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Abstract

Genetic models for gene-covariate interaction are described. Methods of linkage analysis
that utilize special features of these models and the corresponding score statistics are derived.
Their power is compared with that of simple genome scans that ignore these special feature,
and substantial gains in power are observed when the gene-covariate interaction is strong.
Quantitative trait mapping in randomly ascertained sibships and affected sibpair mapping are
discussed. For the latter case, a simpler statistic is proposed that has similar performance
to the score statistic, but does not require the estimation of nuisance parameters. Since the
nuisance parameters are not estimable solely from affected sibpair data, this statistic would be
much easier to apply in practice. Similarities with linkage analysis of models for longitudinal
data and multivariate phenotypes are also briefly discussed. Approximations for the p-value

and power are derived under the framework of local alternatives.
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1 Introduction

The genetic control of a complex or quantitative trait is widely thought to involve a number of loci,
which may interact with one another and/or with environmental covariates. Standard genome
scanning methods usually ignore these possibilities, presumably because they involve larger, more
complex models and/or because of difficulties in formulating a suitable model. A number of
recent papers that explicitly consider gene-gene interactions include Cox et al. [1999], Cordell et
al. [1995, 2000], and Tang and Siegmund [2002].

Gene-covariate interactions involve a much richer, and more speculative, set of possible mod-
els. Blangero and colleagues have developed components of variance methods for quantitative
trait analysis, which includes the possibility of including gene-environment or more generally
gene-covariate interactions (cf. Blangero and Almasy [1997], Towne et al. [1997], Almasy and
Blangero [1998], and references cited therein). In these papers different covariates are modeled
nonparametrically by the inclusion of appropriate variance components; but neither adjustment
of the significance threshold to compensate for the increased number of parameters nor the power
of the resulting statistics seems to have been studied systematically. If only additive variance
components are considered in a nonparametric analysis, for each quantitative trait locus (QTL)
a two valued covariate requires three variance components, and more generally a covariate that
can take k different values requires k(k + 1)/2 different variance components. Since the number
of variance components grows rapidly with the number of distinct values of the covariate, this
approach seems to be intrinsically limited.

Gene-covariate interactions for qualitative traits are studied by Greenwood and Bull [1999],
Olson [1999], Gauderman and Siegmund [2000], and Schaid et al. [2001]. The models analysed
typically invoke assumptions about how the covariates affect the probability of identity by descent.
They are not derived from a penetrance model for the joint effect of genotype and covariate on
the phenotype, which is the customary starting point for genetic models that do not include gene-
covariate interactions. In some cases covariates have been assumed to be a property of pedigrees
and are used to deal with population heterogeneity. See Schaid et al. [2003] for a review of a
variety of approaches and additional references.

The primary purpose of this paper is to develop genetic models for gene-covariate interaction



and to investigate the extent to which methods utilizing such models can in principle increase
the power of family based linkage analysis. We consider quantitative traits from sibship data
and qualitative traits involving affected sib pairs, which we study by treating the penetrance of
the qualitative trait as a quantitative trait. We first describe a simple model for gene-covariate
interaction; then we derive the score statistic for this model and compare its performance to the
“naive” statistic that ignores the interactions. While the score statistic, computed under the
correct model, can be expected to have the largest possible noncentrality parameter, the model
involves more degrees of freedom, hence requires a larger significance threshold to control the false
positive error rate, and consequently does not always lead to greater power. For qualitative traits,
it turns out that there are nuisance parameters that cannot be estimated from data on affected sib
pairs alone. Hence we consider a “simplified” statistic that uses some of the information provided
by the covariates, and we then use the score statistics as a device for determining how much
information has been lost through this process. As in Tang and Siegmund [2001, 2002] we use
the framework of local alternatives employed in large sample statistical theory. This allows us
to obtain computable expressions for asymptotic noncentrality parameters and hence to compare
the power of different strategies. We find that when there is gene-covariate interaction, very large
sample sizes can be required to detect linkage, but use of an appropriate model can lead to large
savings in the necessary sample size. This finding contrasts with our earlier studies of gene-gene
interaction, where we found that properly accounting for the interaction could have a beneficial
but surprisingly limited effect.

Technical results concerned with genome-wide p-values and power are discussed in an Ap-

pendix.

2 Methods

Models for quantitative traits with randomly sampled pedigrees. We begin with a model for
a quantitative phenotype Y studied in randomly sampled pedigrees. The same model can be
used in ascertained pedigrees (cf. Peng and Siegmund [2004]; Peng [2004]); it also applies to the

penetrance of a qualitative trait and will be discussed in this context below. The model for Y is



given by

Y=p+b"w+ ¥ (a(r) + wly(r)) +e. (2.1)

The summation is over different QTL 7, which we assume are unlinked, and for simplicity act
additively without gene-gene interactions. The vector w denotes covariate measurements, which
take a fixed value for each individual and in random samples from the population are assumed
to be independent of the other random terms in the model. For example, w may include a 0-
1 variable coding for smoker/non-smoker or it may contain the measured values of continuous
variables. The additive genetic effects at the trait locus 7 are a(7), which is insensitive to the
covariate, and the vector y(7), which interacts multiplicatively with w. By changing the values
of ;4 and b, if necessary, we can without loss of generality assume the genetic effects have mean 0.
We also assume that the residual e, which can contain unmodeled genetic effects, is uncorrelated
with the the explicitly modeled terms. The model could also include terms to describe dominance
effects and gene-gene interactions, if these are thought to be important.

It is often convenient and simplifies the formulas derived below to assume that w has been
standardized so that population moments satisfy Ew = 0 and Eww” = I, the identity matrix.
Although the parameters b and 03 = E[y(7)y(r)T] are not uniquely defined unless w has been
standardized, our preferred standardization is not the only possibility. When we want to dis-
tinguish between the standardized and the original covariates, we write @ to denote the original
covariates.

For most of the numerical examples below w is one dimensional. For the case that w is one
dimensional and two valued, the model (2.1) is equivalent to a completely non-parametric model
[Towne et al. 1997].

We now summarize some basic calculations of variances and covariances. Results that are
conditional on w would be the same whether w is standardized or not, but for the unconditional
results we have assumed that w is standardized in order to simplify the resulting formulas. Con-
sider an arbitrary locus on the right-hand-side of (2.1). For simplicity of notation in what follows
we suppress the dependence of parameters on the trait locus 7, except when we want to emphasize
this dependence. Let 02 = E(a?), 04y = E(ay) and 02 = E(y?) be the locus-specific variance

components. In the general case that w is a vector, 0,4 is also a vector and 0’,2y is a matrix. Let



Vaa = 302, Voy = 304y and Vi = 3 agy be the genome-wide variance components. Observe
that if w is standardized the phenotypic variance is 02 = Var(Y) = b2 + Voo + trV,, + o2
For future reference we define the overall genetic heritability H? and the locus specific genetic
heritability h? by H? = [Vaq + trV,]/03 and h* = [0, + tro2] /o3, respectively.

Let v = v(t) denote the number of alleles shared identical by descent (IBD) at the marker locus
t by two sibs with phenotypes Y7 and Y5 and covariates wy and we. We assume that markers
are fully informative. It is straightforward to use standard software for multipoint analysis to
adapt our methods for partially informative markers. We expect on the basis of simulations in
related models [Peng, et al., 2003] that numerical results would be very similar, but attaining the
same power would require very roughly 5-25% larger sample sizes (depending on the density and
informativeness of markers and whether parents are also genotyped).

For standardized or non-standardized w, by calculations along the lines of Tang and Siegmund

[2001, 2002] E(Y |w) = p + bTw, and

ol =Var(Yw) = Vo + 2w Vg +w! Vyyw + 02,
Cov(Y1, Yo | w1, wa) = Vaa/2+ (w1 +wa)! Vir /2 +wi Voqws/2 + ra?, (2.2)
Cov(Y1, Yz | wi,wa,v(7)) = Cov(Y1,Ys | wi,w)

+ [ + (w1 + wa)" Bo + wi yowa)(v(7) — 1),

where ag = 02/2, By = 04y/2, and g = 03 /2 are defined in terms of the locus specific variance
components, and r is the residual correlation between siblings. The null hypothesis is that «q, 7o,
and fy all equal 0. Let R, = Ewjwi. By taking expectations in (2.2), we obtain expressions
for the correlation p = corr(Y1,Ys2) and conditional correlation p, = corr(Y1,Y2 | v) : p =

Vaa/2 + tr[(V77/2 + bbT)Rw] + TU?]/U%’ and p, = p + [ag + tr(vRy)] (v — 1)/0'%'

Example. Assume that at each QTL each individual has a one dimensional (not standardized)
covariate w that is either 1, with probability p, or 0, with probability ¢ = 1 — p, and that the

model is given by

Y =4+ wy+e. (2.3)



In this model of interaction, genetic effects are present in individuals having the “right” covariate.

If we write this in the form (2.1) with a standardized covariate w, we have y = i+ Y pEy,w =

(w—p)/(p0)/?, b= (pg)'2E5, ~= (pg)"/*(7 — E7), «=p(7— E7). In this case,

1/2 .

a:fo:vo=p:(pg) " :q. (2.4)

For a two-valued covariate this model is equivalent to a nonparametric model that (for each QTL
7) directly assigns three different variance components to sib pairs according as (i) both have the
covariate value 1, (ii) both have the covariate value 0, or (iii) they have different covariate values.
For covariates taking three or more values, the suggested model has fewer variance components
than a nonparametric model, which must have different variance components for each covariate
value separately and for all possible pairs of values.

The parameter p has no physical interpretation when w has more than two values. We continue
to use it for the numerical examples in Table I below as a simple way to specify the relative values
of the parameters in (2.4). Although this restricts the parameter space to be a two dimensional
subspace of the three dimensional space, additional simulations (not shown) suggest that this

restriction does not put an important limitation on the insights derived from that table.

Remark. In the model of the example, each individual has an associated covariate value, and
we expect that corresponding covariates of sibs will be positively correlated. An assumption of
0 correlation might be appropriate if a covariate is an indicator of sex. At the other extreme,
correlation of one between sibs would make the value of the covariate a characteristic of the
sibship, which would be appropriate to model heterogeneity, where we assume there are different
mutations occurring at varying frequencies in different families. In this special case one could

combine By and -y into a single parameter, so two parameters at each QTL would suffice.

Naive statistic

For later comparisons we are interested in a robust version of the simple score statistic of Tang
and Siegmund [2001], which does not take the covariate into account. To provide a fair comparison
for our numerical studies, we assume that for the simple score statistic, we do account for the
effect of the covariate on the mean by introducing it into the model as a regressor. Failure to

take this covariate effect into account would result in an approximately 10%-30% increase in the



sample size because of increased phenotypic variability (data not shown). This effectively means
that we can assume the regression parameter denoted by b in equation (2.1) is zero, which we do in
the numerical example that follows. In order to simplify the notation, we also assume henceforth
that w is one dimensional.

The robust score statistic, is obtained as follows: (i) calculate the efficient score ¢, for the
model (2.1) assumed to have no gene-covariate interactions, (ii) calculate the conditional vari-
ance of £, given the phenotypes, then (iii) substitute for unknown segregation parameters their
maximum likelihood estimates obtained under the condition oy = 0, By = 0, 79 = 0. For the
simplest case of a sample of N sib pairs, the score statistic is most easily described in terms of
D = (Y1 —Y5)/2Y2? and § = (Y1 + Y3 —2u)/2'/2. (Recall that here we have taken b = 0; otherwise
Y; should be replaced by Y; — bw;.) The score statistic at a putative trait locus ¢ is (cf. Tang and
Siegmund [2001])

2(t) = La(®)/13_ Ca/2'?, (2.5)

where £, (t) = X [vn(t) — 1]C, and C,, = p/(1 — p?) + S2/[26% (1 + p)?] — D% /[26% (1 — p)?]. Since
we do not know the position of the trait locus 7, for a genome scan we use maxy Z(t), where the

max extends over all marker loci ¢. The asymptotic noncentrality of Z(7) is
(N/2) 2[00 + 70 Ruloy (1 + p2) /(1 — p%)? [ [BoC?) /2,

The value of EgC? = Eg[Eo(C?|wi, wsz)] depends on the true distribution of C. TFor the
computations reported below, we take (Y1, Ys) to be conditionally, given (wy,ws), bivariate normal

with variances and covariance given by (2.2).

Score statistics

We now turn our attention to statistics that incorporate the covariate w. We consider sibships
of size s and proceed as in Tang and Siegmund [2001, 2002]. We adopt the working model
of variance components analysis, that within each sibship YT = (¥7,Y5,---Y;) is conditionally
multivariate normal given the environmental variables and the pairwise identity by descent counts
at a trait locus. For notational simplicity, we assume that ;4 = 0 = b and let X, , denote the

conditional covariance matrix, the entries of which are given by (2.2). Observe that %, , =



Yw + agAy + BoBy,y + Y0lw,, where the elements of 3, are given in the first and second lines
of (2.2), A, has entries v; ; — 1 (by convention v;; — 1 = 0), By, has entries (w; + w;)(v;; — 1),
and I'y,, has entries w;w;(v; ; — 1).

Denoting the log likelihood function by £, we find by differentiation that for the linkage param-
eters wp, o, Yo the components of the score vector at a putative trait locus ¢ under the hypothesis

that ag =0, By =0, v9 =0 are

L(t) = 27 {—tr(3,'A) +tr(Z,' 4,2, YY)},
n

La(t) = 271> {~tr(Sy Buy) + tr(25 By Sy YY), (2.6)
n

L) = 271 {—tr(S, Tw,y) + tr(35 Ty S5 Y YT}
n

For the segregation parameters Vya, Vay, etc., which we denote generically by s, the compo-

nents of the score vector are of the form
(t) = 271> {—tx[S, 10,1 /0s) + tr[S, 1 (05,1 /0s) S, Y Y T}
n

Since they do not involve the identity by descent counts, v;; — 1, they are uncorrelated with
24,2, and £.,. Hence by standard likelihood theory (e.g., Cox and Hinkley [1974] p. 324), for the
evaluation of noncentrality parameters in the asymptotic theory to follow, the nuisance parameters
can be regarded as known.

Additional calculations yield related quantities of interest, e.g., the normalizing matrix for
the robust test statistic or the Fisher information matrix F,, under the normality assumption.
In general these quantities involve the entries 0%/ of the matrix X! or their expectations with
respect to the distribution of w? = (wy,---,w,) and cannot be exhibited explicitly, although they
are easily evaluated numerically either for empirical implementation or for theoretical analysis.

For example, the aa entry of F, is

Tnaw = B(GJw) = 4713 [(037)? + oyl al); (2.7)
"t



for I,y each term on the right hand side of (2.7) is multiplied by w;w;; for Igg,, each term is
multiplied by (w; + w]-)Q, etc. For a robust score statistics in the spirit of Tang and Siegmund
[2001], we could normalize the efficient score by conditioning (2.7) and related quantities on Y as
well as w.

To test g = Bo = 0 = 0, we first define the score vector £y(t) = (£a(t),s5(t),4,(t))T.
Let Q(t) be the quadratic form derived from /£4(t)F, '44(t), by (i) replacing unknown variance
components in F,, ! by their maximum likelihood estimates under the condition cg = By = g = 0,
and by (ii) constraining the statistic by the inequalities ap > 0 and 79 > 0. (A third constraint,
|Bo| < (aofyo)l/ 2 will be ignored for mathematical simplicity.) See Appendix A for a more complete
description. For a genome scan we use max; Q(t), where the maximum is taken over all marker
loci. Under the multivariate normality assumption, large sample statistical theory (e.g., Cox and
Hinkley [1974], p. 324) implies the asymptotic noncentrality of Q(t) at t = 7 is the Mahalanobis
norm of # = (ayg, Bo,Y0)” with respect to the Fisher information matrix F,,, i.e., &, = (67 F,0)'/2.
When N is large, by the law of large numbers N~!F,, will approximately equal its expectation,
taken with respect to the distribution of w, which we denote by F. For the power calculations

given below the noncentrality parameter is taken to be the unconditional value ¢ = (N7 F6)/2.

Remarks. (a) Several other genetic problems lead naturally to similar models. For example, a
bivariate phenotype naturally involves two variance and one covariance component. The noncen-
trality parameters of the score statistic would satisfy constraints that are similar to the constraints
arising from the model (2.1). See Wang [2003] or Turner et al. [2004]. A similar model could
be developed to deal with longitudinal data. Equation (2.1) would represent the simplest pos-
sible model, with genotypic effects that are linear in time. See Rabinowitz and Shea [1997] for
a non-genetic example, also Harville [1977] and Laird and Ware [1982] for discussions of param-
eter estimation. (b) For mapping QTL using pedigrees ascertained through phenotypes and/or
covariates of probands, the robust score statistic has the same form as before. Ascertainment
corrections should be used to obtain estimates of nuisance parameters. See, for example, Peng
[2004] and Peng and Siegmund [2004]. (c) Although the analysis above can be applied to general
pedigrees, we have focused on sib pairs in the numerical examples to follow. Since this leads to

very large sample sizes, it is useful to recall that an effective technique for reducing sample sizes
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in QTL mapping is to target large sibships/pedigrees (e.g., Tang and Siegmund [2001]). (d) The
preceeding score statistics are derived from the ideal case of fully informative markers. Since the
efficient score (2.6) in the QTL case and the efficient score (2.9) for the affected sibpair mapping
are both linear in ;; — 1, when markers are partially informative, the corresponding efficient scores
involve replacement of the v;; by their conditional means, ©;; = E(v;;|M ), where M is the marker
genotype data. The naive statistic (2.5) and the simple statistic (2.10) can be altered for partially
informative markers in the same way. Standardization of these statistics involves estimation of

the variance of 7;; (cf. T.Cuenco et al. [2003]).

Qualitative traits

Suppose now that the model (2.1) gives the penetrance of a 0-1 trait and consider a sample of
N independent affected sib pairs. Viewing the penetrance of the qualitative trait as a quantitative
trait value, one finds from (2.2) and calculations like those of James [1971], Risch [1990], and Tang

and Siegmund [2002] that the log likelihood function is

DD =iy log{ E(V1Ya w1, wy) + (i — 1)[ag + (wy + wg) o + wiwayo]}]- (2.8)

The first component of the score vector evaluated at a putative trait locus t, with cg = By = v9 = 0
is

la(t) = D _[(v(t) — 1)/E(YV1Yalwr, wo)]; (2.9)

n
and the other components are also easily evaluated (cf. (2.6)). The expression E(Y1Ys|wq,ws),
which arises from conditioning on the event that the sibs are affected, is a linear combination of
1, w1 + we, and wywy (cf. display (2.2)), the coefficients of which must be estimated if we are to
use (2.9) and its companions g and £, as the basis for a test statistic. However, these coefficients,
which are population parameters, cannot be estimated from data on only affecteds. For the same
reasons, we do not have unbiased estimators of the mean and variance of the covariate w.
Because of these difficulties in evaluating the score statistic, we consider the three dimensional

simplified statistic obtained by neglecting the denominator in (2.9) and in the corresponding
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formulas for /g, £,, and by reverting to non-standardized covariates. Let

(X1() = & (0(0) - ) fa(n, )
X(t) = § Xalt) = X (0) - Dfa(in, ) (2.10)
X3(t) = 5 (v1t) ~ 1) ol ),

S
Il
—

where f1, fo and f3 are weight functions, to be specified later, that depend on the non-standardized

covariate w. For each sib pair put
F1,19) = (f1(1,1002), fo (i1, Ba), f3(W1,d2))", fo(dy,1ia) = (1,41 + 12, B1102)" .

The three dimensional simplified statistic is the special case f = fo(w1,w2). We shall also be in-
terested in the two dimensional simplified statistic obtained as the special case f = (1,71 +
W9,0)T. As indicated in (2.9), the score statistic is the special case of (2.10), where f =
fo(wy,we)/C (w1, ws), Cwi,ws) = E(Y1Ya|wy,ws), and w; = (; — pg)/[Var(w)]/2.

When there is only a single, two-valued covariate, so the model (2.1) is equivalent to a
completely nonparametric model, the noncentrality parameters of all true, unrestricted three-
dimensional statistics of the form of equation (2.10) are the same, so in this special case the
simplified statistic has the same noncentrality as the score statistic (proof omitted). This makes
sense intuitively because each statistic has three degrees of freedom. We find in numerical exam-
ples, some of which are described below, that under a broad range of conditions the score statistic
and the simplified statistic have comparable noncentrality parameters, so the simplified statistic
is only marginally less powerful than the score statistic.

At unlinked markers the conditional covariance of X (¢) given covariates is
Fy =213 f(1,d2) f7 (1, B2). (2.11)
n

Its expectation is NF', where

1 1

F = §E(f(w1,w2)fT(w1,w2)|Y1Y2 =1)= mE(f(u?l,wQ)fT(wl,'u?g)C(wl,wg)). (2.12)

12



Here we have introduced the abuse of notation Y;Y2 = 1 to indicate conditioning on the event
that both sibs are affected, although strictly speaking Y; is not an indicator of affected status but
the penetrance, i.e., the conditional expectation of the indicator of affected status given genotype
and covariates.

At a trait locus 7 the conditional noncentrality (given covariates) of X (7) defined in (2.10)

equals

91 Z f(@1,@2)fg(w1,w2)

0 =: B,b,
C(wl, ’w2)

say, where 8 = (g, fo,70)7 . Its unconditional expectation is

N

WE[f(wl,@2)fg(w1,w2)]9 =: NB6. (2.13)

As a test statistic we consider the maximum over markers ¢ of the quadratic form ||Z(¢)|| =
[XT(t)F;' X (t)]'/2, restricted by the requirements that the variance components be nonnega-
tive, as described in Appendix A. Its conditional noncentrality parameter at the trait locus 7 is
[0 B F. ' B,,0]'/2, which by the law of large numbers ~ [N6T BTF~1B6]'/2 as N — oc.

For the three dimensional score statistic, F,, would be the Fisher information matrix and
By, = F,. The conditional noncentrality parameter at 7 would be [#” F,,0]'/2, and by the law of
large numbers the unconditional noncentrality would be ~ [N9TF6]'/2. As noted above, this F,,
contains unknown population variance components, which cannot be estimated on the basis of a
sample consisting only of affected sib pairs and their covariates. Nevertheless, this case provides a
standard of comparison for our simplified statistics, for which (2.11) shows that the corresponding

F,, do have known values.

3 Results

For our numerical examples we assume an idealized human genome of 22 autosomes of 150 cM
each and an intermarker spacing of 1cM. We have performed similar calculations for a 10 cM
intermarker spacing with very similar results.

The parameters ag, 3o, 70 satisfy the constraints g > 0,79 > 0, and 82 < apyp. Using these

constraints, we derive in Appendix A approximations for the p-value and for the power of our
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statistics. The approximation to the p-value depends on the numerical value of an angle g,
defined by cos(tpg) = corr(£y, £y |lg, w). If the covariance matrix of the statistic (in this case the
conditional Fisher information matrix given the covariates) were diagonal, so the indicated partial
correlation would be zero, this angle would be 7/2, but in general it depends on the model and
the covariates.

For the three dimensional score statistics in Tables I and II, we have used the value 1y = ,
which we show in Appendix A is an upper bound and hence provides a conservative approximation.
We find that the threshold to maintain a 5% false positive rate is b = 4.66, and the required
noncentrality for 90% power is ¢ = 5.58. By way of contrast, for the one dimensional naive
statistic, the corresponding values would be b = 3.91 and ¢ = 4.99 [Tang and Siegmund, 2001].
Since these noncentrality parameters are proportional to the square root of the sample size, the
higher threshold of the three degree of freedom statistic means that at a given trait locus if there
is in fact no gene-environment interaction, there will be a loss of power, amounting to a loss of
about 25% of the sample size ((5.58/4.99)2 — 1 = 0.25).

If we are willing to assume that the partial correlation between £, and £, given /g is non-
negative, then 9y < 7/2, which would lead to a lower threshold of about 4.5 and a noncentrality
parameter of 5.4 to achieve 90% power. Simulations (data not shown) indicate that 7/2 is often
an approximately correct value, although it is not generally conservative.

For the three degree of freedom simplified statistic the threshold and noncentrality are slightly
different: b = 4.71 and £ = 5.63; for the two degree of freedom statistic they are b = 4.38 and
¢ =5.39. See Appendix A for details.

For a first numerical example we consider a quantitative trait that satisfies (2.3) and the
constraint (2.4). Assume the overall heritability H? = 0.5 and the locus-specific heritability
h? = 0.25 at 7. Table I shows the number of sib pairs required for the naive statistic, which
ignores the gene-covariate interactions, and for the true score statistic for different values of p
and R,. (Recall that in the case that (wi,ws) is normally distributed p is a formal parameter
that indicates the relation (2.4) among «y, Sy, Yo-) For a trait having this overall heritability and
locus specific heritability, if there were no gene-covariate interaction the required sample size
would be ~ 2650 sib pairs [Tang and Siegmund, 2001]. From Table 1 we see that when R,, is

large, sibs tend to have similar covariate values, and it makes little difference whether we include
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the covariates in our statistic or not. When R,, is small, and especially when p is also small, the
detection of linkage is intrinsically difficult and both methods require large sample sizes. The
results are roughly the same for two-valued and normally distributed covariates.

We have also considered the possibility of using a two degree of freedom statistic consisting of
only two of the three coordinates of the score statistic, but we have found that for the range of
parameter values considered in Table 1 this simplification sometimes results in a substantial loss
of power.

We now consider 0-1 traits studied via affected sib pairs. The results are qualitatively similar,
although there are some significant differences. We tried a number of different models, and
found results that were similar to what we obtained for the following basic model, which we
first formulate without covariate effects and then modify in different ways by multiplying genetic
effects of the basic model by nonstandardized covariates. For the basic model there are two
unlinked disease susceptibility loci. The penetrances are additive at each locus, and each disease
susceptibility allele has a population frequency of 0.05 with a penetrance of 0.25. There are no
phenocopies. If this were a simple heterogeneous trait, without covariate interaction, a 1 cM
genome scan based on the one dimensional score statistic would require a sample size of about
410 to have power 0.9 to detect each locus individually (hence power 0.81 to detect both loci).

For one variant, we considered a simple heterogeneity model, obtained by assuming that the
covariate effectively splits the population into identifiable subgroups, with each subgroup more
likely to be linked to a particular locus. In particular, we take the model (2.3), with @, the
0-1 valued covariate before standardization, multiplying the penetrance of one locus and 1 — @
multiplying the penetrance of the other, so (2.3) becomes Y = i+ w1 + (1 — W)Y, + e. We assume
r = 0, so, in particular, there are no residual genetic effects. For such locus heterogeneity it is
natural to assume the covariate is an attribute of the pedigree, i.e., that R,, = 1. In this case the
true score statistic would be two dimensional, so we consider only that case. It turned out that
the score statistic (essentially equivalent in this case to the two dimensional simplified statistic)
is substantially better than the naive statistic over most of the range of parameters tested and
never more than marginally worse. For example, suppose p = 1/2 and the mean and variance of
41 are the same as those of 4». Then the naive statistic requires a sample size of 292 sib pairs to

achieve 90% power, while the two dimensional score statistic needs only 170.
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For a second example, we assume that the first locus is affected by a two-valued covariate,
as in the preceding example, but the second locus does not interact with the covariate, so (2.3)
becomes Y = i + w1 + F2 + e. We again assume that 4; and 42 have the same first two moments,
and r = 0. In this case the naive statistic performs relatively better, although it can still be very
much inferior to the score statistic to detect the covariate sensitive first locus. Results are given
in Table II, where we have also included the two dimensional simplified statistic, based on just
the first two coordinates of the three dimensional simplified statistic. Throughout most of the
range of the table the two dimensional statistic is actually better than the three dimensional score
statistic. This occurs because the noncentrality of the two dimensional statistic is almost as large
as that of the score statistic, while the significance threshold is smaller. This differs from the
results reported in Table I, where we were unable to find a two dimensional statistic that seemed
competitive with the score statistic.

Note also that while the gene-covariate interaction, however it is treated, requires large, some-
times very large sample sizes for successful detection of Locus 1, surprisingly small sample sizes
suffice to detect Locus 2, which is not affected by the covariate. Although the naive statistic
always outperforms the other statistics at Locus 2, those statistics do derive a small amount of
information from the covariate. If we modify the model by adding the possibility that the pene-
trance is affected by the environmental variable alone by including a term of the form bw in the
penetrance, then it is possible for the score statistic to outperform the naive statistic at Locus 2,
even though the penetrance at Locus 2 is itself unaffected by the covariate (data not shown).

When the covariate is normally distributed (and we suspect for other continuous unimodal
distributions as well), we found, in contrast to the results in Table I, very little gain in using any
multidimensional statistics. This is presumably because a normally distributed covariate with
variance sufficiently small that the penetrance remains restricted to [0,1] does not sufficiently
stratify the data. For continuous bimodal and for both discrete and continuous trimodal dis-
tributions for the covariate, the results were similar to those in Table II, although the sample
sizes at Locus 1 could be substantially larger. For example, for a discrete trimodal distribution
concentrated at 0,1/3,1 with probabilities 0.25, 0.5, and 0.25, and R,, = 0, the sample sizes at
Locus 1 for the naive, simplified two dimensional, simplified three dimensional and score statistics

are respectively 4209, 2685, 2732, and 2607. A more complete description of these models and
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detailed numerical results are given in Peng [2004].

4 Discussion

In this paper we have discussed models for gene-covariate interaction and statistical methods to
exploit special features of these models. For the simplest of these models, involving a single covari-
ate, there are three variance components (instead of one for a model with no covariate interaction),
and their overall contribution to the trait variance is a quadratic function of the covariates. We
have developed approximations, which may be slightly conservative, for the thresholds required
to maintain a desired genome wide false positive error rate. Because of the larger number of pa-
rameters the significance thresholds must be higher, and hence a larger noncentrality is required
before a significant gain in power is realized. If the components of variance associated with the
interaction are negligible, there can be a loss of power equivalent to a loss of roughly 25% of
the sample size relative to the naive statistic (15% if a less conservative threshold or if the two
dimensional statistic is used). If the gene-covariate interaction is strong and correctly modeled,
a substantial gain in power is achieved. For quantitative traits studied via random samples of
sibships, some numerical exploration of the parameter space shows that one cannot in general
reduce the dimensionality of the statistics without a significant loss of power in some cases.

Although our basic model in (2.1) is quadratic, by a Taylor series expansion it can be regarded
as a rough approximation to a much more complex model. Because of the potential loss of power
if the covariates are inappropriate or if they are measured on an inappropriate scale, and the
potentially larger gain in power if the interaction is large and the model appropriate, model
selection will play an important role in translating these results into practice. For quantitative
traits, model fitting at a genomewide level requires only phenotype and covariate data, and can
be based on standard statistical software. See, for example, Rabinowitz and Shea [1997], who,
adapting methods of Harville [1977] and Laird and Ware [1982], apply our segregation model in a
(non-genetic) longitudinal setting. The problem of covariate selection here is similar to the same
problem in multiple regression analysis, and many of the same ideas can be applied.

For qualitative traits using affected sib pairs, we have observed that certain nuisance parame-

ters entering into the likelihood function cannot be estimated on the basis of data from affected sib
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pairs alone, which complicates both model selection and linkage analysis. To deal with the latter
problem we have suggested two and three dimensional simplified statistics that do not involve
estimation of those parameters. These simplified statistics are related to what Schaid et al. [2003]
call regression statistics, although we do not make any assumption of homoscedasticity. The two
dimensional simplified statistic is similar to the linear trend statistic favored by Gauderman and
Siegmund [2000]. For the range of models we have explored numerically, we find that the three
dimensional simplified statistic is usually about as powerful as the score statistic, and the two
dimensional simplified statistic can be more powerful than the three dimensional simplified statis-
tic. This latter conclusion appears to be roughly consistent with the conclusions of Gauderman
and Siegmund [2000].

In comparison with gene-gene interaction, the problem of gene-covariate interaction is sub-
stantially more difficult, since the number of covariates and the number of ways they can interact
is essentially unlimited. However, the possibilities to gain substantial statistical power by cor-
rectly modeling gene-covariate interaction appear to be greater. To obtain some insight into this
difference, consider a quantitative trait and suppose there is additive-additive gene-gene inter-
action between two unlinked genes. According to Tang and Siegmund [2002], the noncentrality
parameter of the one dimensional score statistic to test for a marginal effect at a single locus has
a noncentrality parameter at the trait locus proportional to 02 /2 + o2, /4, where o2 denotes the
locus specific additive variance and o2, denotes the additive-additive interaction variance. This
can be compared with the noncentrality parameter of the naive statistic of Section 2, which is
proportional to 02 /2 + Rwag /2. While the second variance component in both these expressions
involves the interaction and can be larger than the additive variance component of the first term,
in the case of gene-gene interaction, the coeflicient of the interaction variance component comes
from correlation of identity-by-descent at the two loci, which is determined by Mendelian segre-
gation. A certain fraction of the interaction variance component forms part of the noncentrality
of the marginal statistic, and the amount of additional linkage information that can be obtained
by explicitly modeling the gene-gene interaction is limited. The correlation R,, is not restricted,
and as our numerical examples show, especially when R, is small, the impact of the interaction
variance component on the noncentrality parameter of the naive statistic is also small, and there

is substantial additional linkage information to be extracted by using a multidimensional statistic.
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Finally, we note that our results indicate yet another possible reason for the acknowledged
difficulty in replicating linkage findings for complex diseases. If there is gene-covariate interaction,
covariate heterogeneity between study populations can have a large effect on noncentrality pa-
rameters, so that a locus that is comparatively easily detected in one population could be difficult
to detect in another.
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Appendix A: Significance level and power

In this appendix, we state some approximations for the p-value and power of our scan statistics.
Similar results for one and two degrees of freedom are obtained by Feingold et al. [1993] and
Dupuis and Siegmund [2000]. Additional details are given in Tang [2000].

It will be convenient to write the parameters in the order # = (g, ag,v)”. By large sample

theory, at a true trait locus 7, the score vector £y(7) := (£5(7), £a(T), 4y (T))T

is approximately
normal with mean vector F# and covariance matrix F, where F' = (I;;) denotes the Fisher
information matrix. (Here and below, for notational convenience we are suppressing dependence
on the covariates.) Let F' = LLT be the Cholesky decomposition of F. Then Z = (Z,, Z, Z3)T =
L7144 is approximately normal with mean vector ¢ = L79 and identity covariance matrix. As
processes, Z;(t), i = 1,2,3, are (asymptotically) independent Gaussian processes.

To find the lower triangular matrix L, write ' = DRD, where R is the correlation matrix of

1/2 ,1/2 71

Ly, with entries rog = corr({y,£g), etc., and D = diag(IBﬂ , Ion ,Ifyf/yQ). By forming the Cholesky

decomposition of R, we get

1 Tap T8y
=10 (1- 7”(213)1/2 (ray = Taprsy) /(1 — 7'3,3)1/2 D.
0 0 [1-— ’I‘%,Y — (ray — ra/gr/gy)Z/(l - Téﬂ)]l/Z

From this, we see that the constraints oy > 0, 9 > 0 translate into &3 > 0, &2 > &3 cot 1y, where
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o € [0, 7] satisfies

Tay — TapTp
(1— T2;)1/2(i — 7% RE = corr(la, Ly | £g). (A.1)
@ gl

cos g =

These constraints define a region in Z-space whose projection on the unit sphere is contained in
a region A bounded by two semi-circular arcs of great circles. These arcs may be thought of as
longitudinal lines on the Earth separated by 1y radians. There is an additional constraint that
follows from the inequality 82 < g, which reduces the size of the true parameter space to a
subset A of A. We will neglect this third constraint whenever argZ € A. For a genome wide
search, we use the constrained statistic max; Q(t), where @ = ||Z|| for argZ € A, and is otherwise
the length of the one dimensional projection of Z onto the cone defined by A. Since the region A
is larger than strictly necessary, this leads to a conservative approximation.

Assume that markers are equally spaced at intermarker distance A cM. Using the method
developed by Feingold et al. [1993] and Dupuis and Siegmund [2000], we obtain for a single

chromosome of length £ cM the approximation
P{max Q(iA) > b} ~ b%e /2 fu{(2/m)/? (o /2m)b + 1/[b(2m)/2]},
7

where 8 = 0.04/cM and v = v[b(28A)Y/?]. The function v is a special function that can be
easily computed numerically. For relatively small z, say 0 < z < 2, it is given approximately
by v(z) ~ exp(—0.583z). See Siegmund [1985]. One can improve this approximation slightly by
adding as an end correction for the first marker on a chromosome the amount (1o/2m)P(x3 >
b)+(1/2)P(x1 > b), where xj denotes a x random variable with & degrees of freedom. If we denote
by Q. the single chromosome approximation, the whole genome approximate p-value would be
1 —exp(— 2, Qc)-

For the numerical results of Tables I and II we have taken A = 1 ¢cM and have used the
conservative value ¥y = m, leading to the threshold of 4.66 for the three dimensional score statis-
tics. Using the approximation for the power given below, we find that a noncentrality parameter
of about 5.58 is required to guarantee 90% power. If we are willing to assume that the partial

correlation in (A.1) is non-negative, then 1y < 7/2, which would lead to a threshold of about
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4.5 and a noncentrality parameter of 5.4. In practice one might estimate )y (as a function of the
covariate values).

For dealing with bivariate traits linked to the same locus, as outlined in the Methods section,
we have found numerically that 1 /2 is usually close to /2. This is consistent with the numerical
calculations of Wang [2003]. Turner et al. [2004] have stated that 7/2 is the appropriate value.
Although this appears not to be mathematically correct, it does seem adequate in practice.

A slightly different argument leading to weaker constraints is required for the three dimen-
sional simplified statistic defined in (2.10). Let § = (g, 0,%)- The asymptotic noncentrality
parameter of Z(7) = L' X (1) is proportional to L~'B#, where F defined in (2.12) has LL” as its
Cholesky decomposition and B is the matrix defined in (2.13). The first row of B is proportional
to (1,0, Ry) with a positive constant of proportionality. If we assume, as seems reasonable that
R, > 0, then the first entry in B is ap + R,y > 0, and hence the first entry in L=1B6 is
nonnegative. This leads to the constraint on Z that its first entry be nonnegative, which amounts
to putting 99 = 7 in the preceding case. When Z; < 0, we suggest projecting Z onto the two
dimensional boundary (although when R,, > 0, one might consider a projection to the origin). A
similar argument applies to the two dimensional simplified statistic. The genome wide significance
thresholds for the three and two dimensional simplified statistics are 4.71 and 4.38, which require
noncentrality parameters of 5.63 and 5.39, respectively, to achieve 90% power.

We calculate the power under the alternative & = EZ(7) # 0. The resulting formula is quite
simple in the case that the QTL is at a marker. For simplicity, we also assume that arg & lies
in the interior of A, which will be the case when our model is correct, so ag, 5y and g are all
different from 0. See Dupuis and Siegmund [2000] for the kind of modification required when this

is not the case. From the decomposition
P{max Q(iA) > b} = P{Q(7) > b)} + E[P{max Q(iA) > b | Z(7)}; Q(7) < b], (A.2)
we obtain as an approximation for the power

1-8(0—€) + zo(b— O + golb - O % — 7
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where v = v[b(28A)/2].
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Table I: Quantitative Traits: Number of sib pairs for naive and score statistics.

The general model is given by equation (2.1). We assume that H? = 1/2 and h% = 1/4 at the

primary locus. The column headed “naive” is the sample size for the statistic (2.5). The columns

headed “two-point” are the sample sizes when the covariate is two-valued. The columns headed

“normal” are the sample sizes when the standardized covariates are bivariate normal within sib

pairs with correlation R,,, and the noncentrality parameters satisfy relation (2.4). For this case

the noncentrality parameters are determined by simulations with 105 samples.

Two-point Normal
P R, P Naive Score Naive Score
0.75 1.0 0.25 2792 2960 3044 3460
0.9 0.244 2953 3254 3180 3576
0.5 0.219 3728 3626 3849 4083
0.1 0.194 4801 4093 4798 4690
0 0.188 5134 4230 5096 4866
0.5 1.0 0.25 3104 2975 3332 3604
0.9 0.238 3473 3356 3658 3824
0.5 0.188 5682 4251 5725 4717
0.1 0.138 10430 5797 10507 5680
0 0.125 12508 6377 12677 5942
0.25 1.0 0.25 4038 3534 3504 3698
0.9 0.231 4781 4095 4056 4030
0.5 0.156 10388 6061 8782 5267
0.1 0.081 33761 11655 32729 6268
0 0.063 53741 15152 55376 6456

25



Table II: Qualitative Traits: One Locus Interacts.

Locus 1 interacts with a two-valued covariate. The penetrance of the second locus is unaffected by
the covariate. For other details of the model see the text. The entries under the columns “Naive”,
“2d-simp” and “3d-score” are sample sizes required for 90% power in a genome scan with markers
spaced at 1 cM for the one dimensional naive, two dimensional simplified, and three dimensional
score statistics, as defined in the text. Note that in this case, since there is only a single two-valued
covariate, the three dimensional score statistic and the three dimensional simplified statistic have

essentially the same power.

Locus 1 Locus 2

P R, p Naive  2d-simp 3d-score Naive 2d-simp 3d-score
0.75 1.0 0.255 525 536 536 295 301 301
0.9 0.252 542 548 584 290 296 316

0.5 0.239 623 599 626 268 276 294

0.1 0.226 733 654 679 248 256 273

0 0.223 767 668 694 243 251 268

0.5 1.0 0.259 818 669 669 204 200 200
0.9 0.254 879 703 744 198 195 209

0.5 0.234 1245 883 885 175 177 189

0.1 0.214 2026 1199 1129 153 160 171

0 0.208 2367 1318 1220 148 156 166

0.25 1.0 0.259 2087 1069 1069 130 133 133
0.9 0.254 2371 1162 1221 127 130 140

0.5 0.236 4260 1811 1705 113 120 129

0.1 0.2181 15086 4149 3080 100 111 118

0 0.213 24683 5983 3940 96 108 115
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