SIGNAL DETECTION 1

Supplemental materials to “Global Testing Against Sparse
Alternatives in Time-Frequency Analysis”

0.1. Proof of Lemmas 5.2.

. . . 152
PROOF. Since the density of z is %e 21 we have

_ 1
T(t) = / —e g4,
|z|>t T

where dA is the Lebesgue measure on the z-plane. In other words, if z =

x + iy, then dA = dzdy. By applying the polar coordinates z = re?, we

have
B 2w poo 1 ) 0o 5 5
U(t) :/ / —e " rdrdf :/ 2re " dr =e ",
o Jt T t

To prove (5.1), define v € C satisfying |u| = 1 and ap = |p|. This unit
complex scalar always exists since we can let v = ﬁ when p # 0, and any
unit scalar when p = 0. Notice that

R(uz) >t—|u| = R(az)+ || >t = Ru(z+p)) >t = |z+u| >t

and hence
P(|z 4 p| > t) > P(R(az) >t — |ul).

Since

2 ~CN(0,1,0) = @z ~CN(0,1,0) = %(UZ)N/\/‘<07;>7

by the tail probability of standard real-valued normal variable we have

_ Co —(t—|u|)2
P(R(uz) >t —|u|) > —————e (t=lrDy
(Re2) = 0=l = T,

Moreover, ]
P(lp+ 2| > t) < P(|z] >t — |p]) < e~ E D3,

0.2. Proof of Lemma 5.3.

PROOF. Simple calculation yields

(0.13)
Cov(L{juw,—ar >t} Ljwa—az[>t}) = P(lwr — a1 > ¢, jwg — ag| > 1) = P(lw1 — ax| > t) P(lwz — az| > ¢).
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This implies

Cov(1{juw,—ar|>t} Ljwe—as|>t}) < P(lw1 —a1| > t, |wa — ag| > t)
< min (P(Jw; — a1| > t),P(|lwy — ag| > t))
< min (P(Jwi] > (¢ — |a1])+), P(Jwa| > (£ — |az|)+))
— min <67<t7\a1|>i, e,(t,mm) _

1 ke

When [¢| < %, let Ty, = [hg 1] , 0 < h < 1. Define a random vector

[gl] ~ CN(0,T},0) and a function of h
2

F(h) =P(|Z1 — a1| > t,]Zo — as| > 1).

Here t > 0 is a fixed parameter. By Newton-Lebnitz theorem, we have

1
Cov (s s ot Lfus—agiory) = F(1) — F(0) = /0 F/(h)dh,

It suffices to give an upper bound to F'(h) for all 0 < h < 1. By the density

function of [Z } we have the explicit formula

Zo|’

- | [ e ([ [ nan

\z1—a1\>t |Z2—a2|>t

Here dA; and dA, are the Lebesgue measures on the z;-plane and zs-plane,
respectively. In other words, if we write z; = z1 + iy1 and zo = xo + Yo,
then dA, = dx1dy; and dAs = dxadys. Simple calculation in linear algebra

. _ 1 —h C .
gives det(T';) = 1 — h%|¢|? and I‘h1 = W {—hﬁ 15} » which implies
’21‘2 + ‘Z2’2 — 2h§R(§§1Z2)
— dA>dA;.
// h2!€\ )eXp( - h2JEp 2

|z1—aq|>t
|zg—ag|>t
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By changing the order of derivative and integrals, we have

F'(h)
. // exp [ — ’21|2 + |22’2 — 2hR(E2122)
- P 1 12jep
|z1—ay|>t
[zg—ag|>t
2 = 2 = o 2 2 2
2h¢] N 2R(Ez122) + (2h*R(Ez122) — 2(]21]° + [22]%)R)[€] dAyd A
m2(1 — h2|¢]?)? m2(1 — h2[¢]2)3
|21|% + | 22| — 2hR(E2122)
<ol [[ a+lalahen (-HEEELRE dAad A,
|z1—a1|>t
|zg—ag|>t

where C' is a numerical constant. The last inequality is due to 0 < h <1
and |¢| < L. Notice that

|21 + [22f® — 2hR(E2120) _ |2af® + [22f® — 2h[¢] |21 |2
1= n2[¢f? (L= RIEDA + hlE])
|21 + |20
— 1+ A

This is due to the fact that ‘lezﬂzzi_;p"zll'ml obtains the minimum at p = 0.

Therefore
2 2

1+ hyf\
lz1—ay|>t
[zg—ag|>t
|21 + |22
<C // (1+ |z1]|= exp< dAsdA;.

[z1|>(t—la1]) 4
lzo|>(t—ag]) 4

By using the polar coordinates: z; = r1et and zy = €2, we have dA; =
7“1d’l"1d91 and dAQ = 7“2d7“2d92. Then

F'(h) < C’\{]47r2/ / (14 ryrg)exp ( s ) riradridrs.
(t—laxl)+ J (t—|az])+ 1+ [¢]

For any fixed u > 0, simple integration by parts yields

= 2\ 1+l 2
/uexp<_1+|£>w_ 2 exp<_1+|€|>’
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o 2
/u ep( \5\) ar
_ (A +1ghu W 1+ [ r?
<1+£I>+ 2 / exp(_1+lfl>dr

SC(1+u)exp< 1+|§’>,

where the last inequality is due to the real Gaussian bound. These equali-
ties/inequalities give

and

(t—laa )3 +(t—
(1+¢1)

By integrating it over [0, 1], our proposition is proven. O

2
F/(h) < Colé] exp ( "”“*) (L (t—Jar]) ) (t—azl) ).
0.3. Pproof of Theorem 2.2.

ProoOF. Without loss of generality, assume = p7 is an integer. We now
consider a class of special alternatives. Let

~ ~ rplo
pr=...=8s= pﬁp

be real and positive. As to 7, we first define a set of index vectors:
TN :{7‘:: (7:1,...,7:3) 1< <... <7 <N,
Tl — 7 >log? N forl=1,...,s— 1,71+ N — 7, ZlogQN}.

For 7 € Ty, define 7 = (p7(71 — 1) + 1,...,p7(7s — 1) + 1), which implies
(T, B) € I'(p, N, s,r). Then the measurements become

5. 2mi(n-1)(G-1) -

1
yﬂ':%Ze R

=1
27r7,p7(7'l 1)(7—1) r,«plogp

N +Zj

1 5 27i(7—1)(j—1)
= —Ze‘ﬁx/rlogp—i— 2
VNS
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forj=1,...,N.
Denote by Fyy the N x N normalized DFT matrix:
1 2mi(k—1)(j—1)
Fn(j, k) = —=e~ N .
Define 8(7) € RY, such that the 7th component of 8(F) is /2rlogp =
\/27’(1 —7)log N for [ = 1,...,s, while other components are zeros. Then

=\ 3 . . _ 1—4—7
0(F) is a sparse vector, whose sparsity is s = p'~®* = N'~ 1-7. Moreover, all

its entries are all v/2rlogp = \/27“(1 — ) log N. Now the measurements can
be written as

1 -
y = EFNB(T) + z,
which is equivalent to
V2F%y = 0(F) + V2F3 2.

Notice that Fiz ~ CN(0,1,0). Since §(7) is deterministic, real and positive
and the imaginary and real parts of \/§Fj'\}y are independent, we have the
following equivalent measurement:

v:=R(V2F%y) = 0(F) + w,

where w € N(0, Iy). Now the detection problem becomes nearly the stan-
dard sparse mean detection studied in [S33]; aslo see [S22, S30]. The only
difference is that here 7 € Ty satisfies the separation condition, which is

1 —71>log?N forl=1,...,s — 1,7 + N — 7, > log® N.

We now prove that this difference is actually negligible. Suppose 7 is uni-
formly distributed in Tv. It induces a mixed simple alternative

1
pi(v) = TN\%Z p#(v).

To prove that

Po(Hy is rejected) + max P Hj is accepted) — 1,
o(Ho ls rejected) + L By 8 (ED pted)

by the standard Hellinger distance argument, it suffices to prove the

E, %(U) >1—o(1).
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Suppose Sy is the collection of all subsets of {1,..., N} with cardinality s.
By Lemma A. 8 in [S30], we know }?\"' =1—0(1). Define

and define

|5N| _ _

If 7 is uniformly distributed in Sy, p1 becomes the simple mixed alternative,
and the detection problem becomes the standard sparse mean detection
problem. Notice that

By, /2t =
Po

D )

> Ey E—EO —
Po Po
D )

> Eo |22 — | [Eo—
Po Po

SN V2 . S
pO ‘TN|’7'€SN

Sy =1,

_E,, Pt 1Sy =Tl

Po TN |

Therefore, it suffices to prove Eg p L > 1—0(1). The problem now becomes
the Standard sparse mean vector detectlon studied in [S33, S22, S30]. Since

= N~ = and the common nonzero components of the mean vector:
\/ 2r(1 — v) log N, it suffices to require

— r 1 3
r(l-—v)<§= if5;< ;YSZ

T(l—’y)<( V1-1 1f%<?;<1.

This is exactly r < pi‘y(a), and the proof is completed. ]
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