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Abstract

We consider a class of non-homogeneous, continuous, centered Gaussian random fields
{Xn(t),t € Mp; 0 < h < 1} where M}, denotes a rescaled smooth manifold, i.e. M) =
%M, and study the limit behavior of the extreme values of these Gaussian random fields
when h tends to zero. Our main result can be thought of as a generalization of a classical
result of Bickel and Rosenblatt (1973a), and also of results by Mikhaleva and Piterbarg
(1997). This work can be considered as a companion paper to the theoretical study of a
nonparametric filament estimator using kernel density estimation that is conducted in Qiao
and Polonik (2014).
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1 Introduction

In a classical paper Bickel and Rosenblatt (1973a) derive the asymptotic distribution of the
quantity sup,cp |ﬁ1(:n) — f(z)|, where f, is a kernel density estimator based on a sample of
independent observations from f. The case of a multivariate kernel density estimator was
treated later in Rosenblatt (1976). These derivations rely heavily on an approximation of
fn(aj) — f(z) by a Gaussian processes. This approximation then motivates the consideration of
Gaussian processes of the form pr(t) + Yr(t) with pr(t) deterministic and {Yr(¢), 0 <t < T}
stationary, and it turned out that the behavior as T — oo of the supremum of these Gaussian
processes was a crucial ingredient to the proofs of these classical results. A similar idea underlies
the derivations in Qiao and Polonik (2014). There, however, the Euclidean space is replaced
by a smooth manifold, and this is the set-up in this paper as well. In fact, a special case of
our main result serves as a crucial probabilistic ingredient to this work.

Our main result concerns the behavior of the distribution of the suprema of certain non-
homogeneous, continuous, centered Gaussian random fields {X,(t),t € Mp; 0 < h < 1}
as h — 0, where M, denotes a rescaled smooth, compact manifold. This result can be
considered as a generalization of the classical Bickel and Rosenblatt result as well as of a result
by Mikhaleva and Piterbarg (1997) who considered a fized manifold. Our proof combines ideas
from both Bickel and Rosenblatt (1973a) and Mikhaleva and Piterbarg (1997).

The set-up is as follows. Let r,n € ZT with n > 2 and 1 <r < n. Let H; C R" be a compact
set and My C H; be a r-dimensional Riemannian manifold with “bounded curvature”, the
explicit meaning of which will be addressed later. For 0 < h <1 let Hy, := {t : ht € H;1} and
My, = {t: ht € M;}. Further let

{(Xn(t),t € Mp; 0< h <1} (1.1)

denote a class of non-homogeneous, continuous, centered Gaussian fields indexed by My, 0 <
h < 1. Our goal is to derive conditions assuring that for each z > 0 we can find 6 = ;,(z) with

lim IP’{ sup | Xp(t)| < 9} = exp{—2exp{—=z}}.
h—0 teMy,

2 Main Result

We first introduce sgme notation and definitions for Gaussian random fields defined on manifolds.
Let ¢(u) = \/%e_u?, P(u) = [* d(v)dv, ®(u) =1 — ®(u) and ¥(u) = ¢(u)/u. Let || - || be
the Ly norm. For 0 < a < 2, let x4(t) be a continuous Gaussian field with Ex,(t) = —||t[|*
and Cov(xa(t), xa(s)) = |It]|* + [|s||* — ||t — s||* where s,t € R™. The existence of such a field
Xa(t) follows from Mikhaleva and Piterbarg (1997).



For any compact set 7 C R" define

H,(T)=Eexp (?STP Xa(t)).

Next we adopt some notation from Piterbarg and Stamatovich (2001). Let D be a non-
degenerated n x n matrix. For a set A C R" let DA = {Dz,z € A} denote the image of A
under D. For any ¢ > 0, we let

0,q]" ={t:t; €[0,q],i=1,--- ,r;t; =0,i=r+1,--- n},
denote a cube of dimension 7 generated by the first » coordinates in R™. Let

DR" H, (D[OJZ]T)
H™ = i S D00.41)

where )\, denotes Lebesgue measure in R”. It is known that HP®" exists and 0 < HPR" < oo
(see Belyaev and Piterbarg, 1972). With D = I the unit matrix, we write " =1 IR Since
by definition the random field y,(-) is isotropic, HP®" = Hg) for any orthogonal matrix D.
The constant H, := H{" is the (generalized) Pickands constant.

Further, for positive integers [ and v > 0, let
C"(l,y) ={ty:t; €[0,NNg,i=1,--- ,r;t; =0,i=r+1,--- ,n}
= (0.7 NN).

let Hf’(r)(l,fy) = H,(DC"(l,7)). Again, for D orthogonal and due to isotropy of xa(:), we
just write al (I,7) = Ha ’(r)(l,y). We let

. HI(,
H)(y) = lim l( )

assuming this limit exists, and for » = n we simply write H,(l,7) and H,(7) instead of
H&n)(l ,y) and z (7), respectively.

The following definition can be found in Mikhaleva and Piterbarg (1997), for instance.

Definition 2.1 (Local («, D;)-stationarity). A non-homogeneous random field X (t),t € S C
R™ has a local (o, Dy)-stationary structure, or X (t) is locally (o, Dy)-stationary, if the covariance
function r(t1,t2) of X(t) satisfies the following property. For any s € S there exists a non-
degenerate matriz Ds such that for any € > 0 there exists a positive (e) with

L= (L4 0| Dolts — )| < r(t1,12) < 1 — (1 = )| D(ts — 1)

for ||t1 — s|| < é(e) and [[ta — s|| < d(e).



Observe that this definition in particular says that Var(X(¢)) = 1 for all ¢. Since here we
are considering Gaussian random fields indexed by h and study their behavior as h — 0, we
will need local («, Dy)-stationarity to hold in a certain sense uniformly in h. The following
definition makes this precise.

Definition 2.2 (Local equi-(«, Dy)-stationarity). Consider a sequence of non-homogeneous
random fields Xp(t),t € S, C R™ indexed by h € H where H is an index set. We say Xp(t)
has a local equi-(cv, DI)-stationary structure, or Xp(t) is locally equi-(c, D)-stationary, if
the covariance functions ry(ti,t2) of Xp(t) satisfy the following property. For any s € Sp
there exists a non-degenerate matriz D such that for any e > 0 there exists a positive ()
independent of h such that

L= (1+ o) Di(tr = t2)[|* < it t2) <1 — (1= )| D (tr — t2)]°
for ||t1 — s|| < d(e) and |[ta — s|| < d(e).

An example for such a sequence of random fields is given by the fields introduced in Qiao and
Polonik (2014) - see (2.5) below.

We will use some further concepts. First we introduce the condition number of a manifold (see
also Genovese et al., 2012). For an r-dimensional manifold M embedded in R" let A(M) be
the largest A such that each point in M @ A has a unique projection onto M, where M & A
denotes the A-enlarged set of M, i.e. the union of all open balls of radius A and midpoint
in M. A(M) is called condition number of M in some literature. A(M) has an equivalent
definition: at each u € M let T, M denote the tangent space at u to M and let T;-M be the
normal space, which is a n — r dimensional hyperplane. Define the fiber of size a at u to be
Lao(u, M) = TEMN ({u} @a). Then A(M) is the largest A such that L, (), M) never intersect
for all u € M. A compact manifold embedded in a Euclidean space has a positive condition
number, see de Laat (2011), and references therein. A positive A(M) indicates a “bounded
curvature” of M. As indicated in Lemma 3 of Genovese et al. (2012), on a manifold with a
positive condition number, small Euclidean distance implies small geodesic distance.

We also need the concept of an e-net: Given a set U and a metric diy on U, aset S C U is an
e-net if for any u € U, we have infscg diy(s,u) < € and for any s,t € S, we have dy(s,t) > e.

Now we state the main theorem of this section. It is an asymptotic result about the behavior of
the extreme value of locally equi-(«, Dy)-stationary continuous Gaussian random fields indexed
by a parameter h as h — 0. As indicated above, it generalizes Theorem 4.1 in Piterbarg and
Stamatovich (2001) and Theorem Al in Bickel and Rosenblatt (1973a). For an n x r matrix
G we denote by ||G|? the sum of squares of all minors of order r.

Theorem 2.1. Let H1 C R™ be a compact set and Hy == {t : ht € H1} for 0 < h < 1. Let
{Xn(t),t € Hp,0 < h < 1} be class of Gaussian centered locally equi-(c, DI)-stationary fields
with D} continuous in h € (0,1] and t € Hy. Let My C Hy be a r-dimensional compact



Riemannian manifold with A(M1) > 0 and My, := {t : ht € My} for 0 < h < 1. Suppose
limy, 0 pr=¢= Df = Dg* uniformly in t* € Hy, where all the components of D?* are continuous
and uniformly bounded in t* € Hy. Further assume there exist positive constants C' and C’
such that

Dl t||® Dl ¢~
0< C‘S “Agiiyf < “44§7ﬁ4,§ Cy < 00. (21)
O<h<lhseH: ||t]| o<h<ihsery Il
teR?\ {0} teR?\ {0}

For any 6 > 0, define

Q(0) := sup {|ra(z +y,y):x+y € Mp,y € My, |z|| > 5}
0<h<1

where ry, is the covariance function of Xp(t). Suppose for any 6 > 0, there exists a positive
number n such that

Q) <n <1, (2.2)
In addition, assume that there exist a function v(-) and a value §o > 0 such that for any § > oy

Q(8)|10g(0)]*/*| < v (). (2.3)

where v is a monotonically decreasing function with v(aP) = O(v(a)) = o(1) and a™P = o(v(a))
as a — oo for any p > 0. For any fized z, define

0=0(z) =+/2rlogh=! +

1
I 7) loglogh™!

1
_ +
\/2rlogh=1 [Z (Oé 2

(2r) /o2 0 /1
+log {H; / DOMY | ds b |, 2.4
Nors » I I (2.4)

where M} is a n x r matriz with orthonormal columns spanning T,My. Then

lim IP’{ sup | Xp(t)| < 9} = exp{—2exp{—=z}}.
h—0 teMy,

Remarks.

1. Note that with (2.1), local equi-(c, DJ!)-stationarity is equivalent to
ru(ty t2) =1 DYt — 2)|* +o([ts — t2|*) as [t — taf| — 0,
uniformly for t1,ts € Hj, and uniformly in h.

2. An example of a function v(§) satisfying our assumptions is v(8) = log(§)~? for 5 > 0.



3. Qiao and Polonik (2014) use a special case of the above theorem. In that paper a
1-dimensional growing manifold M} embedded in R? was considered. The Gaussian
random field of interest there is

Un(z) = ai(hx) / (Al(h:c))Td2K(x — 5)dW(s), (2.5)

where W is a 2-dimensional Wiener process, A; : R? — R3? and a; : R? — R are smooth
functions, K : R? — R is a smooth kernel density function with the unit ball in R? as
its support, and d? is an operator such that d?f(z) = (f(Q’O) (z), fOV(x), £02) (x))T for
any twice differentiable function f : R? — R. It is shown in Qiao and Polonik (2014)
that the assumptions formulated in that paper insure that the processes Up(x) satisfy
the assumptions of our main theorem in the special case of r = 1, n = 2,a = 2, and
Q(8) = 0 for § > dp. Observe that of course the function v(§) = log(6)™® for B > 0
works in this case. The fact that this special function Q(4) can be used there follows
from the assumption that the support of K (and its second oriaoder partial derivatives)
is bounded. This implies that the covariances of Uy (z1) and Up(z2) become zero once
the distance ||x1 — x2]| exceeds a certain threshold.

3 Proof of Theorem 2.1

The proof is constructing various approximations to supsc s, |Xn(t)| that will facilitate the
control of the probability P(sup;caq, |Xa(t)| < 6). Essentially the process Xp(t) on the
manifold is linearized by first approximating the manifold locally via tangent planes, and
then defining an approximating process on these tangent planes. This idea underlying the
proof is typical for deriving extreme value results for such processes (e.g. see Hiisler et al.
(2003)). We begin with some preparations.

We inted to partition the manifold M), into certain appropriately chosen subsets. To this
end, suppose V,(M;) = ¢, then V,.(M},) = ¢/h". For a fixed ¢* < ¢, there exists an ¢*-net
on M, with respect to geodesic distance with cardinality of O((h¢*)~"). We then construct a
Delaunay triangulation using the ¢*-net and divide My, into my, = O((h¢*)™") disjoint pieces
{Jem, + k =1,2,--- ,mp}. The norm of the partition is defined as the largest Hausdorff
measure of the individual subsets Jj,,,. Our construction is such that the norm of this
partition is O(¢*"), uniformly in h. It is known that for any r» € N (and for ¢* small enough)
such an ¢*-net and a Delaunay triangulation exist for compact Riemannian manifolds (see
e.g. de Laat 2011). (In the case of r = 1, the construction just described simply amounts to
choosing all the O(1/h¢*) many sets Jy ,,, as pieces on the curve of length at most £*.) One
should point out that while £* has to be chosen sufficiently small, it is a constant. In particular
this means that it does not tend to zero in this work, and it also does not vary with h.

For sufficiently small § > 0, let M;(S C Mj, be the §-enlarged neighborhood of union of
the boundaries of all Jj,,, using geodesic distance. The minus sign in superscript indicates



that this is a ‘small’ piece that in the below construction will be ‘cut out’. We obtain
J’imh = <]/1€,mh\/\/l,:‘5 and J,;fnh = Jk,mh\Jimhfor 1 < k < myp. Geometrically we envision
J_5 as a small strip along the boundaries of Jj, ,,, (lying inside Jj y, ), and J,‘j,mh is the set
that remains when Jk m,, 18 cut out of Ji . We have V; (J,C my,) = O(6), uniformly in k and h.
The construction of the Delauney triangulation is such that the boundaries of the projections
of all the sets Jgm,, ka and J;_ 0 m,, onto the local tangent planes are null sets, and thus
Jordan measurable. This Wlll be used below.

Let J denote one of the sets Jj 1, , J;;mh and J,;fnh, and let {SM(J) C J,i=1,---,Ny(J)} be
a cover of this piece constructed using the same Delaunay triangulation technique as above, but
of course based on a smaller mesh. As above, by controlling the mesh size, we can control the
norm of the partition uniformly over h, because of the uniform boundedness of the curvatures

of the manifolds Mj,.

We choose some point s? on S(.J) and orthogonally project S (J) onto the tangent space
of My, at the point s. We denote the mapping by P, (-) or simply P (-) and we let

SI(J) = P,,(SM.J)), which, as indicated above are Jordan measurable by construction.
If J is explicitly indicated in the context, then we often drop J in the notation and simply

write S? instead of S?(J). For simplicity and generic discussion, we sometimes also omit the
index i of s, S and SP.

5
kah%
7

Figure 3.1: This figure visualizes some of the definitions introduced here in the case r =1 and n = 2.



Let {Mgh :j=1,---,r} be linearly independent orthonormal vectors spanning the tangent
space of My, at the point s”, and let M/ denote the n x r matrix with Mgh as columns. For a
given v consider the (discrete) set fvefz/a(gh) ={u:u=s"+ > i1 ij76?*2/°‘Mgh € Shi; €
Z} andlet ' o 2/a (Sh) = (Psh)*l(fw_g/a (S§™)), which is a subset of S”. Note that the geodesic
distance between any two adjacent points in I' j-2/a (Sh) is still of the order O(y8~%/%), again
due to the assumed uniformly positive condition number of the manifolds My,.

The assertion of the theorem is that the probability P{sup;c 4, |Xx(t)| < 0} converges to the
limit exp{—2exp{—z}} as h tends to zero. This is of course equivalent to say that for any
e > 0, we can find a hg > 0 such that for 0 < h < hg, we have

‘IP’{ sup |Xp(t)| < 9} —exp{—2exp{—z}}| <e.
teMy,

This will be achieved by using various approximations based on the partitions defined above. In

the following a high level description of these approximations is provideded. This also outlines

the the main ideas of the proof.

Main ideas of the proof.
Let Bp(A) = {sup;c4 |Xn(t)| > 6} and as a shorthand notation we use pp(A) = P(Bp(A)).

(i) Approximating M;, by U J? m, leads to a corresponding approximation of pj(Mp)
k<myp, ’

by pn( U J,‘g’mh). Even though the volume of (J Jk_ﬁlh, i.e. the difference of M; and
k<myp, k<mp,

U J,‘j my,» tends to infinity as h — 0 if we consider ¢ fixed, the difference pr(Mp) —
k<mpy, ’

pr( U J,f?mh) turns out to be of the order O(J). Thus we have to choose 0 small enough.
k<myp,

(ii) The probabilities ph(J,f’mh) are approximated by the sum of the probabilities py,(S?), with
Sih the cover of J,‘j’mh introduced above. The approximation error can be bounded by a double
sum, using Bonferroni inequality. To show this double sum is negligible compared with the
sum, we have to make sure the volume of S? is not too small, as long as S is sufficiently small.
The double sum will be small if A is small. It turns out that ph(J,imh) essentially behaves like
the tail of a normal distribution.

(iii) We approximate the small pieces Sf‘ on the manifold by Sf, the projection onto the
tangent space and correspondingly approximate the probabilities ph(Sih) by the corresponding
probabilities of a transformed field over S’Zh The error generated from the approximation is
controlled by choosing the norm of the partitons given by the Sih to be sufficiently small.

(iv) The probabilities ph(S'Zh) are approximated by the probabilities ph(f79_2 /o (SZ‘)), i.e. of the
probability of the supremum extended over a collection of dense points on Sih. The accuracy



of the approximation is controlled by choosing both ~ and & sufficiently small.

(v) The sets of dense points considered in (iv) result in a collection T¢ of dense points in
Uk<m, J,imh. It turns out that the probability 1 — p,(T9) = P( (), (Br(T) N J,imh))c) can be
approximated by assuming the events (Bh(’]I';SL N J,‘g mh))c, k=1,...,my, to be independent.
To make sure this approximation is valid, § may be not too small and v may not too small
compared with h, as long as both of 4 and v are below the thresholds found in (i) and (iv).

We will now present the detailed proof. We split the proof into different parts in order to
provide more structure. Note that the parts do not really follow the logical steps outlined
above.

Part 1. The various asymptotic approximations in this step are similar to those in the proof of
Theorem 1 in Mikhaleva and Piterbarg (1997), but here we consider them in the uniform sense.
As indicated above, the uniform boundedness of the curvature of M} can be guaranteed due
to the boundedness of the curvature (positive condition number) of M;. For any ¢; > 0, there
exists a constant §; > 0 (not depending on h) such that if the volumes of all S = S{’(J,‘imh)
are less than §7, then we have

(")
v, (Sh)

<

1—e <

<1+ ey, (3.1)

where V,(-) is the r-dimensional Hausdorff measure. On S” we consider the Gaussian field
defined as

X, (f) = Xp(t), with t € S such that £ = P, (t) € S".

i

Due to local equi-(«, D])-stationarity of X3 (t), for any €3 > 0, the covariance function 7, (1, f2)
of the field X}, (f) satisfies

1— (1+ ea/4)||DE(t1 — t2)||* < Fu(f1,f2) < 1— (1 — €2/4)|| DIt — t2) ||

for all ¢1,to € S™, if the volume of S, is less than a certain threshold &, which only depends
on €s. By possibly decreasing do further we also have

1— (1+e2/2)||DE(E — B)|* < Fu(f1,f2) < 1— (1 — €2/2)| D (E — )]

for all £;,%, € S". Note that this inequality holds uniformly over all Sh under consideration,
due to the curvature being bounded on Mj,.

On S" we introduce two homogeneous Gaussian fields X (1), X; (?) such that their covariance
functions satisfy

iy (ft2) = 1= (1+ e)||DL(E — )] + o(| DL (fr — 2) %)



r, (T, 12) = 1= (1= e) | DY (81 — )| + o( || D2 (T1 — £2)]1*)
as ||t1 — t2|| — 0. Thus if the volumes of all S” under consideration are sufficiently small then
rif(th, o) < Flty, to) <1y (6, 12)

holds for all #1,%, € S™. This can be achieved by possibly adjusting d» from above. Slepian’s
inequality in Lemma 4.1 implies that

]P’( sup X, () > 9) < ]P’( sup X (f) > 9)
ieSh ieSh

= ]P’( sup Xp,(t) > 0> < ]P’( sup X (%) > 9),

teSh ieSh

]P’( _max _ X, (f) >9> S]P’( ~max _ Xp(f) >9>
£ h tNEF’YO,Q/a(Sh)

= max Xpt)>0) <P max XiH(t >9>. 3.2
(terwe—wa(sh) w(®) > <t~€f"y€—2/a (Sh) h ) (3:2)

For 7 € R™ such that (1 + 62)_1/Q(D?)_1T € S", denote X" ((1 + 62)_1/0‘(D§)_17'> by Y, (7)
as a function of 7. The covariance function of Y,"(7) is
1o -1 1o -1
15, (rm) =1 (L )00 r, (L4 €)™ (D) ')
=1 (1+e)|[DE((1+e) V(D) r = (1 @) VD) ) |+ ollim - i)
=1~ |lm1 — 72| + o(||71 — 72[|%)
as |11 — 72| — 0. An application of Lemma 4.4 gives that for any ez > 0 and 6 large enough
e
P<maxt~efw_2/a(§h) X, (t) > 9)
021"/0&\:[](9)

3 5 + —1/a(mhy~1
B P(maXT€(1+€2)1/aDng_2/a (Sh) Xh ((1 + 62) / (DS) 7—) > 0)
02r/a\p(9)

H ()

S T
v

(14 €e3)V,((1 + e)/*DhSH) (3.3)

(r)
H, ~
= (14 )1+ e) 2O praghy v (5.

r



Similarly, by defining Y, (1) = X, ((1 — 62)_1/0‘(D2)_17’), we get

927‘/(1\1/(9) =

H ()

r

(1—e2)"*(1~ &) IDEME Ve (S™). (3.4)

Combining (3.1), (3.2), (3.3) and (3.4), we obtain for V;.(S") small enough and 6 large enough
that for any € > 0

(r)
€ HO‘ i
(1-9) Vf ) | DR M,V (ST

P( maXtGFﬂ/efz/a (Sh) Xp(t) > (9)
927"/()4\11(&)

<
€ Hg)(y") hoarh h
S (1 - Z) 'YT ”Ds Ms HT‘/T(S )7

(r) s
and since Lemma 4.6 says that H“H(# — 1 as v — 0, we further have for v sufficiently small

that
(1— &) HY) | DM,V (S™)
P(maxterwfzr/a(sh) Xh(t) > 9)
92r/a\p(9)
< (1-5) HY | DEMP|, v, (™). (3.5)

<

This in fact holds for any S* = S!. We now want to add over i. To this end observe that
Zf\;’ll(HDgszHTW(Sf)) is a Riemann sum, namely, for any € > 0, there exists a § > 0 such

K3

that for max;—y ... n, Vr(SZh) < d, we have for h sufficiently small that

Np,
(1= [ 1D ds < 3 IDLMEI VIS < (1) [ DI ds (30)
J 3 7

k,mh =1 k,mh
The selection of § only depends on ¢, and the uniformity comes from the fact that as A — 0,
| D} — D} ||, = | Dy, — Dy, lln 4 0(1) for any t; and ¢ and that Df. is continuous in t* € Hj.

It follows from (3.5) and (3.6) that for any € > 0 and 7, supy ;<1 max;—1... n, V»(SP") sufficiently
small and @ large enough

(921”/04\1;(9)

Np,
2 i P( MaXier

(1 - H / | DEM" |, ds <
5

Jk,mh

10



<(1+6) Hg>/ | DAY ds. (3.7)
5

Jk,mh

Since the distribution of X, is symmetric, we also have

N, .
S B(minger (s Xalt) < =)
927"/04\1, (9)

a-am [ ks <
Jk,'mh

<@+oHy [ Dk ds (3.8)
5

Jk,mh

We emphasize that these inequalities hold when the norm of the partition is below a certain
threshold that is independent of the choice of h.

Following a similar procedure as above we see that the two inequalities above continue to hold
(for h and max;—g.... n, V»(S?) sufficiently small and 6 large enough) if MAXjer 0 (SH) Xp(t)

_2/a(Sh) Xn(t) in (3.8) is replaced
by inf,.¢n Xp(t). Moreover, if we consider S,h(t]k,mh) and S?(Jk,mh\t]/f,mh), instead of Sih(:

Sh(Tp my,))> these inequalities continue to hold when we replace J? my Y Jkm,, OF Tkmy, \ IS _
respectively. In particular for Jj ,,, we obtain

in (3.7) is replaced by sup,cgr X(t), and similarly, min, -
i ~6

Ni(Jk,my,)
D P(Suptes;l(Jk,mh)Xh(t) > 0)
927“/0:\:[/(9)

— (1 +o(1)) HY) / (DMl ds,  (3.9)

Jk,mh

where the o(1)-term is uniform in 1 < k < my, as 0 — cc.

Part 2. Here we consider Jj,,. Let {Sh : i =1,---, N} denote the partition of Jiemy,
constructed at the beginning of the proof via Delauney triangulation. This partition consists
of closed non-overlapping subsets, i.e. their interiors are disjoint. Let further

B; = {f;sl?b Xn(t) > 9}.

Then obviously,

‘We now use

Np, Np Np,
Y PB)- >  P(BiNB) gIP’(UBz) <> P(By),
i=1 1<i<j<Np, i=1 i=1
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and we want to show that the double sum on the left-hand side is negligible as compared
to the sum, so that we essentially have upper and lower bounds for IP’( vazhl Bi) in terms of

Zfﬁ’l P(B;). To see this, first observe that it follows from (3.9) that for max;— .. n, Vr(Slh)
small enough we have as § — oo that

Np,
> P(Bi) = O(6*/*W(0)). (3.10)
=1

We thus want to show that >, ; <y, P(Bi N Bj) = 0(0%"/*W(9)) as § — co. The proof for a
fixed manifold (i.e. h fixed) can be found in the last part of Mikhaleva and Piterbarg (1997).
Our proof for the more general case (uniformly in h) is following a similar procedure. It will
turn out that we obtain the desired result if the norm of the partition given by the Sih can be
chosen arbitrarily small, uniformly in h. It has been discussed at the beginning of the proof
that this is in fact the case.

Let U = {(¢,j) : B; and B; are adjacent} and V' = {(4, j) : B; and Bj; are not adjacent}, where
non-adjacent means that their boundaries do not touch. Note that

Y PBiNB)= Y  PBNB)+ Y. PBiNB). (3.11)
1<i<j<Ny, 1<i<j <Ny, 1<i<j <Ny,
(i.f)EU (i.4)eV

In what follows we discuss the two sums on the right hand side of (3.11). First we consider the
case that Szh, S;1 € U are adjacent, i.e. (i,7) € U. The developments in Part 1 are here applied

to Slh, S;Z and Slh U S]h, respectively. We choose the points where the tangent spaces are placed
to be the same for Sih, th and Sih U Sj}-”, i.e., we choose this point to lie on the boundary of
both Sz-h and Sj}.". Simply denote this point as s. Then, by using the results from Part 1, for

any € > 0, when max; jcu V,(Stu th) is small enough and 6 is large enough, then the bounds
obtained as in Part 1 result in

62/ (0) 62/ (0)
< (L+QHD |DEMLl, Vi(ST) + (L+ ) HY) | DML, Vi (S))
— (1= HY | DML, Vo(S U ST
= 2¢H) |DYME|, [Vi(S]) + V(S]]
The sum of the right hand side of the above inequalities over (i,j) € U again is a Riemann sum
that approximates an integral over Jj ,,,,. Since limyp_g p—¢ Df = DY, uniformly in t* € Hy,

and since the components of DY. are continuous and bounded in t* € H;, there exists a finite
real ¢ > 0 such that

sup  ||DPMI, < e (3.12)
sEMy,,0<h<1

12



Hence as maxj<;<y, V»(S?) — 0 and § — oo, and noting that € > 0 is arbitrary, we have

> P(BiN Bj) = o(67/*T(0)). (3.13)
1<i<j<Np,
(i.d)€U

Next we proceed to consider the case that (i,5) € V, i.e. SZh, th are not adjacent on Jj, ,,, . To
find a upper bound for P(B; N B;), first notice that

P(B; N Bj) = IP’( sup Xp(t) > 0, sup X, (t) > 0)
tesh test

< IP’( sup  (Xn(t) + Xa(s)) > 29). (3.14)
teS{L,seSJh

In order to further estimate this probability we will use the following Borel theorem from
Belyaev and Piterbarg (1972).

Theorem 3.1. Let {X(t),t € T} be a real separable Gaussian process indexed by an arbitrary
parameter set T, let

0? =sup VarX(t) < oo, m=supEX(t) < oo,

teT teT

and let the real number b be such that

P(su;)X(t) CEX(t) > b) <

Then for all x

—/x—m-—>
P(supX(t)>x> SQ@(I o )
teT o
There exists a constant (; > 0 such that
inf It — s|| > (1,

(i,j)eV,teS{Z,seSJ’%,0<h§1

i.e., the distance between any two nonadjacent elements of the partition exceeds (; uniformly
in h € (0,1]. This is due to the fact that the curvatures of the manifolds M, is (uniformly)
bounded, and that VT(SJh) is bounded away from zero uniformly in j and h. See Lemma 3 of
Genovese et al. (2012) for more details underlying this argument. The latter also implies that
we can find a number Ny > 0 such that Ny, the number of sets .5;, satisfies N, < Ny for all h.
Assumption (2.2) implies that

p = sup rp(t,s) < 1.
llt—sll=¢1,0<h<1
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We want to apply the above Borel theorem to Xj(t) + Xp,(s) with t € S? and s € S]}-’ and
(7,7) € V. To this end observe that

sup  sup Var(Xp(t) + Xp(s)) <2+ 2p
0<h<1tesh,sesh

and

sup  sup E(Xp(t) + Xp(s)) =0.
0<h=<ltesSp sest

Next we show that there is a constant b such that P<SuPtesh sesh (Xp(t) + Xp(s)) > b) < %
i il
for h sufficiently small. Note that

IP( sup  (Xp(t) + Xp(s)) > b) < 1P’< sup (Xp(t) + Xp(s)) > b)

tesp,sesh t€Jk,my, +S€Tk,my,

§IP’< sup Xh(t)>b/2>.

tGJk,mh

All the arguments in Partl hold uniformly in h as long as 6 is large enough. In other words,
the conclusions there can be restated by replacing 6 with x where x — oo. For instance, for
any € > 0 we can choose maxi<;<n, V}(Sih) small enough such that

Np,

IP’( sup Xp(t) > ac) < ZP( sup Xp(t) > x)

<(1+e) xQT/afo(:c)Hg”/ | DR M|, ds

Jk,'mh

holds for all 1 < k < my and = > xg. Hence, since z2/*¥(z) — 0 as z — oo, we can find
b such that P(sup,e , - Xpn(t) > b/2) < 1/2 for all 1 < k < my, when maxi<;<p, V,(SP) is

1
sufficiently small. The above Borel inequality now gives (for large enough 6) that

[ 0—b/2
P(tes?i y (Xn(t) + Xn(s)) > 29) <28 <(1+p)/2> . (3.15)

Since the total number of elements in the sum in (3.11) is bounded by N7, it follows from
(3.14) and (3.15) that uniformly in & (recall that the B; depend on k)

> PBNB)< 2N,§<I><0_b/2> < 2NZD <9_b/2) = o(0*"/*W(h)). (3.16)

1<i<j<Ny, (1+p)/2 (1+p)/2
Jj—i>1
as 6 — oo by using the well-known fact that lim, igzg =1 (see Cramér, 1951, page 374).
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Considering (3.10), (3.11), (3.13) and (3.16) and their respective conditions, we have

Np,
IP’( sup Xp(t) > 0) =(1+0(1)) E ]P’( sup Xp(t) > 9) as 6 — oo, (3.17)
teJ — h
k,mp, i=1 tes;

where the o(1)-term is uniform in k.

Combining (3.9) and (3.17), we have for supj¢ (g 1) maxi<i<n, V,.(SP) sufficiently small, that

> P sup Xh(t)>9) :(1+o(1))92T/°‘\I!(9)HC(f)/ |IDI MDY, ds as h— 0. (3.18)

k<mj, t€Jk,my, My,

Part 3. Note that from the expression of # in (2.4) we have for any fixed z

g2r/o—1 62 hr exp{—z}
0%/2W(9) = expy — — b = (14 0(1)) = O(R") (3.19)
ARy HY [y, 1 D9MY]ds

as h — 0.

Observing that maxj<g<m, VT(Jk_glh) = O(6) (uniformly in h), and using (3.19) we obtain for
h small enough that

0< IP( sup Xp(t) > 9) 4@( sup  Xa(t) > 9)

teMp t€Uk<my IR my,
< IP’( sup Xp(t) > 0)
tth\ukgthgymh
mp
< ZIP’( sup  Xp(t) > 9)
k=1 teJ,;fnh

mp
< (L+e 8w HDS / , I1DSM s
k=1""x,

k,mp,

< O0(8)(1 + e)H emyp,0%/2W (0)

h" exp{—=z}

<O (1+e)HM e O((h*)™)
HY [\ IDIMY | ds

= 0(9),
uniformly in k. Here ¢ is from (3.12). Similarly, (and again uniformly in k) we have 0 <
P(infrenm, Xn(t) < —0) —P(inf,o, i, Xa(t) < —6) = O(6) uniformly in 0 < h < hy for
=m M,
some h; > 0. Collecting what we have we get that uniformly in 0 < h < hy

p( sup | Xa(t)] < 9) :IP’< sup | Xu(t)] < 9) +0(6) (3.20)

teMy, teukfmhjlg,mh
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and

Z]P’( sup | Xp(t ]>9) Z]P’( sup \Xh(t)]>9>+0(5). (3.21)

9
k—1 tEJk:,mh te]k o,

Part 4. We index all the t € T y-2/a(S[(J],,)) for all 1 <k < my and 1 < i < Nu(Jp,,),
that is, we denote U1<k<mh r gfz/a(J,f’m) by {tj,j =1,---,N;}. Our assumptions assure that

N = O(%Q:/T ), because V,.(M}j) = O(h™") and the ‘mesh size’ of the curvilinear mesh on Mj,

is O(ei{» ), due to the construction of the triangulation and the uniformly bounded curvature
on the manifolds My,.

With (3.7), (3.12) and (3.19), we have

P(t]g}]ax |Xh(t])]>0) O(h) (3.22)

uniformly in k£ as h — 0. It follows that as h — 0

mp

Zlog(l— ( max | Xt )|>9)):(1+o(1))21@(t2}%x |Xh(tj)]>¢9>. (3.23)
k,mp, k=1 I="k,mp

It follows from (3.7) and its version with the max over the discrete set replaced by the sup
over t € S (see discussion given below (3.8)), that for any € > 0 there exists thresholds for h,
~ and the norm of partitions, such that

OSIP’( sup Xh(t)>9)—]P’< max Xh( )>0)

5
ey ti€Jy,

< % []P’( sup Xp(t) > 9) P(,tné%);iXh( i) > 0)}

< e 0¥/ou () H / | DM ds,
S5

k,mp,

provided h, v and the norm of partitions are smaller then their respective thresholds. Similarly,
(3.8) and its corresponding ‘continuous’ version imply that for h and 7 smaller than their
respective thresholds indicated in Part 1, we have

0< IP’( inf Xh( ) < —9) - ( min Xh( i) < 9) < e0* /o w(0)HM ]Dth| ds.
tedp tiedy .

Consequently, if ~ and v and maxj<g<m, VT(J;E mh) are small enough, we have

ogp( sup |Xh(t)\>0)—IP’( max \Xh(ti)|>9)

s . 5
t€Uk<my, Tiom,, ti€Uk<my, Toum,,
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g%[@( sup |Xh(t)|>0)—IP’( max |Xh(tl-)|>9)}
k

§ ;
te‘]k,mh i€ k,myp,

—_

mp
< [IP’( sup Xp(t) > 0) —HP’( inf  Xp(t) < —9) —IP’( max  Xp(t;) > 9)
k=1 tejfz’mh tejg,rnh tiEJ]gv'mh
—]P’( min Xh(ti) < —9):|
t¢€ngmh
<2co o)y | D2 ds
ngmh Jk:,mh
< 2 02’“/‘1\11(9)Hg">/ | DR M|, ds. (3.24)
My,

To see the order of the upper bound in (3.24), by the dominated convergence theorem (and
using our assumption on the behavior of D) we have

h" th ||D?M£1Hrd3 fMl ||Dg/th1”rd5
= — 1,
S, 1DIM]|,ds S, 1DIMZ]|,ds

as h—0. (3.25)

As a result of (3.19) and (3.25), we can write for maxi<g<m, W(Jlf,mh) small enough that

1P’< sup | Xn(t)] < 0) = ]P’( max | Xn(t:)] < 9) +o(1) (3.26)
tEUkSmh J;Cs,mh tieUkSmh ']k,'mh
and
mp mp
Z]P’( sup | Xn(t)| > 9) - ZP< max | Xp(t)] > 9) +o(1), (3.27)
k=1 te]lg,mh k=1 tie]ﬁ,mh
as y,h — 0.

Part 5. This step uses similar ideas as in the proof of Lemma 5.1 in Berman (1971). To find
an upper bound for the difference

’IP’( max |Xh(tj)|§9)— I1 IP( max |Xh(tj)\§¢9>

_ s ,
ti€Uk<my, Jxm,, k<m;  €%km),

, (3.28)

we are going to apply Lemma 4.5. Define a probability measure P such that for any zy; € R
: 0
Wlth t] S ngmh Jk,mh7

B(Xn(t) <oty € U Smy) = T1 P(X0(t5) < ooty € ),

k<my, k<mp,
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i.e., under P the vectors (X (t;) : t; € J,f’m) and (Xp(t;) : t; € Jlg’,m) independent for k # k.
By Lemma 4.5, the difference in (3.28) can be bounded by

|7n (ti, t])|

8 > > Z/ $(6,0,1)d

k< k< , o )
mg#kl Mhp, t,€J), mh EJ

-5 Y zz/

‘Th tzat 1
k<mp,k'<mp, t,eJ¢ t; €J6

02
BT R (_ 1+ A)CM
k‘?ék?, k,mp,

rultinty) P
S P SND DR Uiy 1—rh<tt>>2>1/2€Xp<‘1+|m<tz-,tj>|>' (3.29)

< < S 6
k m]?;f Smp, t; EJk mp, t; EJk:/ my,

For t; € Jg}mh and t; € Jg,’mh with k& # K/, it follows from the uniform boundedness of the
curvature of the growing manifold that there exists a positive real ¢ such that ||¢; — ¢;|| > g,
uniformly for all 0 < h < 1. (Similar arguments have been used above already.) Thus we
obtain from assumption (2.2) that there exists n > 0 dependent on ¢ such that

Ira(ti )| <m <1 (3.30)
uniformly in t; € J) . and t; € Jp - with k #k and 0 < h < 1.
Let w be an arbitrary number satisfying

O<w< A+
We take v = v(h~1)/3" in what follows and divide the triple sum in (3.29) into two parts: In
one part the indices i, j are constrained such that ||t; — t;]| < (N;)“/7y6~2/® and for the other
part the indices take the remaining values. In the first part, the number of summands in the
triple sum is of the order O((N;)“*1), because there is a total of O(N;") points and for each
of this points we have to consider at most O((NV;/)“) pairs. Taking (3.30) into account, we get
the order of the sum in the first part of (3.29)

62 g2r/o 14w 62
o(virstee{ -5 }) =o(r) ool 1))
(( h) exp 1+77 hr,yr exXp 1_|_77
—1\yr/a\ 14w -1
O<<(10g}i T) > exp{ _ 2rlogh })
hTy 1+m7
(14w)r

:O(hm_r(1+w)(logh_l) “ (v(h_l))_(l;:m)

which tends to zero as h approaches zero.
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Then we consider the second part of (3.29) with ||t; — ;|| > (N;)*/"y6~%/. Noticing (1 +
[rh(t;,t)]) 7t > 1—|r(t;,t;)| and (3.30), we can have the following bound for the second part
of (3.29):

[ (ti, t5)]
8 exp(—6°) Z Z 27r(1——7j2])1/2 exp (0%[r" (i, 1)) (3.31)
E<mp,k'<mp, t;eJ8 tjGJ;z,’m , "

k,my’
k k/ ELL )
(N2

By (2.3) and the fact that 2 = O(log h~!), we have that SUD||1, ¢ | >(N; )/ ry0-2/a 02|rh(t;, ;)| —
0 as h — 0. Hence (3.31) is of the order of

Ry > (i, 1) (3.32)

k<mp,k'<mp, tiet) ;e
k;ﬁk/ k ,mp,
lti—t; | >(N; )</ " v0=2/

,mp,

When h is sufficiently small we have

N*\w/T~yg—2/c
sup ’T’h(ti,tj)‘ < v(( h) 2 )

" . (3.33)
[ti—t; ]| > ()= /my0 =2/ o [log((Nh>w/r79—2/a)]2r/a

Therefore, due to (2.3), (3.32) is of the order

V(N2 770~2/) )

0 (hzT(N:)2 [log((N,’;)“/r’YQ’Z/O‘)]Q/a

log(h )2/ u((Ng)=/"0-2/)
2r/a

[log (hw<[log(h1)]1/av(h1)1/37“)W1>} w(h=1)2/3
—o(1) as h—0.

=0

Now we have proved (3.29) tends to zero as h goes to zero. So we have with this choice of
that as h — 0

IP( max yxh(tj)\g): I1 IP’( max \Xh(tj)|ge)+o(1), (3.34)

. (9 . 5
ti€Ur<my, Jkm), k<my, €I m,,

where § > 0 is fixed small enough.

Now we collect all the approximations above, including (3.20), (3.21), (3.26), (3.27), (3.34),
(3.23), (3.18), (3.19) and (3.25). We have for 6 > 0 and supj,¢(g,1) maxi<i<n, V,.(Sh) fixed and

chosen small enough, and v = v(h~1)¥/3" that as h — 0

P(t?ji Xa(t)] < 6)
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(320 p sup | Xn(t)| < 9) +o(1)
teUkSmh Jl(c;,mh
COp( max (X))l < 0) +o(1)

. S
t] eUkSmh Jk,mh

:IP’< N ( max th(tj)!§9)>+o(1)

.cJo
k<my, tje‘]k',mh

(3:34) H IP( max | Xp(t;)] §9> +o0(1)
k< tjEngmh

:exp{ Z log (1—1?’( max | X3 (t5)] >9))}—|—0(1)

< tieJ i,
2 o { = 1 00) 3 B max ) >0) }+ot1)

k<my, tje(]k’mh

D oxp{ o] 30 B( s (%001 ) o] b0t

é
k<mh te‘]k,mh

(32D exp{ —2(1+0(1)) Z P( sup X (t) > 9)} +o(l)

kE<my, tEJk,mh

318 exp { — 21+ o(1)) 62/ w(9)HY) /

My,

DA s | + o(0),
This completes our proof by using (3.19), (3.25).

4 Miscellaneous
In this section we collect some miscellaneous results that are needed in the above proof. We

present them in a separate section in order to not interrupt the flow of the above proof.

Lemma 4.1. (Slepian’s lemma; see Slepian, 1962) Let {X;,t € T} and {Y;,t € T} be
Gaussian processes satisfying the assumptions of Theorem 3.1 with the same mean functions.
If the covariance functions rx(s,t) and ry(s,t) meet the relations

rx(t,t) =ry(t,t), teT rx(s,t) <ry(st), t,seT,

then for any x

IP’{ sup Xy < x} < P{ sup Yy < :z:}
teT teT
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We also need this result from Piterbarg (1996).

Lemma 4.2. (Lemma 6.1 of Piterbarg, 1996) Let X(t) be a continuous homogeneous
Gaussian field where t € R™ with expected value EX(t) = 0 and covariance function r(t)
satisfying

r(t) = E(X(t+5)X(s)) = 1= [t + o([[£]|%)-
Then for any compact set T C R"
IP( sup  X(t) > u) =U(u)Ho(T)(1+0(1)) as u— oo.

teu—2/aT

The next result follows immediately.

Corollary 4.1. Let X(t) be as in Lemma 4.2. Let M € R" k = 1,--- ,n be a basis of R,
l€Z" and v > 0. We have with C™(1,1) as defined on page 2 that

P(max,, i )ecran) X (Choy ikye™ 2 M) > x)

. . —_ gl

A T(z) Ha 7).
N ) n.o. —2/a _

i P(ming, . ;.)ecm 1) Xé(zil gy M) < —x) HO( ).

T—00 T

Remark. This is also a simple extension of Lemma A1 of Bickel and Rosenblatt (1973a).

Lemma 4.3. (Lemma 2.3 of Pickands, 1969) Let X and Y be jointly normal, mean zero
with variances 1 and covariance r. Then

IP’(X>3:,Y>JU)§(1+r)\ll(a:)<1—<1><x ;: >>

The next lemma is an extension of Lemma A3 in Bickel and Rosenblatt (1973a), Lemma 3 and
and Lemma 5 of Bickel and Rosenblatt (1973b) and Lemma 2.5 in Pickands (1969). Its proof
is also adapted from the three sources.

Lemma 4.4. Let X(t) be a centered homogeneous Gaussian field on R™ with covariance
function

r(t) = B(X(t+ )X (s)) = 1= [[]|* + o([[£]|*).

Let T be a Jordan measurable set imbedded in a r-dimensional linear space with V,.(T) =\ <
oo. For v,z > 0 let G(T,v,x) be a collection of points defining a mesh contained in T with
mesh size yx—2/®. Assume

E(lEID == inf  |[s]|T*(1 —r(s))/2 >0 for ||t| small enough. (4.1)
o<lIslI<Iitl
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Then

. (r)
LU ORTTCAR) BN 40 o
e U (2) .
and
. Plup{X(@):teTt>2) |
xh_}nolo 22/ () = \H, (4.3)

uniformly in T € E. where &, is the collection of all r-dimensional Jordan measurable sets with
r-dimensional Hausdorff measure bounded by ¢ < co. Similarly,
lim Piinf{X(t): t € T} < —x)
T—00 22/ ()

= \H{. (4.4)

uniformly in T € &..

Proof. The results in Lemma 3 and and Lemma 5 of Bickel and Rosenblatt (1973b) are similar
but they are only given for two-dimensional squares. It is straightforward to generalized them
to hyperrectangles and further to Jordan measurable sets. O

Theorem 4.1. (Theorem 2 of Piterbarg and Stamatovich, 2001) Let {X (t),t € R"} be
a Gaussian centered locally (o, Dy)-stationary field with a continuous matriz function Dy. Let
M C R" be a smooth compact of dimension r. Then

P(supsen X(t) >
$2r/a\1;($)

2, g / | Dy M|, ds
M

as x — 00, where Mg is an n X r matriz with columns the orthonormal basis of the linear
subspace tangent to M at s.

Lemma 4.5. (Lemma Aj of Bickel and Rosenblatt, 1973a) Let

o ) 1 2?2 — 2pzy + y?
T,Y,p)=——"——"-€expy — —————

PP = 22 P 21— 42
Let ¥1 = {rij}, X2 = {s;;} be N x N nonnegative semi-definite matrices with ri; = s;; = 1
for all i. Let X = (Xy,---,Xn) be a mean 0 Gaussian vector with covariance matriz 3,
under probability measure Py, or o under Ps,. Let ui,--- ,un be nonnegative numbers and

u = min; u;. Then

T’ij
Py, [X) <ujpl <G < NJ =Py, [X; <uy 1 << N|[<4) / ¢(u,u,A>dA‘-
Z'Lj Slj

(r)
Recall the definition of Ho(f) (7) = limy_ H“T(M) given at the beginning of section 2. We have

the following lemma from Bickel and Rosenblatt (1973b).

B (4)

Lemma 4.6. Hc(f) = limy_g o
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