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Abstract

In this paper, we propose a computationally efficient approach —space(Sparse

PArtial Correlation Estimation)— for selecting non-zero partial correlations

under the high-dimension-low-sample-size setting. This method assumes the

overall sparsity of the partial correlation matrix and employs sparse regression

techniques for model fitting. We illustrate the performance of space by exten-

sive simulation studies. It is shown that space performs well in both non-zero

partial correlation selection and the identification of hub variables, and also out-

performs two existing methods. We then apply space to a microarray breast

cancer data set and identify a set of hub genes which may provide important

insights on genetic regulatory networks. Finally, we prove that, under a set of

suitable assumptions, the proposed procedure is asymptotically consistent in

terms of model selection and parameter estimation.

key words: concentration network, high-dimension-low-sample-size, lasso,

shooting, genetic regulatory network
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1 INTRODUCTION

There has been a large amount of literature on covariance selection: the iden-

tification and estimation of non-zero entries in the inverse covariance matrix (a.k.a.

concentration matrix or precision matrix ) starting from the seminal paper by Demp-

ster (1972). Covariance selection is very useful in elucidating associations among a

set of random variables, as it is well known that non-zero entries of the concentra-

tion matrix correspond to non-zero partial correlations. Moreover, under Gaussianity,

non-zero entries of the concentration matrix imply conditional dependency between

corresponding variable pairs conditional on the rest of the variables (Edward 2000).

Traditional methods does not work unless the sample size (n) is larger than the num-

ber of variables (p) (Whittaker 1990; Edward 2000). Recently, a number of methods

have been introduced to perform covariance selection for data sets with p > n, for

example, see Meinshausen and Buhlmann (2006), Yuan and Lin (2007), Li and Gui

(2006), Schafer and Strimmer (2007).

In this paper, we propose a novel approach using sparse regression techniques for

covariance selection. Our work is partly motivated by the construction of genetic

regulatory networks (GRN) based on high dimensional gene expression data. Denote

the expression levels of p genes as y1, · · · , yp. A concentration network is defined as an

undirected graph, in which the p vertices represent the p genes and an edge connects

gene i and gene j if and only if the partial correlation ρij between yi and yj is non-

zero. Note that, under the assumption that y1, · · · , yp are jointly normal, the partial

correlation ρij equals to Corr(yi, yj|y−(i,j)), where y−(i,j) = {yk : 1 ≤ k 6= i, j ≤ p}.
Therefore, ρij being nonzero is equivalent to yi and yj being conditionally dependent

given all other variables y−(i,j). The proposed method is specifically designed for

the high-dimension-low-sample-size scenario. It relies on the assumption that the

partial correlation matrix is sparse (under normality assumption, this means that
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most variable pairs are conditionally independent), which is reasonable for many

real life problems. For instance, it has been shown that most genetic networks are

intrinsically sparse (Gardner et al. 2003; Jeong et al. 2001; Tegner et al. 2003). The

proposed method is also particularly powerful in the identification of hubs : vertices

(variables) that are connected to (have nonzero partial correlations with) many other

vertices (variables). The existence of hubs is a well known phenomenon for many large

networks, such as the internet, citation networks, and protein interaction networks

(Newman 2003). In particular, it is widely believed that genetic pathways consist

of many genes with few interactions and a few hub genes with many interactions

(Barabasi and Oltvai 2004).

Another contribution of this paper is to propose a novel algorithm active-shooting

for solving penalized optimization problems such as lasso (Tibshirani 1996). This al-

gorithm is computationally more efficient than the original shooting algorithm, which

was first proposed by Fu (1998) and then extended by many others including Genkin

et al. (2007) and Friedman et al. (2007a). It enables us to implement the proposed

procedure efficiently, such that we can conduct extensive simulation studies involving

∼ 1000 variables and hundreds of samples. To our knowledge, this is the first set of

intensive simulation studies for covariance selection with such high dimensions.

A few methods have also been proposed recently to perform covariance selection

in the context of p À n. Similar to the method proposed in this paper, they all

assume sparsity of the partial correlation matrix. Meinshausen and Buhlmann (2006)

introduced a variable-by-variable approach for neighborhood selection via the lasso

regression. They proved that neighborhoods can be consistently selected under a set

of suitable assumptions. However, as regression models are fitted for each variable

separately, this method has two major limitations. First, it does not take into account

the intrinsic symmetry of the problem (i.e., ρij = ρji). This could result in loss of
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efficiency, as well as contradictory neighborhoods. Secondly, if the same penalty

parameter is used for all p lasso regressions as suggested by their paper, more or less

equal effort is placed on building each neighborhood. This apparently is not the most

efficient way to address the problem, unless the degree distribution of the network is

nearly uniform. However, most real life networks have skewed degree distributions,

such as the power-law networks. As observed by Schafer and Strimmer (2007), the

neighborhood selection approach limits the number of edges connecting to each node.

Therefore, it is not very effective in hub detection. On the contrary, the proposed

method is based on a joint sparse regression model, which simultaneously performs

neighborhood selection for all variables. It also preserves the symmetry of the problem

and thus utilizes data more efficiently. We show by intensive simulation studies that

our method performs better in both model selection and hub identification. Moreover,

as a joint model is used, it is easier to incorporate prior knowledge such as network

topology into the model. This is discussed in Section 2.1.

Besides the regression approach mentioned above, another class of methods em-

ploy the maximum likelihood framework. Yuan and Lin (2007) proposed a penalized

maximum likelihood approach which performs model selection and estimation simul-

taneously and ensures the positive definiteness of the estimated concentration matrix.

However, their algorithm can not handle high dimensional data. The largest dimen-

sion considered by them is p = 10 in simulation and p = 5 in real data. Friedman

et al. (2007b) proposed an efficient algorithm glasso to implement this method,

such that it can be applied to problems with high dimensions. We show by simula-

tion studies that, the proposed method performs better than glasso in both model

selection and hub identification. Rothman et al (2008) proposed another algorithm

to implement the method of Yuan and Lin (2007). The computational cost is on the

same order of glasso, but in general not as efficient as glasso. Li and Gui (2006)
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introduced a threshold gradient descent (TGD) regularization procedure. Schafer and

Strimmer (2007) proposed a shrinkage covariance estimation procedure to overcome

the ill-conditioned problem of sample covariance matrix when p > n. There are also

a large class of methods covering the situation where variables have a natural order-

ing, e.g., longitudinal data, time series, spatial data, or spectroscopy. See Wu and

Pourahmadi (2003), Bickel and Levina (2008), Huang et al. (2006) and Levina et al

(2006), which are all based on the modified Cholesky decomposition of the concentra-

tion matrix. In this paper, we, however, focus on the general case where an ordering

of the variables is not available.

The rest of the paper is organized as follows. In Section 2, we describe the joint

sparse regression model, its implementation and the active-shooting algorithm. In

Section 3, the performance of the proposed method is illustrated through simulation

studies and compared with that of the neighborhood selection approach and the

likelihood based approach glasso. In Section 4, the proposed method is applied

to a microarray expression data set of n = 244 breast cancer tumor samples and

p = 1217 genes. In Section 5, we study the asymptotic properties of this procedure.

A summary of the main results are given in Section 6. Technique details are provided

in the Supplemental Material.

2 METHOD

2.1 Model

In this section, we describe a novel method for detecting pairs of variables having

nonzero partial correlations among a large number of random variables based on

i.i.d. samples. Suppose that, (y1, · · · , yp)
T has a joint distribution with mean 0

and covariance Σ, where Σ is a p by p positive definite matrix. Denote the partial

correlation between yi and yj by ρij (1 ≤ i < j ≤ p). It is defined as Corr(εi, εj), where
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εi and εj are the prediction errors of the best linear predictors of yi and yj based on

y−(i,j) = {yk : 1 ≤ k 6= i, j ≤ p}, respectively. Denote the concentration matrix Σ−1

by (σij)p×p. It is known that, ρij = − σij√
σiiσjj

. Let y−i := {yk : 1 ≤ k 6= i ≤ p}. The

following well-known result (Lemma 1) relates the estimation of partial correlations

to a regression problem.

Lemma 1 : For 1 ≤ i ≤ p, yi is expressed as yi =
∑

j 6=i βijyj + εi, such that εi is

uncorrelated with y−i if and only if βij = −σij

σii = ρij
√

σjj

σii . Moreover, for such defined

βij, Var(εi) = 1
σii , Cov(εi, εj) = σij

σiiσjj .

Note that, under the normality assumption, ρij = Corr(yi, yj|y−(i,j)) and in Lemma

1, we can replace “uncorrelated” with “independent”. Since ρij = sign(βij)
√

βijβji,

the search for non-zero partial correlations can be viewed as a model selection problem

under the regression setting. In this paper, we are mainly interested in the case

where the dimension p is larger than the sample size n. This is a typical scenario

for many real life problems. For example, high throughput genomic experiments

usually result in data sets of thousands of genes for tens or at most hundreds of

samples. However, many high-dimensional problems are intrinsically sparse. In the

case of genetic regulatory networks, it is widely believed that most gene pairs are

not directly interacting with each other. Sparsity suggests that even if the number

of variables is much larger than the sample size, the effective dimensionality of the

problem might still be within a tractable range. Therefore, we propose to employ

sparse regression techniques by imposing the `1 penalty on a suitable loss function to

tackle the high-dimension-low-sample-size problem.

Suppose Yk = (yk
1 , · · · , yk

p)T are i.i.d. observations from (0,Σ), for k = 1, · · · , n.

Denote the sample of the ith variable as Yi = (y1
i , · · · , yn

i )T . Based on Lemma 1, we
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propose the following joint loss function

Ln(θ, σ,Y) =
1

2

( p∑
i=1

wi||Yi −
∑

j 6=i

βijYj||2
)

=
1

2

( p∑
i=1

wi||Yi −
∑

j 6=i

ρij

√
σjj

σii
Yj||2

)
, (1)

where θ = (ρ12, · · · , ρ(p−1)p)T , σ = {σii}p
i=1; Y = {Yk}n

k=1; and w = {wi}p
i=1 are

nonnegative weights. For example, we can choose wi = 1/Var(εi) = σii to weigh

individual regressions in the joint loss function according to their residual variances,

as is done in regression with heteroscedastic noise. We propose to estimate the partial

correlations θ by minimizing a penalized loss function

Ln(θ, σ,Y) = Ln(θ, σ,Y) + J (θ), (2)

where the penalty term J (θ) controls the overall sparsity of the final estimation of θ.

In this paper, we focus on the `1 penalty (Tibshirani 1996):

J (θ) = λ||θ||1 = λ
∑

1≤i<j≤p

|ρij|. (3)

The proposed joint method is referred to as space (Sparse PArtial Correlation

Estimation) hereafter. It is related to the neighborhood selection approach by Mein-

shausen and Buhlmann (2006) (referred to as MB hereafter), where a lasso regression

is performed separately for each variable on the rest of the variables. However, space

has several important advantages.

(i) In space, sparsity is utilized for the partial correlations θ as a whole view.

However, in the neighborhood selection approach, sparsity is imposed on each

neighborhood. The former treatment is more natural and utilizes the data
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more efficiently, especially for networks with hubs. A prominent example is the

genetic regulatory network, where master regulators are believed to exist and

are of great interest.

(ii) According to Lemma 1, βij and βji have the same sign. The proposed method

assures this sign consistency as it estimates {ρij} directly. However, when fit-

ting p separate (lasso) regressions, it is possible that sign(β̂ij) is different from

sign(β̂ji), which may lead to contradictory neighborhoods.

(iii) Furthermore, the utility of the symmetric nature of the problem allows us to

reduce the number of unknown parameters in the model by almost half (p(p +

1)/2 for space vs. (p− 1)2 for MB), and thus improves the efficiency.

(iv) Finally, prior knowledge of the network structure are often available. The joint

model is more flexible in incorporating such prior knowledge. For example,

we may assign different weights wi to different nodes according to their “im-

portance”. We have already discussed the residual variance weights, where

wi = σii. We can also consider the weight that is proportional to the (esti-

mated) degree of each variable, i.e., the estimated number of edges connecting

with each node in the network. This would result in a preferential attachment

effect which explains the cumulative advantage phenomena observed in many

real life networks including GRNs (Barabasi and Albert 1999).

These advantages help enhance the performance of space. As illustrated by the

simulation study in Section 3, the proposed joint method performs better than the

neighborhood selection approach in both non-zero partial correlation selection and

hub detection.

As compared to the penalized maximum likelihood approach glasso (Friedman

et al. 2007b), the simulation study in Section 3 shows that space also outperforms
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glasso in both edge detection and hub identification under all settings that we have

considered. In addition, space has the following advantages.

(i) The complexity of glasso is O(p3), while as discussed in Section 2.2, the space

algorithm has the complexity of min(O(np2), O(p3)), which is much faster than

the algorithm of Yuan and Lin (2007) and in general should also be faster than

glasso when n < p, which is the case in many real studies.

(ii) As discussed in Section 6, space allows for trivial generalizations to other penal-

ties of the form of |ρij|q rather than simply |ρij|, which includes ridge and bridge

(Fu 1998) or other more complicated penalties like SCAD (Fan and Li 2001).

The glasso algorithm, on the other hand, is tied to the lasso formulation and

cannot be extended to other penalties in a natural manner.

(iii) In Section 5, we prove that our method consistently identifies the correct net-

work neighborhood when both n and p go to ∞. As far as we are aware, no such

theoretical results have been developed for the penalized maximum likelihood

approach.

Note that, in the penalized loss function (2), σ needs to be specified. We propose

to estimate θ and σ by a two-step iterative procedure. Given an initial estimate σ(0) of

σ, θ is estimated by minimizing the penalized loss function (2), whose implementation

is discussed in Section 2.2. Then given the current estimates θ(c) and σ(c), σ is updated

based on Lemma 1: 1/σ̂ii = 1
n
||Yi−

∑
j 6=i β̂

(c)
ij Yj||2, where β̂

(c)
ij = (ρij)(c)

√
(σjj)(c)

(σii)(c)
. We

then iterate between these two steps until convergence. Since 1/σii ≤ Var(yi) = σii,

we can use 1/σ̂ii as the initial estimate of σii, where σ̂ii = 1
n−1

∑n
k=1(y

k
i − ȳi)

2 is the

sample variance of yi. Our simulation study shows that, it usually takes no more

than three iterations for this procedure to stabilize.
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2.2 Implementation

In this section, we discuss the implementation of the space procedure: that is, mini-

mizing (2) under the `1 penalty (3). We first re-formulate the problem, such that the

loss function (1) corresponds to the `2 loss of a “regression problem.” We then use

the active-shooting algorithm proposed in Section 2.3 to solve this lasso regression

problem efficiently.

Given σ and positive weights w, let Y = (ỸT
1 , ..., ỸT

p )T be a np×1 column vector,

where Ỹi =
√

wiYi (i = 1, · · · , p); and let X = (X̃(1,2), · · · , X̃(p−1,p)) be a np by

p(p− 1)/2 matrix, with

X̃(i,j) = (0, ..., 0,
√

σ̃jj

σ̃ii Ỹ
T
j , 0, ..., 0,

√
σ̃ii

σ̃jj Ỹ
T
i , 0, ..., 0)T

↑ ↑
ithblock jthblock

,

where σ̃ii = σii/wi (i = 1, · · · , p). Then it is easy to see that the loss function (1)

equals to 1
2
||Y − X θ||22, and the corresponding `1 minimization problem is equiva-

lent to: minθ
1
2
||Y − X θ||22 + λ||θ||1. Note that, the current dimension ñ = np and

p̃ = p(p−1)/2 are of a much higher order than the original n and p. This could cause

serious computational problems. Fortunately, X is a block matrix with many zero

blocks. Thus, algorithms for lasso regressions can be efficiently implemented by tak-

ing into consideration this structure (see the Supplemental Material for the detailed

implementation). To further decrease the computational cost, we develop a new algo-

rithm active-shooting (Section 2.3) for the space model fitting. Active-shooting

is a modification of the shooting algorithm, which was first proposed by Fu (1998)

and then extended by many others including Genkin et al. (2007) and Friedman et al.

(2007a). Active-shooting exploits the sparse nature of sparse penalization problems

in a more efficient way, and is therefore computationally much faster. This is crucial
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for applying space for large p and/or n. It can be shown that the computational

cost of space is min(O(np2), O(p3)), which is the same as applying p individual lasso

regressions as in the neighborhood selection approach. We want to point out that,

the proposed method can also be implemented by lars (Efron et al. 2004). However,

unless the exact whole solution path is needed, compared with shooting type algo-

rithms, lars is computationally less appealing (Friedman et al. 2007a). (Remark by

the authors: after this paper was submitted, recently the active-shooting idea was

also proposed by Friedman et al. (2008).)

Finally, note that the concentration matrix should be positive definite. In prin-

ciple, the proposed method (or more generally, the regression based methods) does

not guarantee the positive definiteness of the resulting estimator, while the likelihood

based method by Yuan and Lin (2007) and Friedman et al. (2007b) assures the posi-

tive definiteness. While admitting that this is one limitation of the proposed method,

we argue that, since we are more interested in model selection than parameter esti-

mation in this paper, we are less concerned with this issue. Moreover, in Section 5, we

show that the proposed estimator is consistent under a set of suitable assumptions.

Therefore, it is asymptotically positive definite. Indeed, the space estimators are

rarely non-positive-definite under the high dimensional sparse settings that we are

interested in. More discussions on this issue can be found in Section 3.

2.3 Active Shooting

In this section, we propose a computationally very efficient algorithm active-shooting

for solving lasso regression problems. Active-shooting is motivated by the shooting

algorithm (Fu 1998), which solves the lasso regression by updating each coordinate it-

eratively until convergence. Shooting is computationally very competitive compared

with the well known lars procedure (Efron et al. 2004). Suppose that we want to
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minimize an `1 penalized loss function with respect to β

f(β) =
1

2
||Y −Xβ||22 + γ

∑
j

|βj|,

where Y = (y1, · · · , yn)T , X = (xij)n×p = (X1 : · · · : Xp) and β = (β1, · · · , βp)
T . The

shooting algorithm proceeds as follows:

1. Initial step: for j = 1, · · · , p,

β
(0)
j = arg minβj

{1
2
||Y − βjXj||2 + γ|βj|}

= sign(YTXj)
(|YT Xj |−γ)+

XT
j Xj

,
(4)

where (x)+ = xI(x>0).

2. For j = 1, ..., p, update β(old) −→ β(new) :

β
(new)
i = β

(old)
i , i 6= j;

β
(new)
j = arg minβj

1
2

∥∥∥Y −∑
i6=j β

(old)
i Xi − βjXj

∥∥∥
2

+ γ|βj|
= sign

(
(ε(old))T Xj

XT
j Xj

+ β
(old)
j

)(∣∣∣ (ε(old))T Xj

XT
j Xj

+ β
(old)
j

∣∣∣− γ
XT

j Xj

)
+

,

(5)

where ε(old) = Y −Xβ(old).

3. Repeat step 2 until convergence.

At each updating step of the shooting algorithm, we define the set of currently

non-zero coefficients as the active set. Since under sparse models, the active set

should remain small, we propose to first update the coefficients within the active

set until convergence is achieved before moving on to update other coefficients. The

active-shooting algorithm proceeds as follows:

1. Initial step: same as the initial step of shooting.
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2. Define the current active set Λ = {k : current βk 6= 0}.

(2.1) For each k ∈ Λ, update βk with all other coefficients fixed at the current

value as in equation (5);

(2.2) Repeat (2.1) until convergence is achieved on the active set.

3. For j = 1 to p, update βj with all other coefficients fixed at the current value

as in equation (5). If no βj changes during this process, return the current β as

the final estimate. Otherwise, go back to step 2.

Table 1: The numbers of iterations required by the shooting algorithm and the
active-shooting algorithm to achieve convergence (n = 100, λ = 2). “coef. #” is
the number of non-zero coefficients

p coef. # shooting active-shooting

200 14 29600 4216
500 25 154000 10570
1000 28 291000 17029

The idea of active-shooting is to focus on the set of variables that is more likely

to be in the model, and thus it improves the computational efficiency by achieving a

faster convergence. We illustrate the improvement of the active-shooting over the

shooting algorithm by a small simulation study of the lasso regression (generated in

the same way as in Section 5.1 of Friedman et al. (2007a)). The two algorithms result

in exact same solutions. However, as can be seen from Table 1, active-shooting

takes much fewer iterations to converge (where one iteration is counted whenever an

attempt to update a βj is made). In particular, it takes less than 30 seconds (on

average) to fit the space model by active-shooting (implemented in c code) for

cases with 1000 variables, 200 samples and when the resulting model has around

1000 non-zero partial correlations on a server with two Dual/Core, CPU 3 GHz and

4 GB RAM. This great computational advantage enables us to conduct large scale

simulation studies to examine the performance of the proposed method (Section 3).
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Remark 1 : In the initial step, instead of using the univariate soft-shrinkage esti-

mate, we can use a previous estimate as the initial estimate if such a thing is available.

For example, when iterating between {ρij} and {σii}, we can use the previous esti-

mate of {ρij} in the current iteration as the initial value. This can further improve

the computational efficiency of the proposed method, as a better initial value implies a

faster convergence. Moreover, in practice, often estimates are desired for a series of

tuning parameters λ, whether it is for data exploration or for the selection of λ. When

this is the case, a decreasing-lambda approach can be used to facilitate computation.

That is, we start with the largest λ (which results in the smallest model), then use the

resulting estimate as the initial value when fitting the model under the second largest

λ and continue in this manner until all estimates are obtained.

2.4 Tuning

The choice of the tuning parameter λ is of great importance. Since the space method

uses a lasso criterion, methods that have been developed for selecting the tuning

parameter for lasso can also be applied to space, such as the GCV in Tibshirani

(1996), the CV in Fan and Li (2001), the AIC in Buhlmann (2006) and the BIC

in Zou et al. (2007). Several methods have also been proposed for selecting the

tuning parameter in the setting of covariance estimation, for example, the MSE based

criterion in Schafer and Strimmer (2007), the likelihood based method in Huang et al.

(2006) and the cross-validation and bootstrap methods in Li and Gui (2006). In this

paper, we propose to use a “BIC-type” criterion for selecting the tuning parameter

mainly due to its simplicity and computational easiness. For a given λ, denote the

space estimator by θ̂λ = {ρ̂ij
λ : 1 ≤ i < j ≤ p} and σ̂λ = {σ̂ii

λ : 1 ≤ i ≤ p}. The
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corresponding residual sum of squares for the i-th regression: yi =
∑

j 6=i βijyj + εi is

RSSi(λ) =
n∑

k=1


yk

i −
∑

j 6=i

ρ̂ij
λ

√
σ̂jj

λ

σ̂ii
λ

yk
j




2

.

We then define a “BIC-type” criterion for the i-th regression as

BICi(λ) = n× log(RSSi(λ)) + log n×#{j : j 6= i, ρ̂ij
λ 6= 0}. (6)

Finally, we define BIC(λ) :=
∑p

i=1 BICi(λ) and select λ by minimizing BIC(λ).

This method is referred to as space.joint hereafter.

In Yuan and Lin (2007), a BIC criterion is proposed for the penalized maximum

likelihood approach. Namely

BIC(λ) := n×
[
− log |Σ̂−1

λ |+ trace(Σ̂−1
λ S)

]
+log n×#{(i, j) : 1 ≤ i ≤ j ≤ p, σ̂ij

λ 6= 0},
(7)

where S is the sample covariance matrix, and Σ̂−1
λ = (σ̂ij

λ ) is the estimator under λ. In

this paper, we refer to this method as glasso.like. For the purpose of comparison,

we also consider the selection of the tuning parameter for MB. Since MB essentially

performs p individual lasso regressions, the tuning parameter can be selected for each

of them separately. Specifically, we use criterion (6) (evaluated at the corresponding

MB estimators) to select the tuning parameter λi for the i-th regression. We denote

this method as MB.sep. Alternatively, as suggested by Meinshausen and Buhlmann

(2006), when all Yi are standardized to have sample standard deviation one, the same

λ(α) =
√

nΦ−1(1− α
2p2 ) is applied to all regressions. Here, Φ is the standard normal

c.d.f.; α is used to control the false discovery rate and is usually taken as 0.05 or 0.1.

We denote this method as MB.alpha. These methods are examined by the simulation

studies in the next section.
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3 SIMULATION

In this section, we conduct a series of simulation experiments to examine the

performance of the proposed method space and compare it with the neighborhood

selection approach MB as well as the penalized likelihood method glasso. For all

three methods, variables are first standardized to have sample mean zero and sample

standard deviation one before model fitting. For space, we consider three different

types of weights: (1) uniform weights: wi = 1; (2) residual variance based weights:

wi = σ̂ii; and (3) degree based weights: wi is proportional to the estimated degree

of yi, i.e., #{j : ρ̂ij 6= 0, j 6= i}. The corresponding methods are referred as space,

space.sw and space.dew, respectively. For all three space methods, the initial value

of σii is set to be one. Iterations are used for these space methods as discussed in

Section 2.1. For space.dew and space.sw, the initial weights are taken to be one

(i.e., equal weights). In each subsequent iteration, new weights are calculated based

on the estimated residual variances (for space.sw) or the estimated degrees (for

space.dew) of the previous iteration. For all three space methods, three iterations

(that is updating between {σii} and {ρij}) are used since the procedure converges

very fast and more iterations result in essentially the same estimator. For glasso,

the diagonal of the concentration matrix is not penalized.

We simulate networks consisting of disjointed modules. This is done because many

real life large networks exhibit a modular structure comprised of many disjointed or

loosely connected components of relatively small size. For example, experiments on

model organisms like yeast or bacteria suggest that the transcriptional regulatory

networks have modular structures (Lee et al. 2002). Each of our network modules is

set to have 100 nodes and generated according to a given degree distribution, where

the degree of a node is defined as the number of edges connecting to it. We mainly

consider two different types of degree distributions and denote their corresponding
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networks by Hub network and Power-law network (details are given later). Given

an undirected network with p nodes, the initial “concentration matrix” (σ̃ij)p×p is

generated by

σ̃ij =





1, i = j;

0, i 6= j and no edge between nodes i and j;

∼ Uniform([−1,−0.5] ∪ [0.5, 1]), i 6= j and an edge connecting nodes i and j.

(8)

We then rescale the non-zero elements in the above matrix to assure positive definite-

ness. Specifically, for each row, we first sum the absolute values of the off-diagonal

entries, and then divide each off-diagonal entry by 1.5 fold of the sum. We then aver-

age this re-scaled matrix with its transpose to ensure symmetry. Finally the diagonal

entries are all set to be one. This process results in diagonal dominance. Denote the

final matrix as A. The covariance matrix Σ is then determined by

Σ(i, j) = A−1(i, j)/
√

A−1(i, i)A−1(j, j).

Finally, i.i.d. samples {Yk}n
k=1 are generated from Normal(0,Σ). Note that, Σ(i, i) =

1, and Σ−1(i, i) = σii ≥ 1.

Simulation Study I

Hub networks In the first set of simulations, module networks are generated by

inserting a few hub nodes into a very sparse graph. Specifically, each module consists

of three hubs with degrees around 15, and the other 97 nodes with degrees at most

four. This setting is designed to mimic the genetic regulatory networks, which usually

contains a few hub genes plus many other genes with only a few edges. A network

consisting of five such modules is shown in Figure 1(a). In this network, there are

p = 500 nodes and 568 edges. The simulated non-zero partial correlations fall in
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(−0.67,−0.1] ∪ [0.1, 0.67), with two modes around -0.28 and 0.28. Based on this

network and the partial correlation matrix, we generate 50 independent data sets

each consisting of n = 250 i.i.d. samples.

We then evaluate each method at a series of different values of the tuning param-

eter λ. The number of total detected edges (Nt) decreases as λ increases. Figure 2(a)

shows the number of correctly detected edges (Nc) vs. the number of total detected

edges (Nt) averaged across the 50 independent data sets for each method. We observe

that all three space methods (space, space.sw and space.dew) consistently detect

more correct edges than the neighborhood selection method MB (except for space.sw

when Nt < 470) and the likelihood based method glasso. MB performs favorably

over glasso when Nt is relatively small (say less than 530), but performs worse than

glasso when Nt is large. Overall, space.dew is the best among all methods. Specif-

ically, when Nt = 568 (which is the number of true edges), space.dew detects 501

correct edges on average with a standard deviation 4.5 edges. The corresponding sen-

sitivity and specificity are both 88%. Here, sensitivity is defined as the ratio of the

number of correctly detected edges to the total number of true edges; and specificity

is defined as the ratio of the number of correctly detected edges to the number of

total detected edges. On the other hand, MB and glasso detect 472 and 480 correct

edges on average, respectively, when the number of total detected edges Nt is 568.

In terms of hub detection, for a given Nt, a rank is assigned to each variable yi

based on its estimated degree (the larger the estimated degree, the smaller the rank

value). We then calculate the average rank of the 15 true hub nodes for each method.

The results are shown in Figure 2(b). This average rank would achieve the minimum

value 8 (indicated by the grey horizontal line), if the 15 true hubs have larger estimated

degrees than all other non-hub nodes. As can be seen from the figure, the average rank

curves (as a function of Nt) for the three space methods are very close to the optimal
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minimum value 8 for a large range of Nt. This suggests that these methods can

successfully identify most of the true hubs. Indeed, for space.dew, when Nt equals to

the number of true edges (568), the top 15 nodes with the highest estimated degrees

contain at least 14 out of the 15 true hub nodes in all replicates. On the other hand,

both MB and glasso identify far fewer hub nodes, as their corresponding average rank

curves are much higher than the grey horizontal line.

Table 2: Power (sensitivity) of space.dew , MB and glasso in identifying correct
edges when FDR is controlled at 0.05.

Network p n space.dew MB glasso

Hub-network 500 250 0.844 0.784 0.655
200 0.707 0.656 0.559

Hub-network 1000 300 0.856 0.790 0.690
500 0.963 0.894 0.826

Power-law network 500 250 0.704 0.667 0.580

To investigate the impact of dimensionality p and sample size n, we perform

simulation studies for a larger dimension with p = 1000 and various sample sizes

with n = 200, 300 and 500. The simulated network includes ten disjointed modules

of size 100 each and has 1163 edges in total. Non-zero partial correlations form

a similar distribution as that of the p = 500 network discussed above. The ROC

curves for space.dew, MB and glasso resulted from these simulations are shown in

Figure 3. When false discovery rate (=1-specificity) is controlled at 0.05, the power

(=sensitivity) for detecting correct edges is given in Table 2. From the figure and

the table, we observe that the sample size has a big impact on the performance of all

methods. For p = 1000, when the sample size increases from 200 to 300, the power of

space.dew increases more than 20%; when the sample size is 500, space.dew achieves

an impressive power of 96%. On the other hand, the dimensionality seems to have

relatively less influence. When the total number of variables is doubled from 500 to

1000, with only 20% more samples (that is p = 500, n = 250 vs. p = 1000, n = 300),
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all three methods achieve similar powers. This is presumably because the larger

network (p = 1000) is sparser than the smaller network (p = 500) and also the

complexity of the modules remains unchanged. Finally, it is obvious from Figure 3

that, space.dew performs best among the three methods.

Table 3: Edge detection under the selected tuning parameter λ. For average rank,
the optimal value is 15.5. For MB.alpha, α = 0.05 is used.

Sample size Method Total edge detected Sensitivity Specificity Average rank
space.joint 1357 0.821 0.703 28.6

n = 200 MB.sep 1240 0.751 0.703 57.5
MB.alpha 404 0.347 1.00 175.8

glasso.like 1542 0.821 0.619 35.4
space.joint 1481 0.921 0.724 18.2

n = 300 MB.sep 1456 0.867 0.692 30.4
MB.alpha 562 0.483 1.00 128.9

glasso.like 1743 0.920 0.614 21
space.joint 1525 0.980 0.747 16.0

n = 500 MB.sep 1555 0.940 0.706 16.9
MB.alpha 788 0.678 1.00 52.1

glasso.like 1942 0.978 0.586 16.5

We then investigate the performance of these methods at the selected tuning pa-

rameters (see Section 2.4 for details). For the above Hub network with p = 1000 nodes

and n = 200, 300, 500, the results are reported in Table 3. As can be seen from the

table, BIC based approaches tend to select large models (compared to the true model

which has 1163 edges). space.joint and MB.sep perform similarly in terms of speci-

ficity, and glasso.like works considerably worse than the other two in this regard.

On the other hand, space.joint and glasso.like performs similarly in terms of

sensitivity, and are better than MB.sep on this aspect. In contrast, MB.alpha selects

very small models and thus results in very high specificity, but very low sensitivity.

In terms of hub identification, space.joint apparently performs better than other

methods (indicated by a smaller average rank over 30 true hub nodes). Moreover, the

performances of all methods improve with sample size.
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Power-law networks Many real world networks have a power-law (also a.k.a scale-

free) degree distribution with an estimated power parameter α = 2 ∼ 3 (Newman

2003). Thus, in the second set of simulations, the module networks are generated

according to a power-law degree distribution with the power-law parameter α =

2.3, as this value is close to the estimated power parameters for biological networks

(Newman 2003). Figure 1(b) illustrates a network formed by five such modules with

each having 100 nodes. It can be seen that there are three obvious hub nodes in

this network with degrees of at least 20. The simulated non-zero partial correlations

fall in the range (−0.51,−0.08]∪ [0.08, 0.51), with two modes around -0.22 and 0.22.

Similar to the simulation done for Hub networks, we generate 50 independent data

sets each consisting of n = 250 i.i.d. samples. We then compare the number of

correctly detected edges by various methods. The result is shown in Figure 4. On

average, when the number of total detected edges equals to the number of true edges

which is 495, space.dew detects 406 correct edges, while MB detects only 378 and

glasso detects only 381 edges. In terms of hub detection, all methods can correctly

identify the three hub nodes for this network.

Summary These simulation results suggest that when the (concentration) networks

are reasonably sparse, we should be able to characterize their structures with only

a couple-of-hundreds of samples when there are a couple of thousands of nodes. In

addition, space.dew outperforms MB by at least 6% on the power of edge detection

under all simulation settings above when FDR is controlled at 0.05, and the improve-

ments are even larger when FDR is controlled at a higher level say 0.1 (see Figure 3).

Also, compared to glasso, the improvement of space.dew is at least 15% when FDR

is controlled at 0.05, and the advantages become smaller when FDR is controlled at

a higher level (see Figure 3). Moreover, the space methods perform much better in

hub identification than both MB and glasso.
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Simulation Study II

In the second simulation study, we apply space, MB and glasso on networks with

nearly uniform degree distributions generated by following the simulation procedures

in Meinshausen and Buhlmann (2006); as well as on the AR network discussed in

Yuan and Lin (2007) and Friedman et al. (2007b). For these cases, space performs

comparably, if not better than, the other two methods. However, for these networks

without hubs, the advantages of space become smaller compared to the results on

the networks with hubs. The results are summarized below.

Uniform networks In this set of simulation, we generate similar networks as the

ones used in Meinshausen and Buhlmann (2006). These networks have uniform degree

distribution with degrees ranging from zero to four. Figure 5(a) illustrates a network

formed by five such modules with each having 100 nodes. There are in total 447 edges.

Figure 5(b) illustrates the performance of MB, space and glasso over 50 independent

data sets each having n = 250 i.i.d. samples. As can be been from this figure, all

three methods perform similarly. When the total number of detected edges equals to

the total number of true edges (447), space detects 372 true edges, MB detects 369

true edges and glasso 371 true edges.

AR networks In this simulation, we consider the so called AR network used in

Yuan and Lin (2007) and Friedman et al. (2007b). Specifically, we have σii = 1

for i = 1, · · · p and σi−1,i = σi,i−1 = 0.25 for i = 2, · · · , p. Figure 6(a) illustrates

such a network with p = 500 nodes and thus 499 edges. Figure 6(b) illustrates

the performance of MB, space and glasso over 50 independent data sets each having

n = 250 i.i.d. samples. As can be been from this figure, all three methods again

perform similarly. When the total number of detected edges equals to the total

number of true edges (499), space detects 416 true edges, MB detects 417 true edges

and glasso 411 true edges. As a slight modification of the AR network, we also
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consider a big circle network with: σii = 1 for i = 1, · · · p; σi−1,i = σi,i−1 = 0.3

for i = 2, · · · , p and σ1,p = σp,1 = 0.3. Figure 7(a) illustrates such a network with

p = 500 nodes and thus 500 edges. Figure 7(b) compares the performance of the three

methods. When the total number of detected edges equals to the total number of true

edges (500), space, MB and glasso detect 478, 478 and 475 true edges, respectively.

We also compare the mean squared error (MSE) of estimation of {σii}. For the

uniform network, the median (across all samples and λ) of the square-root MSE is

0.108, 0.113, 0.178 for MB, space and glasso. These numbers are 0.085, 0.089, 0.142

for the AR network and 0.128, 0.138, 0.233 for the circle network. It seems that MB

and space work considerably better than glasso on this aspect.

Comments

We conjecture that, under the sparse and high dimensional setting, the superior

performance in model selection of the regression based method space over the pe-

nalized likelihood method glasso is partly due to its simpler quadratic loss function.

Moreover, since space ignores the correlation structure of the regression residuals, it

amounts to a greater degree of regularization, which may render additional benefits

under the sparse and high dimensional setting.

In terms of parameter estimation, we compare the entropy loss of the three meth-

ods. We find that, they perform similarly when the estimated models are of small

or moderate size. When the estimated models are large, glasso generally performs

better in this regard than the other two methods. Since the interest of this paper lies

in model selection, detailed results of parameter estimation are not reported here.

As discussed earlier, one limitation of space is its lack of assurance of positive

definiteness. However, for simulations reported above, the corresponding estimators

we have examined (over 3000 in total) are all positive definite. To further investigate

24



this issue, we design a few additional simulations. We first consider a case with

a similar network structure as the Hub network, however having a nearly singular

concentration matrix (the condition number is 16, 240; as a comparison, the condition

number for the original Hub network is 62). For this case, the estimate of space

remains positive definite until the number of total detected edges increases to 50, 000;

while the estimate of MB remains positive definite until the number of total detected

edges is more than 23, 000. Note that, the total number of true edges of this model

is only 568, and the model selected by space.joint has 791 edges. In the second

simulation, we consider a denser network (p = 500 and the number of true edges

is 6, 188) with a nearly singular concentration matrix (condition number is 3, 669).

Again, we observe that, the space estimate only becomes non-positive-definite when

the estimated models are huge (the number of detected edges is more than 45, 000).

This suggests that, for the regime we are interested in in this paper (the sparse and

high dimensional setting), non-positive-definiteness does not seem to be a big issue

for the proposed method, as it only occurs when the resulting model is huge and thus

very far away from the true model. As long as the estimated models are reasonably

sparse, the corresponding estimators by space remain positive definite. We believe

that this is partly due to the heavy shrinkage imposed on the off-diagonal entries in

order to ensure sparsity.

Finally, we investigate the performance of these methods when the observations

come from a non-normal distribution. Particularly, we consider the multivariate tdf -

distribution with df = 3, 6, 10. The performances of all three methods deteriorate

compared to the normal case, however the overall picture in terms of relative perfor-

mance among these methods remains essentially unchanged (Table 4).
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Table 4: Sensitivity of different methods under different tdf -distributions when FDR
is controlled at 0.05

Sensitivity
df Method Hub Power-law

space 0.369 0.286
3 MB 0.388 0.276

glasso 0.334 0.188
space 0.551 0.392

6 MB 0.535 0.390
glasso 0.471 0.293
space 0.682 0.512

10 MB 0.639 0.518
glasso 0.598 0.345

4 APPLICATION

More than 500,000 women die annually of breast cancer world wide. Great efforts

are being made to improve the prevention, diagnosis and treatment for breast cancer.

Specifically, in the past couple of years, molecular diagnostics of breast cancer have

been revolutionized by high throughput genomics technologies. A large number of

gene expression signatures have been identified (or even validated) to have potential

clinical usage. However, since breast cancer is a complex disease, the tumor process

cannot be understood by only analyzing individual genes. There is a pressing need to

study the interactions between genes, which may well lead to better understanding

of the disease pathologies.

In a recent breast cancer study, microarray expression experiments were conducted

for 295 primary invasive breast carcinoma samples (Chang et al. 2005; van de Vi-

jver et al. 2002). Raw array data and patient clinical outcomes for 244 of these

samples are available on-line and are used in this paper. Data can be downloaded

at http://microarray-pubs.stanford.edu/wound NKI/explore.html . To glob-

ally characterize the association among thousands of mRNA expression levels in this

group of patients, we apply the space method on this data set as follows. First, for

26



each expression array, we perform the global normalization by centering the mean to

zero and scaling the median absolute deviation to one. Then we focus on a subset

of p = 1217 genes/clones whose expression levels are significantly associated with

tumor progression (p-values from univariate Cox models < 0.0008, corresponding

FDR = 0.01). We estimate the partial correlation matrix of these 1217 genes with

space.dew for a series of λ values. The degree distribution of the inferred network is

heavily skewed to the right. Specifically, when 629 edges are detected, 598 out of the

1217 genes do not connect to any other genes, while five genes have degrees of at least

10. The power-law parameter of this degree distribution is α = 2.56 , which is con-

sistent with the findings in the literature for GRNs (Newman 2003). The topology

of the inferred network is shown in Figure 8(a), which supports the statement that

genetic pathways consist of many genes with few interactions and a few hub genes

with many interactions.

We then search for potential hub genes by ranking nodes according to their degrees.

There are 11 candidate hub genes whose degrees consistently rank the highest under

various λ [see Figure 8(b)]. Among these 11 genes, five are important known regula-

tors in breast cancer. For example, HNF3A (also known as FOXA1 ) is a transcription

factor expressed predominantly in a subtype of breast cancer, which regulates the ex-

pression of the cell cycle inhibitor p27kip1 and the cell adhesion molecule E-cadherin.

This gene is essential for the expression of approximately 50% of estrogene-regulated

genes and has the potential to serve as a therapeutic target (Nakshatri and Badve

2007). Except for HNF3A, all the other 10 hub genes fall in the same big network com-

ponent related to cell cycle/proliferation. This is not surprising as it is well-agreed

that cell cycle/proliferation signature is prognostic for breast cancer. Specifically,

KNSL6, STK12, RAD54L and BUB1 have been previously reported to play a role in

breast cancer: KNSL6 (also known as KIF2C ) is important for anaphase chromosome
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segregation and centromere separation, which is overexpressed in breast cancer cells

but expressed undetectably in other human tissues except testis (Shimo et al. 2008);

STK12 (also known as AURKB) regulates chromosomal segregation during mitosis

as well as meiosis, whose LOH contributes to an increased breast cancer risk and may

influence the therapy outcome (Tchatchou et al. 2007); RAD54L is a recombina-

tional repair protein associated with tumor suppressors BRCA1 and BRCA2, whose

mutation leads to defect in repair processes involving homologous recombination and

triggers the tumor development (Matsuda et al. 1999); in the end, BUB1 is a spindle

checkpoint gene and belongs to the BML-1 oncogene-driven pathway, whose activa-

tion contributes to the survival life cycle of cancer stem cells and promotes tumor

progression. The roles of the other six hub genes in breast cancer are worth of further

investigation. The functions of all hub genes are briefly summarized in Table 5.

Table 5: Annotation of hub genes

Index Gene Symbol Summary Function (GO)

1 CENPA Encodes a centromere protein (nucleosome assembly)
2 NA. Annotation not available
3 KNSL6 Anaphase chromosome segregation (cell proliferation)
4 STK12 Regulation of chromosomal segregation (cell cycle)
5 NA. Annotation not available
6 URLC9 Annotation not available (up-regulated in lung cancer)
7 HNF3A Transcriptional factor activity (epithelial cell differentiation)
8 TPX2 Spindle formation (cell proliferation)
9 RAD54L Homologous recombination related DNA repair (meiosis)
10 ID-GAP Stimulate GTP hydrolysis (cell cycle)
11 BUB1 Spindle checkpoint (cell cycle)

5 ASYMPTOTICS

In this section, we show that under appropriate conditions, the space procedure

achieves both model selection consistency and estimation consistency. Use θ and σ to

28



denote the true parameters of θ and σ. As discussed in Section 2.1, when σ is given,

θ is estimated by solving the following `1 penalization problem:

θ̂λn(σ) = arg min
θ

Ln(θ, σ,Y) + λn||θ||1, (9)

where the loss function Ln(θ, σ,Y) := 1
n

∑n
k=1 L(θ, σ,Yk), with, for k = 1, · · · , n

L(θ, σ,Yk) :=
1

2

p∑
i=1

wi(y
k
i −

∑

j 6=i

√
σjj/σiiρijyk

j )2. (10)

Throughout this section, we assume Y1, · · · ,Yn are i.i.d. samples from Np(0,Σ).

The Gaussianity assumption here can be relaxed by assuming appropriate tail be-

haviors of the observations. The assumption of zero mean is simply for exposition

simplicity. In practice, in the loss function (9), Yk can be replaced by Yk −Y where

Y = 1
n

∑n
k=1 Yk is the sample mean. All results stated in this section still hold under

that case.

We first state regularity conditions that are needed for the proof. Define A =

{(i, j) : ρij 6= 0}.
C0: The weights satisfy 0 < w0 ≤ mini{wi} ≤ maxi{wi} ≤ w∞ < ∞

C1: There exist constants 0 < Λmin(θ) ≤ Λmax(θ) < ∞, such that the true covariance

Σ = Σ(θ, σ) satisfies: 0 < Λmin(θ) ≤ λmin(Σ) ≤ λmax(Σ) ≤ Λmax(θ) < ∞,

where λmin and λmax denote the smallest and largest eigenvalues of a matrix,

respectively.

C2: There exist a constant δ < 1 such that for all (i, j) /∈ A

∣∣∣∣L
′′
ij,A(θ, σ)

[
L
′′
A,A(θ, σ)

]−1

sign(θA)

∣∣∣∣ ≤ δ(< 1),
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where for 1 ≤ i < j ≤ p, 1 ≤ t < s ≤ p,

L
′′
ij,ts(θ, σ) := E(θ,σ)

(
∂2L(θ, σ, Y )

∂ρij∂ρts

∣∣∣
θ=θ,σ=σ

)
.

Condition C0 says that the weights are bounded away from zero and infinity. Con-

dition C1 assumes that the eigenvalues of the true covariance matrix Σ are bounded

away from zero and infinity. Condition C2 corresponds to the incoherence condition

in Meinshausen and Buhlmann (2006), which plays a crucial role in proving model

selection consistency of `1 penalization problems.

Furthermore, since σ is usually unknown, it needs to be estimated. Use σ̂ = σ̂n =

{σ̂ii}p
i=1 to denote one estimator. The following condition says

D : For any η > 0, there exists a constant C > 0, such that for sufficiently large

n, max1≤i≤p |σ̂ii − σii| ≤ C(
√

log n
n

) holds with probability at least 1−O(n−η).

Note that, the theorems below hold even when σ̂ is obtained based on the same

data set from which θ is estimated as long as condition D is satisfied. The following

proposition says that, when p < n, we can get an estimator of σ satisfying condition

D by simply using the residuals of the ordinary least square fitting.

Proposition 1 Suppose Y = [Y1 : · · · : Yn] is a p × n data matrix with i.i.d.

columns Yi ∼ Np(0,Σ). Further suppose that p = pn such that p/n ≤ 1− δ for some

δ > 0; and Σ has a bounded condition number (that is assuming condition C1). Let

σii denote the (i, i)-th element of Σ−1; and let ei denote the residual from regressing

Yi on to Y(−i) := [Y1 : · · · : Yi−1 : Yi+1 : · · · : Yn], that is

ei = Yi −YT
(−i)(Y(−i)Y

T
(−i))

−1Y(−i)Y
i.
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Define σ̂ii = 1/σ̂ii,−(i), where

σ̂ii,−(i) =
1

n− p− 1
eT

i ei,

then condition D holds for {σ̂ii}p
i=1.

The proof of this proposition is omitted due to space limitation.

We now state notations used in the main results. Let qn = |A| denote the number

of nonzero partial correlations (of the underlying true model) and let {sn} be a positive

sequence of real numbers such that for any (i, j) ∈ A: |ρij| ≥ sn. Note that, sn can

be viewed as the signal size. We follow the similar strategy as in Meinshausen and

Buhlmann (2006) and Massam et al. (2007) in deriving the asymptotic result: (i)

First prove estimation consistency and sign consistency for the restricted penalization

problem with θAc = 0 (Theorem 1). We employ the method of the proof of Theorem

1 in Fan and Peng (2004); (ii) Then we prove that with probability tending to one,

no wrong edge is selected (Theorem 2); (iii) The final consistency result then follows

(Theorem 3).

Theorem 1 (consistency of the restricted problem) Suppose that conditions C0-C1

and D are satisfied. Suppose further that qn ∼ o(
√

n
log n

), λn

√
n

log n
→∞ and

√
qnλn ∼

o(1), as n →∞. Then there exists a constant C(θ) > 0, such that for any η > 0, the

following events hold with probability at least 1−O(n−η):

• there exists a solution θ̂A,λn = θ̂A,λn(σ̂) of the restricted problem:

min
θ:θAc=0

Ln(θ, σ̂,Y) + λn||θ||1, (11)

where the loss function Ln is defined via (10).

• (estimation consistency) any solution θ̂A,λn of the restricted problem (11) satis-
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fies:

||θ̂A,λn − θA||2 ≤ C(θ)
√

qnλn.

• (sign consistency) if further assume that the signal sequence satisfies: sn√
qnλn

→
∞, n →∞, then sign(θ̂A,λn

ij ) = sign(θij), for all 1 ≤ i < j ≤ p.

Theorem 2 Suppose that conditions C0-C2 and D are satisfied. Suppose further that

p = O(nκ) for some κ ≥ 0; qn ∼ o(
√

n
log n

),
√

qn log n
n

= o(λn), λn

√
n

log n
→ ∞ and

√
qnλn ∼ o(1), as n → ∞. Then for any η > 0, for n sufficiently large, the solution

of (11) satisfies

P(θ,σ)

(
max

(i,j)∈Ac
|L′n,ij(θ̂

A,λn , σ̂,Y)| < λn

)
≥ 1−O(n−η),

where L′n,ij := ∂Ln

∂ρij .

Theorem 3 Assume the same conditions of Theorem 2. Then there exists a constant

C(θ) > 0, such that for any η > 0 the following events hold with probability at least

1−O(n−η):

• there exists a solution θ̂λn = θ̂λn(σ̂) of the `1 penalization problem

min
θ

Ln(θ, σ̂,Y) + λn||θ||1, (12)

where the loss function Ln is defined via (10).

• (estimation consistency): any solution θ̂λn of (12) satisfies:

||θ̂λn − θ||2 ≤ C(θ)(
√

qnλn).
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• (Model selection consistency/sign consistency):

sign(θ̂λn
ij ) = sign(θij), for all 1 ≤ i < j ≤ p.

Proofs of these theorems are given in the Supplemental Material. Finally, due

to exponential small tails of the probabilistic bounds, model selection consistency

can be easily extended when the network consists of N disjointed components with

N = O(nα) for some α ≥ 0, as long as the size and the number of true edges of each

component satisfy the corresponding conditions in Theorem 2.

Remark 2 The condition λn

√
n

log n
→∞ is indeed implied by the condition

√
qn log n

n
=

o(λn) as long as qn does not go to zero. Moreover, under the “worst case” scenario,

that is when qn is almost in the order of
√

n
log n

, λn needs to be nearly in the order of

n−1/4. On the other hand, for the“best case” scenario, that is when qn = O(1) (for

example, when the dimension p is fixed), the order of λn can be nearly as small as

n−1/2 (within a factor of log n). Consequently, the `2-norm distance of the estimator

from the true parameter is in the order of
√

log n/n, with probability tending to one.

6 SUMMARY

In this paper, we propose a joint sparse regression model – space – for select-

ing non-zero partial correlations under the high-dimension-low-sample-size setting.

By controlling the overall sparsity of the partial correlation matrix, space is able to

automatically adjust for different neighborhood sizes and thus to utilize data more

effectively. The proposed method also explicitly employs the symmetry among the

partial correlations, which also helps to improve efficiency. Moreover, this joint model

makes it easy to incorporate prior knowledge about network structure. We develop a

fast algorithm active-shooting to implement the proposed procedure, which can be
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readily extended to solve some other penalized optimization problems. We also pro-

pose a “BIC-type” criterion for the selection of the tuning parameter. With extensive

simulation studies, we demonstrate that this method achieves good power in non-zero

partial correlation selection as well as hub identification, and also performs favorably

compared to two existing methods. The impact of the sample size and dimensionality

has been examined on simulation examples as well. We then apply this method on a

microarray data set of 1217 genes from 244 breast cancer tumor samples, and find 11

candidate hubs, of which five are known breast cancer related regulators. In the end,

we show consistency (in terms of model selection and estimation) of the proposed

procedure under suitable regularity and sparsity conditions.

The R package space – Sparse PArtial Correlation Estimation – is available on

cran.
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(a) Hub network: 500 nodes and 568 edges. 15 nodes (in black) have degrees of
around 15.
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(b) Power-law network: 500 nodes and 495 edges. 3 nodes (in black) have degrees
at least 20.

Figure 1: Topology of simulated networks.
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(a) x-axis: the number of total detected edges(i.e., the total num-
ber of pairs (i, j) with ρ̂ij 6= 0); y-axis: the number of correctly
identified edges. The vertical grey line corresponds to the number
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400 450 500 550 600 650 700

8
10

12
14

16

Total detected edges

A
ve

ra
ge

 r
an

k 
of

 h
ub

 n
od

es

Total true edges: 568

p= 500 , n= 250
space.dew
space
space.sw
MB
glasso

(b) x-axis: the number of total detected edges; y-axis: the average
rank of the estimated degrees of the 15 true hub nodes.

Figure 2: Simulation results for Hub network.
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Figure 3: Hub network: ROC curves for different samples sizes (p = 1000).
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Figure 4: Simulation results for Power-law network. x-axis : the number of total
detected edges; y-axis : the number of correctly identified edges. The vertical grey
line corresponds to the number of true edges.
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MB: Total Edge= 420

(a) Uniform network: 500 nodes and 447 edges.
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(b) Simulation results for Uniform network. x-axis: the total number of edges de-
tected; y-axis: the total number of correctly identified edges. The vertical grey line
corresponds to the number of true edges.

Figure 5: Simulation results for Uniform networks.
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AR: Total Edge= 499

(a) AR network: 500 nodes and 499 edges.
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(b) Simulation results for AR network. x-axis: the total number of edges detected;
y-axis: the total number of correctly identified edges. The vertical grey line corre-
sponds to the number of true edges.

Figure 6: Simulation results for AR networks.
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AR: Total Edge= 500

(a) Big-circle network: 500 nodes and 500 edges.

300 400 500 600

30
0

35
0

40
0

45
0

50
0

Total detected edges

C
or

re
ct

ly
 d

et
ec

te
d 

ed
ge

s

Total true edges: 500

p= 500 , n= 250

space
MB
glasso

(b) Simulation results for Circle network. x-axis: the total number of edges de-
tected; y-axis: the total number of correctly identified edges. The vertical grey line
corresponds to the number of true edges.

Figure 7: Simulation results for Circle networks.
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(a) Network inferred from the real data (only showing components
with at least three nodes). The gene annotation of the hub nodes
(numbered) are given in Table 5.
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(b) Degree ranks (for the 100 genes with highest degrees). Dif-
ferent circles represent different genes. Solid circles: the 11
genes with highest degrees. Circles: the other genes. The
sd(rank) of the top 11 genes are all smaller than 4.62 (4.62 is
the 1% quantile of sd(rank) among all the 1217 genes), and
thus are identified as hub nodes.

Figure 8: Results for the breast cancer expression data set.
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Supplemental Material

Part I

In this section, we list properties of the loss function:

L(θ, σ, Y ) =
1

2

p∑
i=1

wi(yi −
∑

j 6=i

√
σjj/σiiρijyj)

2 =
1

2

p∑
i=1

w̃i(ỹi −
∑

j 6=i

ρij ỹj)
2, (S-1)

where Y = (y1, · · · , yp)
T and ỹi =

√
σiiyi,w̃i = wi/σ

ii. These properties are used for

the proof of the main results. Note: throughout the supplementary material, when

evaluation is taken place at σ = σ̄, sometimes we omit the argument σ in the notation

for simplicity. Also we use Y = (y1, · · · , yp)
T to denote a generic sample and use Y

to denote the p× n data matrix consisting of n i.i.d. such samples: Y1, · · · ,Yn, and

define

Ln(θ, σ,Y) :=
1

n

n∑

k=1

L(θ, σ,Yk). (S-2)

A1: for all θ, σ and Y ∈ Rp, L(θ, σ, Y ) ≥ 0.

A2: for any Y ∈ Rp and any σ > 0, L(·, σ, Y ) is convex in θ; and with probability

one, L(·, σ, Y ) is strictly convex.

A3: for 1 ≤ i < j ≤ p

L
′
ij(θ̄, σ̄) := E(θ̄,σ̄)

(
∂L(θ, σ, Y )

∂ρij

∣∣∣
θ=θ̄,σ=σ̄

)
= 0.
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A4: for 1 ≤ i < j ≤ p and 1 ≤ k < l ≤ p,

L
′′

ij,kl(θ, σ) := E(θ,σ)

(
∂2L(θ, σ, Y )

∂ρijρkl

)
=

∂

∂ρkl

[
E(θ,σ)

(
∂L(θ, σ, Y )

∂ρij

)]
,

and L
′′
(θ̄, σ̄) is positive semi-definite.

If assuming C0-C1, then we have

B0 : There exist constants 0 < σ̄0 ≤ σ̄∞ < ∞ such that: 0 < σ̄0 ≤ min{σ̄ii : 1 ≤
i ≤ p} ≤ max{σ̄ii : 1 ≤ i ≤ p} ≤ σ̄∞.

B1 : There exist constants 0 < ΛL
min(θ̄) ≤ ΛL

max(θ̄) < ∞, such that

0 < ΛL
min(θ̄) ≤ λmin(L

′′
(θ̄)) ≤ λmax(L

′′
(θ̄)) ≤ ΛL

max(θ̄) < ∞

B1.1 : There exists a constant K(θ̄) < ∞, such that for all 1 ≤ i < j ≤ p, L
′′
ij,ij(θ̄) ≤

K(θ̄).

B1.2 : There exist constants M1(θ̄), M2(θ̄) < ∞, such that for any 1 ≤ i < j ≤ p

Var(θ̄,σ̄)(L
′
ij(θ̄, σ̄, Y )) ≤ M1(θ̄), Var(θ̄,σ̄)(L

′′
ij,ij(θ̄, σ̄, Y )) ≤ M2(θ̄).

B1.3 : There exists a constant 0 < g(θ̄) < ∞, such that for all (i, j) ∈ A

L
′′
ij,ij(θ̄, σ̄)− L

′′
ij,Aij

(θ̄, σ̄)
[
L
′′
Aij ,Aij

(θ̄, σ̄)
]−1

L
′′
Aij ,ij(θ̄, σ̄) ≥ g(θ̄),

where Aij = A/{(i, j)}.

B1.4 : There exists a constant M(θ̄) < ∞, such that for any (i, j) ∈ Ac

||L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1||2 ≤ M(θ̄).
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B2 There exists a constant K1(θ̄) < ∞, such that for any 1 ≤ i ≤ j ≤ p,

||Eθ̄(ỹiỹj ỹỹT )|| ≤ K1(θ̄), where ỹ = (ỹ1, · · · , ỹp)
T .

B3 If we further assume that condition D holds for σ̂ and qn ∼ o( n
log n

), we have: for

any η > 0, there exist constants C1,η, C2,η > 0, such that for sufficiently large n

max
1≤i<k≤p

∣∣L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)
∣∣ ≤ C1,η(

√
log n

n
),

max
1≤i<k≤p,1≤t<s≤p

∣∣L′′n,ik,ts(θ̄, σ̄,Y)− L′′n,ik,ts(θ̄, σ̂,Y)
∣∣ ≤ C2,η(

√
log n

n
),

hold with probability at least 1−O(n−η).

B0 follows from C1 immediately. B1.1–B1.4 are direct consequences of B1. B2

follows from B1 and Gaussianity. B3 follows from conditions C0-C1 and D.

proof of A1 : obvious.

proof of A2 : obvious.

proof of A3 : denote the residual for the ith term by

ei(θ, σ) = ỹi −
∑

j 6=i

ρij ỹj.

Then evaluated at the true parameter values (θ̄, σ̄), we have ei(θ̄, σ̄) uncorrelated with

ỹ(−i) and E(θ̄,σ̄)(ei(θ̄, σ̄)) = 0. It is easy to show

∂L(θ, σ, Y )

∂ρij
= −w̃iei(θ, σ)ỹj − w̃jej(θ, σ)ỹi.

This proves A3.

proof of A4 : see the proof of B1.

proof of B1 : Denote ỹ = (ỹ1, · · · , ỹp)
T , and x̃ = (x̃(1,2), x̃(1,3), · · · , x̃(p−1,p)) with

x̃(i,j) = (0, · · · , 0, ỹj, · · · , ỹi, 0, · · · , 0)T . Then the loss function (S-1) can be written
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as L(θ, σ, Y ) = 1
2
||w̃(ỹ − x̃θ)||22, with w̃ = diag(

√
w̃1, · · · ,

√
w̃p). Thus L

′′
(θ, σ) =

E(θ,σ)

[
x̃T w̃2x̃

]
(this proves A4). Let d = p(p − 1)/2, then x̃ is a p by d matrix.

Denote its ith row by xT
i (1 ≤ i ≤ p). Then for any a ∈ Rd, with ||a||2 = 1, we have

aT L
′′
(θ̄)a = Eθ̄(a

T x̃T w̃2x̃a) = Eθ̄

(
p∑

i=1

w̃i(x
T
i a)2

)
.

Index the elements of a by a = (a(1,2), a(1,3), · · · , a(p−1,p))
T , and for each 1 ≤ i ≤ p,

define ai ∈ Rp by ai = (a(1,i), · · · , a(i−1,i), 0, a(i,i+1), · · · , a(i,p))
T . Then by definition

xT
i a = ỹT ai. Also note that

∑p
i=1 ||ai||22 = 2||a||22 = 2. This is because, for i 6= j, the

jth entry of ai appears exactly twice in a. Therefore

aT L
′′
(θ̄)a =

p∑
i=1

w̃iEθ̄

(
aT

i ỹỹT ai

)
=

p∑
i=1

w̃ia
T
i Σ̃ai ≥

p∑
i=1

w̃iλmin(Σ̃)||ai||22 ≥ 2w̃0λmin(Σ̃),

where Σ̃ = Var(ỹ) and w̃0 = w0/σ̄∞. Similarly aT L
′′
(θ̄)a ≤ 2w̃∞λmax(Σ̃), with

w̃∞ = w∞/σ̄0. By C1, Σ̃ has bounded eigenvalues, thus B1 is proved.

proof of B1.1: obvious.

proof of B1.2: note that Var(θ̄,σ̄)(ei(θ̄, σ̄)) = 1/σ̄ii and Var(θ̄,σ̄)(ỹi) = σ̄ii. Then for any

1 ≤ i < j ≤ p, by Cauchy-Schwartz

Var(θ̄,σ̄)(L
′
n,ij(θ̄, σ̄, Y )) = Var(θ̄,σ̄)(−w̃iei(θ̄, σ̄)ỹj − w̃jej(θ̄, σ̄)ỹi)

≤ E(θ̄,σ̄)(w̃
2
i e

2
i (θ̄, σ̄)ỹ2

j ) + E(θ̄,σ̄)(w̃
2
je

2
j(θ̄, σ̄)ỹ2

i )

+ 2
√

w̃2
i w̃

2
jE(θ̄,σ̄)(e

2
i (θ̄, σ̄)ỹ2

j )E(θ̄,σ̄)(e
2
j(θ̄, σ̄)ỹ2

i )

=
w2

i σ̄
jj

(σ̄ii)3
+

w2
j σ̄

ii

(σ̄jj)3
+ 2

wiwj

σ̄iiσ̄jj
.
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The right hand side is bounded because of C0 and B0.

proof of B1.3: for (i, j) ∈ A, denote

D := L
′′
ij,ij(θ̄, σ̄)− L

′′
ij,Aij

(θ̄, σ̄)
[
L
′′
Aij ,Aij

(θ̄, σ̄)
]−1

L
′′
Aij ,ij(θ̄, σ̄).

Then D−1 is the (ij, ij) entry in
[
L
′′
A,A(θ̄)

]−1

. Thus by B1, D−1 is positive and

bounded from above, so D is bounded away from zero.

proof of B1.4: note that ||L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1||22 ≤ ||L′′ij,A(θ̄)||22λmax([L

′′
AA(θ̄)]−2). By

B1, λmax([L
′′
AA(θ̄)]−2) is bounded from above, thus it suffices to show that ||L′′ij,A(θ̄)||22

is bounded. Since (i, j) ∈ Ac, defineA+ := (i, j)∪A. Then L
′′
ij,ij(θ̄)−L

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L

′′
A,ij(θ̄)

is the inverse of the (1, 1) entry of L
′′
A+,A+(θ̄). Thus by B1, it is bounded away from

zero. Therefore by B1.1, L
′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L

′′
A,ij(θ̄) is bounded from above. Since

L
′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L

′′
A,ij(θ̄) ≥ ||L′′ij,A(θ̄)||22λmin([L

′′
AA(θ̄)]−1), and by B1, λmin([L

′′
AA(θ̄)]−1)

is bounded away from zero, we have ||L′′ij,A(θ̄)||22 bounded from above.

proof of B2 : the (k, l)-th entry of the matrix ỹiỹj ỹỹT is ỹiỹj ỹkỹl, for 1 ≤ k < l ≤ p.

Thus, the (k, l)-th entry of the matrix E[ỹiỹj ỹỹT ] is E[ỹiỹj ỹkỹl] = σ̃ijσ̃kl+σ̃ikσ̃jl+σ̃ilσ̃jk.

Thus, we can write

E[ỹiỹj ỹỹT ] = σ̃ijΣ̃ + σ̃i·σ̃T
j· + σ̃j·σ̃T

i· , (S-3)

where σ̃i· is the p× 1 vector (σ̃ik)
p
k=1. From (S-3), we have

‖ E[ỹiỹj ỹỹT ] ‖ ≤ |σ̃ij| ‖ Σ̃ ‖ +2 ‖ σ̃i· ‖2‖ σ̃j· ‖2, (S-4)
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where || · || is the operator norm. By C0-C1, the first term on the right hand side is

uniformly bounded. Now, we also have,

σ̃ii − σ̃T
i· Σ̃

−1
(−i)σ̃i· > 0 (S-5)

where Σ̃(−i) is the submatrix of Σ̃ removing i-th row and column. From this, it follows

that

‖ σ̃i· ‖2 = ‖ Σ̃
1/2
(−i)Σ̃

−1/2
(−i) σ̃i· ‖2

≤ ‖ Σ̃
1/2
(−i) ‖ ‖ Σ̃

−1/2
(−i) σ̃i· ‖2

≤
√
‖ Σ̃ ‖

√
σ̃ii, (S-6)

where the last inequality follows from (S-5), and the fact that Σ̃(−i) is a principal

submatrix of Σ̃. Thus the result follows by applying (S-6) to bound the last term in

(S-4).

proof of B3 :

L′n,ik(θ̄, σ,Y) =
1

n

n∑

l=1

−wi

(
yl

i −
∑

j 6=i

√
σjj

σii
ρijyl

j

)√
σkk

σii
yl

k

−wk

(
yl

k −
∑

j 6=k

√
σjj

σkk
ρkjyl

j

) √
σii

σkk
yl

i.

Thus,

L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)

= −wi

[
yiyk

(√
σkk

σii
−

√
σ̂kk

σ̂ii

)
−

∑

j 6=i

yjykρ
ij

(√
σjjσkk

σii
−
√

σ̂jjσ̂kk

σ̂ii

)]

−wk

[
yiyk

(√
σii

σkk
−

√
σ̂ii

σ̂kk

)
−

∑

j 6=k

yjyiρ
kj

(√
σjjσii

σkk
−
√

σ̂jjσ̂ii

σ̂kk

)]
,
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where for 1 ≤ i, j ≤ p, yiyj := 1
n

∑n
l=1 yl

iy
l
j. Let σij denote the (i, j)-th element of the

true covariance matrix Σ. By C1, {σij : 1 ≤ i, j ≤ p} are bounded from below and

above, thus

max
1≤i,j≤p

|yiyj − σij| = Op(

√
log n

n
).

(Throughout the proof, Op(·) means that for any η > 0, for sufficiently large n, the left

hand side is bounded by the order within Op(·) with probability at least 1−O(n−η).)

Therefore

∑

j 6=i

|yjyk−σjk||ρij| ≤ (
∑

j 6=i

|ρij|) max
1≤i,j≤p

|yiyj−σij| ≤ (

√
qn

∑

j 6=i

(ρij)2) max
1≤i,j≤p

|yiyj−σij| = o(1),

where the last inequality is by Cauchy-Schwartz and the fact that, for fixed i, there

are at most qn non-zero ρij. The last equality is due to the assumption qn ∼ o( n
log n

),

and the fact that
∑

j 6=i(ρ
ij)2 is bounded which is in turn implied by condition C1.

Therefore,

|L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)|

≤ (wi|σik|+ wk|σik|) max
i,k

∣∣∣∣∣

√
σkk

σii
−

√
σ̂kk

σ̂ii

∣∣∣∣∣ + (wiτki + wkτik) max
i,j,k

∣∣∣∣∣

√
σjjσkk

σii
−
√

σ̂jjσ̂kk

σ̂ii

∣∣∣∣∣ + Rn,

where τki :=
∑

j 6=i |σjkρ
ij|, and the reminder term Rn is of smaller order of the leading

terms. Since C1 implies B0, thus together with condition D, we have

max
1≤i,k≤p

∣∣∣∣∣

√
σii

σkk
−

√
σ̂ii

σ̂kk

∣∣∣∣∣ = Op(

√
log n

n
),

max
1≤i,j,k≤p

∣∣∣∣∣

√
σjjσii

σkk
−
√

σ̂jjσ̂ii

σ̂kk

∣∣∣∣∣ = Op(

√
log n

n
).
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Moreover, by Cauchy-Schwartz

τki ≤
√∑

j

(ρij)2

√∑
j

(σjk)2,

and the right hand side is uniformly bounded (over (i, k)) due to condition C1. Thus

by C0,C1 and D, we have showed

max
i,k

|L′n,ik(θ̄, σ̄,Y)− L′n,ik(θ̄, σ̂,Y)| = Op(

√
log n

n
).

Observe that, for 1 ≤ i < k ≤ p, 1 ≤ t < s ≤ p

L′′n,ik,ts =





1
n

∑n
l=1 wi

σkk

σii yl
k + wk

σii

σkk yl
i , if (i, k) = (t, s)

1
n

∑n
l=1 wi

√
σkkσss

σii yl
sy

l
k, if i = t, k 6= s

1
n

∑n
l=1 wk

√
σttσii

σkk yl
ty

l
i, if i 6= t, k = s

0 if otherwise.

Thus by similar arguments as in the above, it is easy to proof the claim.

Part II

In this section, we proof the main results (Theorems 1–3). We first give a few lemmas.

Lemma S-1 (Karush-Kuhn-Tucker condition) θ̂ is a solution of the optimization

problem

arg min
θ:θSc=0

Ln(θ, σ̂,Y) + λn||θ||1,

where S is a subset of T := {(i, j) : 1 ≤ i < j ≤ p}, if and only if

L′n,ij(θ̂, σ̂,Y) = λnsign(θ̂ij), if θ̂ij 6= 0

|L′n,ij(θ̂, σ̂,Y)| ≤ λn, if θ̂ij = 0,
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for (i, j) ∈ S. Moreover, if the solution is not unique, |L′n,ij(θ̃, σ̂,Y)| < λn for some

specific solution θ̃ and L′n,ij(θ, σ̂,Y) being continuous in θ imply that θ̂ij = 0 for

all solutions θ̂. (Note that optimization problem (9) corresponds to S = T and the

restricted optimization problem (11) corresponds to S = A.)

Lemma S-2 For the loss function defined by (S-2), if conditions C0-C1 hold and

condition D holds for σ̂ and if qn ∼ o( n
log n

), then for any η > 0, there exist constants

c0,η, c1,η, c2,η, c3,η > 0, such that for any u ∈ Rqn the following hold with probability as

least 1−O(n−η) for sufficiently large n:

||L′n,A(θ, σ̂,Y)||2 ≤ c0,η

√
qn log n

n

|uT L′n,A(θ, σ̂,Y)| ≤ c1,η||u||2(
√

qn log n

n
)

|uT L′′n,AA(θ, σ̂,Y)u− uT L
′′
AA(θ)u| ≤ c2,η||u||22(qn

√
log n

n
)

||L′′n,AA(θ, σ̂,Y)u− L
′′
AA(θ)u||2 ≤ c3,η||u||2(qn

√
log n

n
)

proof of Lemma S-2: If we replace σ̂ by σ̄ on the left hand side, then the above

results follow easily from Cauchy-Schwartz and Bernstein’s inequalities by using B1.2.

Further observe that,

||L′n,A(θ, σ̂,Y)||2 ≤ ||L′n,A(θ, σ̄,Y)||2 + ||L′n,A(θ, σ̄,Y)− L′n,A(θ, σ̂,Y)||2,

and the second term on the right hand side has order
√

qn log n
n

, since there are qn

terms and by B3, they are uniformly bounded by
√

log n
n

. The rest of the lemma can

be proved by similar arguments.

The following two lemmas are used for proving Theorem 1.
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Lemma S-3 Assuming the same conditions of Theorem 1. Then there exists a con-

stant C1(θ) > 0, such that for any η > 0, the probability that there exists a local

minima of the restricted problem (11) within the disc:

{θ : ||θ − θ||2 ≤ C1(θ)
√

qnλn}.

is at least 1−O(n−η) for sufficiently large n.

proof of Lemma S-3: Let αn =
√

qnλn, and Qn(θ, σ̂,Y, λn) = Ln(θ, σ̂,Y) + λn||θ||1.
Then for any given constant C > 0 and any vector u ∈ Rp such that uAc = 0 and

||u||2 = C, by the triangle inequality and Cauchy-Schwartz inequality, we have

||θ||1 − ||θ + αnu||1 ≤ αn||u||1 ≤ Cαn
√

qn.

Thus

Qn(θ + αnu, σ̂,Y, λn)−Qn(θ, σ̂,Y, λn)

= {Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y)} − λn{||θ||1 − ||θ + αnu||1}

≥ {Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y)} − Cαn
√

qnλn

= {Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y)} − Cα2
n.

Thus for any η > 0, there exists c1,η, c2,η > 0, such that, with probability at least

1−O(n−η)

Ln(θ + αnu, σ̂,Y)− Ln(θ, σ̂,Y) = αnu
T
AL′n,A(θ, σ̂,Y) +

1

2
α2

nuT
AL′′n,AA(θ, σ̂,Y)uA

=
1

2
α2

nuT
AL

′′
AA(θ)uA + αnu

T
AL′n,A(θ, σ̂,Y) +

1

2
α2

nuT
A

(
L′′n,AA(θ, σ̂,Y)− L

′′
AA(θ)

)
uA

≥ 1

2
α2

nuT
AL

′′
AA(θ)uA − c1,η(αnq1/2

n n−1/2
√

log n)− c2,η(α
2
nqnn

−1/2
√

log n).

55



In the above, the first equation is because the loss function L(θ, σ, Y ) is quadratic

in θ and uAc = 0. The inequality is due to Lemma S-2 and the union bound. By

the assumption λn

√
n

log n
→∞, we have αnq

1/2
n n−1/2

√
log n = o(αn

√
qnλn) = o(α2

n).

Also by the assumption that qn ∼ o(
√

n/ log n), we have α2
nqnn

−1/2
√

log n = o(α2
n).

Thus, with n sufficiently large

Qn(θ + αnu, σ̂,Y, λn)−Qn(θ, σ̂,Y, λn) ≥ 1

4
α2

nuT
AL

′′
AA(θ)uA − Cα2

n

with probability at least 1 − O(n−η). By B1, uT
AL

′′
AA(θ)uA ≥ ΛL

min(θ̄)||uA||22 =

ΛL
min(θ̄)C

2. Thus, if we choose C = 4/ΛL
min(θ̄) + ε, then for any η > 0, for sufficiently

large n, the following holds

inf
u:uAc=0,||u||2=C

Qn(θ + αnu, σ̂,Y, λn) > Qn(θ, σ̂,Y, λn),

with probability at least 1 − O(n−η). This means that a local minima exists within

the disc {θ : ||θ − θ||2 ≤ Cαn = C
√

qnλn} with probability at least 1−O(n−η).

Lemma S-4 Assuming the same conditions of Theorem 1. Then there exists a con-

stant C2(θ) > 0, such that for any η > 0, for sufficiently large n, the following holds

with probability at least 1−O(n−η): for any θ belongs to the set S = {θ : ||θ− θ||2 ≥
C2(θ)

√
qnλn, θAc = 0}, it has ||L′n,A(θ, σ̂,Y)||2 >

√
qnλn.

proof of Lemma S-4: Let αn =
√

qnλn. Any θ belongs to S can be written as: θ =

θ + αnu, with uAc = 0 and ||u||2 ≥ C2(θ̄). Note that

L′n,A(θ, σ̂,Y) = L′n,A(θ, σ̂,Y) + αnL
′′
n,AA(θ, σ̂,Y)u

= L′n,A(θ, σ̂,Y) + αn(L′′n,AA(θ, σ̂,Y)− L
′′
AA(θ))u + αnL

′′
AA(θ))u.

By the triangle inequality and Lemma S-2, for any η > 0, there exists constants
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c0,η, c3,η > 0, such that

||L′n,A(θ, σ̂,Y)||2 ≥ αn||L′′AA(θ))u||2−c0,η(q
1/2
n n−1/2

√
log n)−c3,η||u||2(αnqnn

−1/2
√

log n)

with probability at least 1−O(n−η). Thus, similar as in Lemma S-3, for n sufficiently

large, ||L′n,A(θ, σ̂,Y)||2 ≥ 1
2
αn||L′′AA(θ))u||2 with probability at least 1 − O(n−η). By

B1, ||L′′AA(θ))u||2 ≥ ΛL
min(θ̄)||u||2. Therefore C2(θ) can be taken as 2/ΛL

min(θ̄) + ε.

The following lemma is used in proving Theorem 2.

Lemma S-5 Assuming conditions C0-C1. Let DAA(θ̄, Y ) = L′′1,AA(θ̄, Y ) − L
′′
AA(θ̄).

Then there exists a constant K2(θ̄) < ∞, such that for any (k, l) ∈ A, λmax(Varθ̄(DA,kl(θ̄, Y ))) ≤
K2(θ̄).

proof of Lemma S-5: Varθ̄(DA,kl(θ̄, Y )) = Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T )−L

′′
A,kl(θ̄)L

′′
A,kl(θ̄)

T .

Thus it suffices to show that, there exists a constant K2(θ̄) > 0, such that for all (k, l)

λmax(Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T )) ≤ K2(θ̄).

Use the same notations as in the proof of B1. Note that L′′1,A,kl(θ, Y ) = x̃T w̃2x̃(k,l) =

w̃kỹlxk + w̃lỹkxl. Thus

Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T ) = w̃2

kE[ỹ2
l xkx

T
k ] + w̃2

l E[ỹ2
kxlx

T
l ] + w̃kw̃lE[ỹkỹl(xkx

T
l + xlx

T
k )],

and for a ∈ Rp(p−1)/2

aT Eθ̄(L
′′
1,A,kl(θ̄, Y )L′′1,A,kl(θ̄, Y )T )a

= w̃2
ka

T
kE[ỹ2

l ỹỹT ]ak + w̃2
l a

T
l E[ỹ2

kỹỹT ]al + 2w̃kw̃la
T
kE[ỹkỹlỹỹT ]al.

Since
∑p

k=1 ||ak||22 = 2||a||22, and by B2: λmax(E[ỹiỹj ỹỹT ]) ≤ K1(θ̄) for any 1 ≤ i ≤
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j ≤ p, the conclusion follows.

proof of Theorem 1: The existence of a solution of (11) follows from Lemma S-3. By

the Karush-Kuhn-Tucker condition (Lemma S-1), for any solution θ̂ of (11), it has

||L′n,A(θ̂, σ̂,Y)||∞ ≤ λn. Thus ||L′n,A(θ̂, σ̂,Y)||2 ≤ √
qn||L′n,A(θ̂, σ̂,Y)||∞ ≤ √

qnλn.

Thus by Lemma S-4, for any η > 0, for n sufficiently large with probability at least

1 − O(n−η), all solutions of (11) are inside the disc {θ : ||θ − θ||2 ≤ C2(θ)
√

qnλn}.
Since sn√

qnλn
→ ∞, for sufficiently large n and (i, j) ∈ A: θij ≥ sn > 2C2(θ)

√
qnλn.

Thus

1−O(n−η) ≤ Pθ

(
||θ̂A,λn − θA||2 ≤ C2(θ)

√
qnλn, θ̄ij > 2C2(θ)

√
qnλn, for all(i, j) ∈ A

)

≤ Pθ̄

(
sign(θ̂A,λn

ij ) = sign(θij), for all(i, j) ∈ A
)

.

proof of Theorem 2: For any given η > 0, let η′ = η + κ. Let En = {sign(θ̂A,λn) =

sign(θ̄)}. Then by Theorem 1, Pθ̄(En) ≥ 1 − O(n−η′) for sufficiently large n. On En,

by the Karush-Kuhn-Tucker condition and the expansion of L′n,A(θ̂A,λn , σ̂,Y) at θ̄

−λnsign(θ̄A) = L′n,A(θ̂A,λn , σ̂,Y) = L′n,A(θ̄, σ̂,Y) + L′′n,AA(θ̄, σ̂,Y)νn

= L
′′
AA(θ̄)νn + L′n,A(θ̄, σ̂,Y) +

(
L′′n,AA(θ̄, σ̂,Y)− L

′′
AA(θ̄)

)
νn,

where νn := θ̂A,λn

A − θ̄A. By the above expression

νn = −λn[L
′′
AA(θ̄)]−1sign(θ̄A)− [L

′′
AA(θ̄)]−1[L′n,A(θ̄, σ̂,Y) + Dn,AA(θ̄, σ̂,Y)νn], (S-7)

where Dn,AA(θ̄, σ̂,Y) = L′′n,AA(θ̄, σ̂,Y) − L
′′
AA(θ̄). Next, fix (i, j) ∈ Ac, and consider

the expansion of L′n,ij(θ̂
A,λn , σ̂,Y) around θ̄:

L′n,ij(θ̂
A,λn , σ̂,Y) = L′n,ij(θ̄, σ̂,Y) + L′′n,ij,A(θ̄, σ̂,Y)νn. (S-8)
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Then plug in (S-7) into (S-8), we get

L′n,ij(θ̂
A,λn , σ̂,Y) = −λnL

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1sign(θ̄A)− L

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1L′n,A(θ̄, σ̂,Y)

+ L′n,ij(θ̄, σ̂,Y) +
[
Dn,ij,A(θ̄, σ̂,Y)− L

′′
ij,A(θ̄)[L

′′
AA(θ̄)]−1Dn,AA(θ̄, σ̂,Y)

]
νn. (S-9)

By condition C2, for any (i, j) ∈ Ac: |L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1sign(θ̄A)| ≤ δ < 1. Thus it

suffices to prove that the remaining terms in (S-9) are all o(λn) with probability at

least 1−O(n−η′) (uniformly for all (i, j) ∈ Ac). Then since |Ac| ≤ p ∼ O(nκ), by the

union bound, the event max(i,j)∈Ac |L′n,ij(θ̂
A,λn , σ̂,Y)| < λn holds with probability at

least 1−O(nκ−η′) = 1−O(n−η), when n is sufficiently large.

By B1.4, for any (i, j) ∈ Ac: ||L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1||2 ≤ M(θ̄). Therefore by Lemma

S-2, for any η > 0, there exists a constant C1,η > 0, such that

max
(i,j)∈Ac

|L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1L′n,A(θ̄, σ̂,Y)| ≤ C1,η(

√
qn log n

n
) = (o(λn))

with probability at least 1−O(n−η). The claim follows by the assumption
√

qn log n
n

∼
o(λn).

By B1.2, ||Varθ̄(L
′
ij(θ̄, σ̄,Y))||2 ≤ M1(θ̄). Then similarly as in Lemma S-2, for

any η > 0, there exists a constant C2,η > 0, such that maxi,j |L′n,ij(θ̄, σ̂,Y)| ≤
C2,η(

√
log n

n
) = (o(λn)), with probability at least 1 − O(n−η). The claims follows

by the assumption that λn

√
n

log n
→∞.

Note that by Theorem 1, for any η > 0, ||νn||2 ≤ C(θ̄)
√

qnλn with probability at

least 1−O(n−η) for large enough n. Thus, similarly as in Lemma S-2, for any η > 0,

there exists a constant C3,η, such |Dn,ij,A(θ̄, σ̂,Y)νn| ≤ C3,η(
√

qn log n
n

√
qnλn)(= o(λn)),

with probability at least 1 − O(n−η). The claims follows from the assumption

qn ∼ o(
√

n
log n

).
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Finally, let bT = |L′′ij,A(θ̄)[L
′′
AA(θ̄)]−1. By Cauchy-Schwartz inequality

|bT Dn,AA(θ̄, σ̄,Y)νn| ≤ ||bT Dn,AA(θ̄, σ̄,Y)||2||νn||2 ≤ qnλn max
(k,l)∈A

|bT Dn,A,kl(θ̄, σ̄,Y)|.

In order to show the right hand side is o(λn) with probability at least 1−O(n−η), it

suffices to show max(k,l)∈A |bT Dn,A,kl(θ̄, σ̄,Y)| = O(
√

log n
n

) with probability at least

1−O(n−η), because of the the assumption qn ∼ o(
√

n
log n

). This is implied by

Eθ̄(|bT DA,kl(θ̄, σ̄, Y )|2) ≤ ||b||22λmax(Varθ̄(DA,kl(θ̄, σ̄, Y )))

being bounded, which follows immediately from B1.4 and Lemma S-5. Finally, simi-

larly as in Lemma S-2,

|bT Dn,AA(θ̄, σ̂,Y)νn| ≤ |bT Dn,AA(θ̄, σ̄,Y)νn|+|bT (Dn,AA(θ̄, σ̄,Y)−Dn,AA(θ̄, σ̂,Y))νn|,

where by B3, the second term on the right hand side is bounded by Op(
√

log n
n

)||b||2||νn||2.
Note that ||b||2 ∼ √

qn, thus the second term is also of order o(λn) by the assumption

qn ∼ o(
√

n
log n

). This completes the proof.

proof of Theorem 3: By Theorems 1 and 2 and the Karush-Kuhn-Tucker condition,

for any η > 0, with probability at least 1 − O(n−η), a solution of the restricted

problem is also a solution of the original problem. On the other hand, by Theorem

2 and the Karush-Kuhn-Tucker condition, with high probability, any solution of the

original problem is a solution of the restricted problem. Therefore, by Theorem 1,

the conclusion follows.

60



Part III

In this section, we provide details for the implementation of space which takes ad-

vantage of the sparse structure of X . Denote the target loss function as

f(θ) =
1

2
‖Y − X θ‖2 + λ1

∑
i<j

|ρij|. (S-10)

Our goal is to find θ̂ = argminθf(θ) for a given λ1. We will employ active-shooting

algorithm (Section 2.3) to solve this optimization problem.

Without loss of generality, we assume mean(Yi) = 1/n
∑n

k=1 yk
i = 0 for i =

1, . . . , p. Denote ξi = YT
i Yi. We have

X T
(i,j)X(i,j) = ξj

σjj

σii
+ ξi

σii

σjj
;

YTX(i,j) =

√
σjj

σii
YT

i Yj +

√
σii

σjj
YT

j Yi.

Denote ρij = ρ(i,j). We now present details of the initialization step and the updating

steps in the active-shooting algorithm.

1. Initialization

Let

ρ
(0)
(i,j) =

(|YTX(i,j)|−λ1)
+
·sign(YTX(i,j))

XT
(i,j)

X(i,j)

=

(∣∣∣∣
√

σjj

σii YT
i Yj+

√
σii

σjj YT
j Yi

∣∣∣∣−λ1

)

+

·sign(YT
i Yj)

ξj
σjj

σii +ξi
σii

σjj

.

(S-11)

For j = 1, . . . , p, compute

Ŷ
(0)
j =

(√
σ11

σjj
Y1, ...,

√
σpp

σjj
Yp

)
·




ρ
(0)
(1,j)

...

ρ
(0)
(p,j)




, (S-12)
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and

E(0) = Y − Ŷ (0) =
(
(E

(0)
1 )T , ..., (E(0)

p )T
)

, (S-13)

where E
(0)
j = Yj − Ŷ

(0)
j , for 1 ≤ j ≤ p.

2. Update ρ
(0)
(i,j) −→ ρ

(1)
(i,j)

Let

A(i,j) = (E
(0)
j )T ·

√
σii

σjj
Yi, (S-14)

A(j,i) = (E
(0)
i )T ·

√
σjj

σii
Yj. (S-15)

We have

(E(0))TX(i,j) = (E
(0)
i )T ·

√
σjj

σii Yj + (E
(0)
j )T ·

√
σii

σjj Yi

= A(j,i) + A(i,j).
(S-16)

It follows

ρ
(1)
(i,j) = sign

(
(E(0))TX

(i,j)

XT
(i,j)

X(i,j)
+ ρ

(0)
(i,j)

)(∣∣∣∣
(E(0))TX

(i,j)

XT
(i,j)

X(i,j)
+ ρ

(0)
(i,j)

∣∣∣∣− λ1

XT
(i,j)

X(i,j)

)

+

= sign

(
A(j,i)+A(i,j)

ξj
σjj

σii +ξi
σii

σjj

+ ρ
(0)
(i,j)

)(∣∣∣∣
A(j,i)+A(i,j)

ξj
σjj

σii +ξi
σii

σjj

+ ρ
(0)
(i,j)

∣∣∣∣− λ1

ξj
σjj

σii +ξi
σii

σjj

)

+

.
(S-17)

3. Update ρ(t) −→ ρ(t+1)

From the previous iteration, we have

• E(t−1): residual in the previous iteration (np× 1 vector).

• (i0, j0): index of coefficient that is updated in the previous iteration.

• ρ
(t)
(i,j) =





ρ
(t−1)
(i,j) if (i, j) 6= (i0, j0), nor (j0, i0)

ρ
(t−1)
(i,j) −∆ if (i, j) = (i0, j0), or (j0, i0)
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Then,

E
(t)
k = E

(t−1)
k for k 6= i0, j0;

E
(t)
j0

= E
(t−1)
j0

+ Ŷ
(t−1)
j0

− Ŷ
(t)
j0

= E
(t−1)
j0

+
∑p

i=1

√
σii

σj0j0
Yi(ρ

(t−1)
(i,j0) − ρ

(t)
(i,j0))

= E
(t−1)
j0

+
√

σi0i0

σj0j0
Yi0 ·∆;

E
(t)
i0

= E
(t−1)
i0

+
√

σj0j0

σi0i0
Yj0 ·∆.

(S-18)

Suppose the index of the coefficient we would like to update in this iteration is (i1, j1),

then let

A(i1,j1) = (E
(t)
j1

)T ·
√

σi1i1

σj1j1
Yi1 ,

A(j1,i1) = (E
(t)
i1

)T ·
√

σj1j1

σi1i1
Yj1 .

We have

ρ
(t+1)
(i,j) = sign

(
A(j1,i1)+A(i1,j1)

ξj
σj1j1

σi1i1
+ξi1

σi1i1

σj1j1

+ ρ
(t)
(i1,j1)

)

×
(∣∣∣∣

A(j1,i1)+A(i1,j1)

ξj
σj1j1

σi1i1
+ξi1

σi1i1

σj1j1

+ ρ
(t)
(i1,j1)

∣∣∣∣− λ1

ξj
σjj

σii +ξi
σii

σjj

)

+

.
(S-19)

Using the above steps 1–3, we have implemented the active-shooting algorithm

in c, and the corresponding R package space to fit the space model is available on

cran.
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