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Abstract

Multivariate mode hunting is of increasing practical importance. Only a few

such methods exist, however, and there usually is a trade off between practical

feasibility and theoretical justification. In this paper we attempt to do both.

We propose a method for locating isolated modes (or better, modal regions)

in a multivariate data set without pre-specifying their total number. Informa-

tion on significance of the findings is provided by means of formal testing for

the presence of antimodes. Critical values of the tests are derived from large

sample considerations. The method is designed to be computationally feasible

in moderate dimensions, and it is complemented by diagnostic plots. Since the

null-hypothesis under consideration is highly composite the proposed tests in-

volve calibration in order to assure a correct (asymptotic) level. Our methods

are illustrated by application to real data sets.
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1 Introduction

This paper discusses a computationally feasible statistical tool for nonparametric

mode hunting in a multivariate data set. More precisely, we are attempting to find

modal regions or clusters without specifying their total number. The methodology

presented here is a mixture of data analytic methods and formal statistical tests.

Several (local) tests are performed in order to analyze one data set, and we do not

present a theory about the overall significance of the final outcome. Still, the local

(conditional) testing provides some information about significance of the findings,

and the presented theory can be used to derive large sample critical values for those

testing procedures. In addition, our formal tests are accompanied by diagnostic

plots.

A clustering of data might contain information about unusual or interesting

phenomena. Therefore finding clusters in a data set is important in many fields

like astronomy, bioinformatics, climatology (see example below), etc. One way to

formalize the concept of clustering is to introduce a probabilistic model and to define

a cluster as a modal region of the underlying probability density function (Hartigan,

1975). From this point of view finding clusters means finding modal regions. For

instance, Jiang (2006) explains how connected components of level sets (at a specific

level) correspond to galaxy clusters, and essentially proposes to use a plug-in method

by Cuevas et al. (2000) (based on kernel density estimation) to estimate these

clusters. (See below for more references to level set methods.) Friedman and Fisher

(1999) propose a mode-hunting algorithm PRIM which is meant to find locations

of modal regions in high dimensions (see also Polonik and Wang 2006). However,

these nonparametric statistical methods lack some theoretical foundation.
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The problem of providing quantifications of significance of findings regarding

modal regions is not easy. In particular this holds for multivariate situations where

the geometry or configuration of modes or modal regions can be very complex.

Usually a compromise has to be found between practical feasibility and theoretical

justification, and this is also reflected in our method for finding modal regions whose

underlying idea is described next.

We assume the data to be sampled form a continuous underlying distribution

with isolated modes. The basic idea underlying our method is to first employ a (fast)

algorithmic method to find potential candidates representing distinct modal regions

(described in more detail below). Then pairwise statistical tests are performed to

determine whether our candidates really represent distinct modal regions, and this

is the crucial step. The idea behind these tests can be described as follows.

Let x, y be two given candidates modes. Let xα = αx + (1 − α)y, 0 ≤ α ≤ 1,

denote the point on the line connecting x and y. If x and y represent two distinct

modal regions then f(xα) < max(f(x), f(y)) for at least some values of α. In other

words, the intuition is that two modal regions are regarded as distinct if there is an

antimode present on the line connecting the two candidates. Equivalently,

SB(α) := − log f(xα) + min{log f(x), log f(y)} > 0 for some α. (1)

Thus an appropriate hypothesis for testing whether x and y represent two different

modes is given by

H0 : SB(α) ≤ 0 for all α ∈ [0, 1]. (2)

Now let X1, . . . ,Xn be an i.i.d. sample of p-dimensional random variables from

a continuous distribution F. For z ∈ Rp let d̂n(z) denote the distance to the k1-
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nearest neighbor to z within the sample using some distance to be specified, like

Euclidean distance or city-block distance. Define

ŜBn(α) = p [log d̂n(xα) − max{log d̂n(x), log d̂n(y)}]. (3)

It can be expected (and it is show below) that ŜBn(α) converges in an appropriate

sense to SB(α) . Hence it appears to be reasonable to test H0 by checking whether

ŜBn(·) shows a significantly overshoot over zero, or expressed more casually, whether

this function shows a ‘significant bump’. We propose two types of testing procedures:

(i) Pointwise testing, i.e. rather than testing H0 we test H0,α : SB(α) ≤ 0 for

some fixed values of α by using ŜBn(α) as a test statistic. We reject H0,α

at the 95%-level iff ŜBn(α) ≥
√

2
k1

Φ−1(0.95), with Φ denoting the standard

normal cdf. The plot of the function α →
√

k1
2 ŜBn(α) is called an SB-plot

(cf. Theorem 4.1 for a motivation of the normalizing factor.).

(ii) ‘Global’ testing, where we test H0 by essentially testing whether SB(·) is

constant on I := {α : SB(α) ≥ 0 }. Here an estimator În is used, and this

estimation of I in effect provides a calibration. Critical values for Tn can be

easily found using Theorem 4.2.

For deriving the critical values of the tests in (i) and (ii), the candidates for the

modes are regarded as given.

An important question is how to find ‘good’ candidates for modes which will

then be tested as indicated above. We will provide an algorithm designed to return

a ‘small’ number of candidates in order to reduce the number of pairwise testing

procedures necessary. Also the pairwise testing procedure will be conducted in a

certain iterative fashion to reduce the number of tests to be performed. Details will

be spelled out below.

3



We conclude this introduction with some more discussion. One-dimensional cases

usually are less complex than multivariate cases, and a lot of work on investigating

modality has been done for one-dimensional data sets (e.g. Haldane (1952), Dalenius

(1965), Venter (1967), Lientz (1970), Good and Gaskins (1980), Silverman (1981),

Hartigan and Hartigan (1985), Wong (1985), Wong and Schaack (1985), Comparini

and Gori (1986), Müller (1989), Müller and Sawitzki (1991), Roeder (1994), Cheng

and Hall (1999), Hall and Cheng (1999), Bai and Huang (1999), Walther (2001),

Bai et al. (2003)).

Much less work has been done in the area of exploring multidimensional modality,

although many of the interesting practical applications in fact are multivariate. One

approach of course is to reduce the multidimensional problem to a one-dimensional

through some kind of projection idea, and then to apply a univariate method. It

is well known, however, that it is far from trivial to find an appropriate dimension

reduction without loosing significant information. While dimension reduction seems

inevitable in some problems, it appears to be plausible that a reduction to a p -

dimensional subspace with p > 1 keeps more information than with p = 1. Hence,

methods which work for moderate dimensions can be quite useful. Only a few of such

nonparametric procedures (tests) for multivariate modality have been proposed so

far; e.g. Hartigan (1988), Hartigan and Mohatny (1992), Rozal and Hartigan (1994),

Minotte (1997), Polonik (1995, 1997), Friedman and Fisher (1999).

Investigating modality via estimating level sets has already been mentioned

above as another way to investigate modality. Further work in this area include

Tsybakov (1997), Walther (1997), Molchanov (1998), Cuevas et al. (2004), Gayraud

and Rousseau (2002), Polonik and Wang (2004).

The approach for mode hunting presented here also is designed to work for
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moderate dimensions, and it bears some similarities to Minotte (1997) in the sense

that local testing is used in order to determine if a candidate for a mode actually is

a mode or if its presence can be explained by random fluctuation only. The general

methodology is different, however. We also would like to point out that Minotte’s

procedure is for onedimensional situations only. In the following section we explain

our method and present a motivating real data example. Simulations studies and

some applications to real data sets are presented in Section 3. Section 4 contains

some theoretical (large sample) results. Final remarks are given in Section 5. Proofs

of main theoretical results can be found in Section 6, and Section 7 contains some

interesting miscellaneous results which also are used in the proofs of the main results.

2 The method and real data applications.

Our method can be described as consisting of the three steps:

(I) Selection of initial modal candidates by using an iterative nearest neighbor

methods.

(II) Thinning the modal candidates from step (I) by using local parametric tests

using a multivariate normal model near a mode.

(III) Deciding whether the candidates from steps (I) and (II) represent distinct

modal regions via testing for the presence of antimodes along the line segment

joining two candidates (cf. introduction). Here the candidates are regarded

as fixed.

The use of nearest neighbor instead of a kernel method in step (I) is motivated by

the fact that in high density regions, nearest neighbor method yield better estimate

5



of the density than the kernel method (Burman and Nolan, 1992).

Before providing more details, our method is illustrated via on application to a

two-dimensional data set which has been used by Corti et al. (1999). The raw data

consists of measurements of monthly means of 500-hPa geopotential heights taken

on a regular grid with 2.5-degree spacing for the months November to April over the

years 1949 to 1994. The two-dimensional data that was finally used for the analysis

was obtained by projecting the non-detrended data onto the reduced phase-space

spanned by the first two principal components (taken over space) of the detrended

data. For further details of the analysis we refer to Corti et al. (1999).

The scatter plot of this data (Fig. 1) clearly shows the problems of a modal
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Fig. 1: Climatology data used by Corti et al. 1999 Fig. 2: Most significant SB-plot based on the clima-

tology data. Since the plotted function does not exceed

1.645 (the 95% quantile of the standard normal) there is

strong evidence that these candidates belong to the same

modal region.

analysis, and supports the necessity for the development of more formal statistical

tools that at least provide some indication about significance of the findings. (The

data itself is not shown in this Nature article.) The existence of several modal

6



regions is crucial for the climatological theory presented in Corti et al. To find such

modal regions in their data, these authors used a standard kernel density estimator

with a normal kernel. It is claimed that the bandwidth was chosen such that the

four modes that can be seen in their estimate are statistically significant. We are

not aware of a statistical method that provides such information.

Steps (I) and (II) lead to five potentially different candidates. However, step

(III) indicates that they all correspond to the same modal region. Fig. 2 shows the

SB-plot (cf. Introduction) corresponding to the two most different candidates (cf.

Section 3.2). However, the graph does not show a significant bump, i.e. it does not

exceed a threshold given by the (1−α)-quantile of the standard normal distribution

corresponding to the chosen significance level α, e.g. 1.28 is the approximate thresh-

old at significance 0.1. Hence, the data do not seem to support the hypothesis of

several different modes. (Of course this statement is by no means meant to implic-

itly suggest that the theory presented in Corti et al. regarding the global climate

does not hold. We are only saying that it is difficult to claim statistical significance

based on their data set.)

In the following we explain the three steps of our procedure in more detail. It

is important to point out that we assume the observations X1, ...,Xn to be pre-

standardized, so that we ca assume their mean to be 0 and the variance-covariance

matrix to be identity. Intuitively, if the components of X are strongly related then

the contours of the probability distribution behave like paraboloids and not like

spheres. Consequently, a distance such as the Euclidean or city-block distance may

not be appropriate.

Step (I): Selection of initial modal candidates via nearest neighbors.

Let k1 and k2 be two integers such that k2 ≤ k1 < n. Discussion on the actual
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choice of values of k1 and k2 is postponed to the end of this subsection. Recall

that d̂n(x) denotes the distance of a point x in Rp to its kth
1 nearest neighbor

among the data {X1, ...,Xn}. The method presented here repeatedly employs two

substeps: a) searching for a modal candidate, and b) elimination of its neigh-

bors. First calculate d̂n(Xj), j = 1, ..., n. Find the first modal candidate as

W1 = argminXj , j∈{1,...,n} d̂n(Xj). Next eliminate all those data points which are

k2 nearest neighbors of W1. Let the remaining data set denoted by D1. The second

modal candidate is then found as W2 = argminXj∈D1
d̂n(Xj). The next elimination

substep finds D2 ⊂ D1 by removing all the data points which are k2-nearest neigh-

bors (in the complete data set) of either W1 or W2. Then W3 = argminXj∈D2
d̂n(Xj)

is our next modal candidate, and so on. The process is continued till no candidate

mode can be found.

Step (II): Local parametric tests on initial modal candidates. The class

of initial candidates from step (I) by construction is likely to contain candidates

which clearly do not lie in modal regions. We will eliminate those which fail to pass

this screening test of modality. For each modal candidate Wi we take the k2 nearest

neighbors Xj , j = 1, ..., k2, among the data X1, ...,Xn. Under some smoothness

assumptions one can model the distribution locally around a mode as a multivariate

normal. In order for Wi to be a modal candidate the mean of this distribution

should be equal to Wi. We carry out a Hotelling’s test for this at a 0.01 level of

significance with this null hypothesis. Thus we thin out the list of modal candidates

obtained from step (I). Each candidate is subjected to the test in order to decide if

it should be eliminated from the candidate class.

We would like to acknowledge the somewhat heuristic nature of steps (I) and

(II). However, the sole purpose of these steps is to reduce the number of pairwise
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tests to be performed in step (III).

Step (III): Testing and graphical tools for the presence of antimodes.

In order to check whether the candidates obtained from steps (I) and (II) really

represent different modal regions, we propose to repeatedly perform a crucial local

testing procedure which is supported by a diagnostic plot (see Fig. 2 ff.). Two

different types of testing procedures with varying degree of complexity are proposed.

Given one of these tests we proceed as follows.

Let W1, ...,Wm be the modal candidates after having gone through steps (I) and

(II). Note that by construction d̂n(W1) ≤ · · · ≤ d̂n(Wm). Let i = 1.

Substep (III.1): We test to see whether Wi and Wj , j = i+1, ...,m, belong to the

same modal regions. If the test indicates that Wi and Wj belong to the same modal

region, we remove Wj as a modal candidate. This results in a potentially smaller

set of candidates W1, . . . ,Wm1 , say, with d̂n(W1) ≤ · · · ≤ d̂n(Wm1), m1 ≤ m.

Substep (III.2): Set i = i + 1 and repeat substep (III.1) with W1, . . . ,Wm1 .

These two substeps are iterated till we arrive at distinct modal regions.

Two tests for step (III) are considered in the paper. One is based on pointwise

simple z-tests and has already been introduced in the introduction. The other more

global “line” test described next.

Global line testing. Our more global test is for H0 : supα∈[0,1] SB(α) ≤ 0. In

fact, we not only consider this H0 but also the closely related null hypothesis will

come into play:

H0n : sup
α∈[0,1]

SBn(α) ≤ 0., (4)
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where

SBn(α) := p log dn(xα) − p max{log dn(x), log dn(y)}, (5)

Here dn(xα) := argmin{s : F (B(xα, s)) ≥ k1
n } with k1 as above, and B(xα, s)

denoting a ball of radius s with midpoint xα. Our test statistic Tn for these testing

problems involves an estimate În of I = {α ∈ [0, 1] : SB(α) ≥ 0} to be specified

below. For ease of notation we will assume throughout the paper that both I and

its estimate În are intervals. (This assumption is not necessary, however. All the

arguments in this paper can be extended to the case of I and În being unions of

finitely many non-degenerate intervals.) In order to define Tn let În = [l̂n, ûn] and

write

Vn(t) =

∫ t

bln
p log d̂n(xα) dα, t ∈ [l̂n, ûn]. (6)

We propose to reject H0 if Tn is too large, where now

Tn = sup
t∈[bln,bun]

∣∣∣Vn(t) − t − l̂n

ûn − l̂n
Vn(ûn)

∣∣∣.

A plot of the function t → Vn(t)− t−bln
bun−bln

Vn(ûn); t ∈ În provides another diagnostic

plot, of course related to the SB-plot proposed above. If the null-hypothesis holds,

then the graph of this function is expected to fluctuate around zero. Significance of

deviations can be assessed using Theorem 4.2.

Other statistics which are continuous functions of Vn(t) − t−bln
bun−bln

Vn(ûn) could also

be used, like the Cramér-von-Mises type statistics

∫ bun

bln

[
Vn(t) − t − l̂n

ûn − l̂n
Vn(ûn)

]2
d t. (7)

In this paper we will only study Tn. However, using the results presented below it

is more or less straightforward to derive distribution theory for (7).
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Estimation of the set I = {α : SB(α) ≥ 0}. Notice that I is a set where (under

H0) the function SB is constant. Estimating such sets, or similarly, estimating

a function where its derivative is zero, or where it has flat spots, is notoriously

difficult. All nonparametric techniques for estimating such sets usually either avoid

this situations, or special considerations are needed. Our basic idea is to estimate

the set I(ǫn) := {SB(α) ≥ −ǫn } with ǫn → 0, and ǫn being a level where the

SB-function has no flat parts. Of course, this approach is likely to introduce some

bias. However, this bias goes into the “right” direction, meaning that it makes our

method only a little more conservative.

The estimator we propose is

În = În(ǫn) := sup
C∈I

∫

C
(ŜBn(α) + ǫn)dα (8)

where I := class of all closed intervals on [0, 1], and where in our calculations we

chose ǫn = log n√
k1

. (For a motivation of this choice of ǫn see Lemma 6.4.)

2.1 Note on neighborhood sizes k1 and k2 and the local geometry.

The local geometry, i.e. the specific metric used, enters the covariance structure

of the limiting distribution of our test statistic Tn. For a given value x let An(x)

denote the ball around x of radius dn(x). Then, for two values xα, xβ the intersection

An(xα) ∩ An(xβ) crucially determines the covariance of log d̂n(xα) and log d̂n(xβ)

(cf. proof of Theorem 6.5). Therefore, in order to make our life simple, we chose to

define the line connecting the given endpoints x and y of our SB-plot as one of the

coordinate axis, and used the city-block distance relative to this axis. Alternatively,

we could have selected the rotationally invariant L2-norm. The computation of the

asymptotic variance of Tn then becomes slightly more complicated, however. (See
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remark after Theorem 6.5.)

Another issue important for practical applications is the choice of the neighbor-

hood sizes. We derive some reasonable values of k1 and k2 using a Gaussian reference

density assuming that we are interested in all regions except for low density ones.

If we obtain a nearest neighbor estimate f̂(x) of f(x) on the basis of the nearest

k1 observations, then f̂(x) = (k1/n)/vol(Ân(x)), where Ân(x) is the ball of radius

d̂n(x) centered at x. We will obtain the optimal value of k1 for estimating f in all

but very low density regions. Let R be a region in Rp, to be determined later, which

excludes low density regions. If we denote L0 =
∫
‖u‖≤1 du, L1 =

∫
‖u‖≤1 u2

1du and the

matrix of second partial derivatives of f by D2f , then straightforward calculations

show that the expected mean integrated square error is

E

∫

R
(f̂(x) − f(x))2dx ≈ (1/k1)c1 + (1/4)(k1/n)4/pc2

where

c1 =

∫

R
f2(x)dx, c2 = (L1/L

1+2/p
0 )2

∫

R
{tr(D2f(x))}2f(x)−4/pdx.

Clearly this mean integrated square error is minimized when

k1 = n4/(p+4)(pc1/c2)
p/(p+4).

Hence reasonable estimates of the constants c1 and c2 are needed. Let us split c2 in

two component parts c2 = c21c22, where

c21 = (L1/L
1+2/p
0 )2 and c22 =

∫

R
{tr(D2f(x))}2f(x)−4/pdx.

Elementary calculations show that

√
c21 =





1/12 for city-block distance

{π(p + 2)}−1(p/2)2/p(Γ(p/2))2/p for Euclidean distance
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Notice that c1 and c22 involve the unknown density. As is done sometimes in the

density estimation literature (Chapters 3 and 4 in Simonoff, 1996), we will assume

the Gaussian reference density. Since Xi’s have mean 0 and variance covariance

matrix I, it is not unreasonable to take our reference density to be the pdf f0 of

Np(0, I), as we are only interested in deriving working values for k1 and k2. Since

we are not interested in low density regions, we can take the region R to be of the

form R = {x : x′x ≤ η} where the probability content of this region under f0 is

0.95, i.e., P (χ2
p ≤ η) = 0.95. It can be shown that

c1 =

∫

R
f2
0 (x)dx = (4π)−p/2P (χ2

p ≤ 2η),

c22 =

∫

R
{tr(D2f0(x))}2f0(x)−4/pdx

= (2π)−1/2+2/pE[I(χ2
p ≤ η)(χ2

p − p)2 exp(−(1/2 − 2/p)χ2
p)].

Even though c1 and c22 do not have closed form expressions, they can be evaluated

rather easily. With these working values of c1and c22 we can now obtain a working

value of k1. The value of k2 is taken to be min(
√

n, k1).

For the nature data and the Swiss bank notes data, the dimension of the obser-

vations p = 2. However, the sample sizes are different. For the climatology data

n = 270, leading to k1 = 40 and k2 = 17 using the city-block norm. For the Swiss

bank data, the respective values of (k1, k2) = (33, 15) with the sample size n = 200.

Choice of tuning parameters (k1, k2)

n=100 n=400

p=2 p=4 p=2 p=4

city-block 20,10 9,9 50,20 18,18

squared-error norm 21,10 10,10 52,20 20,20
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The table above gives (k1, k2) for different values of the sample size n and dimension

p for the sup-norm and the squared-error norm when the probability content (for

the standard multivariate normal) of the region which excludes low density is 0.95.

3 Illustrations

3.1 Application to Swiss bank note data

This data consists of bottom margin and diagonal length of 200 Swiss bank notes out

of which 100 are real and the rest forged (e.g. see Simonoff, 1996). The analysis of

univariate density estimates given in Simonoff’s book (chapter 3.1) suggests that the

distribution of diagonal length has two modes indicating existence of two different

types of notes (real and forged). Similarly, the distribution of bottom margins has

two distinct modes. It may even have a third mode, but it is so faint that it may

even be a point of inflection.
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Fig. 3: Scatter plot of Swiss banknote data. Fig. 4: Contour plot for Swiss banknote data.

We present our analysis on this data taking it to be a bivariate data. Using
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the approximate method described earlier we get the values of k1 and k2 needed

for initial selection of modal candidates. Here, we have (k1, k2) = (32, 15) for the

city-block distance and (k1, k2) = (33, 15) for the squared norm.
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Fig. 5: SB-plot for Swiss bank note data using Eu-

clidean distance.

Fig. 6: SB-plot for Swiss bank note data using city-

block distance.

Following our analysis described earlier, we find that there are two distinct modal

regions for both the city-block distance and the Euclidean distance using either the

naive test, i.e. the pointwise test based on ŜBn(α), or the asymptotic Kolmogorov-

Smirnov (K-S) type test, i.e. the test based on Tn, where we have been using

significance level 0.10 in step (III). When the Euclidean distance is used, the modal

regions are around (7.9,141.6) and (10.3, 139.7) with the value of the K-S type statis-

tic 3.3476. For the city block distance the modes are around (8.2,141.7) and (10.2,

139.6) and the value of the K-S type statistic is 3.8708. Contour plots are presented

below using a normal kernel method with the bandwidths suggested in chapter 4.2

in Simonoff. While the locations of the modes are slightly different for the different

measures of distance, the corresponding SB plots convey similar information about

the existence of the modes. The plots clearly suggest the distinctiveness of the
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modal regions.

3.2 Climatology data

This bivariate data set has 270 points, and is discussed in more detail in Section 2

above. It turns out that our approximate method leads to k1 = 40, k2 = 17 for the

city-block distance. An application of our procedures for finding modal regions is

unable to detect multimodal regions in the data for any distance measure employing

any of the test procedures (in step (III)).
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Fig. 7: Contour plot for climatology data. Fig. 8: SB-plot for climatology data using city-block

distance.

A contour plot also does not indicate separate modal regions. For the purpose of

illustration we have presented earlier the SB plot for the two best candidates for

modes. These points are (-0.0921,0.4290) and (-0.3081,-1.1563) and the conclusion

from the standardized SB plot is the same as what one would infer from the the

contour plot or the plot of density estimate, i.e., there are no separate modes.
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4 Large sample results

In this section we study the large sample behavior of the statistics ŜBn(α) and

Tn under the assumption that X1,X2, . . . are i.i.d. observations. Let us point out

again, that in our results we will always assume the endpoints of the SB-plot to be

given (i.e. non-random). We first state some more technical assumptions that are

used throughout.

Assumptions.

A1. The metric ρ is the supremum distance (or the city-block distance), where for

given endpoints x, y of the SB-plot the data have been rotated such that x−y

is one of the coordinate axis.

A2. The pdf f of the underlying distribution F is twice continuously differentiable,

and for given endpoints x, y of the SB-plot we have with xα = α y + (1−α)x

that f(xα) > 0 for all α ∈ [0, 1].

Remark. The geometrical assumptions from A1 are made for mathematical con-

venience. They are not necessary. (See discussion after Theorem 6.5.)

In the following we use the notation

r =
k1

n
.

In other words, r is the fraction of observations in each of the nearest neighbor neigh-

borhoods under consideration. The first result motivates our method of repeated

z-tests outlined in the introduction.

Theorem 4.1 Let X1,X2, . . . be i.i.d. vectors in Rp with a common density f , and

let r be such that n r
log n → ∞, and n r1+ 4

p → 0 as n → ∞. Suppose that A1 and A2
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hold. For every α ∈ (0, 1) the following holds as n → ∞.

√
n r (ŜBn(α) − SB(α)) →D





N1 − max(N2, N3) if f(x) = f(y)

N1 − N2 if f(x) 6= f(y),

where N1, N2, N3 are independent standard normal random variables.

Remarks. (i) Note that the distribution of N1 − max{N2, N3} is stochastically

smaller than the normal with mean zero and variance two. In our applications we

therefore used the critical values from the latter distribution even if f(x0) = f(x1),

which is a conservative approach.

(ii) As can be seen from the proof of this result, the condition n r
1+ 4

p → 0 is needed

for the bias to be negligible. Observe, however, that our rule of thumb for the choice

of r is such that n r1+ 4
p → c > 0 (cf. section 2.1). This contradiction, in fact, is a

common problem in smoothing and it is formally unavoidable if one relies on finding

optimal bandwidths using the mean squared error of the density estimator. However,

we argue that it still makes sense to use our rule of thumb. Observe that we are not

really interested in estimating the underlying pdf f , but we want to test whether

two given points lie in distinct model regions of f . Hence, from this point of view

it makes sense to use the null hypothesis (4) rather than (2). This, in fact, avoids

condition n r
1+ 4

p → 0 as replacing SB(α) by SBn(α) effectively means replacing

log r
C(p)f(xα) by p log dn(xα), and Theorem 4.1 holds for

√
n ( ŜBn(α) − SBn(α))

without the condition n r1+ 4
p → 0. (In order to see this observe that the proof of

Lemma 6.2 shows that (24) with log r
C(p)f(xα) replaced by p log dn(xα) holds without

the term ∆n(xα)/r, and this is the crucial term in these arguments (cf. proof of

Corollary 6.3). Notice that also the O(r4/p) term in (24) vanishes in this case, as

18



it is also caused by ∆n(xα).) In other words, we can ignore the bias in estimating

f . To some extend these arguments also explain our empirical observation that the

rule of thumb choices for k1 an k2 appear to work quite reasonably.

The following result concern our more global test statistic Tn. We first introduce

some notation. For a given ǫ > 0 let

g(η) = sup
0<η<λ<ǫ

∣∣ {α ∈ [0, 1] : −λ − η ≤ SB(α) ≤ −λ + η}
∣∣, (9)

where for a set A ⊂ R we let |A| denotes its Lebesgue measure. This function is

needed to control bias, and we will need that for small ǫ > 0 we have g(η) → 0 as

η → 0. Notice that this means that SB(·) has no flat parts close to 0. The rate at

which g(η) convergence to zero if η → 0 will become important, too. In fact, we will

assume the following.

A3. There exists an ǫ0 > 0 such that for all 0 < ǫ ≤ ǫ0 we have

g(η) ≤ C ηγ for some 0 < C < ∞, 0 < γ < ∞. (10)

Recall that I(ǫn) := {SB(α) ≥ −ǫn }. Let ℓ(ǫn) :=
∫
I(ǫn) dα, and ℓ̂n(ǫn) := ûn − l̂n.

Theorem 4.2 Let X1,X2, . . . be i.i.d. vectors in Rp with a common distribution F .

Assume that |I| > 0, I(ǫn) ∈ I for all n, and that A1 - A3 hold. Further let r be such

that n r 1+ 3
p → 0, n r

1+ 2
p

( log n )3
→ ∞,

√
n r1− 1

p ǫ1+γ
n → 0, and

√
log n
nr = o(ǫn) = o(1) as

n → ∞. Let ân = 2 r
− 1

p
∫

bIn(ǫn) d̂n(xα) dα. Then we have under H0 that as n → ∞
√

n r1− 1
p ‖x − y ‖
ân

Tn →D sup
t∈[0,1]

|B(t)|, (11)

where {B(t), t ∈ [0, 1]} denotes a standard Brownian Bridge. If H0 does not hold

then

√
n r

1− 1
p

ban
Tn → ∞ in probability as n → ∞.
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Discussion of the assumptions of Theorem 4.2.

a) A heuristic explanation for the order

√
n r

1− 1
p is given by the fact that the

effective number of observations which are used in the above theorem is of the order

n r
1− 1

p . This is so, because d̂n(xα) is based on the k1 = n r observations in Ân(xα),

and since each of the sets Ân(xα) is a p-dimensional box with edges length of order

r1/p we can find O(r−
1
p ) many disjoint boxes along the line connecting x and y .

This results in O(n r ℓ(ǫn) r
− 1

p ) effective observations. Rescaling of I(ǫn) to [0, 1]

brings in a factor of 1/ℓ(ǫn), which goes in quadratically into the variance. Hence

the order of the variance can be expected to be O(ℓ(ǫn)/n r1− 1
p ), and ℓ(ǫn) converges

to a positive constant.

b) Our choice ǫn = log n√
nr

is compatible with the assumptions of the theorem

provided γ > 1/3.

c) Assumption nr
1+ 3

p → 0 is not needed when considering H0n rather than H0

(cf. remark (ii) given after Theorem 4.1). Hence, in this case, for any γ > 0 there

exists an r satisfying the conditions of the theorem, and our rule of thumb choice of

r = c n
− p

4+p (or n r
1+ 4

p → c > 0) fulfills the conditions provided γ > 1/4.

5 Proofs of main results

In this section we present the proofs of the theorems given above. These proofs

draw on results presented in Section 6, which have been separated out since they

not only serve the proofs of the main results, but they appear to be interesting in

their own. We denote by Fn the empirical distribution based on X1, . . . ,Xn, so that

Fn(C) = 1
n

∑n
i=1 1(Xi ∈ C) for C ⊂ Rp.

20



Proof of Theorem 4.1. Let Yn(α) =
√

n r
(
p log d̂n(xαi) − log r

C(p) f(xαi )

)
,

α ∈ [0, 1]. Corollary 6.3 says that for any 0 ≤ α1 < · · · < αm ≤ 1 the random vector

(Yn(α1), . . . , Yn(αm) ) is asymptotically m-dimensional standard normal. Further,

it follows that

Wn =
√

n r
[
max(p log d̂n(x0), p log d̂n(x1)) −max

(
log r

C(p) f(x0) , log r
C(p) f(x1))

)]
con-

verges in distribution to the maximum of two independent standard normal ran-

dom variables if f(x0) = f(x1), and to a standard normal random variable if

f(x0) 6= f(x1). Since
√

n r (ŜBn(α) − SB(α)) = Yn(α) − Wn the assertion follows.

�

Proof of Theorem 4.2. For an interval C = [a, b] we define

Ẑn(t, C) :=

∫ t

a
p log d̂n(xα) dα − t − a

b − a

∫ b

a
p log d̂n(xα) dα, t ∈ [0, 1]. (12)

Similarly, let

Zn(t, C) =

∫ t

a
log

r

C(p) f(xα)
dα − t − a

b − a

∫ b

a
log

r

C(p) f(xα)
dα, t ∈ [0, 1].

(13)

Observe that

Tn = sup
t∈bIn

|Ẑn(t, În)|,

and that Proposition 6.6 says that
√√√√n r1− 1

p ‖x − y‖
ℓ̂n(ǫn)

sup
t∈[0,1]

| (Ẑn − Zn)(t, În)| →D sup
t∈[0,1]

|GF (t)| (14)

for a Gaussian process {GF (t), t ∈ [0, 1]} whose covariance function is given in

Proposition 6.6. We will show below that under H0 we have
√√√√nr1− 1

p ‖x − y‖
ℓ̂n(ǫn)

sup
t∈[0,1]

|Zn(t, În)| = oP (1) as n → ∞. (15)
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Assuming that this is true, we obtain together with (14) that

√√√√n r1− 1
p ‖x − y‖

ℓ̂n(ǫn)
Tn →D sup

t∈[0,1]
|GF (t)| as n → ∞.

We now show first that this implies the assertion of the theorem, namely that under

H0 we have

√
n r1− 1

p ‖x − y‖
ân

Tn →D sup
t∈[0,1]

|B(t)| as n → ∞,

with B being a standard Brownian Bridge. To see this let I = [u, l] and write

zγ = xl + γ (xu − xl), γ ∈ [0, 1], where as always xα = x + α(y − x) for α ∈ [0, 1].

Notice that under H0 we have f(zγ) = f(xl) for all γ ∈ [0, 1]. In other words, f

is constant on I. It follows that under H0 the covariance of the limiting Gaussian

process GF from Proposition 6.6 equals

2
( 1

C(p) f(xl)

) 1
p

[max(t, s) − t s] .

Further, we obtain from (30) and (32) that under H0

∣∣∣ ân − 2 (u − l)

(
1

C(p) f(xl)

) 1
p
∣∣∣ = oP (1). (16)

Thus the covariance of the limiting Gaussian process of

√
n r

1− 1
p ‖x−y‖
ban

Ẑn(t, În(ǫn) )

equals max(t, s) − t s, s, t ∈ [0, 1], which is the covariance functions of a standard

Brownian Bridge.

It remains to prove (15). Since under H0 we have that SB(α) = 0 for α ∈ I = [l, u]
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it follows that

sup
t∈[0,1]

∣∣∣
√

nr
1− 1

p Zn(t, În(ǫn))
∣∣∣

≤
√

nr1− 1
p sup

t∈[0,1]

[ ∣∣∣
∫

bIn(ǫn)\I
SB(α) dα

∣∣∣+ t − l̂n

ûn − l̂n

∣∣∣
∫

bIn(ǫn)\I
SB(α) dα

∣∣∣
]

≤ 2

√
nr1− 1

p

∣∣∣
∫

bIn(ǫn) \I
SB(α) dα

∣∣∣ = OP (

√
nr1− 1

p ǫ1+γ
n ). (17)

By assumption

√
nr1− 1

p ǫ1+γ
n = o(1) as n → ∞. This completes the proof.

The last equality in (17) can be seen by observing that

∫

bIn(ǫn)\I
|SB(α)| dα ≤ sup

α∈bIn(ǫn)

|SB(α)|
∫

bIn(ǫn)\I
dα

= OP (ǫ1+γ
n ), (18)

where we used that Lemma 6.4 implies Leb(În(ǫn)\I) ≤ | În(ǫn)∆I | = OP (g(ǫn)) =

OP (ǫγ
n).

�

6 Miscellaneous results

Recall the notation r = k1/n, where k1 has been defined above as the number of

observations in a nearest neighbor neighborhood An(x) around x of radius dn(x).

Also recall that d̂n(xα) = argmin{s : Fn(B(xα, s)) ≥ r} with corresponding nearest

neighbor ball Ân(xα), and dn(xα) = argmin{s : F (B(xα, s)) ≥ r}. Let“∆” denote

set-theoretic symmetric difference, i.e. A∆ B = (A \ B) ∪ (B \ A).

Lemma 6.1 Suppose that n r/ log n → ∞. Then

sup
α∈[0,1]

F (Ân(xα)∆An(xα)) = OP

(√ r

n
log n

)
.
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Proof. Observe that because F is continuous we have |Fn(Ân(xα))−F (An(xα))| =

|Fn(Ân(xα))−r| = O(1/n) almost surely uniformly in x and r. Hence, using obvious

notation it follows that

F (Ân(x) ∆An(x)) = |F (Ân(xα)) − F (An(xα))|

≤ |(Fn − F )(An(xα))| + |(Fn − F )(Ân(xα) − An(xα))| + O(1/n).(19)

It follows from (19) that for n large enough (such that C
3

√
r
n log n ≥ 1

n) we have

with Bn = {supα∈[0,1] F (Ân(xα)∆An(xα)) > C
√

r log n
n } that

P (Bn) ≤ P
(

sup
α∈[0,1]

|(Fn − F )(An(xα))| >
C

3

√
r log n

n

)
+ (20)

+ P
(

sup
α∈[0,1]

∣∣∣ (Fn − F )(Ân(xα) − An(xα))

F (Ân(x)∆An(x))

∣∣∣ >
C

3
, Bn

)

Now note that the sets An and Ân are boxes in Rp. The class Bp of all boxes in Rp

forms a so-called VC-class. A well-known property of the empirical process indexed

by the VC-class Bp is that supB∈Bp;F (B)≤δ |(Fn − F )(B)| = OP (
√

δ
n log n ) as long

as log n
n δ < c for some appropriate constant c > 0 (e.g., see Alexander, 1984). Since

F (An(xα)) = r this implies that the first term on the r.h.s. of (20) can be made

arbitrarily small as n → ∞ by choosing C large enough. We now argue that the

same holds true for the second term. We can estimate this term by

P
(

sup

F (A∆B)>C
q

r log n
n

∣∣∣(Fn − F )(A − B))

F (A∆B)

∣∣∣ > C

3

)
(21)

where the supremum is extended over all boxes A,B ∈ Bp. By identifying boxes with

their indicator function the class of all functions of differences {A−B; A,B boxes}

also forms a VC-(subgraph)class, where exponential inequalities are readily avail-

able. Using them in conjunction with the so-called peeling device we obtain that

also the probability in (21) can be made arbitrarily small as n → ∞ by choosing C

24



large enough. We only briefly outline the peeling device. More details can be found

e.g. in van de Geer, 2000. Let δn = C
√

r log n
n . The idea is to write

{F (A∆B) > δn} =

∞⋃

j=1

{2k−1δn < F (A∆B) < 2kδn}, (22)

in order to estimate (21) through

∞∑

j=1

P
(

sup
F (A∆B)<2kδn

|(Fn − F )(A − B))| >
C

3
2k−1δn

)
. (23)

Now good exponential bounds for the probabilities on the r.h.s. can be used to show

that the sum becomes small for large C and n → ∞.

�

Lemma 6.2 Suppose that the assumptions of Theorem 4.1 hold, and let ∆n(xα) :=

∫
An(xα)[f(z)− f(xα)] d z. There exists a constant C(p) such that for n r/ log n → ∞

we have

sup
α∈[0,1]

∣∣∣
(

p log d̂n(xα)− log
r

C(p) f(xα)

)
− (F − Fn)(An(xα))

F (An(xα))
+

∆n(xα)

r

∣∣∣

= OP

(
r

2
p

√
log n

n r

)
+ OP

(( log n

n r

) 3
4
)

+ O
(
r

4
p

)
. (24)

Moreover, supα∈[0,1] ∆n(xα) = O
(
r
1+ 2

p
)
.

Corollary 6.3 Suppose that the assumptions of Lemma 6.2 hold. If, in addition,

nr
1+ 4

p = o(1) then we have the following.

(i) For any (α1, . . . , αm ) ∈ [0, 1]m as n → ∞
(√

n r
(

p log d̂n(xαi) − log
r

C(p) f(xαi)

)
; i = 1, . . . ,m

)
→D Nm(0, I).

(ii)

sup
α∈[0,1]

√
n r

log n

∣∣∣ p log d̂n(xα) − log
r

C(p) f(xα)

∣∣∣ = OP (1).
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(iii)

sup
α∈[0,1]

√
n r

log n

∣∣∣ ŜBn(α) − SB(α)
∣∣∣ = OP (1).

Proof of Corollary 6.3. The main term in (24) is Un(α) = (F−Fn)(An(xα))
F (An(xα)) =

(F−Fn)(An(xα))
r . Under the present assumptions a standard application of a Lindeberg-

Feller CLT hence shows that
√

n r Un(αi) → N (0, 1) for each i = 1, . . . ,m. As for

joint convergence observe that Cov(
√

n r Un(αi),
√

n r Un(αj) ) = 1
r (F [An(αi) ∩

An(αj) ]− F (An(αi) )F (An(αj) ) ) = 1
r

(
0 − r2

)
= −r for n large enough, and

hence Cov(Un(αi), Un(αj) ) → 0 as n → ∞. It remains to show that all the re-

mainder terms appearing in (24) tend to zero. Notice that the two OP -terms in

(24) tend to zero by the assumptions on r, and also
√

n r ∆n(xα)
r = oP (1). By us-

ing the last assertion of Lemma 6.2, negligibility of the latter term follows since

√
n r ∆n(xα)

r =
√

n r OP

(
r

2
p

)
= OP

(√
n r1+ 4

p

)
which tends to zero as n → ∞ by

assumption on r. This completes the proof of part (i).

Part (ii) follows similarly by observing that the class of boxes is a so-called VC-class,

and hence, by using the fact that F (An(xα)) = r empirical process theory implies

that

sup
α∈[0,1]

∣∣√n (Fn − F )(An(xα))
∣∣ = OP

(√
r log

1

r

)
.

Hence (24) implies the result similarly to the above since the order of the remainder

terms are uniform in α.

Part(iii) is an immediate consequence of part (ii) by observing that

sup
α∈[0,1]

√
nr (ŜBn(α) − SB(α) ) ≤ 2 sup

α∈[0,1]

√
n r

log n

∣∣∣∣ p log d̂n(xα) − log
r

C(p) f(xα)

∣∣∣∣

(cf. proof of Theorem 4.1).

�
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Proof of Lemma 6.2. The starting point of this proof is the fact that by using a

Taylor expansion we can write

p log d̂n(xα) − log
r

C(p) f(xα)
=

(
C(p) f(xα) d̂ p

n(xα)

r
− 1

)
+ remainder (25)

We will first concentrate on the main term term on the right-hand side. For a (mea-

surable) set A we will (as above) denote by |A| the volume (or Lebesgue measure)

of A. We can write

F (B(x, t)) = f(x) |B(x, t)| + ∆(x, t) (26)

= f(x)C(p) tp + ∆(x, t),

where C(p) is a constant that depends only on the dimension p and on the particular

metric used, and ∆(x, t) =
∫
B(x,t)(f(x) − f(z)) d z. With ∆̂n(xα) = ∆(xα, d̂n(xα))

and ∆n(xα) = ∆(xα, dn(xα)) expansion (26) implies

C(p) f(xα) d̂ p
n(xα)

r
− 1 =

F (Ân(xα)) − F (An(xα))

F (An(xα))
− ∆̂n(xα)

r

=
F (Ân(xα)) − F (An(xα))

F (An(xα))
− ∆n(xα)

r
+

∆̂n(xα) − ∆n(xα)

r
. (27)

We now consider the last term in (27) and show that

∆̂n(xα) − ∆n(xα) = OP

(
r

2
p

√
r log n

n

)
uniformly in α ∈ [0, 1]. (28)

To see this, note that since Ân(xα) and An(xα) are two neighborhoods with the

same midpoint (and hence are nested) it follows that for some constant C > 0 we

have

|∆̂n(xα) − ∆n(xα)| =
∣∣
∫

bAn(xα)∆An(xα)
[f(xα) − f(z)] d z

∣∣

≤ C | Ân(xα)∆An(xα) |
(
max{d̂n(xα), dn(xα)}

)2
. (29)
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Since by assumption supα∈[0,1] f(xα) > 0, Lemma 6.1 implies that | Ân(xα)∆An(xα) | =

OP

(√ r log n
n

)
. To complete the proof of (28) we show that (i) dn(xα) = O(r

1
p ), and

(ii) O(max{d̂n(xα), dn(xα)}) = OP (dn(xα)). In fact, we will even show that

sup
α∈[0,1]

∣∣ d̂n(xα)

dn(xα)
− 1

∣∣ = oP (1). (30)

First we show (i). As in (29) we have uniformly in α ∈ [0, 1] that

|∆n(xα)| ≤ C |An(xα)| d2
n(xα) = O(dp+2

n (xα)). (31)

This together with (26) implies that r = C(p) f(xα) d p
n(xα) [1 + O(d2

n(xα))], which

means that

dp
n(xα)/r → 1

C(p) f(xα)
. (32)

We also have shown that

∆n(xα) = O(r1+ 2
p ) (33)

uniformly in α ∈ [0, 1], which is the last assertion of the lemma. Now we prove

(ii). Using (29) and the fact that (since the neighborhoods Ân(xα) and An(xα) are

nested) we have | Ân(xα)∆ An(xα) | = O
(
d̂ p

n(xα) − d p
n(xα)

)
, we can write

F (Ân(xα)) − F (An(xα)) = C(p) f(xα) (d̂ p
n(xα) − dp

n(xα)) + ∆̂n(xα) − ∆n(xα)

= C(p) f(xα) (d̂ p
n(xα) − dp

n(xα)) [1 + O(max{d̂n(xα), dn(xα)})].

Using (32) (and recall that F (An(xα)) = r) it follows that

d̂ p
n(xα) − dp

n(xα)

dp
n(xα)

(1 + O(max{d̂n(xα), dn(xα)}) =
F (Ân(xα)) − F (An(xα))

F (An(xα))
. (34)

Further, by definition Fn(Ân(xα)) ≥ r and Ân(xα) it is the smallest ball around

xα with this property. Since F is continuous we obtain that Fn(Ân(xα)) = r +

O(1/n) almost surely. It follows that F (Ân(xα))−F (An(xα)) = (F −Fn)(Ân(xα))+
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O(1/n) = oP (1). The last equation follows from empirical process theory by using

the fact that each Ân(xα) is a rectangle, and that a uniform law of large numbers

holds for the class of rectangles. (In fact, the rectangles form a so-called VC-class; see

e.g. van der Vaart and Wellner, 1996.) Hence it follows from (34) that
bd p
n (xα)

d p
n (xα)

− 1 =

oP (1) which is (ii).

We now focus on the first term on the r.h.s. of (27). We have

F (Ân(xα)) − F (An(xα)) = (F − Fn)(Ân(xα)) + O(1/n)

= −(Fn − F )(An(xα)) − [(Fn − F )(Ân(xα)) − (Fn − F )(An(xα))] + O(1/n)

= −(Fn − F )(An(xα)) + OP

( r
1
4 (log n )

3
4

n
3
4

)
(35)

The OP -term in (35) follows from empirical process theory as follows. First notice

that we have for so called VC-classes of sets C that supC∈C:F (C)≤δ | (Fn −F )(C) | =

OP

(√ δ log(1/δ)
n

)
, for δ ≥ c log n/n for some appropriate c > 0 (e.g. Alexander 1984.)

We already used above that the class of rectangles forms a VC-class. Further it is

know that if C is a VC-class so is {C \ D : C, C ∈ C }. Hence by writing (Fn −

F )(Ân(xα))− (Fn −F )(An(xα)) = (Fn −F )(Ân(xα) \ Ân(xα) )− (Fn −F )(Ân(xα) \

Ân(xα) ) the asserted rate in (35) follows by using Lemma 6.1.

Finally, notice that the above shows that supα∈[0,1]

∣∣∣C(p) f(xα) bd p
n (xα)

r − 1
∣∣∣ = oP (1).

Hence, a Taylor expansion gives

log d̂ p
n(xα) − log r

C(p) f(xα) =
(

C(p) f(xα) bd p
n (xα)

r − 1
)

+ OP

((
C(p) f(xα) bd p

n (xα)
r − 1

) 2 )
(36)

with the OP -term being uniform in α. Collecting (27), (28), (33) and (35) and

plugging them into (36) completes the proof.

�
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Lemma 6.4 (Rates of convergence for În(ǫn).) Suppose that the assumptions of

Theorem 4.1 hold. In addition assume that
√

log n
n r = o(ǫn) and that (10) holds with

0 < γ ≤ 1. Then we have

dF ( În(ǫn), I(ǫn) ) = oP (ǫγ
n) as n → ∞,

where I(ǫn) = {α : SB(α) ≥ −ǫn }. We also have dF ( În(ǫn), I ) = OP (ǫγ
n) as

n → ∞.

Proof. For λ ∈ R and any (measurable) set C let

Hn,λ(C) =

∫

C

(
log

r

C(p) f(xα)
− λ

)
dα

Ĥn,λ(C) =

∫

C
( p log d̂n(xα) − λ ) dα

Observe that with µ̂n = −ǫn+ max
{

p log d̂n(x), p log d̂n(y)
}

and µn = −ǫn+

max{ log r
C(p) f(x) , log r

C(p) f(y)} we have

În(ǫn) = argmax
C

{Ĥn,bµn
(C)} and I(ǫn) = argmax

C
{Hn,µn(C)}.

It follows that 0 ≤ Hn,µn(I(ǫn)) − Hn, µn(În(ǫn)) and also 0 ≤ Ĥn,bµn
(În(ǫn)) −

Ĥn,bµn
(I(ǫn)), and hence we obtain

0 ≤ Hn, µn(I(ǫn)) − Hn,µn(În(ǫn)) ≤ (Hn, µn − Ĥn, bµn
)(I(ǫn)) − (Hn, µn − Ĥn,bµn

)(În(ǫn))

=

∫

bIn(ǫn)
−
∫

I(ǫn)
(ŜBn(α) − SB(α)) dα. (37)

Further we have

Hn,µn(I(ǫn)) − Hn, µn(În(ǫn)) =

∫

bIn(ǫn)∆ I(ǫn)
|SB(α) + ǫn| dα

≥ η ·
∣∣ {În(ǫn)∆ I(ǫn) ∪ |SB(α) + ǫn| ≥ η}

∣∣, (38)
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and hence we obtain for η < ǫn that

| În(ǫn)∆ I(ǫn) | ≤
∣∣{|SB(α) + ǫn| ≤ η}

∣∣ +
∣∣ {În(ǫn)∆ I(ǫn) ∪ |SB(α) + ǫn| ≥ η}

∣∣

≤ O( g(η) ) +
1

η

∫

bIn(ǫn)
−
∫

I(ǫn)
(ŜBn(α) − SB(α)) dα (39)

≤ O( g(η) ) +
1

η

∣∣ În(ǫn)∆ I(ǫn)
∣∣ sup

α∈[0,1]
|ŜBn(α) − SB(α)| (40)

Corollary 6.3 part (iii) says that supα∈[0,1] |ŜBn(α)−SB(α)| = OP

(√
log n
n r

)
. Hence,

for any δ > 0 we can find a constant C(δ) such that An(δ) = { supα∈[0,1] |ŜBn(α) −

SB(α)| ≤ C(δ)
√

log n
n r } for n large enough satisfies P (An(δ)) > 1−δ. Consequently,

if we choose η = 2C(δ)
√

log n
n r (which, as required, is ≤ ǫn for n large enough) then

(40) implies that on An(δ) we have

∣∣ În(ǫn)∆ I(ǫn)
∣∣ ≤ O

(
g
(

2C(δ)

√
log n

n r

) )
.

In other words,
∣∣ În(ǫn)∆ I(ǫn)

∣∣ = OP

( ( log n
n r

)γ/2 )
= oP (ǫγ

n) where the last equality

holds by assumption on ǫn.

�

For some of the above arguments we need to study the asymptotic behavior of a

certain empirical process which we study next. For given sequences xn, yn,∈ Rp with

xn → x and yn → y we denote points on the line connecting the endpoints xn and

yn by xn,α = xn +α (yn −xn), and points connecting x and y by xα = x+α (y−x),

respectively. Further denote for any t ∈ [0, 1]

Ψt(y) =

∫ t

0
1(y ∈ An(xn,α)) dα. (41)

We now study the process {νn(Ψt); t ∈ [0, 1]} where

νn(Ψt) =

√
n ‖xn − yn‖

r
1+ 1

p

(Fn − F )(Ψt) =

√
n ‖xn − yn‖

r
1+ 1

p

( 1

n

n∑

i=1

Ψt(Xi) − r t
)
.

(42)
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Notice that r t = EΨt(Xi), because E1(Xi ∈ An(xn,α)) = F (An(xn,α)) = r. Using

the notation introduced above we have the following result.

Theorem 6.5 Let X1,X2, . . . ∼iid F be random vectors in Rp. Assume that as-

sumptions A1 and A2 hold for endpoints xn, yn (for all n) and also for x, y. Assume

further that r1/p

‖xn−yn‖ = o(1) as n → ∞. Then we have as n → ∞

νn(Ψt) →D GF (t),

in the space C[0, 1] where {GF (t), t ∈ [0, 1]} denotes a mean zero Gaussian process

with Cov(GF (t), GF (s)) = D(min(s, t))−‖x−y‖ s t1(p = 1), where D(min(s, t)) =

2
∫ min(s,t)
0

(
1

C(p) f(xα)

) 1
p dα.

Remark. Notice that the covariance structure for p > 1 is the one of a generalized

Brownian motion, and if in addition H0 holds, i.e. f(xα) is constant over all xα ∈ I,

the limit is precisely a rescaled Brownian motion. For p = 1 the covariance structure

of the limit is more similar to the one of a Brownian bridge, however.

The geometric assumptions made in A2 determine the covariance structure of νn (cf.

(45) and (46)). In case we use the Euclidean norm, the function D in the covariance

formula has to be replaced by

D(s) =
4

‖x − y‖

∫ 1

0
Ψω(t) d t

∫ s

0
dn(xα) dα

where ω = x−y
‖x−y‖ and

Ψω(t) =

p∏

i=1

(1 − |t| |ωi| )+ 1( |t| ≤ 1 ).

In case we use the city-block but do not rotate the data, and for the Euclidean norm

we have

Ψω(t) =
B(p−1

2 , 3
2 ; 1 − t2) − |t|B( t−1

2 , 1; 1 − t2)

B(p−1
2 ; 3

2)
1(|t| ≤ 1).
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Here B(·, ·) and B(·, ·; ·) denote the complete and incomplete Beta-function,respectively.

Proof of Theorem 6.5 We can write νn as a function indexed empirical process

as

νn(Ψt) =
√

n (Fn − F )(ht,n),

with index class Hn := {ht,n :=

√
‖xn−yn‖

r
1+ 1

p
Ψt : t ∈ [0, 1]}. We will apply Theorem

2.11.22 of van der Vaart and Wellner (1996) which can be used to prove weak

convergence for empirical processes indexed by such classes of functions depending

on n. We need to verify the conditions of this theorem. First observe that for each n

the class of functions {ht,n :=

√
‖xn−yn‖

r
1+ 1

p
Ψt : t ∈ [0, 1]} is a totally ordered class of

positive functions, and hence it follows that the class of subgraphs {Ht,n = {(x, y) ∈

Rp+1; 0 < y ≤ ht,n(x)}; t ∈ [0, 1] } forms a VC-class of VC-dimension 2. This

VC-subgraph property guarantees the metric entropy condition of Theorem 2.11.22

to hold.

It remains to verify condition (2.11.21) of van der Vaart and Wellner. In order

to do that first observe that (i) h1,n is a square integrable cover for Hn, because

0 ≤ ht,n(x) ≤ h1,n(x) and E(h1,n(X))2 = 2
∫ 1
0

(
1

C(p) f(xα)

) 1
p

dα ( 1 + o(1) ) <

∞ (cf. (52)). The second condition in (2.11.21) of v.d.Vaart and Wellner is (ii)

E[h2
1,n(X)1(h1,n > η

√
n )] → 0 as n → ∞ for each η > 0. To see this notice

that {h1,n > η
√

n} = {Ψ1 > η

√
nr

1+ 1
p

‖xn−yn‖ }. Condition (i) follows immediately by

observing that

√
nr

1+ 1
p

‖xn−yn‖ → ∞ and 0 ≤ Ψ1 ≤ 1 and hence {h1,n > η
√

n} = ∅ for n

large enough.

The third an final condition of (2.11.21) is (iii) sup|t−s|<δn
E(ht,n(X)−hs,n(X))2 →

0 as n → ∞ for every sequence δn → 0. This can seen as follows. First observe
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that for s < t we have E(ht,n(X) − hs,n(X))2 = ‖xn−yn‖
r
1+ 1

p

[
EΨ2

t (X) + EΨ2
s(X) −

2E(Ψt(X)Ψs(X))
]
. Plugging in (52) shows that

E[ht,n(X) − hs,n(X)]2 ≤ 2

∫ t

s

( 1

C(p) f(xα)

) 1
p

dα ( 1 + o(1) ) ≤ C |t − s|, (43)

which shows (iii). Theorem 2.11.22 now implies weak convergence of {νn(ht,n); ht,n ∈

Hn } to a Gaussian process, provided the covariances Cov(ht,n, hs,n) converge point-

wise. The corresponding limit then is the covariance function of the limit process.

We have

Cov (Ψs(Xi), Ψt(Xi) )

= E

(∫ s

0
1(Xi ∈ An(xn,α)) dα ·

∫ t

0
1(Xi ∈ An(xn,β)) dβ

)
− r2 s t

=

∫ s

0

∫ t

0
F (An(xn,α) ∩ An(xn,β)) dα dβ − r2 s t. (44)

A key ingredient for further calculations is the equality

F (An(xn,α)∩An(xn,β)) = r
(dn(α) + dn(β) − |α − β|

2 min (dn(α), dn(β) )

)+[
1+O

(
min

{
dn(α), dn(β)

} ) ]

(45)

where dn(α) = dn(xα)/‖xn − yn‖ and a+ = max(a, 0). Here the term inside ( )+

equals

Leb(An(xα) ∩ An(xβ) )

min ( Leb(An(α)), Leb(An(β)) )
. (46)

In other words, (46) equals the fraction the intersection An(xα) ∩ An(xβ) takes up

of the smaller of the two single sets. The O-term in (45) stems from the fact that

f is only locally constant. In the following we will expand the term in (46) in order

to finally show that Cov(Ψs(Xi), Ψt(Xi) ) converges pointwise.

First observe that dn(α) is differentiable in α and that

sup
0≤α≤1

|d ′
n(α)| = O

(
r1/p / ‖xn − yn‖

)
. (47)
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Consider the function H(α, u) = F (B(xα, u)). Our assumptions imply that H is

differentiable and that H(α, dn(xα)) = r. Differentiating both side of the latter

equation leads to an equation for d
dαdn(xα) = d′n(α)

‖x−y‖ . Our assumptions then imply

the result (47). Further details are omitted.

By writing dn(β) = dn(α) + d ′
n(ζ) (β − α) for some ζ between α and β we now

write (46) as

2 dn(α) + d ′
n(ζ) (β − α) − |α − β|

2 ( dn(α) + min (0, d ′
n(ζ) (β − α) ) )

=
(

1 − |α − β|
2 dn(α)

+
d ′

n(ζ) (β − α)

2 dn(α)

)(
1 − ξ

min (0, d ′
n(ζ) (β − α) )

dn(α)

)
(48)

=
(

1 − |α − β|
2 dn(α)

)
+ Ξn(α, β)

where Ξn(α, β) is defined by the last equality. ξ is of the form 1
(1+x)2

for some x

between 1 and 1 + min(0, d ′

n(ζ) (β−α) )
dn(α) , and hence |ξ| is bounded uniformly in α, β ∈

[0, 1]. Thus we can write

(dn(α) + dn(β) − |α − β|
2 min (dn(α), dn(β) )

)+

=
(dn(α) + dn(β) − |α − β|

2 min (dn(α), dn(β) )

)
1{ |α − β| ≤ dn(α) + dn(β) }

=
(

1 − |α − β|
2 dn(α)

)
1{ |α − β| ≤ dn(α) + dn(β) }

+ Ξn(α, β)1{ |α − β| ≤ dn(α) + dn(β) }. (49)

Notice further that by assumption on r we have supα∈[0,1] | d ′
n(α) | = o(1) as n →

∞. It follows that |1{ |α − β| ≤ dn(α) + dn(β) } − 1{ |α − β| ≤ 2 dn(α) } | ≤ 1{ (2∓

cn) dn(α) ≤ |α − β| ≤ (2 ± cn) dn(α) } with 0 < cn = o(1). A straightforward
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calculation now shows that

∫ t

0

∫ s

0

(
1 − |α − β|

2 dn(α)

)
1{ |α − β| ≤ dn(α) + dn(β) } dα dβ

=

∫ t

0

∫ s

0

(
1 − |α − β|

2 dn(α)

)
1{ |α − β| ≤ 2 dn(α) } dα dβ (1 + o(1))

=

∫ min(s,t)

0

(
2 dn(α) + O

(
d 2

n(α)
) )

dα (1 + o(1)). (50)

Further, on the set { |α−β| ≤ 2 dn(α) } we have supα, β |Ξn(α, β) | = O( sup0≤α≤1 |d ′
n(α)|) =

O
(

r1/p / ‖xn − yn‖
)

= o(1). Hence we also have

∫ t

0

∫ s

0
Ξn(α, β)1{ |α − β| ≤ dn(α) + dn(β) } dα dβ

= O( r
1
p / ‖xn − yn‖ )

∫ t

0

∫ s

0
1{ |α − β| ≤ 2 dn(α) } dα dβ (1 + o(1))

= o(1)

∫ min(s,t)

0

(
2 dn(α) + O

(
d 2

n(α)
) )

dα (1 + o(1)). (51)

The sum of (50) and (51) equals (46). Hence, by using (32) and again using the fact

that by assumption r
1
p /‖xn − yn‖ = o(1) we obtain

E(Ψs(Xi) · Ψt(Xi) ) =

∫ s

0

∫ t

0
F (An(xn,α) ∩ An(xn,β)) dα dβ

= 2
r

‖xn − yn‖
( ∫ min(s,t)

0
dn(xn,α) + O

(
d 2

n(xn,α)

‖xn − yn‖

)
dα
)

( 1 + o(1) )

= 2
r
1+ 1

p

‖xn − yn‖

∫ min(s,t)

0

( 1

C(p) f(xα)

) 1
p

dα ( 1 + o(1) ) (52)

and hence

Cov(hs,n(Xi), ht,n(Xi) )

= 2

∫ min(s,t)

0

( 1

C(p) f(xα)

) 1
p

dα ( 1 + o(1) ) − ‖xn − yn‖ r
1− 1

p s t. (53)

This completes the proof.

�
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For the next result recall the definition of Ẑn(t, C) and Zn(t, C), C ∈ I, given in

(12) and (13), respectively.

Proposition 6.6 Let X1,X2, . . . be i.i.d. vectors in Rp with a common density

f . Suppose that I = {α : SB(α) ≥ 0} =: [l, u], that A1 and A2 hold, and that g

satisfies (10). Further let r be such that r → 0, n r
1+ 3

p → 0, and n r
1+ 2

p

( log n )3 → ∞.

Also assume that ǫn → 0, and with În(ǫn) =: [l̂n, ûn] let ℓ̂n(ǫn) = ûn − l̂n. Then we

have as n → ∞
√√√√n r1− 1

p ‖x − y ‖
ℓ̂n(ǫn)

sup
t∈bIn(ǫn)

∣∣∣(Ẑn − Zn)(t, În(ǫn))
∣∣∣→D sup

t∈[0,1]
|GF (t)|.

Here {GF (t), t ∈ [0, 1] } denotes a mean zero Gaussian process with

Cov(GF (t), GF (s)) = D(min(t, s)) − t D(s) − s D(t) + s t D(1),

where D(t) = 2
∫ t
0

(
1

f(zγ ) C(p)

) 1
p

d γ, and { zγ , α ∈ [0, 1] } is a linear parametrization

of I.

Proof. We use the notation I(ǫn) = [ln, un], and ℓ = u− l. The idea of the proof is

as follows. Assume that
√√√√n r1− 1

p ‖xn − yn‖
ℓ̂n(ǫn)

(
sup

t∈[0,1]
| (Ẑn − Zn)(t, În(ǫn)) | − sup

t∈[0,1]

∣∣∣ (Ẑn − Zn)(t, I)
∣∣∣
)

= oP (1),

(54)

and that consequently we only need to consider the non-random interval I. (We will

show (54) below.) For each t ∈ I(ǫn) let

Wn(t) :=

∫ t

l

(Fn − F )(An(xα))

r
dα − t − l

u − l

∫ u

l

(Fn − F )(An(xα))

r
dα.

It will be proven that for t ∈ I

(Ẑn − Zn)(t, I) = Wn(t) + Rn, (55)
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where Rn = oP

(√ bℓn(ǫn)

n r1−1/p

)
uniformly in t ∈ I, and hence the asymptotic behavior

of

√
n r1−1/p

bℓn(ǫn)
supt∈I(ǫn) |Wn(t) | is the same as the one of our target quantity.

The asymptotic distribution of Wn(t) can be obtained from Theorem 6.5 as follows.

First rescale again. Let zγ = xl − γ (xu − xl), where as throughout this paper xl

and xu denote the endpoints of the interval {xα, α ∈ [l, u] }, where xα denotes our

original parametrization. For t ∈ [0, 1] define

W̃n(t) =

∫ t

0

(Fn − F )(An(zγ))

r
dγ − t

∫ 1

0

(Fn − F )(An(zγ))

r
dγ. (56)

Then for t ∈ [ l, u ] that 1
u−l Wn(t) = W̃n

(
t−l
u−l

)
, and hence supt∈[0,1] |Wn(t) | =

supt∈I |Wn(t) | = (u − l) supt∈[0,1] | W̃n(t) |.

For t ∈ [0, 1] let Ψt(x) =
∫ t
0 1(x ∈ An(zγ)) d γ. Define

νn(Ψt) =

√
n ‖x − y‖ ℓ

r1+ 1
p

(Fn − F )(Ψt) =

√
n ‖x − y‖ ℓ

r1+ 1
p

1

n

n∑

j=1

[Ψt(Xi) − EΨt(Xi)] ,

and for t ∈ [ l, u ] let t′ = t−l
u−l . Using this notation we have for t ∈ [ l, u ]

√√√√n r1− 1
p ‖x − y ‖
ℓ̂n(ǫn)

Wn(t) =

√√√√n r1− 1
p ℓn(ǫn) 2 ‖x − y‖

ℓ̂n(ǫn)
W ′

n(t′) (57)

= [ νn(Ψt′) − t′ νn(Ψ1) ] (1 + oP (1)). (58)

The last equality uses the fact that Lemma 6.4 implies that
∣∣ bℓn(ǫn)

u−l − 1 | = oP (1)

as n → ∞. Hence the behavior of νn(Ψt′) determines the behavior of Wn. The for-

mer is studied in Theorem 6.5, and an application of this result implies the asserted

asymptotic distribution via an application of the continuous mapping theorem. Cal-

culation of the covariance function of the limit process is straightforward.

Proof of (54), derivation of (55), and estimation of the remainder term in (55).
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Fist we show (55). By utilizing (24) we have for t ∈ I that

(Ẑn − Zn)(t, I)

=

∫ t

l

[
p log d̂n(xα) − log r

C(p) f(xα)

]
dα − t − l

un − l

∫ u

l

[
p log d̂n(xα) − log r

C(p) f(xα)

]
dα

=

∫ t

l

(Fn − F )(An(xα))

r
dα − t − l

u − l

∫ u

l

(Fn − F )(An(xα))

r
dα (59)

+

∫ t

l

∆n(xα)

r
dα − t − l

u − l

∫ u

l

∆n(xα)

r
dα (60)

+ ℓOP

(
r2/p

√
log n

n r

)
+ ℓOP

(( log n

n r

)3/4)
+ ℓO

(
r

4
p
)
, (61)

where up to a constant the OP -terms are the ones from (24). Notice that the term

in (59) equals Wn(t). We thus have shown (55) with

Rn = R1n + R2n

with R1n and R2n denoting the expressions from (60) and (61), respectively. Using

the fact that under the present assumptions supα∈[0,1] ∆n(xα) = OP

(
r
1+ 2

p

)
(see

Lemma 6.2), our assumptions on r immediately imply that
√

n r1−1/p

ℓ (R1n +R2n) =

oP (1). This proves (55).

It remains to prove (54). We have

∣∣∣ (Ẑn − Zn)(t, În(ǫn)) − (Ẑn − Zn)(t, I)
∣∣∣

≤
∣∣∣∣∣

∫

( bIn(ǫn)\I )∩[0,t]
−
∫

( I\bIn(ǫn) )∩[0,t]

[
p log d̂n(xα) − log r

C(p) f(xα)

]
dα

∣∣∣∣∣ (62)

+
| În(ǫn)∆ I |
| În(ǫn) |

∣∣∣∣∣

∫

bIn(ǫn)\I
−
∫

I)\bIn(ǫn)

[
p log d̂n(xα) − log r

C(p) f(xα)

]
dα

∣∣∣∣∣ .

(63)

Similar arguments as in the proof of (55) now show that in (62) we can replace

p log d̂n(xα)− log r
C(p) f(xα) by (Fn−F )(An(xα))

r with the error being negligible for our
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purposes. Writing In = [l̂n, ûn] and I = [l, u], both the integral terms in (62) and

(63) can be estimated by
√√√√ ℓ̂n(ǫn)

nr1− 1
p ‖x − y‖

[
|νn(Ψbun) − νn(Ψu)| + |νn(Ψbln) − νn(Ψl)|

]
.

Since ûn → u and l̂n → l in probability (Lemma 6.4) stochastic equicontinu-

ity of {νn(Ψt), t ∈ [0, 1]} (Theorem 6.5) essentially implies that both (62) and

(63) are oP (

√
bℓn(ǫn)

nr
1− 1

p
). (To be precise, since | bun−bln

u−l − 1 | = oP (1) find an interval

[an, bn] ⊂ [0, 1] with |bn − an| = O(|u − l|) such that for large n with high proba-

bility both În(ǫn) and I are subsets of [an, bn]. Then consider the process νn(Ψt) on

t ∈ [an, bn] and apply Lemma 6.5).)

�

7 References

Alexander, K.S. (1984): Probability inequalities for empirical processes and a law

of the iterated logarithm. Ann. Probab. 12 1041-1067; (Correction: 15 428-

430)

Bai, Z.D. and Huang, L.D. (1999): On consistency of the best-r-points-average

estimator for the location for the maximizer of a nonparametric regression

function. Sankhya: Indian J. Statist, Ser. A 61 208 - 217

Bai, Z., Chen, Z. and Wu, Y. (2003): Convergence rate of the best-r-point-average

estimator for the maximizer of a nonparametric regression function. J. Multi-

variate Analysis 84 319 - 334

Burman, P. and Nolan, D. (1992) Location-adaptive density estimation and nearest

neighbor distance. Journal of Multivariate Analysis 40:132-157

40



Cheng, M.-Y. and Hall, P. (1999): Mode testing in difficult cases. Ann. Statist.

27 1294 - 1315

Comparini, A. and Gori, E. (1986): Estimating modes and antimodes of multi-

modal densities. Metron. 44 307-332

Corti, S., Molteni F. and Palmer P.N. (1999): Signature of recent climate change

in frequencies of natural atmospheric circulation regimes. Nature 398 799 -

802

Cuevas, A. Febrero, M. and Fraiman, R. (2000): Estimating the numbers of clus-

ters. Canad. J. Statist. 28 367-382.
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