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SUMMARY

A compact graphical device for combining survival and time-varying covariate information is proposed.
The proposed graph contains the Kaplan–Meier estimator for right-censored data and a simultaneous
display of the behaviour of time-dependent covariate(s) and the lifetime for each subject in the sample.
The observed levels of time-dependent covariates are possibly subjected to an initial dimension reduction
or smoothing step to produce a continuous covariate function. Values of this function are plotted on a
horizontal bar for the length of the lifetime of the subject. Covariate information for censored data is
also incorporated. The union of the horizontal bars forms the Kaplan–Meier estimator of the survival
function. Our graphical method is implemented with a new S-plus function and demonstrated in several
applications. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

In survival analysis, the Kaplan–Meier estimator provides a non-parametric estimate of the sur-
vival function of a speci?ed cohort, naturally incorporating right-censored data. The plot of the
Kaplan–Meier estimator is used as a graphical device to demonstrate the survival function of
a cohort. The estimator itself has many nice properties such as being the non-parametric maxi-
mum likelihood estimator for the true survival function (see, for example, Anderson et al. [1]).
A graphical limitation of the Kaplan–Meier curve is its inability to include individual-level
covariate information. Particularly in the case of time-dependent covariates, such information
can be an important part of data exploration and model building.

A recently introduced graphical tool for survival analysis is the event chart (Goldman [2],
Dubin et al. [3], Lee et al. [4]), a graphical technique exhibiting individual-level survival
information. With certain implementations of event charts, covariate and survival information
can be shown simultaneously. However, event charts are not currently amenable to optimally
display time-dependent covariate information.
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As a new method we propose here the event history graph. It brings together the strengths
of both Kaplan–Meier curves and event charts, and simultaneously provides the ability to
incorporate time-dependent covariates. A previous version of the event history graph allowed
the incorporation of time-dependent covariate information, but did not account for censoring
and was restricted to cases where tightly and regularly spaced covariate measurements were
available (Carey et al. [5]). We propose here a Kexible event history graph that incorporates
censoring and time-dependent covariate information.

The methodology for the event history graph is described in Section 2. In Section 3, we will
provide examples of event history graphs, using data from two separate studies. The ?rst ex-
ample is the well-known Stanford heart transplantation study that contains right censoring with
a binary time-dependent covariate. A second example is a liver cirrhosis study that contains
right censoring with a continuous time-dependent covariate. We end with a discussion of vari-
ous aspects of event history graphs in Section 4. The algorithm used to create the event history
graphs and its implementation as an S-plus function is brieKy described in an Appendix.

2. THE EVENT HISTORY GRAPH

The event history graph combines information on individual-level time courses with survival
information as conveyed by the Kaplan–Meier estimator. The abscissa (x-axis) represents time
in the study, while the ordinate (y-axis) represents per cent surviving, as in the customary
plot of the Kaplan–Meier estimator. Each individual will have their time course represented
as a colour coded (or, alternatively, grey shaded) horizontal bar.

These bars are characterized by length, width (thickness) and colour. All observed times
are sorted in ascending order. In case of ties between censored and uncensored observations,
the uncensored observations are ordered ?rst. The lengths of all bars are determined by time-
to-event (lifetime or censoring time). For censored times, the extension of such a bar to the
right is drawn in a ‘missing value’ colour until the bar hits the vertical jump produced by the
next uncensored observation in the Kaplan–Meier estimator. For uncensored observations, the
length of the coloured bar corresponds to the survival time. The width (thickness) of the bar
depends on the censoring status and the number at risk at the next uncensored observation.
The colour of the bars indicates the covariate values and will be discussed momentarily. Note
that there is an option to draw a small censoring mark to the right of all bars with censored
lifetimes. In some applications, this allows for better visual assessment where censoring occurs
(see Figures 4 to 6 and Plates 1 to 3 in Section 3 for examples where censoring is thus
marked).

Formally, assume the data are i.i.d. pairs (Xi; �i); i= 1; : : : ; n, where Xi = min(Ti; Ui), with
Ti = event time and Ui = right-censoring time for subject i. Here, �i = 1 if Ti6Ui and �i = 0
if Ti¿Ui.

Let T(1); T(2); : : : ; T(K); K6n, be the ordered observed event times for the n subjects. Also, let
nk be the number at risk for the speci?ed event just before T(k), and dk be the corresponding
number of events at T(k). The Kaplan–Meier estimator [6] for the survival function OF is then
de?ned as

ÔF(t) =
∏

k:T(k)6t

(
1 − dk

nk

)
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Now, assume there are l censored observations right before a single uncensored one. Then
the Kaplan–Meier jump size is

Q(k) = ÔF(T(k)+) − ÔF(T(k)) =
1
nk+1

ÔF(t) (1)

at T(k) for an uncensored observation. To determine the bar widths in the event history graph,
this jump size is divided into (l + 1) equal sized bars, the last bar corresponding to the
uncensored observation. That is, each of the bars associated with the kth jump size Q(k) has
a width of Q(k)=(l+ 1).

We discuss now the incorporation of time-dependent covariates and the utilization of colour
in the event history graph. Time-independent covariates are included as a special case and
the proposed event history graph will also be of interest for such data. Note that the values
of the covariate(s) may be transformed for example, by a logarithmic or Box–Cox trans-
formation, before constructing the event history graph. We are able to easily incorporate
a single time-dependent covariate. Sometimes data will include more than one covariate of
interest, while a single event history graph is desired. This may be achieved by utilizing
dimension reduction techniques. Examples are principal components or single index meth-
ods. In fact, any mapping which projects a vector of covariates to dimension one could be
considered.

The most convenient dimension reduction scheme for survival data will be to use a Cox
[7] proportional hazards regression model. Given p time-varying covariates Z1(t); : : : ; Zp(t),
the Cox model involves a baseline hazard rate �0(t) and relates the hazard rate of an individ-
ual with covariate functions Z1(t); : : : ; Zp(t) to the baseline hazard via �(t|Z1; : : : ; Zp) = �0(t)
exp(�(t)), where �(t) =

∑p
k=1 �kZk(t) (see Andersen et al. [1]). This is a single index model

with single index �(t). In general, a single index is a linear projection used for dimen-
sion reduction and corresponds to a linear combination of predictors (as is commonly used
for the linear predictor in generalized linear models, see, for example, McCullagh and
Nelder [8]).

For multiple covariates, time-varying or not, we then substitute an estimate �̂(t) =
∑p

k=1 �̂k
Zk(t) for �(t), obtained by maximizing partial likelihood. This acts then as a one-dimensional
time-varying covariate which we may conveniently utilize for the event history graph. For an
illustration of this technique, see the example in Section 3.3.

Assuming we have a single time-dependent covariate or have reduced a higher dimensional
covariate to dimension one, we will use a colouring scheme, chosen by the user, to indicate
the varying levels of the time-dependent covariate over each individual’s observed length of
time, which is Xi = min(Ti; Ui). The colour will then signify the magnitude of the covariate
at any particular time t, for each individual. One can also implement the method on a grey-
scale scheme, where diSerent shades of grey would correspond to the varying levels of the
covariate.

Often there exist time gaps in the measurements of the covariate due to uneven designs or
more commonly to missing data. A simple remedy is to utilize a smoothing technique, such
as local polynomial regression (see, for example, Fan and Gijbels [9]) to obtain a continuous
covariate function. Say, for individual i, we have collected mi observations yi; j; j= 1; : : : ; mi
at times ti; j of a time-dependent covariate, Z , over [0; Xi], the total period of observation
for the ith subject. Then, using local linear regression, we may obtain Z(t) for a given t,
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Table I. Arti?cial survival data set with ten observations sorted by ascending follow-up time.

Patient Death during follow-up Follow-up time Surgery during follow-up Surgery time
1 = yes=0 = no (in months) 1 = yes=0 = no (in months)∗

1 1 5 0 NA
2 1 7 0 NA
3 0 8 0 NA
4 1 9 1 4
5 1 9 0 NA
6 0 12 1 2
7 1 13 0 NA
8 0 16 1 3
9 1 17 0 NA

10 0 20 1 4

∗NA = no surgery during follow-up period.

06t6Xi, by solving the following locally weighted least squares equation:

Ẑ(t) = arg min
a

(
min
b

mi∑
j=1

(yi; j − a− b(ti; j − t))2K
(
ti; j − t
h

))
(2)

Here, h is a bandwidth to be chosen by the user (automatic selection schemes such as cross-
validation are available) and K¿0 is a kernel weight function; an optimal choice is known
to be K(x) = (1 − x2)1[−1;1] (see M3uller [10]). We note that there exist fast implementations
for local linear ?tting [9].

In some cases, the time-dependent covariate may be categorical. For example, covariate
values could be 1 = patient underwent surgery prior to time t, 0 = no surgery prior to time t.
The covariate may also be a count variable, for example, counting the number of recurrences
of a particular cancer during patient follow-up. Another example is an ordered categorical
variable, such as clinical staging of cancer. We note that these various types of covariates
can be easily incorporated into the methodology for the event history graph.

We have written an S-plus function, event.history, to generate event history graphs as
described above; the function and corresponding help ?le may be obtained from the authors.
Some details on the algorithm are provided in the Appendix.

3. EXAMPLES AND APPLICATIONS

3.1. Event history graphs in action

Before creating event history graphs from actual study data, we will demonstrate our graphical
method with a small arti?cial survival data set, listed in Table I. This table contains data
on ten subjects followed for a maximum period of 20 months. Six subjects experienced the
event of interest, that is, death, before the end of the follow-up period, while four subjects
are right-censored. There is a single time-dependent covariate, status regarding surgery during
the follow-up period. This covariate changes from a value of 0 (no surgery) to 1 at the time
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Figure 1. Kaplan–Meier curve for all subjects (n= 10) from the arti?cial data from Table I. Small
vertical superimposed dashes along curve represent time of a censored observation.

of surgery. If there is no surgery during follow-up, the covariate remains at 0. Only four of
the ten subjects had the surgery.

Figure 1 shows a standard Kaplan–Meier curve for this small cohort. As discussed earlier,
the Kaplan–Meier estimator does not convey information regarding a time-dependent covariate.
The main feature of the proposed event history graph, shown in Figure 2, is to complement
the Kaplan–Meier estimator by providing information both on survival as well as on the time-
dependent covariate. For each subject, including subjects with censored lifetimes, the graph
contains a bar whose grey scale changes from dark grey to light grey once a subject is treated
with surgery.

The hatched bar segments occur only for censored subjects and represent the time from the
end of their follow-up period until the next observed event time. The one exception is the
last subject, who is censored but has no event time to follow. In this case, a small extension
of a censored subject’s bar is appended beyond his=her follow-up time, in order to allow
recognition that this ?nal bar indeed belongs to a censored individual. The extension of the
bar is shown with hatched texture. The Kaplan–Meier curve is then exactly the upper boundary
of the union of all bars, discounting the hatched bar extension for the longest observed subject
in case the last observation(s) is (are) censored.

This simple example demonstrates the versatility of the proposed event history graphs. These
graphs not only convey the usual cohort survival information, but also the time-dependent
covariate information for all subjects. By integrating these two features, this graph allows

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964
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Figure 2. Event history graph for all subjects (n= 10) from the arti?cial data from Table I.
Dark grey = no surgery yet during follow-up. Light grey = surgery occurred previously during follow-up.

Hatched segments in bars refer to censored subjects.

a visual assessment of whether the time-dependent covariate is related to survival, and it
thus complements customary inference procedures such as Cox survival regression with time-
varying covariates. Figure 2 provides visual evidence that the subjects who have surgery tend
to survive longer. Obviously, if this were a true study, the graph would be complemented by
statistical modelling and inference to determine if surgery indeed has a curative eSect.

3.2. Application to Stanford heart transplant data

The ?rst real data which we will discuss is from the Stanford Heart Transplant Study; see,
for example, Clark et al. [11], Crowley and Hu [12] and KalbKeisch and Prentice [13]. In
this study, there was interest in several questions, including determining if a mid-study heart
transplant was related to survival. Similar to surgery status in the example from Section 3.1,
status regarding heart transplant is the time-dependent covariate here.

Figure 3 displays the Kaplan–Meier curve for the study sample of size n= 103, providing
information on survival and censoring. The event history graph is seen in Figure 4, and
shows the patient transplant history simultaneously with the estimated survival probabilities.
It is clear that the vast majority of patients who survived for a long time had received heart
transplants early in their follow-up. This is portrayed by the change in bar colour from dark
grey (pre-transplant) to light grey (post-transplant). We can also see that the majority of those
who died early never received a transplant.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964
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Figure 3. Kaplan–Meier curve for all subjects (n= 103) from the Stanford Heart Transplant Study.
Small vertical superimposed dashes along curve represent time of a censored observation.

Figures 5(a) and (b) show the event history graphs for the Stanford cohort strati?ed into two
groups by age, ¡48 and ¿48 years old, respectively. Upon visual observation, it appears that
the younger patients live longer as compared to the older group. A logrank test comparing
these two survival curves yields a borderline statistically signi?cant result with a p-value
of p= 0:09, with a corresponding 95 per cent con?dence interval of (0:659; 1:040) for the
parameter exp(�) in the associated Cox model, comparing the younger versus the older group.

Viewing Figures 4, 5(a) and (b) motivates investigating the possibility of an interaction
of age and transplant status on survival. In fact the question of this interaction and several
other hypotheses have been investigated previously ([12; 13]) using Cox proportional hazards
regression and other survival analysis techniques. Our aim here is to show how the event
history graph can be used to advantage at the onset of an analysis, exploring the data and
possibly generating hypotheses to be tested. In addition, it is useful at the end of an analysis
to communicate the results eSectively to the medical community.

The Stanford data contained a time-dependent covariate that is relatively easy to handle, that
is, a single binary time-varying covariate indicating status of a patient. A more complicated
time-dependent covariate would be a continuously measured physiological or clinical variable,
which can vary in any direction over time. Such a variable is part of our second study
example.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964
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Figure 4. Event history graph for all subjects (n= 103) from the Stanford Heart Transplant
Study. Dark grey = no transplant yet during follow-up. Light grey = transplant occurred
previously during follow-up. Hatched segments in bars, as well as small horizontal dashes

following bars, refer to censored subjects.

3.3. Application to liver cirrhosis data

Data from a randomized clinical trial of liver cirrhosis included prothrombin, a circulating
blood chemical. This features as a time-dependent continuous covariate, measured between
3 and 17 times per subject over the course of follow-up; the follow-up period ranged from
4 to 4892 days for a total of 488 subjects. The main goal of the study was to see whether
the treatment, prednisone, a steroid hormone, was eSective in improving survival for cirrhosis
patients. This treatment was tested versus a placebo. For further details of the study and
formal statistical analyses, see, for example, Andersen et al. [1], Schlichting et al. [14] and
Christensen et al. [15].

Event history graphs permit the exploration of the eSect of the treatment prednisone and
the time-dependent covariate prothrombin on the survival of the cirrhosis patients. Several
time-independent variables collected at the beginning of the study were also available for
analysis. These included gender, age, histological liver biopsy readings etc.

We constructed ?ve event history graphs for these data. Figure 6 and Plate 1 pertain to
the survival and prothrombin levels for all 488 subjects, using diSerent colouring schemes.
Plate 2(a) and (b) display survival and prothrombin levels strati?ed by treatment group. The
?nal graph, Plate 3, provides an example of dimension reduction via the ?tting of a Cox
proportional hazards regression model, simultaneously incorporating several covariates.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964
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Figure 5. Event history graph (a) for subjects less than 48 years old (n= 56) and (b) for subjects
greater than or equal to 48 years old (n= 47), from the Stanford Heart Transplant Study. Dark grey = no
transplant yet during follow-up. Light grey = transplant occurred previously during follow-up. Hatched

segments in bars, as well as small horizontal dashes following bars, refer to censored subjects.

The colouring scheme for Figure 6 is in grey scale, with lighter shades of grey corresponding
to higher levels of measured prothrombin. Five total levels of prothrombin are indicated, based
on intervals de?ned by quintiles between the observed minimum and maximum prothrombin
values in the data set. Prothrombin values were assumed to change at the time of measurement.
No smoothing of the prothrombin measurements was performed, though that would be an
option for this and similar covariates.

Plate 1 is identical to Figure 6, except that we utilize the colour spectrum instead of shades
of grey. Here, royal blue signi?es the highest of ?ve levels of prothrombin, while red signi?es
the lowest. Speci?cally, the ordering from lowest level to highest, based on quintiles, is red,
yellow, green, light blue, royal blue. In general, the user has the option to choose a colouring
scheme suitable for the application at hand. Judging from Figures 6 or Plate 1, it appears that
those patients surviving longest tend to have higher levels of prothrombin, while, conversely,
early death seems to be associated with lower levels of prothrombin.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964
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Figure 6. Event history graph in grey scale for all subjects (n= 488) from the liver cir-
rhosis study. Grey scale shading (?ve total shades) is based on quintiles of prothrom-
bin index. Speci?cally, darkest grey = lowest prothrombin quintile, darker grey = second
lowest quintile, medium grey = middle quintile, lighter grey = second highest quintile and

lightest grey = highest quintile. Censoring indicated as in Figure 5.

In Plate 2(a) and (b), we show the event history graphs with prothrombin as covariate,
separately for active treatment and placebo, respectively, with colour coding for the subject
bars in each graph based on the same overall sample quintile categorization utilized for
Plate 1. These graphs point to relatively similar lifetime distributions for the two groups.
We note that a logrank test comparing the survival distributions for the two groups is not
signi?cant (p= 0:394), with an associated 95 per cent con?dence interval of (0:848; 1:070)
for the parameter exp(�) from the corresponding Cox regression comparing the lifetime of
the placebo group to the treatment group.

It does appear that measurements in the lowest quintile of prothrombin (red) are more
prevalent for the placebo group, and that measurements in the highest quintile (blue) are
more prevalent in the prednisone group. Modelling to determine if an interaction exists be-
tween treatment group and prothrombin levels on survival would be useful here. In fact, this
question was investigated by Christensen et al. [16] and Andersen et al. [1]. These researchers
determined that an interaction exists between average prothrombin level and treatment. In
particular, it was found that prednisone appears to work better for subjects whose average
prothrombin levels were in the 70th percentile or higher. Indeed, we can see in Plate 2(a)
and (b) that patients who achieve the highest quintile of prothrombin level in the prednisone
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Table II. Cox proportional hazards regression for liver cirrhosis data.

Variable Parameter estimate Standard error z-ratio p-value

Treatment group −0:1569 0:11882 −1:32 0:1866
Age 0:0591 0:00706 8:37 ¡0:0001
Prothrombin −0:0329 0:00225 −14:64 ¡0:0001
Liver tissue inKammation −0:4606 0:11848 −3:89 0:0001

group appear to survive at this level for a greater period of time than similar patients in the
placebo group.

These graphs illustrate yet another useful feature of event history graphs: they allow us
to explore how changes in covariate levels relate to remaining lifetime. A drop in a time-
dependent covariate may be an indicator for impending death. There is indeed evidence from
the liver cirrhosis study in Plate 2(a) and (b) that a drop in prothrombin levels precedes
death for many subjects. Falling prothrombin levels could be a sign of overall failure of
body functions, or in itself could be an indicator that cirrhosis is Karing up. Such connections
between changing levels and their impact on remaining lifetime are hard to model analytically,
and the proposed event history graph allows us to discover such relationships. Emphasis on
monitoring the levels of the respective covariate may be a signi?cant clinical consequence of
such ?ndings.

Finally, we illustrate dimension reduction with a single index for the case of multiple co-
variates in Plate 3. The ?rst step is to ?t a Cox proportional hazards regression model for
time-dependent covariates, as described in Section 2. The following multiple set of covari-
ates was considered: treatment group (0 = prednisone, 1 = placebo); age at entry; prothrombin
level; and inKammation of liver tissue (0 = slight or none, 1 = moderate or severe), without
consideration of interactions between variables. Only prothrombin level is a time-dependent
covariate here; the other predictors are time-independent.

The results from ?tting the Cox proportional hazards regression model are in Table II.
Higher age, lower prothrombin and greater liver tissue inKammation lead to higher risk of
death. Treatment by itself is not statistically signi?cant.

Building on these results from the Cox model, the next step is to generate the single in-
dex function, as described in Section 2. Speci?cally, �̂(t) = �̂1Z1 + �̂2Z2 + �̂3Z3(t) + �̂4Z4 =
−0:1569(trtgrp)+0:0591(age)−0:0329(prothrombin)−0:4606(liver tissue inKammation). Then,
for each subject, at each time point t, we calculate �̂(t). The resulting univariate time-varying
covariate �̂(t) is then used as input for the event history graph. This single-event graph is
shown in Plate 3, with colour choice again based on the quintiles of the time-varying covariate.
Lowest values of the single-index covariate are coded in royal blue and the highest values are
coded in red, with the ordering being royal blue, light blue, green, yellow, red. Plate 3 con-
veys the essence of the Cox model visually. Since three of the four variables in the ?tted Cox
model have negative coeUcients, which outweighs the one variable with a positive coeUcient,
that is, age, we would expect subjects with low values of �̂(t) to live longer. Indeed,
Plate 3 reveals a prevalence of royal blue for the longer-lived subjects versus a prevalence of
red tones for the short-lived subjects.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964
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4. DISCUSSION AND CONCLUDING REMARKS

We have presented the event history graph, a new graphical method for survival analysis
that can display information on survival, censoring and covariates, especially with regard to
time-dependent covariates. Through several examples, we have shown that the event history
graph is reasonably simple to interpret and can be a valuable exploratory analysis tool for
time-to-event studies, in addition to being a compact device for communicating results for
time-varying covariates to the medical community.

We note that if in a particular cohort there is a group of patients whose censoring time
tends to be greater than the longest observed lifetimes, then the jump sizes at the bottom
of the event history graph potentially are much wider vertically than those toward the top.
This phenomenon will be magni?ed when the sample size is large, as is the case for the
liver cirrhosis data (see Plate 1). One should then be careful not to inappropriately give
disproportionate ‘visual’ weight to the ?nal observation bars. If this is a problem in cer-
tain applications, it is possible to not plot the survival probabilities all the way to zero or
to treat the last censored observation as if it were uncensored, as a referee has suggested.

To aid in such a scenario, and also in general to gain additional insights into the data, the
user of our event.history function can invoke the option of viewing only a speci?ed grid of
the event history graph. Hence, one can essentially ‘zoom’ on a portion of the graph that may
otherwise be diUcult to visually assess. For example, a user might want to zoom in on a
particular quantile of the survival curve. An example of this can be seen in Plate 4, where a
zoom of short-term survivors from the liver cirrhosis study is displayed. These are de?ned by
having a value of the Kaplan–Meier estimator of at least 0.9, that is, they constitute the lowest
decile in terms of lifetime and are survived by 90 per cent of the subjects in the cohort. This
group consists of 73 subjects. Zooming allows to discern ?ner details of life histories. Note the
prevalence of red in Plate 4, con?rming that early deaths tend to be associated with high levels
of the single index function and low levels of prothrombin. See Section 3.3 for more details.

Another alternative to address the widening of bars towards the bottom would be to consider
a graph based on equal width bands. This could help to attenuate the visual inKuence of wider
bands at the bottom of the graph in case of heavy censoring towards the end, as a referee
has pointed out. A method for providing equal-width bars already exists, in the form of the
event chart ([3; 4]), although time-dependent covariate information is not trivially added to
these plots. A major drawback of equal-width bar plots is that the survival function estimate
in the form of the Kaplan–Meier curve is lost and therefore the connection between event
histories and survival cannot be made anymore. We consider this is to be a central feature of
event history graphs.

Combining event history information with the Kaplan–Meier estimator not only allows
one to visually assess possible associations of event history with survival, but also pro-
vides an information-rich and compact graphical device. Tufte [17] suggests the use of such
information-rich graphs and cites as an example a historical graph by Charles Minard which
contains six separate items of information in describing the Napoleonean army’s march to
Moscow. While in some instances the main message of a display may be masked if too much
extraneous information is provided, in the case of event history graphs it is not diUcult to
focus exclusively on the cohort survival information provided in these graphs.

Other colour schemes than the one used in the above examples are possible and will be in
some cases preferrable. One could use fewer than the ?ve colours selected in our application

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2951–2964



Plate 1. Event history graph in colour for all subjects (n= 488) from the liver cirrhosis study. Colour
choice (?ve total colours) is based on quintiles of prothrombin index. Speci?cally, red = lowest pro-
thrombin quintile, yellow = second lowest quintile, green = middle quintile, light blue = second highest

quintile and royal blue = highest quintile. Censoring indicated as in Figure 5.
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Plate 2. Event history graph (a) for subjects in active treatment (prednisone) arm (n= 251) and (b)
for subjects in placebo arm (n= 237), from the liver cirrhosis study. Colour choice and censoring

indicated as in Plate 1.
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Plate 3. Event history graph for all subjects (n= 488) from the liver cirrhosis study based on single
index model from Cox proportional hazards regression, using predictor variables listed in Table II.
Colour choice (?ve total colours) is based on quintiles of single index function (that is, �̂). Speci?cally,
royal blue = lowest single index quintile, light blue = second lowest quintile, green = middle quintile,

yellow = second highest quintile and red = highest quintile. Censoring indicated as in Figure 5.
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Plate 4. Zoomed version of event history graph from Plate 3, showing the event histories for the subjects
in the lowest decile (n= 73) for time-to-event.
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examples or space the colours closer together in the subjective spectrum, such as varying
them between blue and red only. A user can determine the colours of choice in the S-plus
function which creates the event history graphs (see Appendix).

In conclusion, the proposed event history graphs serve several functions. They:

1. provide a graphical tool for exploratory data analysis of relations between ?xed or time-
varying covariates and survival;

2. allow us to explore dynamic changes in a covariate and their relationship with lifetime,
such as a plunge in covariate level prior to death;

3. provide a visual assessment of the variability of the covariate time courses between
individuals and between cohorts;

4. allow for simultaneous visual comparisons of diSerent cohorts’ survival and covariate
information;

5. enhance the communication of survival regression inference, such as obtained by apply-
ing a Cox proportional hazards regression model, by adding a visual component. This
illustrative feature may be of particular interest in regard to medical publications and for
communicating results to the medical community.

Especially the last point indicates far reaching potential for the proposed graphical tech-
nique. Many publications in the medical literature which contain a survival analysis already
include graphs of Kaplan–Meier curves. If desired, these graphs can then be simply extended
to include covariate information by using the techniques proposed here. In particular, the
event history graph does not require more space than a conventional Kaplan–Meier plot for
one cohort, but beyond the Kaplan–Meier curve contains a wealth of additional information.

APPENDIX

We present a summary of the algorithm used to create the event history graph.

1. First, a data set (in S-plus, a data frame) must be created with one row per subject.
Within each row should be a subject’s observed time, event indicator (for example,
1 = event, 0 = right-censored), and time-dependent covariate values with their associated
recorded times.

2. In the program, the data set is ordered by ascending observed time. In case of ties,
event times precede censoring times.

3. For uncensored times, count tied event times. For censored times, count the number of
other censored times prior to next event time. In case the next event time is tied, also
count the number of these tied event times. This is necessary to determine jump sizes
and bar heights.

4. Plot bars for each subject, including segments within bars. The lengths of these segments
are based on recorded times for covariate changes, and colours of segments are based on
the level of the covariate value. The exceptions here are (a) the hatched segments drawn
for censored patients from their recorded censoring time to the next uncensored time,
(b) if the ?nal unobserved time(s) in the data set is (are) censored, extend a hatched
segment by a small amount (for example, 5 per cent) beyond the observed time.

5. In the S-plus program, event.history, the user has choices for the following arguments:

(i) specifying rows of data set to include in graph, say, based on treatment regimen;
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(ii) event indicator (for example, 1 = event=0 = censored);
(iii) number of categories for covariate or covariate function;
(iv) how to de?ne covariate or covariate function categories;
(v) colour choices for covariate bar segments – one can choose distinct colours or

gradations of grey;
(vi) density of lines in hatched bar segments for censored subjects;

(vii) length of hatched segment extension beyond observed time in case ?nal observa-
tion(s) is (are) censored;

(viii) x-axis label, y-axis label and graph title;
(ix) plot region control, including ability to ‘zoom’ on speci?ed portion of overall

graph.
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