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Abstract 
Rare variants are believed to play important roles in disease etiology. Recent 
advances in high throughput sequencing technology enable one to systematically 
characterize the genetic effects of both common and rare variants. In this paper, we 
introduce several approaches which simultaneously test the effects of common and 
rare variants within a SNP set based on logistic regression models and logistic kernel 
machine models. Gene-environment interactions and SNP-SNP interactions are also 
considered in some of these models. We illustrate the performance of these methods 
using the unrelated individual data from Genetic Analysis Workshop 17. Three true 
disease genes, FLT1, PIK3C3, and KDR, have been consistently selected by the 
proposed methods. In addition, compared to logistic regression models, the logistic 
kernel machine models are more powerful, presumably because the latter reduce 
effective number of parameters through regularization. Our results also suggest that, a 
screening step is effective in decreasing the number of false positive findings which is 
often a big concern for association studies. 

Background 
High-throughput sequencing technologies have been evolving extraordinarily fast in 
the past few years. They have been recently applied to genome-wide association 
studies (GWAS) to study the effects of both common and rare variants. The different 
natures of these two types of variants call for distinct methods. For common variants, 
association tests based on individual SNPs are still widely used. However, such 
approaches suffer from multiple comparison problems and do not take into account 
possible interactions among variants. To overcome these limitations, SNP set based 
analysis have been developed for testing the joint effect (either linear or nonlinear) of 
variants within a SNP set. For instance, in [1], a kernel machine based method is 
proposed for association studies, which is flexible in modeling various interactions 
and nonlinear effects. In [2], similarity scores of genotypes between pairs of 
individuals are first derived using a kernel and then these scores are used as the 
response variable in an ANOVA model to establish association between genotypes 
and phenotypes. Such methods tend to be more powerful and flexible than individual 
SNP analysis. While many GWAS studies in the past focus on common variants, it is 
now widely believed that, for complex diseases, rare variants are more likely to be 
functional than common variants [3]. Since rare variants usually have very low 
marginal effects, multiple rare variants within a SNP set (e.g., a gene or a pathway) 
are thus often combined into a single variable to be used in tests for association. For 
example, [4] propose a method by collapsing multiple rare variants to a single 
indicator recording whether the genome contains any rare variant for the SNP set 
under consideration or not; [5] propose a weighted sum score where the weight for 
each variant indicator (0-absent, 1-present) is proportional to the inverse of its 
estimated standard deviation in the population. An overview of the rare variants 
collapsing methods is provided by [6].  
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In order to effectively detect the association signals, it could be beneficial to jointly 
model the common and rare variants, as well as account for correlations among both 
variants. For this purpose, in this paper, we introduce several methods to jointly 
model the common and rare variants within a SNP set. Note, throughout this paper, 
SNPs with minor allele frequency less than 1% are treated as rare variants and all 
other SNPs are treated as common variants. We start with logistic regression models 
including gene-environment interaction terms, and derive score statistics for testing 
the presence of any marginal or interaction effects. We then consider logistic kernel 
machine models which can incorporate both interactions among SNPs and 
gene-environment interactions. This model is an extension of the method proposed in 
[1,7]. We also introduce a summary score for combining common variants based on 
the idea of principal fitted components [8], which is then used to reduce 
dimensionality of the logistic regression model. We then use the 200 independently 
simulated data sets for unrelated individuals from GAW17 [9] to illustrate these 
methods, where a SNP set is defined as the observed SNPs (common and rare) within 
a gene. We also employ a two-stage procedure consisting of a screening stage and a 
testing stage when analyzing the GAW17 data. The results suggest that the kernel 
machine methods enjoy better power than the score tests, and the screening stage 
helps to reduce the number of false positive findings. 

Methods 
Logistic regression models and score tests   

For the ith individual (i = 1,· · ·,n), let response ݕ௜ be 0 if unaffected, and 1 if affected. 
Let ௜ܺ be a q×1 covariates vector (including an intercept term), ݖ௜ be a p × 1 vector 
of SNP genotypes (or summary scores) for a given gene (SNP set) under testing, and 
 ௜ be the environment covariate which is also included in ௜ܺ. We consider the logisticݏ
regression model with gene-environment interactions, 
௜ሻ݌ሺݐ݅݃݋݈                ൌ ௜ܺ

ߚ் ൅ ௜ݖ்ܽ ൅ ௜ݏ · ,௜ݖ்ܾ ݅ ൌ 1, ڮ , ݊,            (1) 
where ݌௜ ൌ Pr ሺݕ௜ ൌ 1| ௜ܺ, :଴ܪ ௜ሻ. The goal is to test the null hypothesisݖ ܽ ൌ ܾ ൌ 0, 
and we consider the corresponding score statistic. For a detailed derivation and 
expression of the score statistic, see [10] 
 
Logistic kernel machine models   

Following [7, 1], we now extend (1) to a semi-parametric logistic regression model 
௜ሻ݌ሺݐ݅݃݋݈             ൌ  ௜ܺ

ߚ் ൅ ݄ሺݖ௜ሻ ൅ ௜ݏ · ݃ሺݖ௜ሻ, ݅ ൌ 1, ڮ , ݊,                   (2) 
where ݄ሺ·ሻ and ݃ሺ·ሻ belong to reproducing kernel Hilbert spaces ܪ௄ and ܪ௄෩  
generated by kernels ܭሺ·,·ሻ and ܭ෩ሺ·,·ሻ, respectively. Considering penalized 
likelihood, ݄ሺ·ሻ and ݃ሺ·ሻ can be estimated by 

൫ ෠݄, ො݃൯ ൌ ுאு಼,௚א௛ݔܽ݉݃ݎܽ  ෩಼ ቄ∑ ቀݕ௜ log ቀ
௣೔

ଵି௣೔
ቁ ൅ log ሺ1 െ ௜ሻቁ݌ െ

ଵ

ఒ
௡
௜ୀଵ ԡ݄ԡு಼

ଶ െ
ଵ

ఒ෩
ԡ݃ԡு ෩಼

ଶ ቅ     (3) 

Following [7], the above solutions have the same form as the Penalized 
Quasi-Likelihood estimators from the logistic mixed model: 
௜ሻ݌ሺݐ݅݃݋݈              ൌ ௜ܺ

ߚ் ൅ ݄௜ ൅ ௜ݏ · ௜݃ , ݅ ൌ 1, ڮ , ݊,                      (4) 

where ݄௜~௜.௜.ௗ. ௡ܰሺ0, ଵ

ఒ
.ሻ, ݃௜~௜.௜.ௗܭ ௡ܰሺ0, ଵ

ఒ෩
ܭ ෩ሻ, andܭ ؔ ሺܭሺݖ௜, ෩ܭ ,௝ሻሻݖ ؔ
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ሺܭ෩ሺݖ௜, ߬ ௝ሻሻ, and ݄௜’s and ݃௜’s are independent. Denoteݖ ൌ ̃߬ and ,ߣ/1 ൌ  ,ሚ. Nowߣ/1

testing the null hypothesis of no genetic effects ܪ଴: ݄ሺ·ሻ ൌ ݃ሺ·ሻ ൌ 0 in (2) can be 
reformulated as testing the absence of the variance components ܪ଴: ߬ ൌ ߬̃ ൌ 0 in 

model (4). As in [7, 1], we consider the (two-dimensional) test statistic ܳכ ൌ ቀொഓ
כ

ொഓ෤
 ቁכ

based on the score statistic of ሺ߬, ߬̃ሻ. The two components of ܳכ can be 

approximated by scaled chi-square distributions ߢఛ
ሺజഓሻ߯כ

כ
ଶ ఛ෤ߢ ,

ሺజഓ෤߯כ
ሻכ

ଶ , respectively, 

through matching the means and variances [7]. Finally, we construct a combined test 

statistic ܳ௠௔௫
כ ൌ max ሺொഓ

כ

఑ഓ
כ , ொഓ෤

כ

఑ഓ෤
 ሻ. The corresponding p-value is thenכ

p-valueൌ 1 െ ఞమሺܳ௠௔௫ܨ
כ , ߭ఛ

ሻכ · ఞమሺܳ௠௔௫ܨ
כ , ߭ఛ෤

 ,ሻכ

where ܨఞమሺ·, ߭ሻ is the cumulative distribution function of a chi-square distribution 

with ߭ degrees of freedom. For detailed derivations and expressions of ܳߢ ,כఛ
ఛ෤ߢ ,כ

 ,כ

߭ఛ
and ߭ఛ෤ ,כ

,௜ݖ൫ܭ ,.෩ are linear kernels, i.eܭ and ܭ see [10]. Note, when both ,כ ௝൯ݖ  ൌ

,௜ݖ෩൫ܭ ௝൯ݖ  ൌ ௜ݖ
 ௝, models (1) and (2) have the same form. However, they are treatedݖ்

differently and consequently the corresponding test statistics are different. 
 
Summary score for common variants   

For a gene with p common variants, we introduce a summary score: 
.݉݉݋ܿ         ௜݁ݎ݋ܿݏ ؔ ∑ ௜௞ܫ · ௞̂݌ሺݐ݅݃݋݈

஺ሻ/݈ݐ݅݃݋ሺ̂݌௞
௎ሻ௣

௞ୀଵ , ݅ ൌ 1, ڮ , ݊,                (5) 
where ܫ௜௞= the number of times the kth variant being observed in the ith individual; 

௞̂݌
஺ ൌ

݉௞
஺ ൅ 1

2݊஺ ൅ 2
, ௞̂݌

௎ ൌ
݉௞

௎ ൅ 1
2݊௎ ൅ 2

, 

with ݉௞
஺, ݉௞

௎ being the number of times the kth variant being observed among 
affected and unaffected individuals respectively; and ݊஺, ݊௎ being the total numbers 
of affected and unaffected individuals, respectively. This summary score is derived 
based on the idea of principal fitted components for dimension reduction [8]. 
 
Two-stage procedure  

We propose a two-stage procedure to analyze the GAW17 data. In the screening stage, 
genes that do not show any statistical significance are filtered out. The main purpose 
of this stage is to achieve dimension reduction and at the same time to retain genes 
that are more likely to be associated with the disease. In the testing stage, we apply 
various methods described above to test the subset of genes that have passed the 
screening criteria. 
Stage I: Screening  In this stage, both genetic effects and gene-environment 
interaction effects are investigated, while common and rare variants are handled 
differently. Common variants are tested in the three sub-populations (i.e., European, 
Asian and African) separately, while rare variants are studied based on the whole 
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population. For each gene, the genotypes of the common variants (coded as 0, 1, 2 
denoting the number of minor alleles) are treated as a vector and a Hotelling’s T2 test 
is used to test whether there is a mean difference between the affected and unaffected 
individuals [4]. For rare variants, weighted-sum scores [5] are derived for the 
synonymous and non-synonymous groups, respectively, denoted by WS.syn and 
WS.nonsyn. Then a two-dimension Hotelling’s T2 test is performed based on WS.syn 
and WS.nonsyn. To test gene-environment interactions, we consider the null 
hypothesis, ݎݎ݋ܥሺܩ, ܻ|ܧ ൌ 0ሻ ൌ ,ܩሺݎݎ݋ܥ ܻ|ܧ ൌ 1ሻ. We take the difference between 
Fisher’s z-transformations of sample correlations for the affected and unaffected 

groups as the test statistic: ܶ ൌ log ቀଵା஼௢௥௥෣ ሺீ,ா|௒ୀଵሻ

ଵି஼௢௥௥෣ ሺீ,ா|௒ୀଵሻ
ቁ െ log ሺଵା஼௢௥௥෣ ሺீ,ா|௒ୀ଴ሻ

ଵି஼௢௥௥෣ ሺீ,ா|௒ୀ଴ሻ
ሻ. 

Again, instead of testing each variant individually, we use combined scores for both 
common variants (5) and rare variants (the weighted sum score) and test 
gene-environment interactions for each SNP set as a whole. In addition, for rare 
variants, we only consider the non-synonymous variants. 
     In all the above tests, the p-values are determined through permuting disease 
status (while keeping the total numbers of affected and unaffected individuals 
unchanged). Finally, genes are deemed to pass the screening and become candidates 
for the testing stage if they have (unadjusted) p-values smaller than a pre-specified 
threshold (e.g. 0.1) for at least one of the above tests. 
 
Stage II: Testing  In this stage, two kinds of models are considered — logistic 
regression models (1) and logistic kernel machine models (4). For all models, the 
covariates vector consists of age, sex, two principal component scores to account for 
population structures (see Results section for more details), as well as an 
environmental factor – the smoke status. For rare variants, we further introduce a 
combined weighted-sum score: 

WS.combined = WS.syn + 2WS.nonsyn, 
where non-synonymous variants receive more weights. 
     For logistic regression models, two different scenarios are considered for the 
common variants, one using the original genotypes (referred to as logistic regression) 
and the other using the common score (5) with the weights calculated based on the 
corresponding screening data set (referred to as logistic common.score). In addition, 
WS.combined is used for both scenarios. Finally, score statistics are calculated and the 
p-values are determined by theoretical ߯ଶ distributions. 
     For logistic kernel machine models (4), the original genotypes are used for 
common variants. We consider two different schemes for the kernels. One uses linear 
kernels for both ܭ and ܭ෩, and the other uses quadratic kernel for ܭ which models 
interactions among variants and linear kernel for ܭ෩. One would expect that quadratic 
kernel is more powerful if there are SNP-SNP interactions, while linear kernel may be 
more powerful if such interactions are absent. For the quadratic kernel case, 
WS.combined is used and the method is referred to as quad rare.WS.combined. While 
for the linear kernel case, two scenarios are considered for combining rare variants, 
one using WS.combined (referred to linear rare.WS.combined), another using 
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WS.nonsyn (referred to as linear rare.WS.nonsynonymous). Moreover, for the kernel 
machine methods, the weighted sum scores for rare variants and the genotypes of the 
common variants are both standardized (to have mean zero and standard deviation one) 
before model fitting. 
     In total, we consider five different methods in the testing stage, which are 
summarized in Table 1. 
 

Results 
GAW17 Data description 

The GAW17 data we analyzed in this paper have 200 replicates, each consisting of 
data for 697 unrelated individuals. The genotypes, age and sex of these individuals are 
from real studies and are kept fixed across the 200 replicates. One environmental risk 
factor – the smoke status and a binary disease status were simulated for each replicate 
[9]. Moreover, in all these replicates, the total numbers of affected and unaffected 
individuals are fixed to be 209 and 488, respectively, which reflects the population 
prevalence of this disease. 
     The 697 individuals were from seven different sources: Denver-Chinese, 
Han-Chinese, Japanese, Luhya, Yoruba, CEPH, and Tuscan. Through principal 
component analysis on about 1000 common variants (distance൒50,000 bp) with 
minor allele frequency (MAF) larger than 10%, the first two principal components 
clearly divide the sample into three distinct clusters, corresponding to African (Luhya 
and Yoruba), Asian (Chinese and Japanese) and Caucasian (CEPH and Tuscan). 
     The genotype data consist of 24487 SNPs from 3205 genes on 22 autosomal 
chromosomes. MAF for 74% of SNPs is less than 1%. In our analysis, these are 
treated as rare variants, while all other SNPs are treated as common variants. 
Moreover, 2208 genes contain at least one common variant and the maximum number 
of common variants within a gene is 52. 2476 genes contain at least one rare variant 
and the maximum number is 179. 162 rare variants are removed from the subsequent 
analysis since they only appear in one individual. Genes with rare variant event 
occurring in < 1% individuals are removed and 2534 genes are left for subsequent 
analysis. In the end, genotypes are coded as 0, 1 and 2, indicating the number of 
minor alleles at each locus. 
 
Findings  

We randomly divide the 200 simulated replicates into 100 pairs. For each pair, one 
data set is used for screening and the other is used for testing. Across the 100 
screening date sets, if 0.1 threshold is used, the mean number of genes passing 
screening is 1307 and eight genes (RUNX2, MUC3A, TMEM67, NIBP, AKAP2, 
GOLGA1, USP5, and FLT1) are selected at least 95 times. If the 0.05 threshold is 
used, the mean number of genes passing screening is 824 and one gene (FLT1) is 
selected 95 times. For each pair of screening and test data sets, 
genes that pass the screening step are tested using the five methods described in the 
previous section. P-values are adjusted by the Holm’s procedure [11] which is an 
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improvement of the Bonferroni’s procedure and controls the family wise error rate 
(FWER). A gene is then said to be selected by a method, if its corresponding adjusted 
p-value is less than 0.1. Throughout the 100 pairs of screening and test data sets, if 
threshold 0.1 is used in the screening step, then four genes (FLT1, PIK3C3, KDR, 
PRR4) are selected for more than 10 times by at least one of the five testing methods. 
In contrast, if no screening is employed (i.e., all 2534 genes are passed to the testing 
stage), nine genes are selected for more than 10 times by at least one of the five 
testing methods. The selection frequencies of these genes are illustrated in Figure 1. 
As can be seen there, Gene FLT1 is selected over 40 times by linear 
rare.WS.combined, and over 50 times by linear rare.WS.nonsynonymous. Moreover, 
Gene PIK3C3 and Gene KDR are selected for about 20 times by linear 
rare.WS.combined and quad rare.WS.combined, respectively. Note, quadratic kernel 
model is capable of capturing some of the SNP-SNP interaction effects, while the 
linear kernel model does not. Thus, quadratic kernel working better for Gene KDR 
may imply that there are potential SNP-SNP interaction effects in this gene, which 
may result from the complicated disease model and/or correlation structure among the 
SNPs. Compared with the kernel machine methods, the two logistic regression 
methods give less consistent results in terms of gene selection across the replicates. 
Furthermore, summarizing information of common variants by common.score seems 
to improve the power of the logistic regression model slightly. 
     Gene FLT1 is on chromosome 13, and it contains 35 SNPs, among which 25 are 
rare variants. Applying the logistic regression model with gene-environment 
interaction (1) on the first replicate indicates that the (common) variant C13S523 
associates with disease status highly significantly (nominal p-value= 0:000817). This 
variant is non-synonymous with MAF being 6.7%. The weighted sum score of the 
rare variants in FLT1 also shows evidence of association (nominal p-value= 0.0033). 
Gene KDR is on chromosome 4 with 14 rare variants and 2 common variants. Gene 
PIK3C3 has 7 variants, 6 rare and 1 nonsynonymous common variant. It also seems 
that this common variant is the reason that Gene PIK3C3 is picked by linear 
rare.WS.combined about 20 times across the 100 replicates. 

The above results were obtained without the knowledge of the underlying disease 
model. Afterwards, we examine the GAW17 simulation model [9]. It turns out that, 
FLT1, PIK3C3, KDR are true disease susceptible genes. However, other genes 
reported in Figure 1 are not directly related to disease status. By comparing the top 
and bottom panels in Figure 1, it appears that the procedure with screening step is 
effective in eliminating such genes. A closer look of the results reveals that, these 
genes are mainly filtered by the screening step. For instance, Gene TAS2R48 was 
detected as a significant gene among 18 (out of 100) data pairs by the 
linear.rare.WS.combined method when no screening is applied. However for 15 out 
of 18 pairs, TAS2R48 would not pass the screening step if 0.1 threshold was used. 

 

Conclusions 
In this paper, we consider SNP set analysis for detecting disease susceptible variants 
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using exon sequence data. In large scale association studies, there is often a necessity 
to combine information across variants to improve detection power. This is especially 
the case for rare variants. In this paper, we adopt the weighted sum score by [5] to 
summarize information across rare variants within each SNP set. In addition, we 
propose a summary score based on principal fitted components [8] to combine 
information across common variants. Moreover, large number of variants also poses 
challenges such as multiple comparisons, modeling various interactions, etc. To 
address this issue, we extend the logistic kernel machine methods in [1, 7] to include 
gene-environment interactions. Compared to logistic regression models, the logistic 
kernel machine models are more powerful, which estimate the degrees of freedom in a 
data adaptive way by accounting for correlations among the SNPs. Thus they reduce 
the effective number of parameters and consequently enjoy improvements in power. 
Kernel machine models also have greater degrees of flexibility in modeling 
interactions and nonlinearity. We also apply a two-step procedure consisting of a 
screening stage and a testing stage to the GAW17 data. The results suggest that, the 
screening stage is effective in decreasing the number of false positive findings which 
is often a big concern for association studies. 
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Figures 
Figure 1 - Frequently selected genes and their selection frequencies.  

For each gene, the height of the bar represents the number of times it’s being selected 
across the 100 screening-testing pairs. Top panel: 0.1 threshold in screening stage; 
Bottom panel: No screening. 

 

Tables 
Table 1 - Methods in the testing stage. 

Method Model Kernel Common variants Rare variants 

logistic regression logistic regression NA genotypes WS.combined 

logistic common.score logistic regression NA common.score WS.combined 

linear rare.WS.combined kernel machine linear genotypes WS.combined 

linear rare.WS.nonsynonymous kernel machine linear genotypes WS.nonsyn 

quad rare.WS.combined kernel machine quadratic genotypes WS.combined 
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Figure 1: Frequently selected genes and their selection frequencies. For each gene, the height of the bar
represents the number of times its being selected across the 100 screening-testing pairs. Top panel: 0.1 threshold
in screening stage; bottom panel: No screening.
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