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0.1. Proof of Lemmas 5.2.

Proof. Since the density of z is 1

⇡e
�|z|2 , we have

 ̄(t) =

Z

|z|>t

1

⇡
e�|z|2dA,

where dA is the Lebesgue measure on the z-plane. In other words, if z =
x + iy, then dA = dxdy. By applying the polar coordinates z = rei✓, we
have

 ̄(t) =

Z
2⇡

0

Z 1

t

1

⇡
e�r2rdrd✓ =

Z 1

t
2re�r2dr = e�t2 .

To prove (5.1), define u 2 C satisfying |u| = 1 and ūµ = |µ|. This unit
complex scalar always exists since we can let u = µ

|µ| when µ 6= 0, and any
unit scalar when µ = 0. Notice that

<(ūz) > t� |µ| =) <(ūz) + |µ| > t =) <(ū(z+µ)) > t =) |z+µ| > t,

and hence
P(|z + µ| > t) � P(<(ūz) > t� |µ|).

Since

z ⇠ CN (0, 1, 0) =) ūz ⇠ CN (0, 1, 0) =) <(ūz) ⇠ N
✓
0,

1

2

◆
,

by the tail probability of standard real-valued normal variable we have

P(<(ūz) > t� |µ|) � C
0

1 + (t� |µ|)
+

e�(t�|µ|)2
+ .

Moreover,
P(|µ+ z| > t)  P(|z| > t� |µ|)  e�(t�|µ|)2

+ .

0.2. Proof of Lemma 5.3.

Proof. Simple calculation yields

Cov(1{|w
1

�a
1

|>t}, 1{|w
2

�a
2

|>t}) = P(|w
1

� a
1

| > t, |w
2

� a
2

| > t)� P(|w
1

� a
1

| > t)P(|w
2

� a
2

| > t).
(0.13)
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This implies

Cov(1{|w
1

�a
1

|>t}, 1{|w
2

�a
2

|>t})  P(|w
1

� a
1

| > t, |w
2

� a
2

| > t)

 min (P(|w
1

� a
1

| > t),P(|w
2

� a
2

| > t))

 min (P(|w
1

| > (t� |a
1

|)
+

),P(|w
2

| > (t� |a
2

|)
+

))

= min
⇣
e�(t�|a

1

|)2
+ , e�(t�|a

2

|)2
+

⌘
.

When |⇠|  1

2

, let �h =


1 h⇠
h⇠̄ 1

�
, 0  h  1. Define a random vector


Z
1

Z
2

�
⇠ CN (0,�h,0) and a function of h

F (h) = P(|Z
1

� a
1

| > t, |Z
2

� a
2

| > t).

Here t > 0 is a fixed parameter. By Newton-Lebnitz theorem, we have

Cov(1{|w
1

�a
1

|>t}, 1{|w
2

�a
2

|>t}) = F (1)� F (0) =

Z
1

0

F 0(h)dh.

It su�ces to give an upper bound to F 0(h) for all 0 < h < 1. By the density

function of


Z
1

Z
2

�
, we have the explicit formula

F (h) =

Z

|z
1

�a
1

|>t

Z

|z
2

�a
2

|>t

1

⇡2 det(�h)
exp

✓
�

z
1

z
2

�⇤
��1

h


z
1

z
2

�◆
dA

2

dA
1

,

Here dA
1

and dA
2

are the Lebesgue measures on the z
1

-plane and z
2

-plane,
respectively. In other words, if we write z

1

= x
1

+ iy
1

and z
2

= x
2

+ iy
2

,
then dA

1

= dx
1

dy
1

and dA
2

= dx
2

dy
2

. Simple calculation in linear algebra

gives det(�h) = 1� h2|⇠|2 and ��1

h = 1

1�h2|⇠|2


1 �h⇠

�h⇠̄ 1

�
, which implies

F (h) =

ZZ

|z
1

�a
1

|>t
|z
2

�a
2

|>t

1

⇡2(1� h2|⇠|2) exp
✓
� |z

1

|2 + |z
2

|2 � 2h<(⇠z̄
1

z
2

)

1� h2|⇠|2

◆
dA

2

dA
1

.
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By changing the order of derivative and integrals, we have

F 0(h)

=

ZZ

|z
1

�a
1

|>t
|z
2

�a
2

|>t

exp

✓
� |z

1

|2 + |z
2

|2 � 2h<(⇠z̄
1

z
2

)

1� h2|⇠|2

◆


2h|⇠|2

⇡2(1� h2|⇠|2)2 +
2<(⇠z̄

1

z
2

) + (2h2<(⇠z̄
1

z
2

)� 2(|z
1

|2 + |z
2

|2)h)|⇠|2

⇡2(1� h2|⇠|2)3

�
dA

2

dA
1

 C|⇠|
ZZ

|z
1

�a
1

|>t
|z
2

�a
2

|>t

(1 + |z
1

||z
2

|) exp
✓
� |z

1

|2 + |z
2

|2 � 2h<(⇠z̄
1

z
2

)

1� h2|⇠|2

◆
dA

2

dA
1

,

where C is a numerical constant. The last inequality is due to 0  h  1
and |⇠|  1

2

. Notice that

|z
1

|2 + |z
2

|2 � 2h<(⇠z̄
1

z
2

)

1� h2|⇠|2 � |z
1

|2 + |z
2

|2 � 2h|⇠||z
1

||z
2

|
(1� h|⇠|)(1 + h|⇠|)

� |z
1

|2 + |z
2

|2

1 + h|⇠| .

This is due to the fact that |z
1

|2+|z
2

|2�2⇢|z
1

||z
2

|
(1�⇢) obtains the minimum at ⇢ = 0.

Therefore

F 0(h)  C|⇠|
ZZ

|z
1

�a
1

|>t
|z
2

�a
2

|>t

(1 + |z
1

||z
2

|) exp
✓
� |z

1

|2 + |z
2

|2

1 + h|⇠|

◆
dA

2

dA
1

 C|⇠|
ZZ

|z
1

|>(t�|a
1

|)
+

|z
2

|>(t�|a
2

|)
+

(1 + |z
1

||z
2

|) exp
✓
� |z

1

|2 + |z
2

|2

1 + |⇠|

◆
dA

2

dA
1

.

By using the polar coordinates: z
1

= r
1

ei✓1 and z
2

= r
2

ei✓2 , we have dA
1

=
r
1

dr
1

d✓
1

and dA
2

= r
2

dr
2

d✓
2

. Then

F 0(h)  C|⇠|4⇡2

Z 1

(t�|a
1

|)
+

Z 1

(t�|a
2

|)
+

(1 + r
1

r
2

) exp

✓
�r2

1

+ r2
2

1 + |⇠|

◆
r
1

r
2

dr
1

dr
2

.

For any fixed u > 0, simple integration by parts yields

Z 1

u
exp

✓
� r2

1 + |⇠|

◆
rdr =

1 + |⇠|
2

exp

✓
� u2

1 + |⇠|

◆
,
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and
Z 1

u
exp

✓
� r2

1 + |⇠|

◆
r2dr

=
(1 + |⇠|)u

2
exp

✓
� u2

1 + |⇠|

◆
+

1 + |⇠|
2

Z 1

u
exp

✓
� r2

1 + |⇠|

◆
dr

 C(1 + u) exp

✓
� u2

1 + |⇠|

◆
,

where the last inequality is due to the real Gaussian bound. These equali-
ties/inequalities give

F 0(h)  C
0

|⇠| exp
✓
�
(t� |a

1

|)2
+

+ (t� |a
2

|)2
+

(1 + |⇠|)

◆
(1+(t�|a

1

|)
+

)(1+(t�|a
2

|)
+

).

By integrating it over [0, 1], our proposition is proven.

0.3. Pproof of Theorem 2.2.

Proof. Without loss of generality, assume p
N = p� is an integer. We now

consider a class of special alternatives. Let

�̃
1

= . . . = �̃s =

r
rp log p

N

be real and positive. As to ⌧ , we first define a set of index vectors:

TN =

⇢
⌧̃ = (⌧̃

1

, . . . , ⌧̃s) : 1  ⌧̃
1

< . . . < ⌧̃s  N,

⌧̃l+1

� ⌧̃l � log2N for l = 1, . . . , s� 1, ⌧̃
1

+N � ⌧̃s � log2N

�
.

For ⌧̃ 2 TN , define ⌧ = (p�(⌧̃
1

� 1) + 1, . . . , p�(⌧̃s � 1) + 1), which implies⇣
⌧ , �̃

⌘
2 �(p,N, s, r). Then the measurements become

yj =
1
p
p

sX

l=1

e�
2⇡i(⌧l�1)(j�1)

p �̃l + zj

=
1
p
p

sX

l=1

e�
2⇡ip� (⌧̃l�1)(j�1)

p

r
rp log p

N
+ zj

=
1p
N

sX

l=1

e�
2⇡i(⌧̃l�1)(j�1)

N

p
r log p+ zj
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for j = 1, . . . , N .
Denote by FN the N ⇥N normalized DFT matrix:

FN (j, k) =
1p
N

e�
2⇡i(k�1)(j�1)

N .

Define ✓(⌧̃ ) 2 RN , such that the ⌧̃lth component of ✓(⌧̃ ) is
p
2r log p =p

2r(1� �) logN for l = 1, . . . , s, while other components are zeros. Then

✓(⌧̃ ) is a sparse vector, whose sparsity is s = p1�↵ = N1�↵��
1�� . Moreover, all

its entries are all
p
2r log p =

p
2r(1� �) logN . Now the measurements can

be written as

y =
1p
2
FN✓(⌧̃ ) + z,

which is equivalent to

p
2F ⇤

Ny = ✓(⌧̃ ) +
p
2F ⇤

Nz.

Notice that F ⇤
Nz ⇠ CN (0, I,0). Since ✓(⌧̃ ) is deterministic, real and positive

and the imaginary and real parts of
p
2F ⇤

Ny are independent, we have the
following equivalent measurement:

v := <(
p
2F ⇤

Ny) = ✓(⌧̃ ) +w,

where w 2 N (0, IN ). Now the detection problem becomes nearly the stan-
dard sparse mean detection studied in [S33]; aslo see [S22, S30]. The only
di↵erence is that here ⌧̃ 2 TN satisfies the separation condition, which is

⌧̃l+1

� ⌧̃l � log2N for l = 1, . . . , s� 1, ⌧̃
1

+N � ⌧̃s � log2N.

We now prove that this di↵erence is actually negligible. Suppose ⌧̃ is uni-
formly distributed in TN . It induces a mixed simple alternative

p
1

(v) =
1

|TN |
X

⌧̃2TN

p⌧̃ (v).

To prove that

P
0

(H
0

is rejected) + max
(�,⌧ )2�(p,N,s,r)

P
(�,⌧ ) (H0

is accepted) ! 1,

by the standard Hellinger distance argument, it su�ces to prove the

E
0

r
p
1

p
2

(v) � 1� o(1).
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Suppose SN is the collection of all subsets of {1, . . . , N} with cardinality s.

By Lemma A. 8 in [S30], we know |TN |
|SN | = 1� o(1). Define

p̃
1

(v) =
1

|SN |
X

⌧̃2SN

p⌧̃ (v),

and define

�(v) =
|SN |
|TN | p̃1 � p

1

=
1

|TN |
X

⌧̃2(SN�TN )

p⌧̃ (v)

If ⌧̃ is uniformly distributed in SN , p̃
1

becomes the simple mixed alternative,
and the detection problem becomes the standard sparse mean detection
problem. Notice that

E
0

r
p
1

p
0

= E
0

vuut
|SN |
|TN | p̃1 � �

p
0

� E
0

s
p̃
1

p
0

� E
0

s
�

p
0

� E
0

s
p̃
1

p
0

�

s

E
0

�

p
0

= E
0

s
p̃
1

p
0

�
s

1

|TN |
X

⌧̃2SN�TN

1

= E
0

s
p̃
1

p
0

�

s
|SN � TN |

|TN |

� E
0

s
p̃
1

p
0

� o(1).

Therefore, it su�ces to prove E
0

q
p̃
1

p
0

� 1�o(1). The problem now becomes

the standard sparse mean vector detection studied in [S33, S22, S30]. Since

s = N1�↵��
1�� and the common nonzero components of the mean vector:p

2r(1� �) logN , it su�ces to require
8
<

:
r(1� �) < ↵��

1�� if 1

2

< ↵��
1��  3

4

,

r(1� �) <
⇣
1�

q
1� ↵��

1��

⌘
2

if 3

4

< ↵��
1�� < 1.

This is exactly r < ⇢⇤�(↵), and the proof is completed.


