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Summary

We introduce covariate-adjusted regression for situations where both predictors and re-

sponse in a regression model are not directly observable, but are contaminated with a

multiplicative factor that is determined by the value of an unknown function of an observ-

able covariate. We demonstrate how the regression coefficients can be estimated by estab-

lishing a connection to varying-coefficient regression. The proposed covariate adjustment

method is illustrated with an analysis of the regression of plasma fibrinogen concentra-

tion as response on serum transferrin level as predictor for 69 haemodialysis patients. In

this example, both response and predictor are thought to be influenced in a multiplicative

fashion by body mass index. A bootstrap hypothesis test enables us to test the signifi-

cance of the regression parameters. We establish consistency and convergence rates of the

parameter estimators for this new covariate-adjusted regression model. Simulation studies

demonstrate the efficacy of the proposed method.

Some key words: Bootstrap; Diagnostics; Linear regression; Multiplicative effects; Smooth-

ing; Varying-coefficient model.



1. Introduction

1.1 Preamble

We address the problem of parameter estimation in multiple regression when the actual

predictors and response are not observable. Instead, one observes contaminated versions

of these variables, where the distortion is multiplicative, with a factor that is a smooth

unknown function of an observed covariate. The simultaneous dependence of response and

predictors on the same covariate may lead to artificial correlation and regression relation-

ships which do not exist between the actual hidden predictor and response variables. An

example is the fibrinogen data of Kaysen et al. (2003), where the regression of fibrinogen

level on serum transferrin level in haemodialysis patients is of interest. Both observed re-

sponse and predictor are known to depend on body mass index, defined as weight/height2,

which thus has a confounding effect on the regression relation. The theme of this paper is

to explore such confounding in regression and to develop appropriate adjustment methods.

1.2 Proposed covariate-adjusted regression model

Consider the simple linear regression model

Yi = γ0 + γ1Xi + ei, (1)

for the data (Xi, Yi), i = 1, . . . , n, where Yi is the response for the ith subject in the

sample, Xi is the predictor, ei is an error term, and γ0 and γ1 are unknown parameters. A

departure from the usual regression model is that Xi and Yi are not observable. Instead

one observes distorted versions (X̃i, Ỹi), along with a univariate covariate Ui, where

Ỹi = ψ(Ui)Yi, and X̃i = φ(Ui)Xi, (2)

and ψ(·) and φ(·) are unknown smooth functions of the covariate U . For the above-

mentioned fibrinogen data the confounding variable U is body mass index. In medical

studies variables are commonly normalised by dividing them by a confounder such as

body mass, implicitly assuming that the relationship between the confounder and the

unobserved underlying variable is of a multiplicative nature. Equation (2) extends this to

a more flexible and general multiplicative confounding model.
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Identifiability constraints for ψ(·) and φ(·) are implied by the natural assumption that

the mean distorting effect should correspond to no distortion, i.e.

E{ψ(U)} = 1, E{φ(U)} = 1. (3)

We also assume that (Xi, Ui, ei)i=1,...,n are independent and identically distributed where

E(ei) = 0, var(ei) = σ2, and X, e and U are mutually independent. A central goal

is to obtain consistent estimators of the regression coefficients in model (1), given the

observations of the confounding variable Ui and the distorted observations (X̃i, Ỹi) in (2).

Under the identifiability conditions (3), given a consistent estimator γ̂1 of γ1, the estimator

γ̂0 = n−1
∑

i Ỹi − γ̂1n
−1

∑
i X̃i will be consistent for γ0. Thus it suffices to consider the

estimation problem for γ1 only. We refer to model (1) - (3) as the multiplicative distortion

model or covariate-adjusted regression model.

1.3 Other distortion models

Adjustment for confounding variables per se is a classical problem. We start by investi-

gating a sequence of nested models, for all of which standard adjustment methods already

exist.

First, consider model (1) with additive instead of multiplicative distorting effects, i.e.

Ỹ = Y + ψa(U) and X̃ = X + φa(U). The identifiability constraints here are E{ψa(U)} =

E{φa(U)} = 0, for the distorting effects of U to average out to 0. A simple adjustment

method for the consistent estimation of γ1 in the additive distortion model is to use an

estimator of the slope α1 obtained by regressing ẽỸ |U on ẽX̃|U by least squares, where

ẽW1|W2 is the set of residuals from the nonparametric regression of W1 on W2. However, as

is shown in the Appendix, under (1)-(3), the estimator of α1 is targeting the value

ξ1 = γ1∆, (4)

for ∆ = E{ψ(U)φ(U)}/E{φ2(U)}, where ∆ and therefore ξ1 can assume any real value.

Thus, while this simple adjustment works for the special case of an additive distortion

model, it fails for the multiplicative distortion in the covariate-adjusted regression model.

The second model we consider is a special case of the additive effects model, where the

distorting functions ψa(·) and φa(·) are linear functions of U . In this case, a consistent
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estimator of α1 in the regression model Ỹ = α0 +α1X̃ +α2U + e will also be consistent for

γ1 in model (1). This simple adjustment method however fails for the covariate-adjusted

regression model, since, under (1)-(3), the target value ξ2 of the estimator of α1 will

generally not satisfy ξ2 = γ1. Indeed it holds that ξ2 = ξ1, where ξ1 is as given in (4); see

the Appendix.

As a third model that is nested in all of the above models we consider the case of no

distorting effect. This amounts to ψ(·) = φ(·) = 1 in the covariate-adjusted regression

model, and ψa(·) = φa(·) = 0 in the additive model. In this case we would simply regress

Ỹ on X̃, and use the slope estimator as a substitute for the estimator of γ1. It is shown in

the Appendix that, under (1)-(3), the slope estimator obtained from this regression model

is targeting the value

ξ3 =
E{φ(U)ψ(U)}{γ0E(X) + γ1E(X2)} − γ1{E(X)}2 − γ0E(X)

E{φ2(U)}E(X2)− {E(X)}2
(5)

instead of γ1, and that ξ3 can assume any real value. Therefore, arbitrarily large biases

may result if the confounding covariate is ignored within the covariate-adjusted regression

model.

Fourthly, applying logarithmic transformations to Ỹ and X̃ to change the effect of the

distortion functions ψ(·) and φ(·) from multiplicative to additive also fails in the frame-

work of the covariate-adjusted regression model, as it destroys the linearity of the model.

Problems encountered when transforming multiplicative error regression models have been

studied in Eagleson & Müller (1997).

Our proposed covariate-adjusted regression model also has similarities with multiplica-

tive measurement error models where the error affects both the predictors and the response.

Hwang (1986) derived consistent estimators for the regression coefficients under multiplica-

tive measurement error in the predictors. Other estimation methods in this setting have

been proposed by Iturria et al. (1999). However, the case of multiplicative measurement

errors that affect both the predictors and the response has not been considered previously

to our knowledge, and, furthermore, in the covariate-adjusted regression model the mul-

tiplicative errors affecting predictors and response are functions of an observed covariate

U .
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1.4 A motivating example

Assume the following simple linear regression model:

Y = 3 + X + e, (6)

where e ∼ N (0, 0.25) and X ∼ N (1, 0.81). Assume that the distortion variable is U ∼
Un(1, 7) and the distortion functions are ψ(U) = (U − 0.5)2/15.25 and φ(U) = (U +

1)2/28, which satisfy the identifiability conditions. Then 1000 samples of Ỹ and X̃ were

simulated from the specified distributions with sample size 400. For each sample, γ1 was

estimated using covariate-adjusted regression by applying estimators (11) and (12) from

§3. In addition, the three simple adjustment methods introduced in §1.3 were applied,

namely using an estimator of the slope α1 from the regression models Ỹ = α0 + α1X̃ + e,

Ỹ = α0 + α1X̃ + α2U + e and ẽỸ |U = α0 + α1ẽX̃|U + e as a substitute for the estimator of

γ1. The estimated biases were 0.0006, 1.1450, 0.1335 and 0.0850 for the estimators using

covariate-adjusted regression and the three simple adjustment methods, respectively.

Note that the target bias values for the three adjustment methods are |ξ1−γ1| = 1.1460,

|ξ3 − γ1| = 0.0841 and |ξ2 − γ1| .
= |ξ3 − γ1|, since ψ(·) and φ(·) are close to linear in the

interval (1, 7). These results, along with the plots of the original variables Y versus X

and the observed variables Ỹ versus X̃, given in Fig. 1, demonstrate that the distortion

fundamentally changes the relationship between Y and X and that simple adjustment

methods are not feasible.

2. Connection with varying-coefficient models

Consider the multiple regression model

Y = γ0 +

p∑
r=1

γrXr + e, (7)

with predictors X1, . . . , Xp, response Y and error e. The observed variables that one has

for (7) are U and

X̃r(U) = φr(U)Xr and Ỹ (U) = ψ(U)Y,

for r = 1, . . . , p, where φr and ψ are unknown smooth functions of U . If we write X̃ =
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(X̃1, . . . , X̃p)
T, the regression of the observed response on the observed predictors leads to

E(Ỹ |X̃, U) = E{Y ψ(U)|φ1(U)X1, . . . , φp(U)Xp, U}
= ψ(U)E

{
γ0 +

∑
γrXr + e|φ1(U)X1, . . . , φp(U)Xp, U

}
.

If we assume that E(e) = 0 and that (e, U , Xr) are mutually independent, for r = 1, . . . , p,

this reduces to

E(Ỹ |X̃, U) = ψ(U)γ0 + ψ(U)
∑

γr
φr(U)Xr

φr(U)

= β0(U) +
∑

βr(U)X̃r, (8)

where

β0(u) = ψ(u)γ0, βr(u) = γr
ψ(u)

φr(u)
. (9)

Therefore,

Ỹ = β0(U) +
∑

βr(U)X̃r + ψ(U)e, (10)

which is a multiple varying-coefficient model; that is an extension of regression models

where the coefficients are allowed to vary as a smooth function of a third variable (Hastie

& Tibshirani, 1993). A unique feature is that in model (10) both response and predictors

depend on the covariate U .

For varying-coefficient models, Hoover et al.(1998) have proposed smoothing methods

based on local least squares and smoothing splines, and recent approaches include a com-

ponentwise kernel method (Wu & Chiang, 2000), a componentwise spline method (Chiang

et al., 2001) and local maximum likelihood estimators (Cai et al., 2000). Wu & Yu (2002)

provide a review of recent developments. We develop a consistent estimation method that

is tailored to the special features of our model.

3. Estimation and consistency

The available data are of the form (Ui, X̃i, Ỹi), i = 1, . . . , n, for a sample of size n, where

X̃i = (X̃1i, . . . , X̃pi)
T are the p-dimensional predictors. To estimate the smooth varying-

coefficient functions β0(·), . . . , βp(·) in (10), we use local smoothing methods based on an

initial binning step. The binning is motivated by similar developments for longitudinal
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data in Fan & Zhang (2000), who use the data collected at each fixed time point to fit a

linear regression, obtaining the raw estimators for the smooth varying-coefficient functions.

Generalising this idea to our independent and identically distributed data scheme, we

partition the support of U into a number of bins, within which the covariate U has nearly

constant levels. We then use the observed data (X̃i, Ỹi) within each bin to fit linear

regressions and to obtain raw estimators of the smooth varying-coefficient functions that

contain the targeted regression parameters γ. Averaging these raw estimators over the bins

with a special weighing scheme eliminates the influence of the contaminating functions of

U , due to the identifiability conditions, leading to the targeted regression parameters γ.

We assume that the covariate U is bounded below and above, −∞ < a ≤ U ≤ b < ∞,

for real numbers a < b, and divide the interval [a, b] into m equidistant intervals denoted

by B1, . . . , Bm, and referred to as bins. Given m, the Bj, j = 1, . . . , m are fixed, but the

number of Ui’s falling into Bj is random and is denoted by Lj. Let {(U ′
jk, X̃

′
rjk, Ỹ

′
jk), k =

1, . . . , Lj, r = 1, . . . , p} = {(Ui, X̃ri, Ỹi), i = 1, . . . , n, r = 1, . . . , p : Ui ∈ Bj} denote the

data for which Ui ∈ Bj, where we refer to (U ′
jk, X̃

′
rjk, Ỹ

′
jk) as the kth element in the jth bin

Bj. Further define (U ′
j, X̃

′
j, Ỹ

′
j ) to be the data matrix belonging to the jth bin, where U ′

j =

(U ′
j1, . . . , U

′
jLj

)T, Ỹ ′
j = (Ỹ ′

j1, . . . , Ỹ
′
jLj

)T and X̃ ′
jk = (1, X̃ ′

1jk, . . . , X̃
′
pjk)

T for k = 1, . . . , Lj

contains p components of the kth element in bin Bj, and X̃ ′
j = (X̃ ′

j1, . . . , X̃
′
jLj

)T
Lj×(p+1).

After binning the data, we fit a linear regression of Ỹ ′
j on X̃ ′

j within each bin Bj,

j = 1, . . . ,m. The least squares estimators of the multiple regression of the data in the

jth bin are

β̂j = (β̂0j, . . . , β̂pj)
T = (X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j Ỹ ′
j .

Our proposed estimators of γ0 and γr, for r = 1, . . . , p, are then obtained as weighted

averages of the β̂j’s, weighted according to the number of data Lj in the jth bin,

γ̂0 =
m∑

j=1

Lj

n
β̂0j (11)

γ̂r =
1

µ̂X̃r

m∑
j=1

Lj

n
β̂rjµ̂X̃′

rj
, (12)
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where µ̂X̃r
= n−1

∑n
i=1 X̃ri and µ̂X̃′

rj
= L−1

j

∑Lj

k=1 X̃ ′
rjk. These estimators are motivated by

E{β0(U)} = γ0 and E{βr(U)X̃r} = γrE{ψ(U)Xr} = γrE(Xr) = γrE(X̃r); see (3) and (9).

The β̂j are the raw estimators for β(UM
j ) = {β0(U

M
j ), . . . , βp(U

M
j )}T, for midpoints

UM
j = a + (2j − 1){(b − a)/(2m)} of the bins Bj. Since these raw estimators are not

necessarily smooth, smooth estimators of the coefficient functions βr(·), r = 0, . . . , p (10)

are obtained by smoothing the scatterplot {(UM
j , β̂rj), j = 1, . . . , m} for each component

r, 1 ≤ r ≤ p. If a linear smoother with weight functions wj(·) is used, we obtain the linear

smooth estimator

β̃r(u) =
m∑

j=1

β̂rjwj(u) (13)

for βr(·). The smooth estimators β̃r(·) are used in the bootstrap test proposed in §4.

Next, we show the consistency of estimators γ̂0 and γ̂r for γ0 and γr in model (7), when

the number of subjects n tends to infinity. As is typical for smoothing, the number of bins

m = m(n) is required to satisfy m →∞ and n/(m log n) →∞ as n →∞.

For the estimators given in (11) and (12) to be well defined, the least squares estimator

β̂j must exist for each bin Bj. This requires that the inverse of X̃ ′T
j X̃ ′

j be well defined, i.e.

det(X̃ ′T
j X̃ ′

j) 6= 0. Define the event

A = {ω ∈ Ω : inf
j
|det(X̃ ′T

j X̃ ′
j)| > 0}, (14)

where (Ω,F , P ) is the underlying probability space. On event A, γ̂0 and γ̂r are well defined.

It is shown in the Appendix that pr(A) → 1 as n →∞.

Theorem 1. Under the technical conditions given in the Appendix, given event A,

γ̂r = γr + Op(n
−1/2) + O(m−1), r = 0, . . . , p.

4. Bootstrap test

It is often of interest to test for the significance of the regression coefficients. Equation

(9) shows that γr = 0 is equivalent to βr(·) = 0, for r = 0, . . . p, whenever ψ(·) and φr(·)
satisfy the identifiability conditions. Thus, testing H0 : βr(·) = 0 is equivalent to testing

H0 : γr = 0. Testing H0 : βr(·) = 0 is a special case of testing the ‘no-effect’ hypothesis,

i.e. testing H0 : βr(U) = c for a real c (Hart, 1997, p. 140).
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Under the null hypothesis, the smooth estimator β̃r(·) in (13) of βr(·) is expected to

be close to a horizontal line through zero. Reasonable test statistics quantify departures

of the smooth estimator from this line. Similarly to the statistics proposed by Hart, we

adopt, as a measure of departure,

Rn =
1

m

m∑
j=1

|β̃r(U
M
j ; hT )|,

where β̃r(U
M
j ; hT ) is the linear smooth, fitted using the bandwidth hT , evaluated at UM

j .

For an automatic data-based choice of the bandwidth parameter hT , we define

hT = arg min
h
{T (h)} = arg min

h

{
(1/m)RSS(h)

1− 2tr(Wh)/m

}
, (15)

(Rice, 1984), where Wh is an m×m matrix with (`, j)th element wj(U
M
` ; h) and RSS(h) =

‖β̂r − β̃r‖2 for β̂r = (β̂r1, . . . , β̂rm)T, β̃r = (β̃r(U
M
1 ), . . . , β̃r(U

M
m ))T . This criterion allows

for fast implementation and led to good results.

The raw estimators β̂rj are heteroscedastic, since the density function of U is in general

not uniform. For this reason, the sampling distribution of Rn is approximated using the

wild bootstrap. The bootstrap samples are obtained under the null hypothesis, and have

the form [{UM
1 , (β̂r1−µ̂β̂r

)V1}, . . . , {UM
m , (β̂rm−µ̂β̂r

)Vm}], where µ̂β̂r
= m−1

∑
j β̂rj and Vj is

sampled from the two-point distribution attaching masses (
√

5+1)/2
√

5 and (
√

5−1)/2
√

5

to the points −(
√

5−1)/2 and (
√

5+1)/2 (Davison & Hinkley, 1997, p. 272). The variables

Vj defined in this way have means equal to zero, and variances and third moments equal

to one. Variables {(β̂rj − µ̂β̂r
)Vj} have means zero, and crudely approximate the variance

and skewness of the underlying distribution. The distribution of R∗
n computed from the

bootstrap samples is used as an approximation to the distribution of Rn.

5. Application

Fibrinogen is a risk factor for cardiovascular disease, and its plasma concentration in-

creases with inflammation. It is of particular interest to elucidate the relationship between

this acute phase protein and other plasma proteins such as transferrin, ceruloplasmin and

acid glycoprotein for haemodialysis patients. This motivated a study of seventy haemodial-

ysis patients (Kaysen et al., 2003) where the main tool was linear regression of plasma
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fibrinogen concentration, FIB, against various predictors, which included the serum trans-

ferrin level, TRF. A simple linear regression model would be FIB = γ0+γ1TRF +e, where

e is the error term. Body mass index, BMI= weight/height2, was considered to be a major

confounding factor for both response and predictor. We applied the covariate-adjusted

regression model, (8), (9), using body mass index as the confounder U .

The parameters γ0 and γ1 were estimated by the covariate-adjusted regression algorithm

and the results were compared to the estimators obtained from the least squares regression

of the observed FIB on observed TRF. One outlier was removed before the analysis. The

estimates and p-values for the significance of the parameters for both methods are given in

Table 1. The p-values for covariate-adjusted regression estimates were obtained from the

bootstrap test proposed above, using the empirical percentiles of R∗
n from 1000 bootstrap

samples.

Estimated coefficient functions β̃0(·) and β̃1(·), obtained by local linear smoothing using

bandwidth choices given in (15), are displayed in Fig. 2 together with the raw estimates

β̂0 and β̂1. We tested whether or not the covariate-adjusted regression model is more

appropriate for the data than the additive effects model by testing whether or not β1(·)
was equal to a constant, as discussed below in §6. The p-value of 0.07 from this test, and

the increasing pattern of β̃1(·), provide evidence that β1(·) is not constant for these data,

so that the covariate-adjusted regression model is preferred. Bin widths were chosen such

that the average number of points falling in each bin is p + 1, enough to fit the linear

regression, where p is the number of parameters of the regression model. Bins with fewer

than p + 1 elements were merged with neighbouring bins.

For least squares regression, TRF was close to being significant, p = 0.101, while with

covariate-adjusted regression it became highly significant, p = 0.002, with an increasing

trend in β̃1(·). As BMI increases, the negative slope of serum transferrin level as predic-

tor for plasma fibrinogen level approaches zero, while the intercept declines. The effects

of BMI are thus masking the true overall negative effect that TRF has on FIB in the

unadjusted regression. It is believed that high fibrinogen levels are caused by inflamma-

tion and stimulation of albumin synthesis (Kaysen et al., 2003). While in least squares
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regression modelling transferrin was not among the factors that had significant effects on

fibrinogen levels, our analysis with covariate-adjusted regression indicates that there is a

strong negative association if BMI is taken into account.

6. Model diagnostics and simulation study

Consider the three alternative distortion models that were discussed in §1.3. We note

that the general adjustment method provided by covariate-adjusted regression works for

these models as well, and in fact one of the attractions of the proposed adjustment is that

the specific nature of the distortion of the variables need not be known. Nevertheless, in

applications it may be of interest to investigate whether any of these models approximates

the data sufficiently well, in which case the corresponding simpler adjustment could be

implemented to obtain consistent estimation of the regression coefficients in (1).

If we focus on the simple linear regression case, in the additive effects model, Ỹ is related

to X̃ and U through a partial linear model (Heckman, 1986), Ỹ = γ0 + γ1X̃ + υ(U) + e,

where υ(U) = ψa(U)− γ1φa(U). This partial linear model is a special case of the varying-

coefficient model associated with the covariate-adjusted regression model, Ỹ = β0(U) +

β1(U)X̃ + ψ(U)e, where the smooth coefficient function β1(U) is constant, β1(U) = γ1,

and β0(U) = υ(U) + γ0. If β1(U) is not constant, then this implies that covariate-adjusted

regression is more appropriate for the data than the additive distortion model. Otherwise,

if β1(U) is constant, this implies by (9) and the identifiability conditions that ψ(U) = φ(U)

in the covariate-adjusted regression model. In this case, the adjustment method proposed

in §1.3 for the additive distortion model can be used for consistent estimation regardless of

which model is providing the best fit, since ξ1 in (4) equals γ1. Thus, one way of testing if

the covariate-adjusted regression model is more appropriate for the data than the additive

model is to test whether or not β1(·) is equal to a constant, which is the ‘no effect’ test

mentioned in §4. This test is equivalent to testing the null hypothesis β1(·) = 0 after the

sample is centred around zero, and one could carry out the bootstrap test for H0 : β1(·) = 0

with the data β̂1 − µ̂β̂1
rather than β̂1.

To check if the additive model reduces to the model with linear distortion functions

ψa(·) and φa(·), leading to the multiple regression relationship Ỹ = α0 + α1U + γ1X̃ + e,
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it is enough to test if β0(·) is equal to a linear function; see Hart (1997) for suitable test

statistics. For checking whether or not the model further reduces to the no effect case,

Ỹ = α0 + α1X̃ + e, one would check if β0(·) is equal to a constant; see §5.

We carried out a simulation study to show the efficacy of the proposed adjustment

method. The confounding covariate U was simulated from N (6, 1), truncated at two

standard deviations. The underlying unobserved multiple regression model was

Y = 1 + 0.1X1 + 2X2 − 0.2X3 + e,

where X1 ∼ N (2, 1.44), X2 ∼ N (0.5, 0.25), X3 ∼ N (1, 1), and e ∼ N (0, 0.25). The

distortion functions were chosen as ψ(U) = (U + 3)2/81.8090, φ1(U) = (U + 10)/16,

φ2(U) = (U + 1)2/49.8015 and φ3(U) = (U + 3)/9, satisfying the identifiability conditions.

We conducted 1000 Monte Carlo runs with sample sizes 70, 200, 400. The estimated mean

squared errors for the estimators of γ0, γ1, γ2 and γ3 are (0.1192, 0.0493, 0.0235), (0.0165,

0.0067, 0.0031), (0.1029, 0.0295, 0.0170) and (0.0273, 0.0154, 0.0060), respectively, for the

sample sizes n =(70, 200, 400) and number of bins (11, 25, 50). These values are obtained

after removing two outliers for each sample size. The cross-sectional means of the 1000

estimates β̃0(·), β̃1(·), β̃2(·) and β̃3(·) of the smooth coefficient functions β0(·), β1(·), β2(·)
and β3(·) are shown in Fig. 3 for sample sizes n = 70 and n = 400. While the estimation

is seen to work well in the interior, there is evidence of boundary bias near the endpoints

of the range of U .

To examine the power of the proposed bootstrap test, we assume the model given in

(6) with distortion functions ψ(U) = (U + 3)2/81.8090 and φ(U) = (U + 3)/9, satisfying

the identifiability conditions when U ∼ N (6, 1), truncated as above. The null hypothesis

is H0 : γ1 = 0. Fig. 4 depicts power functions for the significance levels 0.05, 0.10 and 0.20,

based on 1000 Monte Carlo runs with sample sizes n = 70 and n = 400. The observed

type I errors at γ1 = 0, for the above mentioned significance levels are, 0.055, 0.121 and

0.223 for n = 70, and 0.046, 0.089 and 0.197 for n = 400. The levels of the bootstrap test

move closer to the target values and the power functions increase more rapidly as γ1 moves

away from zero when the sample size increases.
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Appendix

Technical details

Technical conditions. The following assumptions are made.

Condition 1. The covariate U is bounded below and above: −∞ < a ≤ U ≤ b < ∞,

for real numbers a < b. The density f(u) of U satisfies infa≤u≤b f(u) > 0,

supa≤u≤b f(u) < ∞, and is uniformly Lipschitz; that is there exists a real number M

such that supa≤u≤b |f(u + c)− f(u)| ≤ M |c| for any real number c.

Condition 2. The variables (e, U,Xr) are mutually independent for r = 1, . . . , p.

Condition 3. For the predictors, sup1≤i≤n,1≤r≤p |Xri| ≤ B for some bound B ∈ R.

Condition 4. Contamination functions ψ(·) and φr(·), 1 ≤ r ≤ p, are twice continuously

differentiable, satisfying Eψ(U) = 1, Eφr(U) = 1, φr(·) > 0 1 ≤ r ≤ p.

Condition 5. As n →∞, 1
n
XTX → X in probability, where the limiting (p + 1)× (p + 1)

matrix X is nonsingular.

Condition 6. The function h(u) =
∫

xg(x, u)dx is uniformly Lipschitz, where g(·, ·) is the

joint density function of X̃ and U .

These are mild conditions that are satisfied in most practical situations. Bounded covari-

ates are standard in asymptotic theory for least squares regression, as are Conditions 2

and 5 (Lai et al., 1979). The identifiability conditions, Condition 4, are equivalent to

E(Ỹ |X) = E(Y |X), E(X̃r|Xr) = Xr.

This means that the confounding of Y by U does not change the mean regression function,

and the distorting effects of the confounding variable U average out to 0.

Proof that pr(A) → 1. For the event A as defined in (14), the following result leads

to pr(infj dj > 0) → 1 as n → ∞ for dj = det(L−1
j X̃ ′T

j X̃ ′
j), which further implies that

pr(A) → 1 as n →∞; X and UM
j are as defined in Condition 5 and §3 respectively.
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Lemma 1. For a sequence rn such that rn = Op[
√
{(m log n)/n}],

sup
j

∣∣∣∣dj − φ2
1(U

M
j ) . . . φ2

p(U
M
j )det(X )

∣∣∣∣= Op(rn).

Furthermore, infj φ2
1(U

M
j ) . . . φ2

p(U
M
j )det(X ) > 0.

Proof. Define X̃
′(`)
rj = L−1

j

∑Lj

k=1 X̃ ′`
rjk, (X̃ ′

rjX̃
′
sj)

(`) = L−1
j

∑Lj

k=1(X̃
′
rjkX̃

′
sjk)

` and analogously

for X
′(`)
rj and (X ′

rjX
′
sj)

(`). Note that L−1
j X̃ ′T

j X̃ ′
j = (χrs)(p+1)×(p+1) for r, s = 0, . . . , p, where

χrs = (X̃ ′
rjX̃

′
sj)

(1) and X̃ ′
0j = 1. Thus, dj =

∑
(−1)sign(τ)(L−1

j X̃ ′T
j X̃ ′

j)1τ(1) . . .

(L−1
j X̃ ′T

j X̃ ′
j)(p+1),τ(p+1), where the sum is taken over all permutations τ of (1, . . . , p + 1),

and sign(τ) equals +1 or −1, depending on whether τ can be written as the product of

even or odd number of transpositions. The terms in the above sum have the general form

X̃
′(1)
r1j (X̃ ′

1jX̃
′
r2j)

(1) . . . (X̃ ′
pjX̃

′
rp+1j)

(1), (A1)

where (r1, . . . , rp+1) is a permutation of (0, . . . , p). Considering the definition of the

Nadaraya-Watson estimator (Fan & Gijbels, 1996), we note that an arbitrary term in

(A1) has the form (X̃ ′
sjX̃

′
rs+1j)

(1) = m̂srs+1(U
M
j ) for 0 ≤ s ≤ p + 1, K(·) = (1/2)I([−1, 1]),

h = (b−a)/m, and UM
j as defined in Lemma 1 . Uniform consistency of Nadaraya-Watson

estimators with kernels of compact support has been shown in Härdle et al.(1988),

sup
a≤u≤b

|m̂srs+1(u)−msrs+1(u)| = Op(rn), (A2)

where msrs+1(u) = E(X̃sX̃rs+1|U = u) = φs(u)φrs+1(u)E(XsXrs+1), and rn is as defined

in Lemma 1. Then (A2) implies that supj |m̂srs+1(U
M
j ) − msrs+1(U

M
j )| = Op(rn) and

supj |(X̃ ′
sjX̃

′
rs+1j)

(1) − φs(U
M
j )φrs+1(U

M
j )E(XsXrs+1)| = Op(rn). Hence the uniform con-

sistency of (A1) follows, where the limit of (A1) is φ2
1(U

M
j ) . . . φ2

p(U
M
j ) E(Xr1)E(X1Xr2) . . .

E(XpXrp+1), and Lemma 1 holds.

Proof of Theorem 1. As X̃r is bounded, since Xr = O(1), U has compact sup-

port and φr(·) is continuous for 1 ≤ r ≤ p, X̃ ′
rj is also bounded for 1 ≤ r ≤ p.

Thus sup1≤j≤m |L−1
j X̃ ′T

j X̃ ′
j| = O(1)1(p+1)×(p+1), where 1(p+1)×(p+1) is a (p + 1) × (p + 1)-

dimensional matrix of ones. On event A, sup1≤j≤m |(L−1
j X̃ ′T

j X̃ ′
j)
−1| = O(1)1(p+1)×(p+1)

and sup1≤j≤m |(L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′

j| = O(1)1(p+1)×1. Defining δ0jk = ψ(U ′
jk) − ψ(U ′∗

j ),

δrjk = φr(U
′
jk) − φr(U

′∗
j ) and δ′rjk = ψ(U ′

jk)/φr(U
′
jk) − ψ(U ′∗

j )/φr(U
′∗
j ) for 1 ≤ k ≤ Lj

and 1 ≤ r ≤ p, where U ′∗
j = L−1

j

∑Lj

k=1 U ′
jk, is the average of the U ’s in Bj, we obtain the
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following results for 1 ≤ r, s ≤ p, using Taylor expansions and boundedness considerations:

(a) supk,j |U ′
jk − U ′∗

j | ≤ (b− a)/m;

(b) supk,j |δ0jk| = O(m−1);

(c) supk,j |δrjk| = O(m−1);

(d) supk,j |δ′rjk| = O(m−1);

(e) supj |L−1
j

∑Lj

k=1{(L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j }rkδ0jk| = O(m−1);

(f) supj |L−1
j

∑Lj

k=1{(L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j }skδ
′
rjkX̃

′
rjk| = O(m−1);

(g) supj |L−1
j

∑Lj

k=1 X ′`
rjkδrjk| = O(m−1), 1 ≤ ` ≤ 2;

(h) supj |L−1
j

∑Lj

k=1 X ′
rjkδ0jk| = O(m−1).

On event A, least squares estimators β̂j are well defined:

β̂T
j = (X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j




β0(U
′
j1) + β1(U

′
j1)X̃

′
1j1 + . . . + βp(U

′
j1)X̃

′
pj1 + ε(U ′

j1)
...

β0(U
′
jLj

) + β1(U
′
j1Lj

)X̃ ′
1jLj

+ . . . + βp(U
′
jLj

)X̃ ′
pj1Lj

+ ε(U ′
jLj

)




= (X̃ ′T
j X̃ ′

j)
−1X̃ ′T

j X̃ ′
j

{
γ0ψ(U ′∗

j ), γ1

ψ(U ′∗
j )

φ1(U ′∗
j )

, . . . , γp

ψ(U ′∗
j )

φp(U ′∗
j )

}T

+ (X̃ ′T
j X̃ ′

j)
−1X̃ ′T

j (δ0j1γ0 + γ1δ
′
1j1X̃

′
1j1 + . . . + γpδ

′
pj1X̃

′
pj1,

. . . , δ0jLj
γ0 + γ1δ

′
1jLj

X̃ ′
1jLj

+ . . . + γpδ
′
pjLj

X̃ ′
pjLj

)T

+(X̃ ′T
j X̃ ′

j)
−1X̃ ′T

j {ψ(U ′
j1)e

′
j1, . . . , ψ(U ′

jLj
)e′jLj

}T. (A3)

If we substitute L−1
j (L−1

j X̃ ′T
j X̃ ′

j)
−1X̃ ′T

j in place of (X̃ ′T
j X̃ ′

j)
−1X̃ ′T

j , and use (A3), γ̂r

becomes

γr

µ̂X̃r

m∑
j=1

Lj

n
µ̂X̃′

rj

ψ(U ′∗
j )

φr(U ′∗
j )

+
1

µ̂X̃r

m∑
j=1

Lj

n
µ̂X̃′

rj
L−1

j

Lj∑

k=1

{(L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j }rk(γ0δ0jk + γ1δ
′
1jk + . . . + γpδ

′
pjkX̃

′
pjk)

+
1

µ̂X̃r

m∑
j=1

Lj

n
µ̂X̃′

rj
L−1

j

Lj∑

k=1

{(L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j )}rkψ(U ′
jk)e

′
jk = T1 + T2 + T3.

By property (g) above, µ̂X̃′
rj

= φr(U
′∗
j )X̄ ′

rj + L−1
j

∑Lj

k=1 X ′
rjkδrjk = φr(U

′∗
j )X̄ ′

rj + O(m−1),

14



and, by property (h), T1 becomes

γr

µ̂X̃r

m∑
j=1

Lj

n
ψ(U ′∗

j )X̄ ′
rj + O(m−1) =

γr

µ̂X̃r

m∑
j=1

1

n

Lj∑

k=1

X ′
rjk{ψ(U ′

jk)− δ0jk}+ O(m−1)

=
γr

µ̂X̃r

1

n

n∑
i=1

ψ(Ui)Xri + O(m−1) = γr + Op(n
−1/2) + O(m−1).

By properties (e) and (f), and the fact that (L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j is bounded uniformly over

j on event A, T2 = O(m−1). Note that, on event A, E(T3|U, X̃, Lj, X) = 0 and

var(T3|U, X̃, Lj, X) =
σ2

n

m∑
j=1

µ̂2
X̃′

rj

nµ̂2
X̃r

Lj∑

k=1

{(L−1
j X̃ ′T

j X̃ ′
j)
−1X̃ ′T

j }2
rkψ

2(U ′
jk) = O(n−1).

Thus, E(T3) = 0 and var(T3) = O(n−1), implying that T3 = Op(n
−1/2) on A.

It follows that, on A,

γ̂r = γr + Op(n
−1/2) + O(m−1), 1 ≤ r ≤ p,

γ̂0 =
m∑

j=1

Lj

n
β̂0j =

m∑
j=1

Lj

n

(
1

Lj

Lj∑

k=1

Ỹ ′
jk − β̂1jµ̂X̃′

1j
− . . .− β̂pjµ̂X̃′

pj

)

=
1

n

m∑
j=1

Lj∑

k=1

Ỹ ′
jk − γ̂1µ̂X̃1

− . . .− γ̂pµ̂X̃p
= EỸ −

p∑
r=1

γrEXr + Op(n
−1/2) + O(m−1)

= γ0 + Op(n
−1/2) + O(m−1).

Analysis of ξ1 defined in (4). Assuming Conditions 1-6, we estimate γ1 by the slope

obtained from the least squares regression of ẽỸ |U on ẽX̃|U , where ẽỸ |U and ẽX̃|U are the

residuals from the nonparametric regression models Ỹ = E(Ỹ |U)+eỸ |U and X̃ = E(X̃|U)+

eX̃|U , respectively. Thus, eỸ |U = Ỹ − E(Ỹ |U) = Ỹ − ψ(U){γ0 + γ1E(X)} and eX̃|U =

X̃ − E(X̃|U) = X̃ − φ(U)E(X). Therefore, using the population normal equations for

regression, we have

ξ1 =
E(eỸ |UeX̃|U)− E(eỸ |U)E(eX̃|U)

var(eX̃|U)
= γ1∆ = ξ1,

where ∆ as defined in §1.3 is equal to [γ1E{ψ(U)φ(U)}]/Eφ2(U).

Next, we show that ξ1 can assume any real value under suitable conditions. Let

{ρ1, ρ2, ρ3, . . .} be an orthogonal basis of the inner-product space C[a, b], which is the space

of continuous functions on [a, b], using the inner product

< g1, g2 >=

∫ b

a

g1(u)g2(u)f(u)du,
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where f(·) represents the density function of U and we choose ρ1 ≡ 1. Then ψ and φ can

be expanded as ψ =
∑

i µiρi and φ =
∑

i ηiρi, for sets of real numbers µi and ηi. The

identifiability conditions imply that µ1 = η1 = 1. Assume without loss of generality that

for a given set of ηi, i ≥ 2, µi = ληi for an arbitrary real number λ, and that
∑

i≥2 η2
i = 1,

i.e. < φ, φ >= 2. Hence, ∆ = (1 + λ)/2, which along with ξ1 may assume any real value,

since λ was arbitrary.

Analysis of ξ2. In the regression model Ỹ = α0 + α1X̃ + α2U + e, α1 is equivalent to

the slope when regressing eỸ |U on eX̃|U , where eỸ |U and eX̃|U are the residuals from the

regression models Ỹ = a0 + a1U + eỸ |U and X̃ = b0 + b1U + eX̃|U , respectively. Assuming

that ψ(U) = c0 + c1U and φ(U) = d0 + d1U , for some real numbers c0, c1, d0 and d1,

we can evaluate eỸ |U and eX̃|U , and thus α1. Using the population normal equations

for regression, we find that a1 = {E(Ỹ U) − E(Ỹ )E(U)}/var(U) = c1{γ0 + γ1E(X)},
a0 = E(Ỹ )− a1E(U) = c0{γ0 + γ1E(X)}, b1 = {E(X̃U)−E(X̃)E(U)}/var(U) = d1E(X),

and b0 = E(X̃) − b1E(U) = d0E(X). Therefore, eỸ |U = Ỹ − {γ0 + γ1E(X)}(c0 + c1U),

eX̃|U = X̃ − E(X)(d0 + d1U), and

α1 =
E(eỸ |UeX̃|U)− E(eỸ |U)E(eX̃|U)

var(eX̃|U)
= γ1∆ = ξ2.

Analysis of ξ3 in (5). Consider the regression model Ỹ = α0 + α1X̃ + e. Applying the

population normal equation for the regression slope, and simplifying terms, we find that

α1 =
E(Ỹ X̃)− E(Ỹ )E(X̃)

var(X̃)
= ξ3.

Expanding ψ and φ in the same way as in the above analysis of ξ1, and also assuming that

E(X̃) = 1, which implies that E(X) = 1 under the identifiability conditions, we see that

ξ3 = [(1 + λ){γ0 + γ1E(X2)} − γ0 − γ1]/{2E(X2) − 1} can assume any real value under

minimal conditions.
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Table 1: Parameter estimates for the regression model FIB = γ0 + γ1TRF + e, calculated

by least squares regression of Ỹ on X̃ and by covariate-adjusted regression, for n = 69

haemodialysis patients. The p-values were obtained from t-tests and the proposed boot-

strap test, respectively.

Least sq. Reg. Covariate Adj. Reg.

Coefficients Estimate p-value Estimate p-value

Intercept 675.987 0.000 701.163 0.000

TRF -0.704 0.101 -0.844 0.002
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Figure 1: Data (Xi, Yi) (squares), i = 1, . . . , 400, generated from the underlying regression

model in (6), along with the distorted data (X̃i, Ỹi) (crosses). Least squares linear fits

for distorted data, ỹ = 1.8231 + 2.1706x̃ (dashed) (r̂2 = 0.7763), and for original data,

y = 3.0665 + 0.9652x (solid) (r̂2 = 0.8748) are also shown.
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Figure 2: Plots of the estimated smooth coefficient functions (a) β̃0(·) and (b) β̃1(·) for

the covariate-adjusted regression model FIB = β0(BMI) + β1(BMI)TRF + ε(BMI),

estimated with local linear smoothing with smoothing parameter choices of h = 16 for

each curve, obtained by applying (15). Sample size is 69, the number of bins formed is 13,

and BMI =body mass index, FIB =plasma fibrinogen concentration and TRF = plasma

transferrin level.
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Figure 3: Cross-sectional means of the 1000 estimates of (a) β̃0(·), (b) β̃1(·), (c) β̃2(·)
and (d) β̃3(·) of the smooth coefficient functions β0(·), β1(·), β2(·), β3(·) of the model in

§6, fitted using local linear smoothing. On average three curves considered as outliers

have been removed for each plot. The solid, dotted and dash-dotted lines correspond,

respectively, to the target coefficient functions and the cross-sectional means for sample

sizes of n = 70 and n = 400.
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Figure 4: Power functions of the proposed bootstrap test for γ1 in (6) for the simulation

as described in §6, at the three significance levels 0.05, bottom curve, 0.10, middle curve,

and 0.20, top curve. Solid lines correspond to n = 70, and dotted lines to n = 400.


