworks. More

specifically, Theorem 1 below concerns a generic standardized t-statistic and is proven based on

Theorem A in the appendix, which may be of independent technical interest due to is generality.

Theorem 2 below concerns a more specialized class of Studentized t-statistic because establishing

valid Edgeworth expansions is considerably harder when dealing with Studentization.

The idea of employing alternative (more general) asymptotic approximation frameworks that do

not enforce asymptotic linearity for two-step semiparametric estimators has also featured in other

context such as partially linear series-based, many covariates and many instrument estimation

as well as certain network estimation settings (Cattaneo et al., 2018a,b; Matsushita and Otsu,

2021), as well as other non-linear two-step semiparametric settings (Cattaneo et al., 2013; Cattaneo

and Jansson, 2018; Cattaneo et al., 2019). While our theoretical developments and results focus

specifically on the case of kernel-based DWAD estimation, their main conceptual conclusions can be

extrapolated to those settings as well. The main takeaway is that employing alternative asymptotic

frameworks can deliver improved inference with smaller higher-order distributional approximation

errors, thereby offering more robust inference procedures in finite samples.

The paper continues as follows. Section 2 introduces the setup and main assumptions. Section

3 reviews the classical first-order distributional approximation based on asymptotic linearity and

the more general small bandwidth distributional approximation, along with their corresponding

choices of standard error formulas. Section 4 presents the main results of our paper. Section 5

concludes. The appendix is organized in three parts: Appendix A provides a self-contained generic

Edgeworth expansion for second-order U-statistics, which may be of independent technical interest,

Appendix B gives the proof of Theorem 1 (standardized t-statistic), and Appendix C gives the proof

of Theorem 2 (Studentized t-statistic).

2 Setup and Assumptions

Suppose Zi = (Yi, X
′
i)
′, i = 1, . . . , n, is a random sample from the distribution of the random

vector Z = (Y,X ′)′, where Y is an outcome variable of interest and X takes value on Rd with

Lebesgue density f . We consider the density weighted average derivative of the regression function

g(X) = E[Y |X] given by

θ := E[f(X)ġ(X)],

where for any function a we define ȧ(x) := ∂
∂xa(x). To save notation, we also define e(X) :=

f(X)g(X) and v(X) := E[Y 2|X]. We impose the following conditions on the underlying data

generating process. Let ∥ · ∥ be the Euclidean norm.

Assumption 1.
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(a) E[|Y |p] <∞, for some p ≥ 3.

(b) Σ := E[ψ(Z)ψ(Z)′] is positive definite, where ψ(Z) := 2
[
ė(X) − Y ḟ(X) − θ

]
.

(c) f is (S+1) times differentiable, and f and its (S+1) derivatives are bounded, for 2S > d+2;

(d) g is (S + 1) times differentiable and its first three derivatives are bounded;

(e) e and its first (S + 1) derivatives are bounded;

(f) v is twice diferentiable, and its first two derivatives are bounded, and vḟ and E[|Y |3|X]f(X)

are bounded;

(g) f , gf , ġf and vf vanish on the boundaries of their convex supports;

(h) Cramér Condition: sup
ν∈Rd:∥v∥=1

lim sup
|t|→∞

|E exp(ιtℓ1/σ̄ν)| < 1 where σ̄ν := ν ′Σν.

Under Assumption 1 and using integration by parts, the DWAD vector can be expressed as

θ = −2E[Y ḟ(X)],

which motivates the celebrated plug-in analog estimator of Powell et al. (1989) given by

θ̂ = −2
1

n

n∑
i=1

Yi
̂̇
f i(Xi), f̂i(x) =

1

n− 1

n∑
j=1,j ̸=i

1

hd
K

(
Xj − x

h

)
,

where f̂i(·) is a “leave-one-out” kernel density estimator for kernel function K : Rd → R and positive

vanishing (bandwidth) sequence h. For the kernel function, we impose the following conditions.

Assumption 2.

(a) K is even, differentiable, and K̇ is bounded;

(b)
∫
Rd K̇(u)K̇(u)′du is positive definite;

(c) For some P ≥ 2, ∫
Rd

|K(u)|(1 + ∥u∥P )du+

∫
Rd

∥K̇(u)∥(1 + ∥u∥2)du <∞

and ∫
Rd

uaK(u)du =


1, if [a] = 0,

0, if 0 < [a] < P

µa <∞, if [a] = P,

where a ∈ Zd
+ is a multi-index.2

2We employ standard multi-index notation. For a := (a1, . . . , ad) we have (i) [a] := a1+· · ·+ad, (ii) a! := a1! . . . ad!,

(iii) xa := xa1
1 . . . x

ad
d for x ∈ Rd and (iv) q(a)(x) = ∂[a]q

∂a1x1...∂
adxd

for smooth enough q : Rd → R.
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The estimator θ̂ can be expressed as a second-order U-statistic with n-varying kernel:

θ̂ =

(
n

2

)−1 n∑
i<j

Uij , Uij = − 1

hd+1
K̇

(
Xi −Xj

h

)
(Yi − Yj), (2.1)

where
∑n

i<j is shorthand notation for
∑n−1

i=1

∑n
j=i+1.

3 First-order Theory

Before presenting our main results concerning the higher-order distributional properties of different

statistics based on θ̂, we overview conventional and alternative asymptotic distributional approx-

imations, and the variance estimation methods proposed in the literature emerging from those

distinct approximation frameworks. Limits are taken as h→ 0 and n→ ∞ unless otherwise noted.

3.1 Distributional Approximation

In a landmark contribution, Powell et al. (1989) studied the first-order large sample distributional

properties of θ̂. They showed that, under appropriate restrictions on h and K, the estimator

θ̂ is asymptotically linear with (efficient) influence function ψ(z), and thus with semiparametric

(efficient) asymptotic variance Σ. More precisely, Powell et al. (1989) showed that if Assumptions

1 and 2 hold, and if nh2min(P,S) → 0 and nhd+2 → ∞, then

√
n(θ̂ − θ) =

1√
n

n∑
i=1

ψ(Zi) + oP(1)⇝ N (0,Σ). (3.1)

This result follows from the U -statistic representation in (2.1) and its Hoeffding decomposition,

which gives θ̂ = E[Uij ] + L̄+ Q̄, where

L̄ =
1

n

n∑
i=1

Li, Li = 2(E[Uij |Zi] − E[Uij ]),

and

Q̄ =

(
n

2

)−1 n∑
i<j

Qij , Qij = Uij − E[Uij |Zi] − E[Uij |Zj ] + E[Uij ],

both mean zero random vectors. Because E[Uij ] = θ +O(hmin(P,S)) and Q̄ = OP(n−1h−(d+2)/2), it

follows that

√
n(θ̂ − θ) =

1√
n

n∑
i=1

(
E[Uij |Zi] − E[Uij ]

)
+OP

(√
nhmin(P,S) +

1√
nhd+2

)
,

from which the asymptotic linear representation based on the (efficient) influence function in (3.1)

is established upon noting that E[∥L̄−
∑n

i=1 ψ(Zi)/n∥2] = O(n−1h).
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Conceptually, the Hoeffding decomposition and subsequent analysis of each of its terms shows

that the estimator admits a bilinear form representation in general, which then is reduced to a

sample average approximation by assuming a bandwidth sequence and kernel shape that makes

both the misspecification error (smoothing bias) and the variability introduced by Q̄ (“quadratic

term” term) negligible in large samples. As a result, provided that such tuning parameter choices

are feasible, the estimator will be asymptotically linear.

Asymptotic linearity of a semiparametric estimator has several distinct features that may be

considered attractive from a theoretical point of view (Newey, 1994). In particular, it is a necessary

condition for semiparametric efficiency and it leads to a limiting distribution that is invariant to the

choice of the first-step nonparametric estimator entering the two-step semiparametric procedure.

However, insisting on asymptotic linearity may also have its drawbacks because it requires several

potentially strong assumptions and leads to a large sample theory that may not accurately represent

the finite sample behavior of the statistic. In the case of θ̂, asymptotic linearity requires P > 2

unless d = 1, thereby forcing restrictive smoothness conditions (S ≥ P ) and the use of higher-order

kernels or similar debiasing techniques (see, e.g., Chernozhukov et al., 2022, and references therein).

In addition, classical asymptotic linear theory (whenever valid) leads to a limiting experiment

which is invariant to the particular choices of smoothing (K) and bandwidth (h) tuning parameters

involved in the construction of the estimator, and therefore it is unable to “adapt” to changes in

those choices. As a result, asymptotically linear large sample distribution theory is silent with

respect to the impact that tuning parameter choices may have on the finite sample behavior of the

two-step semiparametric statistic.

To address the aforementioned limitations with classical asymptotic distribution theory, Catta-

neo et al. (2014a) proposed a more general distributional approximation for kernel-based DWAD

estimators that accommodates but does not enforces asymptotic linearity. The core idea is to char-

acterize the joint asymptotic distributional features of both the linear (L̄) and quadratic (Q̄) terms

jointly, and in the process develop an alternative first-order asymptotic theory that accommodates

weaker assumptions than those imposed in the classical asymptotically linear distribution theory.

Formally, if Assumptions 1 and 2 hold, and if min(nhd+2, 1)nh2min(P,S) → 0 and n2hd → ∞, then

(V[θ̂])−1/2(θ̂ − θ)⇝ N (0, I), (3.2)

where

V[θ̂] = V[L̄] + V[Q̄], V[L̄] =
1

n

[
Σ + o(1)

]
, V[Q̄] =

(
n

2

)−1

h−d−2
[
∆ + o(1)

]
,

and ∆ = 2E[v(X)f(X)]
∫
Rd K̇(u)K̇(u)′du.

This more general distributional approximation was developed explicitly in an attempt to better

characterize the finite sample behavior of θ̂. The result in (3.2) shows that the conditions on

the bandwidth sequence may be considerably weakened without invalidating the limiting Gaussian

distribution, albeit the asymptotic variance formula may change. Importantly, if nhd+2 is bounded
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then θ̂ is no longer asymptotically linear and its limiting distribution will cease to be invariant with

respect to the underlying preliminary nonparametric estimator. In particular, if nhd+2 → c > 0

then θ̂ is root-n consistency but not asymptotically linear. In addition, because the bandwidth

is allowed to be “smaller” than usual, the bias of the estimator is controlled in a different way,

removing the need for higher-order kernels. Interestingly, (3.2) allows for the point estimator to

not even be consistent for θ, for sufficiently small bandwidth sequences.

Beyond the aforementioned technical considerations, the result in (3.2) can conceptually be

interpreted as a more refined first-order distributional approximation for the standarized statistics

(V[θ̂])−1/2(θ̂ − θ), which by relying on a quadratic approximation (i.e., capturing the stochastic

contributions of both L̄ and Q̄) it is expected to offer a “better” distributional approximation.

The idea of standarizing a U-statistic by the joint variance of the linear and quadratic terms

underlying its Hoeffding decomposition can be traced back to the original paper of Hoeffding (1948,

p. 307). Furthermore, the asymptotic distribution theory proposed by Cattaneo et al. (2014a) can

be viewed as highlighting the well known trade-off between robustness and efficiency in two-step

semiparametric settings: θ̂ is semiparametric efficient if and only if nhd+2 → ∞, while it seems

possible to construct more robust inference procedures under considerably weaker conditions that

would not be semiparametric efficient. Simulation evidence reported in Cattaneo et al. (2010,

2014a,b) corroborated those conceptual interpretations numerically, but no formal justification is

available in the literature. Theorem 1 below will offer the first theoretical result in the literature

highlighting specific robustness features of the distributional approximation in (3.2) by showing that

such approximation has a demonstrably smaller higher-order distributional approximation error.

3.2 Variance Estimation

Based on the asymptotically linear distributional approximation in (3.1), Powell et al. (1989) also

proposed the following variance estimator

Σ̂ =
1

n

n∑
i=1

L̂iL̂
′
i, L̂i = 2

[ 1

n− 1

n∑
j=1,j ̸=i

Uij − θ̂
]
,

and proved its consistency (i.e., Σ̂ →P Σ) under the same bandwidth sequences (nh2min(P,S) → 0

and nhd+2 → ∞) required for asymptotic linearity. This result justifies employing the Studentized

statistic

Σ̂−1/2√n(θ̂ − θ)⇝ N (0, I) (3.3)

for inferences purposes, that is, to construct a confidence interval for θ and smooth trasformations

thereof, or to carry out statistical hypothesis testing in the usual way.

However, motivated by their alternative asymptotic approximation, Cattaneo et al. (2014a)

showed that
1

n
Σ̂ =

1

n
[Σ + oP(1)] + 2

(
n

2

)−1

h−d−2[∆ + oP(1)],
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which implies that the consistency result Σ̂ →P Σ is valid if and only if nhd+2 → ∞; otherwise,

Σ̂ is in general asymptotically upwards biased relative to V[θ̂] in (3.2). Because Σ̂ is asymptoti-

cally equivalent to the jackknife variance estimator of θ̂, Cattaneo et al. (2014b) also noted that

the asymptotic bias of Σ̂ is a result of a more generic phenomena underlying jackknife variance

estimators studied in Efron and Stein (1981). See also Matsushita and Otsu (2021) for related

discussion.

To conduct asymptotically valid inference under the more general small bandwidth asymptotic

regime, Cattaneo et al. (2014a) proposed several “debiased” variance estimators, including the

following

V̂ =
1

n
Σ̂ −

(
n

2

)−1

h−d−2∆̂, ∆̂ = hd+2

(
n

2

)−1 n−1∑
i=1

n∑
j=i+1

UijU
′
ij ,

and show that ∆̂ →P ∆ under the same bandwidth sequences (nh2min(P,S) → 0 and n2hd → ∞)

required for (3.2) to hold. The estimator ∆̂ is asymptotically equivalent to the debiasing procedure

proposed in Efron and Stein (1981). This result justifies employing the Studentized statistic

V̂ −1/2(θ̂ − θ)⇝ N (0, I) (3.4)

for more “robust” inferences purposes relative to those constructed using (3.3).

Heuristically, robustness manifests in two distinct ways. First, the underlying Gaussian distribu-

tional approximation holds under weaker bandwidth restrictions and does not require asymptotic

linearity, thereby making the limiting distribution explicitly depend on tuning parameter choices.

Second, the new standard error formula V̂ is derived from the more general small bandwidth ap-

proximation and make explicit the contribution of terms regarded as higher-order by classical large

sample distributional approximations.

While not reproduced here to conserve space, the in-depth Monte Carlo evidence reported in

Cattaneo et al. (2010, 2014a,b) also showed that employing inference procedures based on (3.4) lead

to large improvements in terms of “robustness” to bandwidth choice and other tuning inputs, when

compared to classical asymptotically linear inference procedures based on (3.3). Theorem 2 below

will study those two feasible statistics and show formally that the distributional approximation

(3.4) has demonstrably smaller higher-order errors than the distributional approximation (3.3).

4 Higher-order Distribution Theory

We present Edgeworth expansions for scalar standarized and studentized statistics based on θ̂ν−θν
with θ̂ν := ν ′θ̂ and θν := ν ′θ, where ν ∈ Rd is a fixed non-random vector. Considering scalar

statistics substantially simplify the developments and proofs without affecting the main conceptual

and theoretical takeaways. The sequence ϑ will first be non-random, thereby allowing us to inves-

tigate the role of classical distributional approximations based on asymptotic linearity vis-à-vis the

more general distributional approximations based on small bandwidth asymptotics for standarized
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statistics. Then, the sequence ϑ will be taken to be random based on the two alternative variance

estimators introduced in the previous section, thereby allowing us to investigate the role of variance

estimation on the performance of distributional approximations for Studentized statistics.

4.1 Distributional Approximation

Our first theorem offers a valid Edgeworth expansion for the sampling distribution function

Fϑ(t) := P

[
θ̂ν − θν
ϑ

≤ t

]
, t ∈ R,

with precise characterization of the first three cummulants determining the leading errors in dis-

tributional approximation of the Studentized statistic. Define the following key quantities:

β := 2(−1)P
∑
[k]=P

µk
k!

E
[
g(X)

∂k

∂Xk
ν ′ḟ(X)

]
, σ2 := V[θ̂ν ],

κ1 := E[ν ′ψ(Z)3], κ2 := 4E[δ(Z)η̇(Z)] − 8E[δ(Z)2]θν + 4θ3ν ,

where δ(Z) := ν ′ψ(Z)/2 + θν and η(Z2) = limn→∞ E[δ(Z1)ν
′U12|Z2].

Theorem 1 (Standardized). Suppose Assumptions 1 and 2 hold. If
√
nhP → 0 and nhd+2 → ∞,

then for any positive non-random sequence ϑ such that ϑ/σ → 1,

sup
t∈R

∣∣Fϑ(t) −Gϑ(t)
∣∣ = O(Rn) + o(n−1/2)

with

Gϑ(t) := Φ(t) − ϕ(t)
{β
ϑ
hP +

(σ2
ϑ2

− 1
)

+
κ1 + κ2
6n2ϑ3

(t2 − 1)
}
,

and Rn := nh2P +
(
(logn)3

nhd+2

)3/2
+ hd/3+1

nhd+2 +
(
hd/9+2/3

nhd+2

)3/2
, where Φ and ϕ are the c.d.f. and p.d.f. of

a standard Gaussian distribution. Furthermore, if (logn)3

nhd+2 → 0, then Rn = o
(√
nhP + 1

nhd+2

)
.

This theorem is proven by verifying the high-level conditions of a result in Appendix A establish-

ing a valid Edgeworth Expansion for a generic class of U-statistics with n-varying kernels, which

may be of independent theoretical interest. Specifically, Theorem A.1 and its corollary A.1 improve

on Jing and Wang (2003) by allowing for n-varying kernels under more general condition suitable

for the semiparametric problem of interest herein. Theorem 1 also improves on Nishiyama and

Robinson (2000, Theorem 1) in two respects: (i) it allows for a generic standardization scheme ϑ

instead of their specific choice
√
ν ′Σν/n; and (ii) it presents a valid Edgeworth expansion with

precise error rates with respect to the bandwidth. These improvements enable us to compare the

two different distributional approximations of interest, (3.1) vs. (3.2).

The main conclusion in Theorem 1 follows the expected logic underlying Edgeworth Expansions:
β
ϑh

P , σ2

ϑ2 −1 and κ1+κ2
6n2ϑ3 capture, respectively, the standardized bias, variance and higher moments of
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the statistic. Inspection of these terms lead to interesting implications for large sample distribution

theory, in particular leading to a sharp contrast between distribution theory based on asymptotic

linear representations vis-à-vis alternative asymptotics, each with either fixed-bandwidth or leading

asymptotic variance standardization. More specifically, we can consider four distinct standarization

schemes: from first-order asymptotic linear theory (3.1) we have

ϑ2AL := V[ν ′L̄] =
1

n
V[ν ′Li] and ϑ̆2AL :=

1

n
ν ′Σν,

while from small bandwidth distribution theory (3.2) we have

ϑ2SB := V[θ̂ν ] = σ2 and ϑ̆2SB :=
1

n
ν ′Σν +

(
n

2

)−1

h−d−2ν ′∆ν.

The standardizations ϑAL and ϑSB correspond to those constructed using the pre-asymptotic variance

of the point estimator, each justified according to the asymptotic regime considered (asymptotic

linear and small bandwidth, respectively). In contrast, the standardizations ϑ̆AL and ϑ̆SB correspond

to employing the leading term only in the large sample approximation of the pre-asymptotic variance

of the point estimator, again keeping only those terms that are justified by the asymptotic regime

considered. That is, ϑAL = ϑ̆AL + o(n−1) and ϑSB = ϑ̆SB + o(n−1) under the assumptions of Theorem

1. For comparison, Nishiyama and Robinson (2000, Theorem 1) used ϑ̆AL.

Employing Theorem 1 we can now compare the different approaches to standardization and

their associated errors generated in the distributional approximation. Firstly, it is easy to see that

employing ϑ̆AL and ϑ̆SB will generate larger distributional approximation errors relative to their pre-

asymptotic counterparts, ϑAL and ϑSB, respectively. See the proof in the appendix for exact rates,

which are not reproduced here to conserve space. The main conceptual message is that one should

always employ variance formulas that capture the full variability of the statistic whenever possible,

as opposed to employing those that capture only the leading variability in large samples. See

Calonico et al. (2018, 2022) for closely related results in the context of nonparametric kernel-based

density and local polynomial regression estimation and inference.

Secondly, and more importantly for our purposes, Theorem 1 shows that even if the full finite-

sample variance of the point estimator is captured for standardization purposes, it is still crucial to

incorporate the variability of both the linear and quadratic terms. More precisely, setting ϑ = ϑAL

then σ2

ϑ2 − 1 = O(n−1h−d−2), while setting ϑ = ϑSB implies that σ2

ϑ2 − 1 = 0. As a consequence,

our first main result shows that employing the pre-asymptotic variance of the statistic, which is

naturally justified by the more general asymptotic distributional approximation (3.2), leads to the

smallest error in the distributional approximation of the sampling distribution of the standardized

statistic. This result thus provides theory-based evidence in favor of employing small bandwidth

asymptotics for kernel-based DWAD methods whenever the goal is to minimize errors of inference

procedures relying on large sample Gaussian approximations.

The methodological implications of our first theoretical result can be illustrated by analyzing the
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coverage error of standardized confidence intervals. According to Theorem 1, for any α ∈ (0, 1), a

100(1 − α)% two-sided confidence interval based on asymptotic linearity satisfy

P
[
θν ∈

[
θ̂ν ± Φ1−α/2ϑAL

]]
= 1 − α+

KAL

nhd+2
+ o
(√
nhP + n−1h−d−2 + n−1/2

)
,

where Φα = Φ−1(α), and KAL = 2Φ1−α/2ϕ(1 − α/2)n−1h−d−2(σ2/ϑ2AL − 1) = O(1 + h2), with the

exact form of the leading terms described in the appendix. On the other hand, under the conditions

in Theorem 1, a 100(1−α)% two-sided confidence intervals based on small bandwidth asymptotics

satisfy

P
[
θν ∈

[
θ̂ν ± Φ1−α/2ϑSB

]]
= 1 − α+ o

(√
nhP + n−1h−d−2 + n−1/2

)
,

implying a smaller coverage error distortion in large samples.

The above coverage error comparison is conceptually useful, but it does not directly translate to

practice because the confidence intervals are infeasible. To complement the results in this section,

we consider next the implications of constructing variance estimators and hence study feasible

(Studentized) inference procedures.

4.2 Variance Estimation

We study the role of Studentization and thus obtain valid Edgeworth expansion for the sampling

distribution functions

FAL(t) := P

[
θ̂ν − θν

ϑ̂AL
≤ t

]
, ϑ̂AL :=

1

n
ν ′Σ̂ν

and

FSB(t) := P

[
θ̂ν − θν

ϑ̂SB
≤ t

]
, ϑ̂SB :=

1

n
ν ′Σ̂ν −

(
n

2

)−1

h−d−2ν ′∆̂ν.

Crucially, the estimators Σ̂ and ∆̂ target the total variability nV[L̄] = V[Li] and
(
n
2

)
hd+2V[Q̄] =

hd+2V[Qij ], respectively, and not just their leading quantities Σ and ∆. Therefore, in light of the

results reported in the previous section, we do not explicitly consider näıve plug-in estimators of

ϑ̆AL and ϑ̆SBA such as 2
n2

∑n
i=1(ν

′ [̂ė(Xi) − y
̂̇
f(Xi) − θ̂])2 for the former, where ̂̇e(x) and

̂̇
f(x) are

plug-in nonparametric estimators of ė(x) and ḟ(x), respectively. These alternative Studentization

schemes will lead to larger higher-order distributional approximation errors when compared to ϑ̂AL

and ϑ̂SB.

Theorem 2 (Studentized). Suppose Assumptions 1 and 2 hold with p ≥ 8. If
√
nhP → 0 and

nhd+2/(log n)9 → ∞, then

sup
t∈R

∣∣FAL(t) −GAL(t)
∣∣ = o(rn)

with

GAL(t) := Φ(t) − ϕ(t)
{√nhPβ

ν ′Σν
− 1

nhd+2

ν ′∆ν

ν ′Σν
t− 1√

n6(ν ′Σν)3

[
κ1(2t

2 + 1) + κ2(t
2 + 1)

]}
,

11



and

sup
t∈R

∣∣FSB(t) −GSB(t)
∣∣ = o(rn)

with

GSB(t) := Φ(t) − ϕ(t)
{√nhPβ

ν ′Σν
− 1√

n6(ν ′Σν)3

[
κ1(2t

2 + 1) + κ2(t
2 + 1)

]}
,

where rn :=
√
nhP + n−1h−d−2 + n−1/2

This theorem shows that employing Studentization based on small bandwidth asymptotics offers

demonstrable improvements in terms of distributional approximations for the resulting feasible t-

test. The main practical implication of our second result can again be illustrated by analyzing

the coverage error of Studentized confidence intervals. According to Theorem 2, and as it was

the case for stdentized confidence intervals, a 100(1 − α)% two-sided confidence intervals based on

asymptotic linearity satisfy

P
[
θν ∈

[
θ̂ν ± Φ1−α/2ϑ̂AL

]]
= 1 − α+

1

nhd+2
2Φ1−α/2ϕ(1 − α/2)

ν ′∆ν

ν ′Σν
+ o(rn),

while, under the conditions in Theorem 2, a 100(1 − α)% two-sided confidence intervals based on

small bandwidth asymptotics satisfy

P
[
θν ∈

[
θ̂ν ± Φ1−α/2ϑ̂SB

]]
= 1 − α+ o(rn),

implying a smaller coverage error distortion in large samples. This result provides a theoretical

justification to the simulation evidence reported in Cattaneo et al. (2014a,b, 2010) where feasible

confidence intervals based on small bandwidth asymptotics were shown to offer better finite sample

performance in terms of coverage error than their counterparts based classical asymptotic linear

approximations.

5 Conclusion

Employing Edgeworth expansions, we study the higher-order properties of two alternative first-order

distributional approximations and their associated inference procedures (e.g., confidence intervals)

for the kernel-based DWAD estimator of Powell et al. (1989). We showed that small bandwidth

asymptotics not only give demonstrable better distributional approximations than asymptotic linear

approximations, but also justify employing a variance estimator for Studentization purposes that

also improves the distributional approximation. The main take away from our results is that

in two-step semiparametric settings and related problems, alternative asymptotic approximations

that capture higher-order terms ignored by classic asymptotic linear approximation can deliver

better distributional approximations and, by implication, better inference procedures with improved

performance in finite samples.

While beyond the scope of this paper, it would be of interest to develop analogous Edgeworth
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expansions for non-linear two-step semiparamtric procedures developed using alternative asymp-

totic approximations and resampling methods (Cattaneo et al., 2013; Cattaneo and Jansson, 2018;

Cattaneo et al., 2019). For the special case of kernel-based DWAD estimators (a linear two-step

kernle-based semiparametric estimator), Nishiyama and Robinson (2005) present results that could

be contrasted with those obtained under under small bandwidth asymptotics (Cattaneo et al.,

2014b). We relegate such developments for future research due to the substantial amount of addi-

tional technical work required.

A Edgeworth Expansion for Second-Order U-Statistic

Consider the sequence of maps (un : Rd × Rd → R, n ∈ N) where u := un is symmetric in terms

of the permutation of its two arguments for every n ∈ N. Given a random sample Z1, . . . , Zn for

n ≥ 2 of the random variable Z taking values on Rd, the object of interest in the second order

U-statistics with an n-varying kernel given by

Ū :=

(
n

2

)−1 n∑
1≤i<j≤n

u(Zi, Zj). (A.1)

We drop the subscript n to simplify notation. By the Hoeffding decomposition,

Ū − θ

ϑ
= B + L+Q,

where B := (Eu(Z1, Z2) − θ)/ϑ, L := 1
ϑn

∑n
i=1 ℓi and Q := 1

ϑ

(
n
2

)−1∑n
1≤i<j≤n qij , where ℓi := ℓ(Zi)

and qij := q(Zi, Zj) with ℓ(Z1) := 2[Eu(Z1, Z2|Z1) − Eu(Z1, Z2)] and q(Z1, Z2) := u(Z1, Z2) −
ℓ(Z1)/2 − ℓ(Z2)/2 − Eu(Z1, Z2). Given the decomposition above,

σ2 := V[Ū ] =
1

n
σ2ℓ +

(
n

2

)−1

σ2q , (A.2)

where σ2ℓ := Eℓ21 and σ2q := Eq212.
We establish a valid third-order Edgeworth expansion for the the sampling distribution of the

centered and standardized version of Ū :

F (t) := P
[
Ū − θ

ϑ
≤ t

]
, t ∈ R, (A.3)

where θ ∈ R and ϑ > 0 are non-random.

Theorem A.1. Let the following conditions hold:

(a) E
[
(ℓ1/σℓ)

3
]

= O(1) and E[|q12|]2+δ <∞, and σℓ > 0

(b)
σq√
nσℓ

→ 0 and σ
ϑ → 1.
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(c) lim sup
n→∞

lim sup
|t|→∞

|E exp(ιtℓ1/σℓ)| < 1.

Then, supt∈R |F (t) −G(t)| = O(E) + o(n−1/2) where G is the distribution function with character-

istic function

χG(t) := eιtB− t2

2

1 +

9∑
j=2

(ιt)j γj

 ,
with ι :=

√
−1,

γ2 = 1
2

(
σ2

ϑ2 − 1
)
, γ3 = 1

6ϑ3n2

[
Eℓ31 + 6Eℓ1ℓ2q12

]
, γ4 = 1

4ϑ2

(
σ2

ϑ2 − 1
)(n

2

)−1

σ2q

γ5 = 1
12n2ϑ5

[(
n

2

)−1

(Eℓ31)σ2q + 6ϑ2
(

σ2
ℓ

ϑ2n
− 1
)
Eℓ1ℓ2q12

]

γ6 = 1
6ϑ6n4

[
(Eℓ31)Eℓ1ℓ2q12 + 12

(
n

2

)−2(n
4

)
[Eℓ1ℓ2q12]2

]
, γ7 = 0,

γ8 = 1
4ϑ6n4

(
σ2
ℓ

ϑ2n
− 1
)(n

2

)−2(n
4

)
[Eℓ1ℓ2q12]2 , γ9 = 1

12ϑ9n6

(
n

2

)−2(n
4

)
Eℓ31 [Eℓ1ℓ2q12]2 ,

and

E :=
(

logn
n3/2σℓ

)2+δ
Π2+δ(n) +

(
(logn)

4+δ
2+δ σ2

q

nσ2
ℓ

)2+δ
2

+
(
logn
nσℓ

)2+δ
Π2+δ(log n)

+ 1
σ4
ℓn
E|ℓ21ℓ2q12| + 1

σ5
ℓn

3/2E|ℓ21ℓ22q12| + 1
σ2
ℓn

2E|ℓ1q212| + 1
σ5
ℓn

3/2E|ℓ1ℓ2ℓ3q13q23|

+ 1
σ7
ℓn

3/2 (Eℓ1ℓ2q12)(E|ℓ21ℓ2q12|) + 1
σ8
ℓn

2 (Eℓ1ℓ2q12)(E|ℓ21ℓ22q12|),

with Π2+δ(m) := E|
∑[m]−1

i=1

∑n
j=i+1 qij |2+δ for real m > 1 and [·] denoting the floor operator.

Corollary A.1. Let the assumptions of Theorem A.1 hold. If B → 0, then

sup
t∈R

|F (t) −G(t)| = O
(
B2 + E

)
+ o(n−1/2),

with

χG(t) := e−
t2

2

1 +Bιt+

9∑
j=2

(
ιt
ϑ

)j
γj

 .
Remark A.1. Lemma A.2 below gives the following simpler bound

Π2+δ(m) ≲ (nmσ2q )(2+δ)/2 ∨mn1+δ/2E
[
(E(q212|Z1))

1+δ/2
]
∨ nmE|q12|2+δ,

where ≲ denotes bounded up to a fixed constant, and a ∨ b = max{a, b}. ⌟
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Remark A.2. We can invert the characteristic function above to obtain a close form for F using

the fact that for non-negative integer k, 1
2π

∫
R exp (−ιtx− t2/2)(ιt)kdt = Hk(x)ϕ(x), where Hk(x) is

the k-th order Hermite polynomial (e.g., H0(k) = 1, H1(x) = x, H2(x) = x2− 1, H3(x) = x3− 3x).

Therefore, the distribution function of χG(t) from Corollary A.1 is

G(x) = Φ(x) − ϕ(x)

 9∑
j=1

γjHj−1(x)

 .
⌟

Remark A.3. To compare to Jing and Wang (2003), let u(·, ·) not dependent on n, θ = Eu(Z1, Z2),

ϑ2 = σ2ℓ /n, and E|q12|2+δ bounded. Then, E = o(n−1/2) and χG(t) = exp(−t2/2)
(

1 − ικ3t3

6
√
n

)
+

o(n−1/2), giving

G(x) = Φ(x) − ϕ(x)
1

6
√
n

[
E
(

ℓi
σℓ

)3
+

6Eℓ1ℓ2q12
σ3ℓ

]
(x2 − 1).

⌟

A.1 Proof of Theorem A.1

Let χF denote the characteristic function F and g be the density of G. Using the well-known

“smoothing inequality” (Bhattacharya and Rao, 1976; Hall, 1992), we write

ρ(F,G) ≤ 1

π

[∫ υ

−υ

∣∣∣∣χF (t) − χG(t)

t

∣∣∣∣dt+
24 supx∈R |g(x)|

υ

]
, υ > 0

where ρ is the Kolmogorov distance. We set v =
√
n log n and split the range of integration into

“low” frequencies and “high” frequencies. By the triangle inequality,

ρ(F,G) ≲ I1 + I2 + I3 + I4 + 1√
n logn

, (A.4)

where

I1 :=

∫
|t|≤logn

∣∣∣∣χF (t) − χG(t)

t

∣∣∣∣ dt, I2 :=

∫
logn<|t|≤c

√
n

∣∣∣∣χF (t)

t

∣∣∣∣ dt,
I3 :=

∫
c
√
n<|t|≤

√
n logn

∣∣∣∣χF (t)

t

∣∣∣∣ dt, I4 :=

∫
|t|>logn

∣∣∣∣χG(t)

t

∣∣∣∣ dt;
Moreover, c > 0 is a fixed constant to be specified later.

We now bound each of these integrals in turn. We use extensively the fact hat∣∣∣∣∣∣exp(ιx) −
2∑

j=0

(ιx)j

j!

∣∣∣∣∣∣ ≤ |x|2+δ , ∀δ ∈ [0, 1]. (A.5)
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Also, define for ψ(t) := E exp(ιtℓ1) for t ∈ R where σℓ is positive by Assumption (a).

Bound for I1

We start by decomposing χF (t) = E exp
[
ιt( Ū−θ

ϑ )
]

= exp(ιtb)χL+Q(t) where χL+Q(t) := E exp(ιtL) exp(ιtQ).

Use (A.5) to expand the second exponential in χL+Q(t) to write

χL+Q(t) = E exp(ιtL)[1 + ιtQ− 1
2(tQ)2 +O((tQ)2+δ)]. (A.6)

Since ℓ1, . . . , ℓn is a i.i.d sequence (for a given n ≥ 2), the first term in (A.6) can be written as

E exp(ιtL) = E exp

(
ιt

ϑn

n∑
i=1

ℓi

)
= E

n∏
i=1

exp

(
ιtℓi
ϑn

)
=

n∏
i=1

E exp

(
ιtℓi
ϑn

)
= ψn

(
t

ϑn

)
.

For the second term in (A.6), we have

E exp(ιtL)ιtQ =
ιt

ϑ

(
n

2

)−1∑
i<j

E
n∏

k=1

exp

(
ιt

ϑn
ℓk

)
qij

=
ιt

ϑ

(
n

2

)−1∑
i<j

E
n∏

k ̸=i,j

exp

(
ιt

ϑn
ℓk

)
exp

(
ιt

ϑn
(ℓi + ℓj)

)
qij

=
ιt

ϑ

(
n

2

)−1∑
i<j

n∏
k ̸=i,j

E exp

(
ιt

ϑn
ℓk

)
E exp

(
ιt

ϑn
(ℓi + ℓj)

)
qij

=
ιt

ϑ
ψn−2

(
t
ϑn

)
E exp

(
ιt

ϑn
(ℓ1 + ℓ2)

)
q12.

Similarly, for the third term in (A.6), we use

E exp(ιtL)(ιtQ)2 =

[
ιt

ϑ

(
n

2

)−1
]2

×

∑
i<j

E
n∏

k=1

exp

(
ιt

ϑn
ℓk

)
q2ij

+
∑

i<j=k<l

E
n∏

m ̸=i,j,l

exp

(
ιt

ϑn
ℓm

)
qijqjl

+
∑

i<j<k<l

E
n∏

m̸=i,j,k,l

exp

(
ιt

ϑn
ℓm

)
qijqkl


=

[
ιt

ϑ

(
n

2

)−1
]2

×
[
ψn−2

(
t
ϑn

)(n
2

)
E exp

(
ιt

ϑn
(ℓ1 + ℓ2)

)
q212

+ ψn−3
(

t
ϑn

)(n
3

)
E exp

(
ιt

ϑn
(ℓ1 + ℓ2 + ℓ3)

)
q12q23

+ψn−4
(

t
ϑn

)(n
4

)(
E exp

(
ιt

ϑn
(ℓ1 + ℓ2)

)
q12

)2
]
.
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For the last in (A.6), we have

|E exp(ιtL)(tQ)2+δ| ≤ E|tQ|2+δ =

[
|t|
ϑ

(
n

2

)−1
]2+δ

E
∣∣∣∑
i<j

qij

∣∣∣2+δ
= O

((
|t|
ϑn2

)2+δ

Π2+δ(n)

)
.

Using the last four displays, we simplify (A.6) to

χL+Q(t) = ψn
(

t
ϑn

)
+ ψn−2

(
t
ϑn

) [ ιt
ϑ
E exp( ιt

ϑn(ℓ1 + ℓ2))q12 +
(it)2

2ϑ2

(
n

2

)−1

E exp( ιt
ϑn(ℓ1 + ℓ2))q

2
12

]

+ 1
2

[
ιt
ϑ

(
n

2

)−1
]2
ψn−3

(
t
ϑn

)(n
3

)
E exp( ιt

ϑn(ℓ1 + ℓ2 + ℓ3))q13q23

+ 1
2

[
ιt
ϑ

(
n

2

)−1
]2
ψn−4

(
t
ϑn

)(n
4

)[
E exp( ιt

ϑn(ℓ1 + ℓ2))q12
]2

+O

[(
|t|
ϑn2

)2+δ
Π2+δ(n)

]
. (A.7)

We now expand the exponentials inside the expectation and collect terms. For notation brevity,

write a := ιt
ϑn . For the first one, we have

E exp(a(ℓ1 + ℓ2))q12 = E
(

exp(aℓ1) − 1
)(

exp(aℓ2) − 1
)
q12

= E
[(

exp(aℓ1) − 1 − aℓ1
)(

exp(aℓ2) − 1 − aℓ2
)
q12

+aℓ1
(

exp(aℓ2) − 1 − aℓ2
)
q12 + aℓ2

(
exp(aℓ1) − 1 − aℓ1

)
q12 + a2ℓ1ℓ2q12

]
= a2Eℓ1ℓ2q12 +O

(
|a|3E|ℓ21ℓ2q12| + |a|4E|ℓ21ℓ22q12|

)
,

for the second term we have

E exp(a(ℓ1 + ℓ2))q
2
12 = σ2q + E

[
exp(a(ℓ1 + ℓ2)) − 1

]
q212 = σ2q +O(|a|E|ℓ1q212|),

and for the third term we have

E
3∏

i=1

exp(aℓi)q13q23 = E
3∏

i=1

(
exp(aℓi) − 1

)
q13q23 = O(|a|3E|ℓ1ℓ2ℓ3q13q23|).

Plugging the above expansions back into (A.7) yields

χL+Q(t) = ψn
(

t
ϑn

)
+ ψn−2

(
t
ϑn

) [ (ιt)3

ϑ3n2
Eℓ1ℓ2q12 +

(it)2

2ϑ2

(
n

2

)−1

σ2q

]

+ ψn−4
(

t
ϑn

)
1
2
(ιt)6

ϑ6n4

(
n

2

)−2(n
4

)
[Eℓ1ℓ2q12]2
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+O
(
ψn−2

(
t
ϑn

) [
t4

ϑ4n3E|ℓ21ℓ2q12| + |t|5
ϑ5n4E|ℓ21ℓ22q12| + |t|3

ϑ2n3E|ℓ1q212|
])

+O
(
ψn−3

(
t
ϑn

) |t|5
ϑ5n4E|ℓ1ℓ2ℓ3q13q23|

)
+O

(
ψn−4

(
t
ϑn

) [ |t|7
ϑ7n5 (Eℓ1ℓ2q12)(E|ℓ21ℓ2q12|) + |t|8

ϑ8n6 (Eℓ1ℓ2q12)(E|ℓ21ℓ22q12|)
])

+O

[(
|t|
ϑn2

)2+δ
Π2+δ(n)

]
. (A.8)

From the Edgeworth expansion theory for sum off i.i.d random variables (Bhattacharya and Rao,

1976; Hall, 1992), we have for |t| ≤ δ∗
√
n for some small enough δ∗ > 0

ψn

(
t

σℓ
√
n

)
= exp

[
−1

2 t
2
] [

1 − ιt3

6
√
n
E
(
ℓ1
σℓ

)3
]

+ o

(
(|t|3 + t6)√

n
exp(−t2/4)

)
.

Let αk := σℓ

√
n−k

ϑn for k ∈ {0, 2, 3, 4}. Since αk ≍ 1 by assumption, where ≍ denotes proportional

up to a fixed finite positive constant, we obtain

ψn−k

(
t

ϑn

)
= ψn−k

(
αkt

σℓ
√
n− k

)
= exp

[
−1

2 (αkt)
2
] [

1 − ι(αkt)
3

6
√
n− k

E
(
ℓ1
σℓ

)3
]

+ o

(
(|t|3 + t6)√

n
exp(−(αkt)

2/4)

)
.

A first-order Taylor expansion yields

exp(−(αkt)
2/2) = exp(−t2/2)

[
1 − (α2

k − 1) t
2

2 +O(p(t)(α2
k − 1)2)

]
,

and plugging it back in the previous expression, we have

ψn−k

(
t

ϑn

)
= exp

(
− t2

2

)[
1 − (α2

k − 1)
t2

2
− ι(αkt)

3

6
√
n− k

E
(
ℓ1
σℓ

)3
]

+O
(
(α2

k − 1)2p(t) exp (−t2/2)
)

+ o

[
(|t|3 + t6)√

n
exp(−(αkt)

2/4)

]
.

Use the fact that α2
k = α2

0(1 − k/n) =
(

σℓ

ϑ
√
n

)2
+O(n−1) to conclude that

ψn−k

(
t

ϑn

)
= exp

(
− t2

2

)[
1 −

(
σ2
ℓ

ϑ2n
− 1
) t2

2
− ιt3

6ϑ3n2
Eℓ31
]

+O

((
σ2
ℓ

ϑ2n
− 1
)2
p(t) exp (−t2/2)

)
+ o

(
(|t|3 + t6)√

n
exp(−t2/4)

)
, (A.9)

for |t| ≤ δ∗
√
n.
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Combine (A.8) and (A.9) to conclude that, for |t| ≤ δ∗
√
n,

χL+Q(t) = exp
(
− t2

2

)[
1 −

(
σ2
ℓ

ϑ2n
− 1
) t2

2
− ιt3

6ϑ3n2
Eℓ31
]

×

[
1 +

(it)2

2ϑ2

(
n

2

)−1

σ2q +
(ιt)3

ϑ3n2
Eℓ1ℓ2q12 + 1

2
(ιt)6

ϑ6n4

(
n

2

)−2(n
4

)
[Eℓ1ℓ2q12]2

]

+O

(
exp

(
− t2

2

)[
1 +

(
σ2
ℓ

ϑ2n
− 1
)
t2 +

(
σ2
ℓ

ϑ2n
− 1
)2
p(|t|) + |t|3√

n

]
R(t)

)
+ o

(
exp

(
− t2

4

) [
|t|3+t6√

n

]
R(t)

)
+O

((
|t|
ϑn2

)2+δ
Π2+δ(n)

)
, (A.10)

where

R(t) := t4

ϑ4n3E|ℓ21ℓ2q12| + |t|5
ϑ5n4E|ℓ21ℓ22q12| + |t|3

ϑ2n3E|ℓ1q212| + |t|5
ϑ5n4E|ℓ1ℓ2ℓ3q13q23|

+ |t|7
ϑ7n5 (Eℓ1ℓ2q12)(E|ℓ21ℓ2q12|) + |t|8

ϑ8n6 (Eℓ1ℓ2q12)(E|ℓ21ℓ22q12|).

After some rearrangement, the first term in (A.10) becomes

χ̃L+Q(t) := exp
(
− t2

2

)
P (t) = exp

(
− t2

2

)1 +
9∑

j=2

(
ιt
ϑ

)j
γj

 ,
where

P (t) := 1 + (ιt)2

2

(
σ2

ϑ2 − 1
)

+ (ιt)3

6ϑ3n2

[
Eℓ31 + 6Eℓ1ℓ2q12

]
+ (ιt)4

4ϑ2

(
σ2

ϑ2 − 1
)(n

2

)−1

σ2q

+ (ιt)5

12ϑ5n2

[(
n

2

)−1

(Eℓ31)σ2q + 6ϑ2
(

σ2
ℓ

ϑ2n
− 1
)
Eℓ1ℓ2q12

]

+ (ιt)6

6ϑ6n4

[
(Eℓ31)Eℓ1ℓ2q12 + 12

(
n

2

)−2(n
4

)
[Eℓ1ℓ2q12]2

]

+ 1
4
(ιt)8

ϑ6n4

(
σ2
ℓ

ϑ2n
− 1
)(n

2

)−2(n
4

)
[Eℓ1ℓ2q12]2

+ 1
12

(ιt)9

ϑ9n6

(
n

2

)−2(n
4

)
Eℓ31 [Eℓ1ℓ2q12]2 .

Since χ̃L+Q(t) = exp(−ιtb)χG(t), we have under Assumption (a) and (b)

|χF (t) − χG(t)| = O

(
exp

(
− t2

4

)
R(t) +

(
|t|
ϑn2

)2+δ
Π2+δ(n)

)
.
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Therefore,

I1 = O

(∫
|t|≤logn

|t|−1 exp(−t2/4)R(t)dt+
Π2+δ(n)

(ϑn2)2+δ

∫
|t|≤logn

|t|1+δdt

)

= O

(
R(1) +

(
log n

ϑn2

)2+δ

Π2+δ(n)

)
.

Bound for I2

For 1 ≤ m < n, define Qm := 1
ϑ

(
n
2

)−1∑m
i=1

∑n
j=i+1 qij . Using (A.5) we can write

|χF (t)| = |χL+Q(t)| ≤

∣∣∣∣∣E exp(ιt(L+Q−Qm))

2∑
k=0

(itQm)k

k!
)

∣∣∣∣∣+ |t|2+δE|Qm|2+δ.

Exploiting the fact that Q−Qm is only a function of Xm+1, . . . , Xn, we have

|E exp(ιt(L+Q−Qm)| ≤ |ψ
(

t
ϑn

)
|m.

For the second term

|E exp(ιt(T −Qm)Qm| =
1

ϑ

(
n

2

)−1
∣∣∣∣∣∣
m∑
i=1

n∑
j=i+1

E exp(ιt(L+Q−Qm)qij

∣∣∣∣∣∣
≲ 1

ϑn2 |ψ
(

t
ϑn

)
|m−2mnE|q12|.

Similarly, using the fact that[
ϑ

(
n

2

)
Qm

]2
=

m∑
i=1

n∑
j=i+1

q2ij ,+
m∑
i=1

n∑
j=i+1

m∑
k=1,
k ̸=i,j

qijqjk +
m∑
i=1

n∑
j=i+1

m∑
k=1,
k ̸=i,j

n∑
l=k+1,
l ̸=i,j

qijqkl,

we conclude for k ∈ {0, 1, 2},

|E exp(ιt(T −Qm))Qk
m| ≲ |ψ

(
t
ϑn

)
|m−2k

(
mn

ϑ

(
n

2

)−1
)k

E|q12|k.

Finally, using the fact that ϑ = O(σℓ/
√
n) by Assumption (b) and combining the last displays,

|χF (t)| ≲
2∑

k=0

(
|t|m√
n

)k

|ψ
(

t
ϑn

)
|m−2kE

∣∣∣ q12σℓ

∣∣∣k + |t|2+δE|Qm|2+δ, (A.11)

for 1 ≤ m < n and δ ∈ [0, 1].
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By the triangle inequality followed by (A.5), we have

|ψ
(

t
ϑn

)
| − |1 − t2

2(ϑn)2
σ2ℓ | ≤ |ψ

(
t
ϑn

)
− (1 − t2

2(ϑn)2
σ2ℓ )| ≤ 1

6
|t|3

(ϑn)3
E|ℓ1|3.

For |t| ≤
√
2ϑn
σℓ

we have |1 − t2

2(ϑn)2
σ2ℓ | = 1 − t2

2(ϑn)2
σ2ℓ hence

|ψ
(

t
ϑn

)
| ≤ 1 − t2

2(ϑn)2
σ2ℓ + 1

6
|t|3

(ϑn)3
E|ℓ1|3; |t| ≤

√
2ϑn
σℓ

.

Assumption (b) together with (A.2) implies that σℓ√
nϑ

→ 1 as n→ ∞. Then, we can find a N1 ∈ N
such that

√
5/6 ≤ σℓ√

nϑ
≤ (6/5)1/3 for n ≥ N1. Also, Assumption (a) implies the existence of a

constant C > 0 and N2 ∈ N such that E|ℓ1/σℓ|3 ≤ C for n ≥ N2. Then, for |t| ≤ c
√
n where

c := (
√

2/(6/5)1/3) ∧ (5/(12C)) and n ≥ N0 := N1 ∨N2, we have

|ψ
(

t
ϑn

)
| ≤ 1 − t2

n

[
1

2

(
σℓ
ϑ
√
n

)2

− |t|E|ℓ1/σℓ|3

6
√
n

(
σℓ
ϑ
√
n

)3
]
≤ 1 − t2

3n
≤ exp(− t2

3n). (A.12)

For log n < |t| ≤ c
√
n, set m = [15n logn

t2
] + 1 = O(n), then plug in (A.12) to conclude that

|ψ
(

t
ϑn

)
|m−2k ≲ exp(− t2m

3n ) ≲ n−5. Combining this last bound with (A.11), we obtain

|χF (t)| ≲
2∑

k=0

|t|k

n5−k
E
∣∣∣ q12σℓ

∣∣∣k + |t|2+δE|Qm|2+δ, (A.13)

for |t| ≤ c
√
n and n ≥ N0. Then,

I2 ≲
2∑

k=0

1

n5−k−k/2

E|q12|k

σkℓ
+

(√
n log n

n

)2+δ (
σq

σℓ

)2+δ
log n

≲
1

n

σ2q
nσ2ℓ

+ log n

(
(log n)σ2q
nσ2ℓ

)2+δ
2

.

Therefore, since
σ2
q

nσ2
ℓ

= o(1) by Assumption (b), we conclude

I2 = o(n−1) +O


(log n)

4+δ
2+δ σ2q

nσ2ℓ


2+δ
2

 .

Bound for I3 and I4

Under Assumption (c), for sufficient large n, we may find a b > 0 such that for |t| > c
√
n

|ψ
(

t
ϑn

)
| ≤ 1 − b < exp(−b),
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where c > 0 is define just before (A.12). Set m = [4 lognb ]+1, then nm ≲ n log n and |ψ
(

t
ϑn

)m−s | ≲
n−4 for sufficient large n and s ∈ {1, 3, 4, 5}. Use these upper bounds on (A.11) to conclude that

|χF (t)| ≲ n−4
(

1 + |t| log nE|q12/σℓ| + t2(log n)2
σ2
q

σ2
ℓ

)
+ |t|2+δ(n log n)1+δ/2E|q12|2+δ, (A.14)

for sufficient large n and |t| > c
√
n. Then,

I3 = o(n−1/2) +O

(
(n log n)1+δ/2E|q12|2+δ

∫
c
√
n≤|t|≤

√
n logn

|t|1+δdt

)

= o(n−1/2) +O

([
log n

n

]2+δ

Π2+δ(log n)

)
.

Finally,

I4 =

∫
|t|>logn

|t|−1 exp(− t2

2 )

∣∣∣∣∣∣1 +
9∑

j=2

(
it
ϑ

)j
γj

∣∣∣∣∣∣ dt
≤ C

∫
t>logn

t−1 exp(− t2

2 )dt+

9∑
j=2

|γj |
ϑj

∫
t>logn

tj−1 exp(− t2

2 )dt,

where the first integral is o(n−1) and the second is o(1). Therefore,

I4 = o

n−1 +

9∑
j=2

|γj |
ϑj

 .

The proof is complete.

A.2 Auxiliary Lemmas

Lemma A.1. Let n ≥ 2, 1 ≤ l ≤ m < n and p ≥ 2 then

E

∣∣∣∣∣∣
m∑
i=l

n∑
j=i+1

qij

∣∣∣∣∣∣
p

≤ Cp(n− l)p/2 max
l<j≤n

E

∣∣∣∣∣∣
(m∧j)−1∑

i=l

qij

∣∣∣∣∣∣
p

≤ Kp [(n− l)(m− l)]p/2 E|q12|p,

where Cp :=
[
8(p− 1)(1 ∨ 2p−3)

]p
and Kp is a constant only depending on p.

Proof. The double summation on the left-hand side can be written as
∑n

j=l+1 ξj where ξj :=∑(m∧j)−1
i=l qij . Notice that {ξj ,Fj} is m.d.s when Fj is the σ-algebra generated by {X1, . . . , Xj} for

j ≥ 1 and F0 is trivial. Then by Dharmadhikari et al. (1968) followed by a trivial bound

E

∣∣∣∣∣∣
m∑
i=l

n∑
j=i+1

qij

∣∣∣∣∣∣
p

= E

∣∣∣∣∣∣
n∑

j=l+1

ξj

∣∣∣∣∣∣
p

≤ Cp(n− l)p/2−1
n∑

j=l+1

E|ξj |p ≤ Cp(n− l)p/2 max
l<j≤n

E |ξj |p .
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Lemma A.2. For p ∈ [2,∞) there exist a constant Cp only depending on p such that for S ⊆
{(i, j) : 1 ≤ i < j ≤ n}

E

∣∣∣∣∣∑
S
qij

∣∣∣∣∣
p

≤ Cp

{
|S|p/2

[
Eq212

]p/2 ∨ sE[(E(q212|Z1))
p/2
]
∨ |S|E|q12|p

}
,

where |S| denotes the cardinality of the set S, s := si ∨ sj with si :=
∑

(i,·)∈S

(∑
(·,j)∈S 1

)p/2
and

sj :=
∑

(·,j)∈S

(∑
(i,·)∈S 1

)p/2
.

Proof. Combining Proposition 2.1 with expression (2.18) in Giné et al. (2000), we obtain the in-

equality above for the decoupled version of qij , defined as q̃ij := q(Z
(1)
i , Z

(2)
j ) where Z

(j)
i : 1 ≤ i ≤ n,

1 ≤ j ≤ 2 are i.i.d. Finally, we can apply the decoupling inequalities in de la Peña and Montgomery-

Smith (1995) to obtain the result at the expense of increasing the constant without altering the

order of the upper bound. For further details, see section 2.5 in Giné et al. (2000).

B Proof of Theorem 1 (Standardized Edgeworth Expansion)

We apply Corollary A.1 with u(Zi, Zj) = ν ′Uij in (2.1) and δ = 1. We assume throughout that

Assumptions 1 and 2 hold. Condition (a) in Theorem A.1 is verified by direct calculations as

in Cattaneo et al. (2010, 2014a,b). Condition (b) in Theorem A.1 is verified because (A.2) gives

σ2 = 1
nV[ν ′Li] +

(
n
2

)−1V[ν ′Qi,j ], which implies

σ2ℓ = ν ′Σν +O(hP ) and σ2q =
1

hd+2
[ν ′∆ν + h2ν ′Vν] + o(h−d),

with V given in Cattaneo et al. (2010). These results imply σ2q = o(nσ2ℓ ) if (and only if) nhd+2 → ∞.

Therefore, we take ϑ ≍ σ ≍ 1/
√
n. Condition (c) in Theorem A.1 holds by assumption.

The additional condition B → 0 in Corollary A.1 holds if (and only if, when β ̸= 0)
√
nhP → 0.

To see this, using integration by parts, E[U12|Z1] =
∫
Rd ν

′ė(X1 + uh)K(u)du − Y1
∫
Rd ν

′ḟ(X1 +

uh)K(u)du. Then, repeated Taylor series expansions and integration by parts give E[u(Z1, Z2)|Z1] =

δ(Z1) + hP (−1)P
∑

[k]=P
µk
k! δ

(1+k)(z) + o(hP ). In turn, this result implies that E[u(Z1, Z2)] =

θν +hPβ+ o(hP ). As a consequence, B = (E[θ̂ν ]− θν)/ϑ = hPβ/ϑ+ o(
√
nhP ). See Cattaneo et al.

(2010, 2014a,b) for details.

Law of iterated expectations, integration by parts, and Taylor series expansions give

E[ℓ31] = κ1 +O(hP ).

Proceeding analogously, because E[ℓ1ℓ2q12] = E[ℓ2E[ℓ1q12|Z2]] = E[ℓ2ℓ1U12] and E[ℓ2ℓ1U12] =

4E[E[U12|Z1]E[U12|Z2]U12] − 8E[U12]E[E[U12|Z1]
2] + 4E[U12]

3, we have E[E[U12|Z1]E[U12|Z2]U12] =

23



E[δ(Z)η̇(Z)] + O(hP ), E[E[U12|Z1]
2] = E[δ(Z1)

2] + O(hP ), and E[U12] = θ + O(hP ) and E[U12]
3 =

θ3 +O(hP ). Collecting these results, we verify

E[ℓ1ℓ2q12] = κ2 +O(hP ).

These results imply γ3 = O(n−2), γ4 = O(n−3h−d−2), γ5 = O(n−2), γ6 = O(n−1), γ8 = O(n−3),

γ9 = O(n−7/2).

It remains to bound E . First, by standard results E|q12|3 = O(h2d+3), so

Π3(m) = O
( (mn)3/2

h(3/2)(d+2)
∨ mn3/2

h(3/2)(d+2)
∨ mn

h2d+3

)
= O

( mn
hd+2

)3/2
.

Second, using the results in Cattaneo et al. (2014b, Supplemental Appendix), we have E|ℓ21ℓ2q12| =

O(h−2d/3−1), E|ℓ21ℓ22q12| = O(h−2d/3−1), E|ℓ1q212| = O(h−d−2), E|ℓ1ℓ2ℓ3q13q23| = O(h−4d/3−2). Thus,

collecting all the bounds, we verify:

E = O
(((log n)3

nhd+2

)3/2
+
hd/3+1

nhd+2
+
(hd/9+2/3

nhd+2

)3/2)
= o
( 1

nhd+2

)
This completes the proof.

C Proof of Theorem 2 (Studentized Edgeworth Expansion)

For any estimated scale ϑ̂ and nonrandom centering ϑ, we have

θ̂ν − θν

ϑ̂
=
θ̂ν − θν
ϑ

[
1 − ϑ̂2 − ϑ2

2ϑ2
+
ϑ̂+ 2ϑ2

2ϑ2ϑ̂

(ϑ̂2 − ϑ2)2

ϑ̂2 + ϑ2

]
.

Recall that θ̂ν is a second-order U-statistic satisfying the H-decomposition (θ̂ν−θν)/ϑ = B+ L̄/ϑ+

Q̄/ϑ. Using standard results for Edgeworth expansions (Bhattacharya and Rao, 1976; Hall, 1992),

sup
t∈R

∣∣∣P[ θ̂ν−θν
ϑ̂

≤ t
]
−G(t)

∣∣∣ ≤ E + R1 + R2 + R3 +O
( rn

log n

)
,

where

E := sup
t∈R

∣∣∣∣∣P
[(

1 − ϑ̂2 − ϑ2

2ϑ2

)(
ν ′L̄/ϑ+ ν ′Q̄/ϑ

)
+B ≤ t

]
−G(t)

∣∣∣∣∣ ,
B = ν ′(E[U12] − θ)/ϑ, G denoting a distribution function later to be set to either GAL or GSB as

appropriate, and

R1 := P

[∣∣∣∣∣ ϑ̂+ 2ϑ2

2ϑ2ϑ̂

∣∣∣∣∣ (ϑ̂2 − ϑ2)2

ϑ̂2 + ϑ2
> C

rn
(log n)2

]
,

R2 := P

[∣∣∣∣∣ θ̂ν − θν
ϑ

∣∣∣∣∣ > C log n

]
,
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R3 := P

[∣∣∣∣∣ ϑ̂− ϑ

ϑ
B

∣∣∣∣∣ > C

√
nhP

log n

]
,

with C denoting a generic constant, which can take different values in different places. The term

E will give the Edgeworth expansion upon setting ϑ̂ and ϑ appropriately, while the terms R1–R3

capture higher-order remainders.

Variance Estimators

The estimators ϑ̂2AL and ϑ̂2SB are linear combinations of U-statistics as follows:

ϑ̂2AL =
1

n
ν ′Σ̂ν = 2

(
n

2

)−1

W̄1 +
4

n

n− 2

n− 1
W̄2 −

4

n
θ̂2ν

and (
n

2

)−1

h−d−2ν ′∆̂ν =

(
n

2

)−1

W̄1

with

θ̂ν =

(
n

2

)−1∑
i<j

(ν ′Uij), W̄1 =

(
n

2

)−1∑
i<j

(ν ′Uij)
2,

W̄2 =

(
n

3

)−1 ∑
i<j<k

Wijk, Wijk =
(ν ′Uij)(ν

′Uik) + (ν ′Uij)(ν
′Uh,jk) + (ν ′Uik)(ν ′Uh,jk)

3
.

See Lemmas 3.1.1 and 3.1.2 in the Supplemental Appendix of Cattaneo et al. (2014b) for a proof.

Thus, for c ∈ R, we consider the following generic (debiased when c = 1) Studentization:

ϑ̂2c := (2 − c)

(
n

2

)−1

W̄1 +
4

n
[1 + o(n−1)]W̄2 −

4

n
θ̂2ν .

In particular, ϑ̂2AL = ϑ̂20 and ϑ̂2SB = ϑ̂21. The centering considered in the literature is ϑ̂2c is

ϑ2c := c

(
n

2

)−1

E[W̄1] +
4

n
E[W̄2] −

4

n
(E[θ̂ν ])2,

which implies that ϑ20 = ϑ2AL and ϑ21 = ϑ2SB + o(n−1).

The underlying U-statistics have the following mean square convergence rates:

E[(θ̂ν − E[θ̂ν ])2] = O(n−1 + n−2h−d−2),

E[(W̄1 − E[(ν ′U12)
2])2] = O(n−1h−2d−4 + n−2h−3d−4),

E[(W̄2 − E[(E[ν ′U12|Z1])
2])2] = O(n−1 + n−2h−d−4 + n−3h−2d−4),

The proof is given in Cattaneo et al. (2014b, Supplemental Appendix): see Lemma 3.1.3 for the first
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two results, and Lemma 3.1.4 for the third result. (Note that while the statement of those lemmas

gives convergence rates in probability, the proof mean square convergence rates.) Therefore,

E
[
(ϑ̂2c − ϑ2c )

2
]
≤ Cn−4E[(W̄1 − E[(ν ′U12)

2])2] + Cn−2E[(W̄2 − E[(E[ν ′U12|Z1])
2])2]

+ Cn−2E[(Ū − E[ν ′U12])
2]

= O(n−3 + n−4h−d−4).

Similar long calculations as in Cattaneo et al. (2014b, Supplemental Appendix) show that:

E[(θ̂ν − E[θ̂ν ])4] = O(n−2 + n−4h−d−4 + n−5h−2d−4 + n−6h−3d−4),

E[(W̄1 − E[(ν ′U12)
2])4] = O(n−2h−4d−8 + n−4h−6d−8 + n−5h−6d−8 + n−6h−7d−8),

E[(W̄2 − E[(E[ν ′U12|Z1])
2])4] = O(n−2 + n−4h−d−8 + n−5h−2d−8 + n−6h−3d−8),

which gives

E
[
(ϑ̂2c − ϑ2c )

4
]
≤ Cn−8E[(W̄1 − E[(ν ′U12)

2])4] + Cn−4E[(W̄2 − E[(E[ν ′U12|Z1])
2])4]

+ Cn−4E[(Ū − E[ν ′U12])
4]

= O(n−6 + n−8h−d−8).

Consequently, for the remainder of the proof we set ϑ̂2 = ϑ̂2c and ϑ2 = ϑ2c .

Bounds for R1–R3

For n large enough, and using Markov inequality,

R1 ≤ P
[
(ϑ̂2c − ϑ2c )

2 >
Crn

n2(log n)2

]
+ o(rn) ≤ Cn4(log n)4r−2

n E
[
(ϑ̂2c − ϑ2c )

4
]

+ o(rn)

= n5(log n)4O(n−6 + n−8h−d−8) + o(rn) = o(rn).

Using Theorem A.1 and Corollary A.1, it follows that a valid Edgeworth expansion holds for
θ̂ν−θν
ϑc

, which implies that

R2 = 1 − P

[
θ̂ν − θν
ϑ

≤ C log n

]
+ P

[
θ̂ν − θν
ϑ

≤ −C log n

]

= 1 − Φ(C log(n)) + Φ(−C log(n)) + C
ϕ(log n) log n

nhd+2
+ o(rn) = o(rn),

by properties of the Gaussian distribution.

Finally, Markov inequality implies

R3 ≤ Cn(log n)2E
[
(ϑ̂2c − ϑ2c )

2
]

= n(log n)2O(n−3 + n−4h−d−4) = o(rn).
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Therefore, R1 + R2 + R3 = o(rn).

Expansion for E

We consider E = ρ(F̆c, Gc), where

F̆c(t) := P

[(
1 − ϑ̂2c − ϑ2c

2ϑ2c

)(ν ′L̄
ϑc

+
ν ′Q̄

ϑc

)
+Bc ≤ t

]
, Bc :=

E[θ̂ν ] − θν
ϑc

,

and

Gc(t) := Φ(t) − ϕ(t)
{√nhPβ

ν ′Σν
− 1 − c

nhd+2

ν ′∆ν

ν ′Σν
t− 1√

n6(ν ′Σν)3

[
κ1(2t

2 + 1) + κ2(t
2 + 1)

]}
.

Recall that, in particular, c = 0 corresponds to AL implementation and c = 1 corresponds to SB

implementation (i.e., GAL(t) = G0(t) and GSB(t) = G1(t)). Then, applying the smoothing inequality

as in Theorem A.1,

ρ(F̆c, Gc) ≲ Ĭ1 + Ĭ2 + Ĭ3 + Ĭ4 + 1√
n logn

,

where

Ĭ1 :=

∫
|t|≤logn

∣∣∣∣χF̆c
(t) − χGc(t)

t

∣∣∣∣dt, Ĭ2 :=

∫
logn<|t|≤c

√
n

∣∣∣∣χF̆c
(t)

t

∣∣∣∣dt,
Ĭ3 :=

∫
c
√
n<|t|≤

√
n logn

∣∣∣∣χF̆c
(t)

t

∣∣∣∣dt, Ĭ4 :=

∫
|t|>logn

∣∣∣∣χGc(t)

t

∣∣∣∣dt.
The last three integrals above can be upper bounded following the same arguments used in the

proof of Theorem A.1 to conclude that Ĭ2 + Ĭ3 + Ĭ4 = o(
√
nhP + n−1h−d−2 + n−1/2). The first

integral, Ĭ1, is analyzed by expanding χF̆c
(t) by generalizing the proof of Theorem A.1 to account

for the contribution from Studentization to the sampling distribution of the linearized version of

the statistic (F̆c).

First, by (A.5) we write

χF̆c
(t) = exp(ιtBc)E exp(ιtŨc) =

[
1 + ιtBc +O(t2B2

c )
]
E exp(ιtŨc), (C.1)

where

Ũc =

(
1 − ϑ̂2c − ϑ2c

2ϑ2c

)(
ν ′L̄

ϑc
+
ν ′Q̄

ϑc

)
From (C.8) below, we have

− ϑ̂2c − ϑ2c
2ϑ2c

= Hc + Tc (C.2)
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with

Hc := −
(
n

2

)−1 1 − c

2ϑ2c
E[q212] −

1

2nϑ2c

1

n

n∑
i=1

{(
ℓ2i − E[ℓ2i ]

)
+ 4E[ℓiqij |Zi]

}
− 2

nϑ2c

(
n

2

)−1∑
i<j

E[qijqik|Zj , Zk],

where we define ℓi := ν ′Li and qij := ν ′Qij , and Tc := −Vc/(2ϑ
2
c ) with Vc is given in (C.8). Next,

applying (A.5) repeatedly, we are left with

E exp(ιtŨc) = E exp
[
ιt
(
ν′L̄
ϑc

+ ν′Q̄
ϑc

)]
+ ιtEHc

ν′L̄
ϑc

exp(ιtν
′L̄
ϑc

) +O (E1(t)) , (C.3)

where E1(t) = |t|E|Tc(ν ′L̄) + (Hc + Tc)(ν ′Q̄)| + t2(E(Hc(ν
′L̄))2 + E|Hc(ν

′L̄)(ν ′Q̄)|. The first term

was expanded in the proof of Theorem A.1, as it corresponds to the standardized version of the

statistic. The second term can be expanded analogously (see, e.g., Appendix B-(a) in Nishiyama

and Robinson (2001)):

E
[
Hc

ν′L̄
ϑc

exp(ιtν ′L̄/ϑc)
]

(C.4)

= −[ψ
(

t
nϑc

)
]n−1

[
1 − c

2

ιt

ϑ2c

(
n

2

)−1

E[q212] +O
(

|t|
n2hd+2 + t2

n3/2hd+2 + |t|hP

hd+2

)]

− [ψ
(

t
nϑc

)
]n−1

[
1

2ϑ3cn
2
(Eℓ31 + 4Eℓ1ℓ2q12) +O

(
|t|
n

)]
− [ψ

(
t

nϑc

)
]n−2

[
(ιt)2

2ϑ3cn
2
(Eℓ31 + 4Eℓ1ℓ2q12) +O

(
t2+|t|3

n + t4

n3/2

)]
− [ψ

(
t

nϑc

)
]n−3

[
O
(
|t|3+|t|

n + t2

n3/2hd+2 + t6

n3hd+2 + |t|5
n5/2hd+2 + t4+|t|3

n2hd+2

)]
. (C.5)

Combine (A.9), (A.10), (C.3), and (C.4) to obtain

E exp(ιtŨc) = exp
(
− t2

2

) [
1 +

(ιt)2

2

(
E[ℓ21]
ϑ2
cn

− 1
)

+
(ιt)3

6ϑ3cn
2
Eℓ31 +O(E2(t)) + o(E3(t))

]
×
[
1 +

(ιt)2

2ϑ2c

(
n

2

)−1

E[q212] +
(ιt)3

ϑ3cn
2
Eℓ1ℓ2q12

− 1 − c

2

(ιt)2

ϑ2c

(
n

2

)−1

E[q212] −
(
ιt+ (ιt)3

ϑ3cn
2

)(
Eℓ31
2

+ 2Eℓ1ℓ2q12
)

+O(E4(t))
]

+O(E1(t)), (C.6)

where E2(t) and E3(t) are the last two rates appearing in (A.9) respectively. Also, proceeding as in

Nishiyama and Robinson (2001),

E4(t) = o

(
t2 + t10

nhd+2
+
t2 + t6√

n

)
.
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Combine (C.6) with (C.1) and expand the product to obtain

χF̆c
(t) = exp

(
− t2

2

)1 +
3∑

j=1

(ιt)j γ̆c,j

+O(E5(t)),

where

γ̆c,1 :=

(
βhP

ϑc
− Eℓ31/2 + 2Eℓ1ℓ2q12

ϑ3cn
2

)
,

γ̆c,2 := −(1 − c)

(
n

2

)−1Eq212
2ϑ2c

,

γ̆c,3 := − 1

6n2ϑ3c
(2Eℓ31 + 6Eℓ1ℓ2q12),

and

E5(t) :=
[
e−t2/2 |t|3√

n
+ o(n−1/2(t6 + |t|3)e−t2/4)

] [
t2

n2hd+2 + |t|3+|t|√
n

+ E4(t)
]

+ e−t2/2
[
|t|
√
nhP + t2h2P + |t|

√
nh2P

] [
t2

n2hd+2 + |t|3+|t|√
n

+ E4(t)
]

+ (|t|
√
nhP + t2nh2P )

[
e−t2/2 |t|3√

n
+ o(n−1/2(t6 + |t|3)e−t2/4)

]
+ (|t|

√
nhP + t2nh2P )

[
e−t2/2 |t|3√

n
+ o(n−1/2(t6 + |t|3)e−t2/4)

] [
t2

n2hd+2 + |t|+|t|3√
n

+ E4(t)
]

+ (|t| + t2
√
nhP + |t|3nh2P )

(
E|TcL̄| + E|(Hc + Tc)Q̄|

)
+ (t2 + |t|3

√
nhP + t4nh2P )

(
E(HcL̄)2 + E|HcL̄Q̄|

)
.

We showed in the proof of Theorem 1 that Eℓ31 = κ1+O(hP ) = o(1) and Eℓ1ℓ2q12 = κ2+O(hP ) =

o(1), and hence

χF̆c
(t) = exp

(
− t2

2

)[
1 + ιt

(
βhP

ϑc
− κ1/2+2κ2

ϑ3
cn2

)
− (ιt)2

(
n

2

)−1Eq212
2ϑ2c

− (ιt)3

6n2ϑ3
c
(2κ1 + 6κ2)

]
+O(E5(t)) + o

(
exp

(
− t2

2

)
|t|+|t|3√

n

)
.

Note that the first term is the characteristic function of G. Finally, we bound the moments ap-

pearing in E5(t): E|TcL̄|, E|(Hc +Tc)Q̄|, E(HcL̄)2, and E|HcL̄Q̄|. Holder’s inequality combined with

the theorem assumptions give

E|TcL̄| ≤
√
E|Tc|2E|L̄|2 = O(n−1h−(d+2)/2)

E|(Hc + Tc)Q̄| ≤
√

E|Hc + Tc|2E|Q̄|2 = O
(
(n−1/2 + n−1h−d−2)(n−1/2h−d/2−1)

)
E(HcL̄)2 = O(n−1 + n−2h−2d−4)

E|HcL̄Q̄| = O
(
(n−1/2 + n−1h−d−2)(n−1/2h−d/2−1)

)
.
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Therefore, if (log n)9/(nhd+2) → 0,

Ĭ1 :=

∫
|t|≤logn

|χF̆c
(t) − χGc(t)|

|t|
= o(

√
nhP + n−1h−d−2 + n−1/2).

The proof is finalized.

C.1 Alternative Decomposition of ϑ̂c

Let uij = ν ′Uij and following Callaert and Veraverbeke (1981) with S2
N given in the their main

Theorem, we have

S2
N :=

n2(n− 1)

(n− 2)2
ϑ̂2AL =

4(n− 1)

(n− 2)2

n∑
i=1

(ν ′L̂i/2)2

=
8

(n− 1)(n− 2)2

∑
i<j

(uij − Eu12)2 +

n∑
i=1

∑
j<k,j ̸=i

(uij − Eu12)(uik − Eu12)


− 4n(n− 1)

(n− 2)2
(θ̂ − Eu12).

Define gi := E[ℓjqij |Zi] and use the fact that uij − Eu12 = ℓi/2 + ℓj/2 + qij to further decompose

S2
N =

1

n

n∑
i=1

ℓ2i + 4gi −
(
n

2

)−1 n∑
i<j

ℓiℓj + 2

(
n

2

)−1 n∑
i<j

[
(ℓi + ℓj)qij − gi − gj

]
− 4

n

(
n− 1

2

)−1 n∑
i=1

ℓi

n∑
j<k,j ̸=i

qjk +
4

n− 2

(
n− 1

2

)−1 n∑
i=1

n∑
j<k,j ̸=i

qijqik

− 4n(n− 1)

(n− 2)2

(n
2

)−1∑
i<j

qij

2

+
4n

(n− 2)2

(
n

2

)−1∑
i<j

q2ij . (C.7)

The first term, we center on its expectation

1

n

n∑
i=1

ℓ2i + 4gi = E[ℓ21] +
1

n

n∑
i=1

(
ℓ2i − E[ℓ21]

)
+ 4gi.

Define φij := E[qkiqkj |Zi, Zj ], and for the fifth term we write

4

n− 2

(
n− 1

2

)−1 n∑
i=1

n∑
j<k,j ̸=i

qijqik = 4

(
n− 1

2

)−1∑
i<j

φij +
4

n− 2

(
n− 1

2

)−1 n∑
i=1

n∑
j<k,j ̸=i

(qijqik−φjk).

Finally, for the last term

4n

(n− 2)2

(
n

2

)−1∑
i<j

q2ij =
4n

(n− 2)2

(
n

2

)−1∑
i<j

[
q2ij − φii − φjj + E[q12]

2]
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+
8

(n− 2)2

n∑
i=1

(
φii − E[q212]

)
+

4n

(n− 2)2
E[q212]

Plug the last three displays back into (C.7) to conclude

S2
N = E[ℓ21] +

4n

(n− 2)2
E[q212] +

1

n

n∑
i=1

[
(ℓ2i − E[ℓ21]) + 4gi

]
+ 4

(
n− 1

2

)−1∑
i<j

φij + Sc,

where Sc collection the remaining terms.

Next, we have(
n

2

)−1∑
i<j

u2ij =

(
n

2

)−1∑
i<j

(qij − ℓi/2 − ℓj/2 − Eu12)2

= Eq212 +

(
n

2

)−1∑
i<j

(q2ij − Eq2ij) −
(
n

2

)−1 n∑
i=1

(ℓi/2)2 − (Eu12)2

−
(
n

2

)−1∑
i<j

qij(ℓi + ℓj) + 2Eu12
(
n

2

)−1∑
i<j

(qij + ℓi/2 + ℓj/2)

+
1

2

(
n

2

)−1∑
i<j

ℓiℓj

= Eq212 + Qc,

where Qc is by definition.

We have

ϑ̂c = ϑ̂2AL − c

(
n

2

)−1

h−d−2ν ′∆̂ν

=
(n− 2)2

n2(n− 1)
S2
N − c

(
n

2

)−1
(n

2

)−1∑
i<j

u2ij


= (2 − c)

(
n

2

)−1

E[q212] +
1 + o(1)

n
E[ℓ21] +

1 + o(1)

n2

n∑
i=1

[
(ℓ2i − E[ℓ21]) + 4gi

]
+

1 + o(1)

n
4

(
n

2

)−1∑
i<j

φij +
1 + o(1)

n
Sc + c

(
n

2

)−1

Qc,

which gives the following simplified expression for the class of Studentizations:

ϑ̂c = (2 − c)

(
n

2

)−1

E[q212] +
1

n
E[ℓ21] +

1

n2

n∑
i=1

[
(ℓ2i − E[ℓ21]) + 4gi

]
+

1

n
4

(
n

2

)−1∑
i<j

φij + Vc, (C.8)

where Vc is by definition.
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