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Abstract. The nonparametric approach to estimate hazard rates for lifetime

data is flexible, model-free and data-driven. No shape assumption is imposed

other than that the hazard function is a smooth function. Such an approach

typically involves smoothing of an initial hazard estimate, with arbitrary

choice of smoother. We describe methods for grouped lifetime data observed

at certain time intervals and for continuously observed lifetime data. There

are some intrinsic differences between the smoothing approaches for these two

types of data. More specifically, smoothing an initial hazard estimate based

on the life table is adopted for grouped lifetime data; while for continuous

data, smoothing is employed to increments of the Nelson-Aalan cumulative

hazard estimate aiming at the derivative of the cumulative hazard function.

A few nonparametric hazard regression methods are also discussed.

Keywords: Life table; Nelson-Aalen estimator; Nonparametric smoothing

methods; Bandwidth choices; Boundary effects; Hazard regression.
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1 Introduction

In the analysis of lifetime data or time-to-event data, a primary interest is

to assess the risk of an individual at certain times (or ages) (see Survival

Analysis, Overview). Let T denote a lifetime variable with distribution

function F (t) = Pr(T ≤ t) and probability density function f(t) = dF (t)/dt.

The risk of an individual at age t can be measured by the so called ”hazard

rate” or ”hazard function”, which is defined as:

λ(t) = f(t)/[1− F (t)], for F (t) < 1. (1)

That is, λ(t)dt represents the instantaneous chance that an individual will

die in the interval (t, t+ dt) given that this individual is alive at age t. The

hazard rate provides the trajectory of risk and is widely used also in other

fields. Engineers refer to it as ”failure rate function” and demographers refer

to it as ”force of mortality function”. The term ”lifetime” simply denotes

the time until the occurrence of an event of interest.

While parametric models provide convenient ways to analyze lifetime

data, the necessary model assumptions, when violated, can lead to erroneous

analyses and thus need to be checked carefully (see Parametric Models

in Survival Analysis). We give a brief survey on hazard rate estimation

in this article. No shape restriction on the hazard rate is assumed except for

smoothness. Such a model-free approach is data driven and can be used for

parametric model checking. The nonparametric approach of hazard rate es-

timation typically involves the smoothing of an initial hazard estimate. The

brief survey of various smoothing hazard rate estimators provided here cov-

ers grouped lifetime data on the one hand and continuously observed lifetime

data on the other.

For grouped data, the observations occur in the form of scatter-plots

(ti, qi), where qi is an initial hazard estimate at the midpoint ti of the ith time

interval. Smoothing for such data corresponds to a scatter-plot smoothing or

nonparametric regression step. As for continuously observed data, hazard
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rate estimation resembles density estimation (smoothing the increments

of a cumulative function estimate). Almost any density estimation method

can be adapted for hazard rate smoothing. The simplest such method is the

kernel method which should however be employed with care in the boundary

region. More details are given later in Section 5.

2 Smoothing Hazard Rates for Grouped Data:

Nonparametric Graduation of Lifetables

The earliest nonparametric hazard rate estimate was the life table estimate

based on grouped lifetimes (see Grouped Survival Times ), which has been

known for centuries. Assume for simplicity that lifetimes are grouped into

intervals of unit length with midpoints t1, ..., tp. Let ni denote the number

of individuals alive (or at risk) at the beginning of interval i, and di denote

the number of observed deaths during this interval. An ad hoc estimate of

the hazard rate for the ith interval is the so called death rate, qi = di/ni (for

intervals of length ∆ the death rate is replaced by di/(∆ni)). A plot of the

raw death rates at various times ti typically yields a curve that is ragged,

indicating high variability; see Figure 1 for an example concerning the death

rates of 1,000 female Mediterranean fruit flies. Dead flies were counted daily,

and qi is the death rate at day i.

Since the actual hazard rate λ is typically assumed to be a smooth func-

tion, smoothing the death rates provides an aesthetically improved estimate

(see Fig. 1 for two versions of smoothed death rates). A smoothing proce-

dure, when applied properly, also improves the statistical performance of the

resulting hazard rate estimator.

For example, the smoothed death rates typically have a faster convergence

rate than the unsmoothed death rates. The smoothing of death rates was

pioneered by actuaries who referred to these smoothing methods as ”linear

graduation” or ”nonparametric graduation”, in contrast to “analytic gradu-
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Figure 1: Three hazard rate estimates for the survival of 1,000 female
Mediterranean fruit flies. (a) death rates (thin line) (b) smoothed hazard
rate with fixed bandwidth b = 6 (solid line) (c) smoothed hazard rate with
least squares cross-validated bandwidth choice b = 30 (bold line).

ation” based on parametric models (see Actuarial Methods). The term

“linear” refers to the fact that these nonparametric graduation methods yield

hazard estimates of the form

λ̂(t) =

p∑
i=1

ci(t)qi , where

p∑
i=1

ci(t) = 1, at each time t. (2)

That is, the resulting hazard estimate at age t is a weighted average of the

death rates with weights ci(t) specified by the method of graduation and

adjusted locally at each age t.

The graduation (or smoothing) process typically reduces the variance of

the resulting hazard estimates at the expense of introducing biases. The

graduated or smoothed hazard estimate converges to the true hazard rate at

a slower rate than the
√
n rate which holds for a parametric (or analytic)

graduated hazard estimate.

Moving averages, local weighted least squares methods and the so-

called Whittaker-Henderson estimates have been the earliest proposals among

a variety of different possible graduation methods, and are commonly adopted

by actuaries (see Borgan [6] and Hoem [33]). Any nonparametric regression
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method can be used to graduate life tables in order to obtain a smooth

hazard rate estimate. One just applies the chosen smoother, which could

be a spline or kernel method, to the scatter plot {(ti, qi), i = 1, ..., p}.
The Whittaker-Henderson estimate resembles a spline estimate. The ker-

nel method for graduation (see Copas and Haberman [8], Bloomfield and

Haberman [4]) is conceptually simple but needs to be applied with caution

in the boundary region of the data, owing to its large bias there.

For the graduation of grouped data, we recommend the local polyno-

mial method which is also called the locally weighted least squares method.

This graduation method has been credited to the famous mathematician J.P.

Gram, perhaps best known for his contributions to Gram-Schmidt orthog-

onalization. See Hoem [32] and Seal [52] for historical reviews. Specifically,

in his doctoral dissertation, Gram [21] suggested a weighted least squares

method to fit a smooth curve locally by polynomials. The explicit form of

Gram’s estimate using a local linear fit is given in equation (3) below.

The local polynomial method is well suited for graduating initial hazard

estimates based on life tables. As a least squares based procedure, it is simple

to interpret, and automatically includes boundary corrections. For the kernel

method, boundary corrections require the implementation of special bound-

ary kernels. Both kernel and local polynomial methods are theoretically more

tractable than the spline method, especially for lifetime data which are often

incomplete. Some asymptotic results for the local polynomial estimator are

reviewed in the next section.

We note that the death rate qi can be replaced by any initial estimate of

the hazard rate. For example, the central death rate, qci
= 2di/(ni + ni+1),

is a good alternative. If death rates are used in (2), it is recommended (see

(11) of next section and [61]) to include a transformation of the smoothed

death rates λ̂(t), and to use − log(1 − λ̂(t)) as the final hazard estimate.

This transformation reduces the bias resulting from grouping the data. This

bias can be substantial at extreme ages (i.e., for large t) and may result in
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inconsistent estimates of the hazard rate. If the central death rates are used

in (2), another transformation ( see (13) of next section and [43]) of the

smoothed central death rates is recommended instead.

As for the choice of the smoother in (2), it is a judgement call, and typi-

cally the choice of an adequate smoothing parameter is more important. The

sampling or asymptotic properties of the resulting hazard rate estimator are

much more complicated than in the standard regression setting, as the qi or

other initial hazard estimates are not independent of each other. The incom-

pleteness of lifetime data further complicates theoretical analysis. Therefore,

much is yet to be explored in hazard rate estimation based on smoothing life

tables.

For an overview and details of the kernel smoothing method, see Wand

and Jones [60]; for the spline method, Greene and Silverman [26]; and for

the local polynomial method, Fan and Gijbels [14].

3 More on Local Polynomial Hazard Smooth-

ing for Grouped Data

In addition to the grouping, we shall assume that the lifetimes T1, T2, · · · , Tn,

based on a cohort of n individuals, are subject to random censoring by

C1, C2, · · · , Cn. Let I1, I2, ..., Ip denote a partition of p ordered intervals

over a time interval of length L. For the jth individual, the value of δj =

1{Xj=Tj} is known but not the actual value of Xj = min(Tj, Cj). It is

only known that Xj ∈ Ii for some i. Observed are (di, ni), where di =∑n
j=1 1{Xj∈Ii,δj=1} is the number of observed deaths in the interval Ii, and

ni =
∑n

j=1 1{Xj∈Ik, for some k≥i} is the number of individuals at risk at the

beginning of the interval Ii.

For simplicity of presentation we shall assume that the intervals Ii are

of equal length ∆ and that the first interval starts at zero. The non-equal

length case can be handled similarly as in nonparametric regression with
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non-equidistant design points and will not be discussed here. The grouped

data can thus be summarized in lifetable form which consists of data pairs

(ti, qi), i = 1, ..., p. Here, ti = ∆(i− 1
2
) is the midpoint of the ith interval Ii

and qi = q̃(ti) = di/(∆ni) is the death rate (out of those alive) for interval Ii.

A closer look at q̂ reveals that it is an empirical estimate of the population

death rate defined by

q(t) = ∆−1 Pr(T ∈ (t− ∆

2
, t+

∆

2
)|T > t− ∆

2
),

and one expects q(t) to be close to the true hazard function λ(t), provided

that ∆ is small.

The local polynomial smoother due to Gram [21,22], is based on smooth-

ing the lifetable data {(ti, qi), i = 1, ..., p} by locally fitting a polynomial of

fixed degree r. Thus, given a bandwidth or window of size b = bn, for es-

timation at age t, a polynomial g(x − t) of degree r is fitted to all lifetable

data points (ti, qi) for which |t− ti| ≤ b. The coefficients of the polynomial

g(·) are obtained via the weighted least squares criterion and the value of the

fitted polynomial at t (i.e., the intercept) is the hazard estimate. A common

choice is to fit local linear polynomials (i.e., r = 1).

For r = 1, this estimate, denoted by q̂(t) , is equal to the minimizer for

a0 of

p∑
i=1

wiK((t− ti)/b) {qi − [a0 + a1(ti − t)]}2 . (3)

Here wi are case weights, typically chosen as wi = ni, and K is a nonnegative

kernel function satisfying

V =

∫
K2(x)dx <∞. (4)

We recommend to use either the Epanechnikov kernel

K(x) = .75(1− x2), −1 ≤ x ≤ 1,

or the Gaussian kernelK(x) = (2π)−1/2e−x2/2.
(5)
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The bandwidths should satisfy

bn → 0 and nbn →∞; (6)

The weighted least squares method is used for two reasons. First, in the

spirit of smoothing methods, it gives remote observations less influence in a

way that can be controlled by choice of bandwidth and kernel in (3). Second,

it allows to address the high degree of heteroscedasticity (see Scedasticity)

of the lifetable estimate qi, through the choice of the case weights wi in (3).

Bias and variance expressions are derived in Wang et al. [61] and summarized

below.

First we define a constant that appears in the leading bias term:

B =
1

2

∫
x2K(x)dx (7)

Under the kernel and bandwidth conditions (4) and (6), and if in addition

∆ → 0, and ∆ log n/b→ 0 as n→∞, (8)

we have for t with F (t) < 1 and G(t) < 1, and B and V as in (4),(7),

bias(q̂(t)) = −∆

2
λ2(t)+

∆2

24
[λ(2)(t)+4λ3(t)]+ b2λ(2)(t)B+o(b2)+o(∆2) (9)

var(q̂(t)) =
1

nb

{
λ(t)

[1− F (t)] [1−G(t)]
V + o(1)

}
.

(10)

Bias Reduction Transformation

Note that the leading term of the variance in (10) is the same as for

the kernel estimate for continuously observed data in (21). The terms in

(9) involving b correspond to the bias due to smoothing and are also the

same as for continuously observed data with k = 2 in (20). The terms
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involving ∆ in (9) correspond to an additional bias due to the grouping

of the data. This additional bias can be improved by the transformation

φ(x) = − log(1−∆x)/∆, which is motivated by the relation

∆q(t) = 1−
1− F (t+ ∆

2
)

1− F (t− ∆
2
)

= 1− exp

[
−
∫ t+∆

2

t−∆
2

λ(x)dx

]
≈ 1− e−∆λ(t).

Thus, we propose the transformed estimate

φ(q̂(t)) = − log(1−∆q̂(t))/∆, (11)

which has the same variance expression (10) as q̂ has, but a bias of smaller

order:

bias(φ(q̂(t))) =
∆2

24
λ(2)(t) + b2λ(2)(t)B + o(b2) + o(∆2). (12)

Comparing (9) and (12), we see that q̂(t) has an additional bias, −∆
2
λ2(t)+

∆2

6
λ3(t), as compared to φ(q̂(t)). In addition to this bias reduction there are

other advantages in using φ(q̂(t)) rather than q̂(t), especially when hazards

at extreme ages are of primary interest (see Wang et al. [61] for details).

If the central death rate, qci
, is used in (3) instead of the death rate, qi, a

different transformation is proposed in Müller et al. [43], given by:

ψ(q̂c(t)) =
1

∆
log

2 + ∆q̂c(t)

2−∆q̂c(t)
(13)

We close this section by pointing out that the rate of convergence of q̂(t),

φ(q̂(t)), q̂c(t) or ψ(q̂c(t)), and the choice of the bandwidth b can be derived

analogous to that of the kernel estimate λ̂ in Section 5, with ∆ playing a role

in the asymptotic bias term. The program to compute q̂(t) in (3) or q̂c(t)

and their corresponding transformed estimates, φ(q̂(t)) in (11) or ψ(q̂c(t)) is

very simple, and so is the computation of the cross-validated bandwidths as

employed in [43] and [61].

The hazard rate estimate, based on the least squares cross-validated band-

width, calculated from the lifetimes for 1,000 female Mediterranean fruit flies
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is plotted in Figure 1. The lifetimes are grouped into days. Here the cross-

validated bandwidth is fairly large (b = 30), owing to the large variation of

the death rates after day 60. The hazard plot was truncated at day 81 when

there were only 10 flies left.

4 Smoothing Hazard Rates for Continuously

Observed Data

The grouped data situation discussed in the previous section is common for

demographic data that were observed at fixed time points or grouped for

convenience. The estimation of hazard rates for continuously observed data

is conceptually close to density estimation. To see this, consider, instead

of (1), the hazard rate function as the derivative of the cumulative hazard

function Λ(t) =
∫ t

0
λ(x)dx. A hazard rate estimate can thus be obtained,

analogous to a density estimate, by smoothing the increments of an estimate

of Λ(t).

Watson and Leadbetter [63,64] were the first to propose and study such a

smoothed hazard estimator using the empirical cumulative hazard estimate

Λn(t) based on an independent and identically distributed (i.i.d.) sample

of lifetimes (that is, the Λn(t) in (15) with all δ[j] = 1). They propose the

following convolution type hazard estimator.

λ̂n(t) =

∫
Wn(t− x)dΛn(t), (14)

where Wn is a sequence of smooth functions approaching the Dirac delta-

function for large n. This delta-sequence method is quite general and cov-

ers several types of smoothing methods, including the kernel method (with

Wn(x) = b−1
n K(x/bn)). Another type of hazard estimator proposed in Wat-

son and Leadbetter [64] is of a ratio type,

λ̃n(t) = f̂n(t)/[1− F̂n(t)], (15)
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where f̂n can be any density estimate of the lifetime density f and F̂n is an

empirical estimate of the lifetime distribution function F . Both types of haz-

ard estimators have the same asymptotic variance but different asymptotic

biases (Rice and Rosenblatt [50]). The convolution type estimator λ̂n has

prevailed owing to its theoretical tractability (exact mean square errors

available) and aesthetic superiority over the ratio type estimator λ̃n.

A complete random sample of lifetimes as assumed above is often un-

available. In reality, lifetime data are often incomplete owing to staggered

entry, loss to follow-up, or early termination of a study. For simplicity of

presentation we focus on the random censoring case for the rest of the entry.

Basic references for hazard estimation for other incomplete data such as left

truncated and right censored data can be found in Uzunogullari and Wang

[59] and Gu [27]. The related problem of estimating transition intensities for

a two-state Markov Process was explored in Keiding and Andersen [35].

Under the random censorship model, the actual lifetime Ti of an individ-

ual may be censored by another random variable Ci. One observes instead

(Xi, δi), where Xi = min(Ti, Ci), the minimum of the lifetime and censor-

ing time of the ith individual, and δi = 1{Xi=Ti}, which is one if the actual

lifetime is observed and zero otherwise. We shall assume that the censoring

times C1, C2, ..., Cn have a common distribution function G and that they

are independent of the lifetimes T1, ..., Tn. Let (X(i), δ[i]), i = 1, 2, ..., n, be

the ordered sample with respect to Xi
′s (that is, X(1) ≤ X(2) ≤ ... ≤ X(n),

and δ[i] is the corresponding censoring indicator of X(i)).

Hazard estimators in this situation are ordinarily obtained by smoothing

the increments of the Nelson-Aalen estimator Λn(·) for the cumulative

hazard function Λ(t). Let Nn(t) =
n∑

i=1

1{Xi≤t,δi=1}, and Yn(t) =
n∑

i=1

1{Xi≥t}.

The Nelson-Aalen estimator Λn(·), which is instrumental in survival analysis

for censored data, is defined as

Λn(t) =
∫ t

0

1{Yn(s)>0}
Yn(s)

dNn(s) =
n∑

i=1

δ[i]1{X(i)≤t}

n−i+1
(16)
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if there are no tied observations. Properties of the random step function

Λn(t) have been studied extensively, see for example, Andersen et al. [1],

Section IV.1 for details.

Kernel Estimators

Substituting the Λn in (16) into (14) and choosing Wn(x) = b−1K((t −
x)/b), for a particular choice of kernel K and bandwidth b = bn, we arrive at

the kernel hazard estimator:

λ̂(t) =
∫

1
b
K( t−x

b
)Λn(x),

=
n∑

i=1

1
b
K(

t−X(i)

b
)

δ[i]
n−i+1

,
(17)

if there are no tied observations.

Asymptotic properties on consistency are typically obtained under the fol-

lowing assumptions: (i) the true hazard rate is k-times differentiable for a

k ≥ 0; (ii) the bandwidths satisfy (6); and (iii) the kernel is of order k,

defined as:∫
K(x)dx = 1,

∫
K2(x)dx <∞,

∫
xjK(x)dx = 0 for 1 < j < k,∫

xkK(x)dx is finite but nonzero. (18)

The choice of the bandwidth is of crucial importance and regulates the

trade off between the bias and variance of the estimator in (17). A small

bandwidth yields a less smooth curve, with smaller bias but larger variance,

as compared to a larger bandwidth (see (20) and (21)). Bandwidth choice is

particularly crucial for hazard estimation near the right boundary of the data

as the variance increases to infinity there. More discussions on bandwidth

choice is provided in the next section.

As for the choice of the kernel, smoothness of the kernel determines the

smoothness of the corresponding kernel estimate, and the order of the kernel

determines the order of the bias (see (20)) and thus the rate of convergence.
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Often, nonnegative kernels are used in practice, and the Epanechnikov kernel

in (5) has certain optimality properties (see Müller [40].

The kernel hazard estimate is the simplest and thus widely adopted

smooth hazard estimator. It has been studied extensively in the literature,

for example, by Ramlau-Hansen [48,49], Yandell [66], Tanner and Wong [58],

Burke and Horvath [7], Diehl and Stute [11] and Müller and Wang [41].

Spline Estimators

Another commonly adopted smoothing method is the spline method.

There are several types of spline methods. The most widely investigated

spline method for hazard smoothing is the penalized likelihood approach.

Let η(t) = log λ(t) be the log hazard function. The log likelihood function

for censored data is:

`(η) =
n∑

i=1

{
δiη(Xi)−

∫ Xi

0

eη

}
,

which is unbounded if no shape restriction on η is imposed. A penalty J(η),

measuring the roughness of η, is therefore incorporated and the penalized

likelihood estimate η̂ of η is the maximizer of the penalized log likelihood

1

n

n∑
i=1

{
δiη(Xi)−

∫ Xi

0

eη

}
− α

2
J(η), (19)

among all η in a Hilbert space. Here α is a smoothing parameter. Smaller α

yields a better fit but a more variable (rough) curve. A typical choice of J(η)

is
∫

[η(2)(x)]2dx, which leads to a cubic spline with knots at all X ′s. More

specifically, η̂ is two-times continuously differentiable and is a piecewise cubic

polynomial between any two consecutive X ′s. The smoothing parameter

α plays a similar role as the bandwidth b in a kernel estimate. Cross-

validation is a common way to determine the value of α. See O’Sullivan

[44, 45] for computational details and Gu [27] for asymptotic results.
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In (19), the roughness of log λ(t) is penalized so as to avoid nonnega-

tive constraints on the hazard function. Other forms of penalty functions

were proposed in Anderson and Senthilselvan [2], Senthilselvan [46], and An-

toniadis and Grégoire [3]. The penalty function J determines the kind of

spline resulted from (19). For example, the penalty J(η) =
∫

[λ′(X)]2dx is

employed in Anderson and Sethilselvan [2], and the resulting hazard esti-

mate is a piecewise quadratic spline. Note that this hazard estimate may

yield negative values under heavy censoring.

The above spline estimates have knots at each of the observed X values

and are called smoothing splines in the literature (see Green and Silver-

man [20, Chapter 2]. Another type of spline method is regression splines

or B-Splines which adopt a fixed number of knots and basis functions. See

Rosenberg [51] and Kooperberg et al. [36] for details and ways to select the

number and location of knots. A hazard function estimate with flexible tails,

called HEFT, is proposed in [36] by estimating the log-hazard function using

cubic splines.

Other Hazard Rate Estimators

The ratio type hazard estimator in (14), also due to Watson-Leadbetter,

has been extended to censored data as well and was studied by Blum and

Susarla [5], Földes, Rejtö and Winter [16] and Lo, Mack and Wang [38].

Hjort [31] advocated the use of semiparametric approaches to estimate

hazard rates. The approach is to start with a possibly crude parametric esti-

mate and to improve it via some nonparametric procedures. The motivation

is to reduce the bias of a parametric estimate via nonparametric correction

locally, and yet to arrive at an estimate that is less variable than a fully

nonparametric one.

For reviews of earlier results on hazard rate estimation see Padgett [46]

and Gefeller and Michels [18], and Singpurwalla and Wong [55] for uncensored

data.
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5 More on Kernel Hazard Estimators for Con-

tinuously Observed Data

The rate of convergence of the kernel hazard estimate (17) depends on the

order of the kernel, the bandwidth and the differentiability of the hazard

function. Typically, the order k of the kernel is chosen to be an even number

with k = 2 being the standard choice. The resulting bias and variance are

respectively:

bias(λ̂(t)) = bk[λ(k)(t)Bk + o(1)], (20)

var(λ̂(t)) =
1

nb

{
λ(t)

[1− F (t)][1−G(t)]
V + o(1)

}
, (21)

where Bk = (−1)k/k!
∫
xkK(x)dx and V is as in (4).

The influence of the bandwidth b and the trade off between the bias

and variance is seen from (20) and (21). The optimal rate for the mean

squared error (MSE) of λ̂(t) is attained when the (bias)2 and variance are

of the same order. This results in an optimal MSE rate of convergence of

n2k/(2k+1), which is n4/5 for the standard choice of k = 2. This rate is slower

than the usual parametric rate of n regardless of the order of k. For the

asymptotic distribution, we further assume that d = limn→∞ nb
2k+1 exists

for some 0 ≤ d <∞. Then

(nb)1/2(λ̂(t)− λ(t))
D→ N

(
d1/2λ(k)(x)Bk,

λ(t)

[1− F (t)][1−G(t)]
V

)
. (22)

Extensions to the estimation of derivatives of hazard functions have been

considered as well (Müller and Wang [41]). These essentially involve a change

in the kernel. Derivatives are of interest to detect rapid changes in hazard

rates or for data based bandwidth choices, as the optimal bandwidths in (23)

or (24) depend on the derivatives of the hazard rates. Again, the order k of

the kernel affects the convergence rate and also asymptotic constants.

Bandwidth Choice
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The bandwidth for a kernel hazard estimate can be fixed at all points

(global bandwidth b) or can vary for different points (local bandwidth b(t)).

Usually a global bandwidth is employed for a smooth density or regression

estimate owing to its simplicity. However, for the hazard estimation situation

discussed here there are compelling reasons to adopt local rather than global

bandwidth choices. According to (21) the variance of the kernel estimate

λ̂(t) eplodes to infinity as t approaches the right boundary of the data. Thus

the variance tends to dominate the bias in the right tail and this needs to be

compensated for by a larger bandwidth.

The optimal local bandwidth of λ̂(t) which minimizes the leading term of

MSE(λ̂(t)) is:

b∗(t) = n−1/(2k+1)

{
1

2k

λ(t)

[1− F (t)][1−G(t)]

V

[λ(k)(t)Bk]2

}1/(2k+1)

(23)

To find the optimal global bandwidth, we have to restrict the range of t to

a compact interval [0, τ ] with F (τ) < 1 and G(τ) < 1. The global optimal

bandwidth which minimizes the leading term ofMISE(λ̂) = E
∫ τ

0

[
λ̂(x)− λ(x)

]2
dx

is

bopt = n−1/(2k+1)

{
1

2k

∫ τ

0

λ(x)

[1− F (x)][1−G(x)]
dx

V

B2
k

∫ τ

0
[λ(k)(y)]

2
dy

}1/(2k+1)

.

(24)

Note that both the local and global optimal bandwidths in (23) and (24)

involve unknown quantities. In practice one has to find alternatives. There

is an extensive literature on bandwidth selection and “cross-validation” and

“plug-in” techniques are popular. See Patil [47] and Müller and Wang [41][42]

for details. A bootstrap method to select the global bandwidth has been ad-

vocated in González-Manteiga, Cao and Marron [20] as an alternative. In

addition to the local bandwidth choice in (23), which adopts different band-

widths at different time point t, choosing bandwidths as the distance of t

to its k− th nearest-neighbor among the remaining uncensored observations

is a convenient way to adapt to the data by allowing for varying degrees of
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smoothing; see Tanner [57s], Tanner and Wong [58] and Gefeller and Dette

[17] for detailed descriptions. Other data-adaptive local or global bandwidth

choices for hazard estimates can be derived analogously to the density esti-

mation case as discussed in Silverman [54, Section 3.4] and Wand and Jones

[60, Chapter 3].

Boundary Effects

We close this section with a cautionary remark that the kernel smoothing

method needs to be employed very carefully near the boundary as there is a

bias problem in such regions, usually referred to in the literature as boundary

effects. Boundary effects may be attributed to the fact that the support of

the kernel exceeds the available range of data and are not unique to hazard

estimates.

An unmodified kernel estimate is unreliable in the boundary region, which

is the region within one bandwidth of the largest or smallest observations.

To remedy the boundary effects, different kernels, referred to as ”boundary

kernels” can be used within the boundary region. As a consequence, varying

kernels are employed at each location t and the bandwidths are affected

accordingly. The resulting kernel estimate with varying kernels and varying

local bandwidths takes the form

λ̂(t) =

∫
1

b(t)
Kt

(
t− x

b(t)

)
dΛn(x), (25)

where both the bandwidth b = b(t) as well as the kernel K = Kt depend on

the point t. Details for the choices of the kernel Kt and bandwidths b(t) can

be found in Müller and Wang [42].

Simulation Comparison of Hazard estimators and Software

A very informative and extensive simulation study was carried out in Hess

[30] to compare the aforementioned kernel-based hazard estimators with vari-

ous local and global bandwidth choices and boundary corrections, the kernel-

based hazard estimators in Gefeller and Dette [17] with varying bandwidth
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methods based on kth nearest-neighbor, and the spline-based estimators in

Kooperberg et al. [36]. The results indicated advantages of using HADES,

the aforementioned local optimal bandwidth choice and boundary correction

in Mueller and Wang [42]. There is significant improvement (over 50% on

the average) in mean square error over the global bandwidth choice if a local

optimal bandwidth is employed. Boundary corrections will lend additional

efficiency. The locally optimal bandwidth estimators in [42] with only left

boundary correction also outperformed two publicly available procedures, the

spline estimator in [36] and the nearest-neighbor estimator in [17]. The latter

is based on the procedures in Tanner[57] and Tanner and Wong [58].

A library of Fortran and S-Plus programs for the HADES estimator in

[42] and for the nearest-neighbor estimator in [17] is available under a package

called ”muhaz” at the website of the authors of [30] :http://odin.mdacc.tmc.edu/anonftp/

To get the S-code follow the link: ftp://odin.mdacc.tmc.edu/pub/S/muhaz.tar.gz

The corresponding R program for muhaz is also publicly available at: cran.r-

project.org/doc/packages/muhaz

The S-plus code of the spline estimator in Kooperberg et al.[36] called,

HEFT is publicly available from the StatLib software library.

6 Hazard Regression

Estimating a Baseline Hazard Function

So far we discussed hazard smoothing for a homogeneous population.

Often the risk of an individual varies according to the values of some covari-

ates. Thus the hazard function of an individual with covariate Z ∈ <d is

λ(t, Z) and regression techniques are required. A semi-parametric approach

with a regression parameter β and a nonparametric baseline hazard function

λ0(t) is often adopted. Examples include Cox’s proportional hazards

regression model where λ(t, Z) = λ0(t) exp(βTZ), and the accelerated

failure-time model where λ(t, Z) = λ0(exp(βTZ)t) · exp(βTZ).
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A smooth estimate of the baseline hazard is preferable and often necessary

to obtain consistent estimates of λ(t, Z). Anderson and Senthilselvan [2]

applied the penalized maximum likelihood approach, and Gray [23] and Wells

[65] applied the kernel method to estimate the baseline hazard function in

Cox’s proportional hazard model. Andersen et. al [1, Section VII.2.5] give

several examples of estimated baseline hazard functions.

The Cox proportional model has been extended in Dabrowska [10] to al-

low covariate dependent baseline hazard function. The model is: λ(t, Z) =

λ0(t,Xt)exp[β
TZt], where Xt and Zt are predictable covariate processes or

covariate vectors. Another type of extension is to employ, as in Wang

[62], an unknown link function in the proportional model, where λ(t, Z) =

λ0(t)g(β
TZ) with g completely unknown and estimated via local partial

likelihood method. Etezadi-Amoli and Ciampi [13] also investigated an-

other extension of Cox’s proportional hazards and accelerated failure time

models of the form: λ(t, Z) = λ0(g1(α
TZ)t)g2(β

TZ)·, where λ0(t) denotes the

baseline hazard function which is estimated by the regression spline method.

Generalized Additive Proportional Hazards Model

Another type of proportional hazards model allows an arbitrary co-

variate effect of the form:

λ(t, Z) = λ0(t) exp[g(Z)], (26)

where g is an unspecified smooth function of Z. LeBlanc and Crowley [37]

use the CART (Classification and Regression Trees) algorithm to estimate

the relative risk g (see Tree-structured statistical Methods), Gentleman

and Crowley [19] and Fan, Gijbels and King [15] use local full or partial likeli-

hood methods to estimate g. Although this is the most general proportional

hazards model, it is difficult to estimate g(Z) when the covariate Z is of

high dimension, say d ≥ 3. An extremely large sample size would be needed.

This is called the ”curse of dimensionality”. Dimension reduction models
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and methods are thus called for. Among these, the additive regression model

is a promising alternative to (26).

Under the additional assumption that g is additive in (26), i.e. g(z) =
d∑

i=1

gi(zi), Hastie and Tibshirani [29] and O’Sullivan [44, 45] use smoothing

splines to estimate g ( see Generalized Additive Model). Sleeper and

Harrington [56] use B-splines, and Gray [24] uses penalized splines with fixed

knots to estimate g and incorporate time-varying coefficients. Apart from

the minor differences in the various spline methods, all the aforementioned

methods adopt the partial likelihood approach with a penalty for each gi to

be estimated.

Let (Xi, Zi, δi), i = 1, ..., n denote the observed data and Y1 < ... < Yk

denote the k distinct failure times with di failures at time Yi. The penalized

log partial likelihood with smoothing parameters α1, ..., αd is:

`(g1, ..., gd) =
k∑

i=1

δi

{∑
j∈Di

g(Zj)− di log

(∑
j∈Ri

eg(Zj)

)}
−1

2

d∑
i=1

αi

∫ [
g

(2)
i (t)

]2
dt,

whereDi is the set of indices of the failures at observed failure timeXi, and Ri

is the set of indices of individuals at risk at time Xi. Minimizing `(g1, ..., gd)

then yields the smoothing spline estimates (ĝ1, ..., ĝd). Calculations of the

estimates can be very time-consuming. See Hastie and Tibshirani [28, Section

8.3] for computational issues.

Nonparametric Hazard Regression

A completely nonparametric approach to estimate λ(t, Z) is desirable

sometimes. Kooperberg, Stone and Truong [36] used loglinear regression

splines and their tensor products to estimate log λ(t, Z). Gu [27] considered

the penalized likelihood approach. Doss and Li [12] used linear polynomials

in Z to fit λ(t, Z) locally in a neighborhood of Z. Martingale convergence

theory for counting processes was used to derive the weak convergence of

their hazard estimate.
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For continuously observed lifetimes, one can obtain a hazard regression

estimate for λ(t, Z) by smoothing the increments of any cumulative haz-

ard estimate Λ(t, Z). Such a cumulative hazard estimate can be found in

Dabrowska [9] and is further studied by McKeague and Utikal [39]. Again,

any of the smoothing methods discussed so far can be extended to a non-

parametric hazard regression estimate.

Note that by grouping the data along the time axis and the covariate axis,

one can also apply any nonparametric regression smoother to grouped data.

Gray [24] illustrates this grouping method through a local linear polynomial

smoother and kernel regression.

Lexis Diagram

An interesting application of nonparametric hazard regression is the Lexis

diagram in which individual life-lines are represented as line segments be-

tween (time at birth, 0) and (time, age) of death. Here time at birth can

be used in a broad sense, i.e., as the onset time of a disease. If mortality of

individuals varies according to time of birth, a covariate Z based on an indi-

vidual’s calendar time of birth can be incorporated to model individual risks

at age t represented by λ(t, Z). Keiding [34] suggests to use bivariate ver-

sions of nonparametric smoothing methods, as discussed above, to estimate

λ(t, Z), provided that the influence of Z on the hazard function is continuous

in Z.
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