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Use of a robust score statistic based on a variance components
model to map quantitative trait loci in randomly sampled pedi-
grees is reviewed. Sibships ascertained through a single proband
are discussed. Under a standard assumption of multivariate nor-
mality, two suggested methods of ascertainment correction are
shown to be asymptotically equivalent when the number of
sibships is large.

A seminal contribution to mapping quantitative trait loci
(QTL) in humans is the regression method of Haseman and

Elston (1). In the past decade this method has, to a considerable
degree, been superceded by variance component methods (e.g.,
refs. 2–6), which are typically more flexible with regard to
pedigree structure and more powerful (e.g., refs. 7 and 8). A
recent regression-based contribution that contains many of the
positive features of variance component methods is provided by
Sham et al. (9). See Feingold (10) for a review of and additional
references to a rapidly expanding literature.

Although the basic theory associated with these methods
presupposes that pedigrees are randomly sampled, in practice,
they are often ascertained through one or more probands having
particular phenotypic values, e.g., a proband who has an extreme
phenotype, perhaps by virtue of being affected by a disease for
which the quantitative trait is a diagnostic marker.

This article reviews recent methodological developments in
QTL mapping derived under the assumption of random sam-
pling and gives a more detailed analysis of one simple ascer-
tainment method. We begin by reviewing some basic theory,
which is closely related to and combines features of both
regression and variance components methods. In particular, we
review the argument of Tang and Siegmund (11) that a particular
parameterization and systematic use of the large-sample statis-
tical theory of score statistics allows one to compute explicitly
what would otherwise be very complicated expressions, and,
consequently, to understand results that previously were inferred
from extensive numerical simulations. Comparison with Regres-
sion Methods: Miscellaneous Remarks contains a brief compari-
son of our method with regression-based methods along with
discussion of the underlying assumptions and ways to deal with
violations of those assumptions. In Ascertainment we build on the
results of first sections to give an analysis of single ascertainment,
in particular, a demonstration that two apparently different
methods of ascertainment correction (2, 12) are asymptotically
equally powerful when the number of pedigrees is large. The case
of an arbitrary number of probands and more complete numer-
ical results will be discussed elsewhere. The final section contains
a discussion of the implications and limitations of our ascertain-
ment corrections.

Description of the Model
We assume Hardy–Weinberg and linkage equilibrium through-
out. This assumption means, in particular, that, for both markers
and QTL, haplotypes within the same locus and genotypes
among different loci are stochastically independent. Our basic
model goes back to the classic article by Fisher (13) for the case

of diallelic genes; the general case is discussed by Kempthorne
(14). We assume a QTL exists at the genomic location �. The
phenotypic value Y is assumed to be given by

Y � � � �x � �y � �x, y � e. [1]

The mean value � can also accommodate covariates in the form
of a linear model with minor changes to what follows. The
parameter �a � �a(�) denotes the additive genetic effect of
allele a at locus �; �a,b denotes the dominance deviation of alleles
a and b. A subscript x denotes the allele contributed by the
mother, whereas a subscript y refers to the father. By standard
analysis of variance arguments, we may assume that E�x �
E�y � E(e) � E[�x,y�x] � E[�x,y�y] � 0. Since by the assumption
of Hardy–Weinberg equilibrium x and y are independent (unless
the parents are inbred), the different genetic effects in Eq. 1 are
uncorrelated. We assume, in addition, that e is uncorrelated with
the explicitly modeled genetic effects. The phenotypic variance
is �Y

2 � E[(Y � �)2]. The variances of the additive and
dominance effects associated with the QTL at � are by definition
�A

2 � 2E�x
2 and �D

2 � E�x,y
2 . Implicitly, we expect that several

QTL may occur, which may interact. (An explicit model is given
below). For this article we assume that other QTL lie on other
chromosomes and are in linkage equilibrium with the QTL at �.
Then, their contribution to the phenotype Y can be assumed to
be a part of the residual term e. With the notation �e

2 � Var(e),
it follows that �Y

2 � �A
2 � �D

2 � �e
2.

Now consider a pair of siblings satisfying the model (Eq. 1).
Recall that at any locus two relatives share alleles identical by
descent if they inherit the same alleles from a common ancestor.
Two siblings can share 2, 1, or 0 alleles identical by descent
depending on whether they inherit the same alleles from both
mother and father, from one but not both, or from neither. Let
� � �(�) denote the number of alleles identical by descent at �.
Letting Yi denote the phenotypic value of the ith sibling (i � 1,
2), we have (refs. 13 and 14):

Cov�Y1, Y2��� � �e
2r � �A

2 ��2 � �D
2 1���2� , [2]

where r � corr(e1, e2) accounts for the correlation between sibs
that arises from other QTL and from a shared environment.

Taking the expectation of Eq. 2, we find the unconditional
covariance. Then we can rewrite Eq. 2 in the form

Cov�Y1, Y2��� � Cov�Y1, Y2	 � ���A
2 � �D

2 	�2��� 	 1	 	 ��D
2 �2	

� �1�� � 1� 	 1�2�.

In this equation the terms involving � have mean 0 and are
uncorrelated. In what follows it will be convenient to introduce
new parameters 
� � Cov[Y1, Y2��]��Y

2 , 
 � Cov(Y1, Y2)��Y
2 ,

Abbreviation: QTL, quantitative trait loci.
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�0 � (�A
2 � �D

2 )�2, and �0 � �D
2 �2, and rewrite the preceding

equation in the form


� � 
 � �Y
�2��0�� 	 1	 � �0�1�2 	 1�� � 1��� [3]

(compare with Eq. 4).
Since the QTL location, �, is unknown, we will be interested

in marker loci t distributed throughout the genome and the
process �(t) for a sib pair considered as a stochastic process in
t. For markers t1 and t2 on different chromosomes, �(t1) and �(t2)
are stochastically independent. For markers on the same chro-
mosome Cov[�(t1), �(t2)] � 2�1[1 � 2�], where � is a function
of the recombination frequency. When recombination follows
the Haldane model of no interference, 1 � 2� � exp(�4�t1 �
t2�), where the marker location ti denotes genetic distance in
morgans (M) from a designated end of the chromosome.

In this article we assume that �(t) is observable. This assump-
tion is often not satisfied and the process of estimating the value
of �(t) from marker data is quite complex [e.g., Kruglyak et al.
(15)]. See Teng and Siegmund (16) for a theoretical analysis of
the amount of information lost in this process.

Score Statistics
Suppose we have a sample of N sibships, each of size s. We index
sibs within a sibship by i and j and sibships by n � 1, . . . N. The
subscript n is often suppressed in our notation. Let Y � Yn
denote the vector of phenotypes in the nth sibship. Let �ij(t)
denote the number of alleles shared identical by descent at the
marker locus t by the ith and jth sibs in the nth sibship. Let A�

denote the s 
 s matrix with entries �ij � 1 for i � j and zeroes
along the diagonal, and let D� denote a similar matrix with off
diagonal elements (1�2 � 1{�ij � 1}). Let ¥� � E[(Y � �)(Y �
�)��A�) and ¥ � E[(Y � �)(Y � �)�], so from Eq. 3, we have

¥� � ¥ � �0A� � �0D�. [4]

The critical assumption of components of variance linkage
analysis is that conditional on A�, the random variable Y has a
multivariate normal distribution. This assumption has mathe-
matical convenience to facilitate the following computations. It
cannot be expected to be exactly true even, or perhaps especially,
in the case that the QTL are diallelic, so it is important to check
(as we discuss below) that the statistical consequences of this
assumption are reasonable.

Under the normality assumption, the log likelihood for the
QTL at � is � � �(�, �0, �0, 
) given by

� � �2�1 �
n�1

N

�log�¥�� � tr¥�
�1�Y 	 �	�Y 	 �	��, [5]

where � � �(�).
Using the identities � log �G���x � tr(G�1�G��x and �G�1�

�x � �G�1�G��xG�1), which are valid for any differentiable
nonsingular matrix function, we obtain the score equations:

�� � 2�1�
n

{�tr�¥�
�1 A�	

� tr�¥�
�1 A�¥�

�1�Y 	 �	�Y 	 �	�	} [6]

and

�
 � 2�1�
n

��tr�¥�
�1B	 � tr�¥�

�1 B¥�
�1 �Y 	 �	�Y 	 �	�	�,

where B � �¥���
 � 11� � I. We omit the similar expression
for ��. The Fisher information matrix can be computed as the
expected value of

���� � �
n

��2�1tr�¥�
�1A�¥�

�1A�	

� tr�¥�
�1A�¥�

�1A�¥�
�1�Y 	 �	�Y 	 �	�	� [7]

and similar expressions for �

, ��
, ���, etc. Under the null
hypothesis that �0 (hence, also �0) � 0, the scores �� and �� for
the parameters of interest are linear functions of A� and D�,
which have mean values equal to 0, so they are uncorrelated with
the scores �
, ��Y

2, and �� for the segregation parameters, which
depend only on phenotypic data (when �0 � 0).

The score statistic at a given marker location t to test the
hypothesis that �0 � 0 is

Zt � ���t	�I��
1/2. [8]

Here, I�� is the appropriate entry from the Fisher information
matrix (i.e., the expected value of Eq. 7); both numerator and
denominator are evaluated with �0 � �0 � 0 and with the
nuisance parameters estimated by their maximum likelihood
estimates under the condition that �0 � �0 � 0. A second statistic
involving ��, which is asymptotically uncorrelated with Eq. 8, can
be defined similarly. For ease of exposition we temporarily
ignore this second statistic.

It may be shown [Tang and Siegmund (11)] that at a marker
t linked to the trait,

E�Zt	 � N1/2
�1 	 2�	, [9]

where � is as given above and


2 �
�0

2

2�Y
4� s

2� ��1 � �s 	 2	
�2 � 
2�

��1 	 
	�1 � �s 	 1	
��2 . [10]

The denominator of the score statistic (Eq. 8) is very sensitive
to the assumption of normality. This sensitivity can be mitigated
somewhat by considering the conditional distribution of the
numerator given the phenotypic observations, Y1, . . . ,YN,
which, under the hypothesis �0 � �0 � 0, is approximately a
normal distribution with mean 0 and standard deviation
{E0[��

2 �Y1, . . . , YN]}1/2 in large samples. Tang and Siegmund
(11) have calculated this quantity, which, when used to stan-
dardize ��(t) instead of I��

1/2, leads to a statistic that is asymp-
totically normally distributed whether the normality hypothesis
is satisfied or not, and it still has roughly the noncentrality
parameter (Eq. 10) if the normality assumption is approximately
true.

In the special case of sib pairs, this robust score statistic takes
a relatively simple form. One can rewrite Eq. 6 in terms of the
uncorrelated variables D � (Y1 � Y2) and S � Y1 � Y2 � 2�,
to obtain

���t	 � �
n

���t	 	 1�Cn,

where

Cn � 
���1 	 
�
2	 � Sn

2�2�Y
2�1 � 
�	

2 	 Dn
2�2�Y

2�1 	 
�	
2.

We set �0 � �0 � 0 and replace the segregation parameters �,
�Y

2 , and 
 by their maximum likelihood estimators under the
condition �0 � �0 � 0 to obtain, say, Ĉn. The robust score
statistic at the marker locus t is

�
n

���t	 	 1�Ĉn�� �
n

Ĉn
2�2� 1/2

. [11]

Its asymptotic expectation is N1/2 times
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 �
�0

�Y
2

�1 � 
2	���1 	 
2	2�

�2E0Cn
2�1/2 .

In the normal case this reduces to Eq. 10 with s � 2.

Genome Scans
Since we do not know the location of the QTL �, we scan the
genome using

Zmax � max
t

Zt,

where the max is taken over all marker loci t. To use this statistic,
one must establish a detection threshold, zmax, which must be
large enough to avoid false-positive errors and small enough to
allow detection of true signals. For data involving a large number
of pedigrees, so the statistic (Eq. 8) or the robust alternative
suggested above is approximately normally distributed, for an
idealized genome scan with markers equally spaced at a distance

 cM in a genome containing c chromosomes of total length L
(cM), the following approximation to the genome-wide false-
positive rate is given by Feingold et al. (17). Writing P0 to denote
probability under the hypothesis that �0 � �0 � 0, we have

P0	max
i

Zi
 � z

� 1 	 exp��c�1 	 ��z	� 	 L�z��z	h�z�2�
	1/2��,

[12]

where � and � are the standard normal density and distribution
functions, respectively, and h is the special function discussed by
Siegmund (ref. 18, p. 82). The function h can be computed
numerically, but the arguments given on pages 210–211 suggest
the simple approximation

h�2x	 �
x�1���x	 	 1�2�

x��x	 � ��x	
.

Some numerical exploration shows that this is a surprisingly good
approximation for all x � 0. For a comprehensive discussion of
genome-wide significance thresholds in linkage analysis see
Lander and Kruglyak (19).

As a numerical example, for sib pairs, a 22-chromosome
3,300-cM human genome and markers equally spaced at 5 cM,
a threshold of approximately zmax � 3.73 produces the conven-
tional 0.05 false-positive error rate. Similar approximations for
the power (17) show that a noncentrality parameter of N1/2
 �
5 produces power of �0.91 to detect a QTL located at a marker
and 0.87 when the QTL is midway between markers (compare
Eqs. 9 and 10). The adequacy of the approximation (Eq. 12) and
modifications to deal with different formulations are discussed
below.

Comparison with Regression Methods: Miscellaneous Remarks
The preceding argument is in the spirit of variance components,
which are often contrasted with ‘‘regression-based’’ methods.
The conventional wisdom is that variance components are more
flexible in dealing with large pedigrees and more efficient when
the normality assumption is approximately satisfied but less
robust against violations of the assumption of normality (e.g.,
refs. 9 and 10). However, the efficient score, ��, derived from a
variance components model is of the form of a covariance, so if
it is standardized by a nonparametric estimator of its standard
deviation, as suggested above, one obtains a regression-like
statistic (compare Eq. 11) that is robust against nonnormality
under the null hypothesis of no linkage. In fact, the original
Haseman–Elston regression statistic for sib pairs can be deduced

by a similar line of reasoning by starting from the likelihood
function for D alone and ignoring S. The ‘‘new’’ Haseman–
Elston statistic (20) can be derived by starting with the likelihood
function for S2 � D2.

It is straightforward to show that when the phenotypes are
close to normally distributed the asymptotic squared noncen-
trality parameter (per sib pair) for the classical Haseman–Elston
statistic is

�0
2

2�Y
4

1
2�1 	 
	2 ,

whereas that of the new Haseman–Elston statistic is

�0
2

2�Y
4

1
1 � 
2 .

By comparing these statistics with Eq. 10 with s � 2, one sees
that under the normality assumption (Eq. 8) has greater asymp-
totic power, sometimes much greater, than either of the Hasem-
an–Elston statistics, the first of which has comparable power
when 
 is large, whereas the second has comparable power when

 is small.

The Haseman–Elston approach is inefficient because it re-
duces data that is fundamentally two-dimensional (when s � 2)
to one dimension. A multivariate regression-based method was
introduced recently by Sham et al. (9), and it appears to be
essentially equivalent to the robust variance components method
described above. In particular, Sham et al. show that for their
method the asymptotic noncentrality parameter of a sibship of
size s is also given by Eq. 10.

A possible advantage of the regression approach is that there
is some flexibility in the assumed covariance of the dependent
variables, hence, in the weights of the resulting generalized
least-squares estimators. Sham et al. (9) choose a covariance
function that would be optimal under an assumption of multi-
variate normality. Xu et al. (21) suggest a different choice, which
they have developed only for sib pairs but which, according to
Cuenco et al. (22), may have some advantages when trait
distributions are far from normal.

Remarks
(i) In our analysis the primary role of the normality assumption
is to suggest the form of the statistic given in Eq. 6, which as
noted above can be regarded as a covariance between a function
of phenotypes and identity by descent counts. An alternative to
the normality assumption that is equally tractable is the multi-
variate t distribution [cf. Lange et al. (23)]. This assumption leads
to a similar statistic, but, because of the heavier tails of the t
distribution, it is more robust to outliers in the data. However,
it cannot avoid problems that arise from modeling the complex-
ities of multivariate dependence by multivariate distributions
that measure dependence only by pairwise correlations.

(ii) In the preceding argument we assumed completely infor-
mative markers to simplify the analysis and made the working
assumption that the QTL � is one of the markers. If either of
these assumptions fails to be true, the likelihood function
involves a mixture based on the conditional distribution of �(�)
given the marker data, say M, in the nth family. A convenient
representation for the likelihood function is E0[exp(�(�, �0, �0,

) � �(0, 0, 
))�M, Y], where M denotes marker data, � is given
by Eq. 5, and E0 denotes expectation under the hypothesis that
�0 � �0 � 0. When this hypothesis holds, one sees from Eq. 6 that
�� is linear in A�. Hence, the numerator of the score statistic for
partially informative markers is the same as for fully informative
markers, but A� is replaced by its conditional expectation A�̂ �
E0[A��M]. The likelihood ratio statistic is nonlinear in the A�.
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Hence, it requires a more complicated calculation, although it
has been observed in Monte Carlo studies (e.g., ref. 4) that
simply replacing A� by E0[A��M] can produce excellent results.
Since the score and likelihood ratio statistics are asymptotically
equivalent when �0 and �0 are small, the preceding observation
about the score statistic provides a theoretical basis for under-
standing these Monte Carlo results.

The denominator of the score statistic must also be modified
to account for partially informative markers. For example, for sib
pairs the 1�2 in the denominator of Eq. 11 arises there as the
value of E0[(�(t) � 1)2], which can be estimated by, for example,
N�1 ¥1

N (�̂(t) � 1)2. For other estimators and a comparative
evaluation see Cuenco et al. (22).

The effect of partially informative markers is to increase the
autocorrelation of the score statistic and hence to make the
approximation given in Eq. 12 somewhat conservative. Although
this issue has not received a satisfactory theoretical analysis,
there is numerical evidence that the effect is relatively modest
(cf. ref. 16).

(iii) Other reasons exist that the approximation Eq. 12 may fail
to be adequate. The most important is that the distribution of Zt
can fail to be approximately normal. This distribution can be
skewed if large sibships or pedigrees containing more distant
relatives than siblings are involved, and it can have excess
kurtosis if the phenotypic distributions do. Tang and Siegmund
(11) suggest a modification of Eq. 12 that accounts for skewness.
This approximation can also be adapted to account for kurtosis.
The parameters for skewness and kurtosis should be determined
from the conditional distribution of Zt given the phenotypes and
will involve the empirical distribution of the phenotypes.

Although Eq. 10 suggests that large sibships may be substan-
tially more powerful than small sibships, a larger threshold is also
required because of skewness in the distribution of Eq. 8. Tang
and Siegmund (11) show that after adjusting for the larger
threshold the power of large sibships turns out to be consider-
able, although it is not as great as it would appear from the
noncentrality parameter alone.

(iv) If it is thought that dominance may play an important role,
one can also consider a second degree of freedom ��, which is
uncorrelated with �� when �0 � �0 � 0. At a QTL � it has a
noncentrality parameter proportional to �0 � �D

2 �2. (The
constant of proportionality is the same as in Eq. 10, except that
2 is replaced by 4 in the denominator.) However, since �0 � (�A

2

� �D
2 )�2 involves the dominance variance and exceeds �0 �

�D
2 �2, it turns out that the second degree of freedom rarely adds

substantially to the power to detect linkage. See ref. 24 for the
modification to Eq. 12 required by the two-dimensional statistic
and the constraint 0 � �0 � �0.

(v) The model (Eq. 1) is very flexible in many respects. For
example, it can accommodate multivariate phenotypes, although
this accommodation leads to multivariate statistics and hence
requires a higher detection threshold to maintain the same
false-positive error rate. If one uses for two phenotypes a 3 df
statistic involving additive effects on each of the phenotypes and
the correlation of these effects, an extension of the method of
Dupuis and Siegmund (24) allows one to determine approximate
significance thresholds and power. In comparison with the
threshold zmax � 3.73 and noncentrality of N1/2
 � 5 for �90%
power discussed above for a single trait, the corresponding
threshold and noncentrality parameter would increase to zmax �
4.50 and N1/2
 � 5.50. Such an increase in noncentrality would
be greatest when QTL for each trait are tightly linked or even
identical because of pleiotropy. A detailed numerical study is
required to determine more precisely the conditions under which
use of multivariate phenotypes is advantageous. Wang (25)
contains a related discussion.

(vi) The model (Eq. 1) can also be expanded to include
multiple, possibly interacting, QTL. Assuming for simplicity that

no dominance exists, then for two QTL at unlinked loci � and �̃,
the phenotype Y is given by

Y � � � �x � �y � �̃ x̃ � �̃ ỹ � �x,x̃ � �x, ỹ � �y, x̃ � �y,ỹ � e.

Here �a denotes the additive effect of allele a at locus �, �a,ã
denotes the additive–additive interaction of alleles a at � and ã
at �̃, etc. As before, �A

2 is twice the variance of the additive effect
�x, whereas �AÃ

2 � 4E[�x,x̃
2 ] is the additive–additive interaction

variance. A perhaps surprising feature of this model is that the
essential ingredient of the noncentrality parameter of �� is now
�0 � �A

2 �2 � �AÃ
2 �4, i.e., a fraction of the interaction variance

involving the QTL at � and �̃ enters into the noncentrality of the
score statistic that tests for an additive effect at � only. The score
for the additive–additive interaction effect has expectation
proportional to �0 � �AÃ

2 �4. Its squared noncentrality equals 1�2
of Eq. 10 with �0 replaced by �0, so much of the effect of the
interaction variance component appears in the noncentrality
parameter of the statistic to test for a main effect. This fact is
similar to the phenomenon in Remark iv regarding dominance
and is quite different from the situation in experimental genetics,
where in a backcross or intercross the noncentrality parameters
of statistics that test for main effects are unaffected by interac-
tions with unlinked QTL.

(vii) Some of the calculations reported above about the
asymptotic noncentrality parameter of the robust score statistic,
when the normality assumption is violated, are based on the fact
that the expected value of �� is asymptotically the same as the
value one obtains when the normality assumption holds. At first
glance, this equality seems almost obvious, since for known
nuisance parameters evaluation of E[��] depends only on the
validity of Eq. 4, which in turn depends only on the basic genetic
model, not the normality assumption. However, the segregation
parameters �, �Y

2 , and 
 must be estimated, so one must show
that this effect, which, under the normality assumption is neg-
ligible as a consequence of the orthogonality of the segregation
and linkage parameters, is also negligible without that assump-
tion. This effect can be demonstrated by a lengthy Taylor series
approximation coupled with the observation that in the term
contributed by the nth pedigree the nuisance parameters can be
estimated almost equally well by the phenotypic variables from
the other N � 1 pedigrees, which then would give an estimate
that is independent of the data in the nth pedigree. We omit the
details.

Ascertainment
When pedigrees are ascertained by random sampling, the nui-
sance parameters �, �Y

2 , and 
 are easily estimated. In many
cases, however, pedigrees are ascertained through the pheno-
types of one or more probands, and phenotypes are determined
only for ascertained pedigrees. Here we consider the simplest
possible situation, where each sibship contains one proband,
with phenotypic value Y1; and we are particularly interested in
the case where ascertainment is based on a threshold T, so a
sibship is ascertained if the proband’s phenotype satisfies Y1 �
T. As we observe below, the efficient score, ��, has the same
form as in the case of random ascertainment; but the estimators
of segregation parameters involve an ascertainment correction.

Single ascertainment, as described in the preceding paragraph,
has been studied by Elston and Sobel (12), who suggest that one
correct for ascertainment by conditioning on the event that a
pedigree is ascertained, and by Hopper and Mathews (2), who
suggest conditioning on the phenotypic value of the proband (cf.
also ref. 26). Using simulation, Andrade and Amos (27) have
compared these suggestions and have found that the two meth-
ods are comparable. Below we show that, in fact, they are
asymptotically equivalent when the number of sibships is large,
so the results obtained by simulation are exactly as expected.
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Ascertainment based on an arbitrary number of probands and
more detailed numerical results when the ascertainment rule is
not so easily specified will be discussed in a future paper.

The phenotypic vector Y can be partitioned into (Y1,Y(2)),
where Y1 is the phenotype of the ascertained sibling. We begin
by considering a conditional analysis of Y(2) give the value Y1.
For notational simplicity we assume �Y

2 � 1. Because the
efficient score for �Y

2 turns out to be uncorrelated with the
efficient score for �0, this has no effect on the asymptotic theory
that follows. Let �� � E(Y(2)�Y1,A�). Assume for simplicity that
there is no dominance, i.e., �0 in Eq. 4 equals zero. Then �� �
�1 � (Y1 � �)(
1 � �0a�), where 1 is an s � 1 dimensional
vector with 1 at each entry, 
 and �0 have the same meaning as
above, and a�

� � (�12 � 1, . . . , �1s � 1). Also let

¥2,� � Cov�Y �2	�Y1, A�	

� Cov�Y �2		 � �0A� 	 �
1 � �0a�	�
1 � �0a�	�.

The conditional log likelihood given Y1, A� is exactly of the form
of Eq. 5, but with Y replaced by Y(2), � replaced by ��, ¥�

replaced by ¥2,�, and the sum is over ascertained sibships.
It is readily verified that the derivative with respect to �0 of ¥2,�

is �̇2,� � A2,� � 
B�, where B� � a�1� � 1a��. The efficient score
for �0 evaluated at �0 � 0 is

�� � �
n

���tr�¥2
�1¥̇2,���2 � �Y1 	 �	a��¥2

�1�Y �2	 	 ��2		

� �Y�2	 	 ��2		�¥2
�1¥2,�¥2

�1�Y �2	 	 ��2		�2�, [13]

where �(2) is �� evaluated at �0 � 0 and ¥2 � Cov(Y(2)�Y1).
Expressions can also be obtained for �
 and ��, which when �0 �
0 do not depend on �, hence are conditionally, given Y1,
uncorrelated with ��.

From the second derivative, ���, one finds that when �0 � 0

E0������A�, Y1	 � �
n

�tr�¥2
�1¥̇2,�¥2

�1¥̇2,���2

� �Y1 	 �	2a��¥2
�1a��.

It is easy to see that E0(tr¥2
�1 a�a��) � E0�¥�jj(�1, j � 1)2)] �

tr¥2
�1�2. Hence the conditional Fisher information is

E0������Y1	 � �
n

�E0tr�¥2
�1¥̇2,�¥2

�1¥̇2,��

� �Y1 	 �	2tr¥2
�1��2, [14]

and some additional calculation along the lines of Tang and
Siegmund (11) shows that tr¥2

�1 � (s � 1)[1 � (s � 2)
]�{(1 �

)[1 � (s � 1)
]}.

The asymptotic conditional noncentrality parameter is

�0�E0������Y1	�
1/2. [15]

The expectation on the right-hand side of Eq. 14 can be
evaluated by direct calculations or indirectly by observing that
for random ascertainment the expected value of Eq. 14 must
equal the unconditional Fisher information, which is simply the
factor multiplying �0

2��Y
2 in Eq. 10. (Recall that we are now

taking �Y
2 � 1 for notational convenience.) In particular,

E0tr�¥2
�1¥̇2,�¥2

�1¥̇2,�� � �s
2� ��1 � �s 	 2	
�2 � 
2�

��1 	 
	�1 � �s 	 1	
��2

	
�s 	 1	�1 � �s 	 2	
�

��1 	 
	�1 � �s 	 1	
��
. [16]

Because this expression is somewhat complicated for general s,
we specialize to s � 2, for which we obtain

E0������Y1	 � �1�Y1 � S��
2��1 	 
2	2 � �Y1 	 �	2�2�1 	 
2	�,

[17]

where S denotes the set of phenotypes for which a proband is
ascertained. In large samples, by the law of large numbers the
frequency of ascertained sibships converges to P{Y1 � S}, and
the average value of 1{Y1 � S}(Y1 � �)2 converges to E[(Y1 �
�)2; Y1 � S]. Hence, the large sample noncentrality per ascer-
tained sibship is

�0�
2��1 	 
2	2 � E��Y1 	 �	2�Y1 � S��2�1 	 
2	�1/2,

[18]

which is consistent with Eq. 10 when s � 2 and all sibships are
ascertained.

For a simple numerical example, it follows from Eq. 18 that if
ascertainment is based on the upper 10% of the population
phenotype, the number of sib pairs that must be genotyped is
roughly 1�3 as many in random sampling. For sibships of size s �
4, about 1�2 as many ascertained sibships must be genotyped as
random sibships. This gain in genotyping efficiency is smaller
with a less stringent ascertainment criterion and with larger
sibships.

Observe that, although we have begun the preceding analysis
from an analytic expression for the conditional log likelihood
given Y1, one could equally well begin by writing the conditional
log likelihood in the form of the sum of the unconditional log
likelihood given in Eq. 5 and the negative log of the marginal
probability density function of Y1. Since this marginal probability
does not depend on the genetic parameters �0, �0, the efficient
score �� has the same form as in the case of random ascertain-
ment (i.e., the expressions in Eq. 6 evaluated at �0 � 0 and in Eq.
13 are equal), but the estimates of segregation parameters that
enter into the final statistic are now determined by conditioning
on Y1.

In the case that we condition on the event that a sibship is
ascertained, i.e., that Y1 � S, rather than the value of Y1, the
analysis is almost the same. The log likelihood function will now
equal the sum of Eq. 5 and the additional term �log(P{Y1 � S});
but since the distribution of Y1 involves only the segregation
parameters, �, 
, and �Y

2 , the efficient score �� is again un-
changed. The efficient scores for the segregation parameters will
change, but they are still uncorrelated with �� when �0 � 0.
Consequently, the estimates of the segregation parameters will
be different, but the asymptotic noncentrality parameter is still
given by Eq. 16. Note, however, that when conditioning on the
exact phenotypic values of the ascertained siblings, the number
r of ascertained siblings must be less than s, whereas in principle
an ascertainment rule can involve all siblings if one conditions on
the event of ascertainment. Thus, Risch and Zhang (28) discuss
an ascertainment rule that involves both siblings of a sib pair, but
their method has the disadvantage that it is most efficient when
ascertainment involves fairly extreme phenotypes, and it does
not extend in an obvious way to larger sibships.

Discussion of Ascertainment Corrections
In this article we have described a components of variance
method of linkage analysis in sibships when sibships are either
randomly ascertained or ascertained through a single proband.
The method in principle is easily adapted to pedigrees other than
sibships, although explicit results can be obtained in only a few
special cases.

The most serious impediment to use of ascertainment correc-
tions is lack of knowledge of the true ascertainment rule. To
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some extent this problem is mitigated by conditioning on the
exact phenotypic value of the proband(s), but this just removes
the problem to the definition of the proband(s). For example, if
the proband is identified through diagnosis of a disease related
to the quantitative phenotype, should the ascertainment event be
(as we have assumed) that a particular sib has the disease, that
at least one sib has the disease, or something in between?

An appealing design that avoids some of these fundamental
conceptual difficulties is to ascertain nuclear families through
parents. This design may often involve both parents, but if a trait
is of primary interest in only one sex, e.g., bone mineral density
as a quantitative trait in women as it relates to osteoporosis,
ascertainment through a particular parent may be relevant. In
such a case, the analysis is simpler than that given above, since
the conditional means and covariances do not depend on the
number of alleles inherited identical by descent between pro-
band and offspring, which is always one. The noncentrality

parameter is of the same form as Eq. 10, but with the sib
correction 
 replaced by the conditional correlation 
 � 
̃2,
where 
̃ is the phenotypic correlation of parent and offspring.
For traits that are purely additive and have no shared environ-
mental covariance, 
 � 
̃.

The normality assumption, which yields simple formulas for
the conditional phenotypic expectations, variances and covari-
ances given the phenotypes of ascertained relatives, plays an
important role in the ascertainment corrections obtained in this
article. The robustness of the resulting procedures and how they
might be modified to become more robust to violations of the
normality assumption and, perhaps even more importantly, to
violations of the assumed method of ascertainment should be
studied and reported in detail.
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