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ABSTRACT

In this paper, we introduce the stickiness coefficient, a summary statistic for time-course and

longitudinal data, which is designed to characterize the time dynamics of such data. The

stickiness coefficient provides a simple, intuitive and informative measure that captures key

information contained in time-course data. Under the assumption that the data are gener-

ated by the trajectories of a smooth underlying stochastic process, the stickiness coefficient

illuminates the relationship between the value of the process at one time with the value it

assumes at another time via a single numeric measure. In particular, the stickiness coefficient

summarizes the extent to which deviations from the mean trajectory tend to co-vary over

time. The estimation scheme we propose will allow for estimation even in the case that the

longitudinal data are sparsely observed at irregular times and may be corrupted by noise. We

demonstrate an estimation procedure for the stickiness coefficient and establish asymptotic

consistency as well as asymptotic convergence rates. We illustrate the resulting stickiness

coefficient with some theoretical calculations as well as several economic and health related

data examples.

KEY WORDS: Functional Data Analysis, Longitudinal Data, Empirical Dynamics.



1 Introduction

Any course in elementary statistics includes a section on basic summary measures for uni-

variate data. Topics typically include measures of central tendency as well as measures of

variability. Although none of these statistics are capable of expressing all the information

contained in a data set, they allow for summarization and provide valuable initial insight.

Furthermore, they provide a clear method for comparing and contrasting multiple data sets.

In regression analysis, the coefficient of determination provides a simple and interpretable

summary of the goodness of fit of a particular model and a basic methodology for comparing

two models. The purpose of this paper is to introduce a similarly salient and intuitive coeffi-

cient for longitudinal data that allows for data summarization and comparison between data

sets. The proposed stickiness coefficient is designed to capture a property that is intrinsic to

longitudinal processes and its estimation could be one of the initial steps of data exploration.

Consider a classic data set in the study of longitudinal and functional data. Figure 1

shows the growth curves of 10 randomly selected girls and boys from the Berkeley Growth

Study (Tanner et al. 1966).

Figure 1: Growth curves from the Berkeley Growth Study and smooth estimate of the mean

function (dash). Left: Growth curves of 10 randomly selected girls. Right: Growth curves of

10 randomly selected boys.
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There is a considerable body of literature concerning the analysis of growth curves

(Boularan et al. 1994; Gasser et al. 1984; Kirkpatrick and Heckman 1989; Rao 1958) and

in particular of the Berkeley Growth Study due to the availability of these data (Jones and

Bayley 1941). Growth data have played an important role in the development of functional

data analysis (Jones and Rice 1992; Ramsay and Silverman 2005; Rice and Wu 2001). In

particular, these data demonstrate the importance of curve-alignment (Gervini and Gasser

2004) and derivative estimation (Zhou and Wolfe 2000), two key topics in this field.

The proposed stickiness coefficient highlights another characteristic of these data. In

Figure 1, the mean trajectory is denoted by the thick dashed curve and was estimated from

all participants in the study. If you follow any of the individual trajectories with respect to

their relative location to mean curve over time a noticeable pattern emerges. Curves tend

to remain either above or below the mean curve over the entire domain. That is to say,

babies who are longer than average at the beginning of life tend to remain taller than average

throughout childhood. Likewise, those who start out shorter than average tend to remain

below average height. This signifies a certain amount of ‘stickiness’ in the growth process.

Subjects tend to be ‘stuck’ as either below or above the average height trajectory over time.

This particular ‘stickiness’ is certainly not unique to the human growth process. Many

economic processes will share this quality. An obvious example would be a measure such as

Gross Domestic Product, GDP, per capita. Developed countries tend to have a higher than

average GDP per capita over time whereas less developed countries tend to have a lower than

average GDP per capita over time with little exchange between the two groups over time.

An interesting example that we will explore below is income inequality within a nation and

its evolution over time.

Not all longitudinal processes display the stickiness feature as there are many processes

that are distinctively non-sticky. In fact, certain processes tend to self-stabilize over time.

Recently, ? investigated longitudinal online auction data. The data consisted of price bids on

eBay for 156 online auctions of Palm Personal Digital Assistants. They found that prices tend

to self-stabilize over time. In other words, it is quite unlikely to observe a price trajectory

that runs away at levels much higher than the mean trajectory or plummets way below the

mean trajectory since other bidders will be reluctant to make a higher bid on an already high

priced item (Liu and Müller 2009).
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The notion that some processes tend to reinforce deviations from the mean trajectory over

time while others do not is the primary motivation for developing a measure of stickiness for

longitudinal data. In this paper, we propose a stickiness coefficient that summarizes the

extent to which the deviation of the process from the mean trajectory at one time tends

to co-vary with the deviation of the process from the mean trajectory at another time.

The proposed coefficient is simple and designed to distinguish between processes that have

realizations that tend to remain on one side of the mean function from those that show

upwards and downwards mobility across the mean function. The stickiness coefficient could

be useful in medical studies to help identify health measures that are more or less amenable to

intervention. Measures with high stickiness coefficients, on average, are resistant to change,

while those with lower coefficients tend to be more malleable.

We are interested in the estimation of this coefficient for a general class of longitudinal

data. We avoid the rather restrictive assumption that the entire time course of the process is

observable. Avoiding this assumption allows for the analysis of sparse, irregularly sampled,

noise-contaminated longitudinal measurements, which are common in longitudinal studies

of health, social and psychological development. A basic assumption is that the data are

generated by an underlying smooth and square integrable stochastic process, which might only

be observed only intermittently. Functional data analysis for such sparsely observed processes

has become a much debated topic in the recent literature (Hall et al. 2006; Staniswalis and

Lee 1998; Zhao et al. 2004).

An appropriate data model for longitudinal measurements, which reflects that the data

consist of sparse, irregular and noise corrupted measurements of an underlying smooth ran-

dom trajectory for each subject or experimental unit, is as follows. Given n realizations

Xi of the underlying process X on an interval T with length |T | and Ni of an integer-

valued bounded random variable N , we assume that Ni measurements Yij , i = 1, . . . , n, j =

1, . . . , Ni, are obtained at random times Tij , for the i-th subject or unit, according to

Yij = Yi(Tij) = Xi(Tij) + εij Tij ∈ T , (1)

where εij are zero mean i.i.d. measurement errors, with var(εij) = σ2, independent of all

other random components. The stickiness coefficient will be defined for data generated as in

(1).
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The paper is organized as follows. In Section 2 we introduce the population stickiness

coefficient. We also review expansions in eigenfunctions and functional principal components,

which we use as a tool for dimension reduction. Next, an expansion of the proposed coef-

ficient in terms of the eigen-decomposition and covariance structure is presented. Section 3

consists of several theoretical examples including Brownian motion, followed by a discussion

of estimation procedures. In Section 4 we explore several longitudinal health and economic

data examples. Asymptotic properties are considered in Section 5, followed by concluding

remarks in Section 6. We defer technical results to an Appendix, with estimation procedures

in Appendix A.1, assumptions and auxiliary results in Appendix A.2 and proofs in Appendix

A.3.

2 Stickiness Coefficient

2.1 Population Definition for Stickiness Coefficient

The proposed stickiness coefficient aims to provide a standardized measure of the extent to

which deviations of the process from the mean trajectory tend to co-vary over the time course

of the process. Given a stochastic process X defined on a interval domain T , define

SX =
E[{X(T1)− µ(T1)}{X(T2)− µ(T2)}]

[Var{X(T1)− µ(T1)}]
1
2 [Var{X(T2)− µ(T2)}]

1
2

(2)

where µ(t) = E[X(t)] is the mean trajectory and T1 and T2 are independent random times,

independent of the process X, that are uniformly distributed on T .

For fixed t1 and t2 in T , this simply represents the correlation between the random vari-

ables X(t1) and X(t2). However, since we are interested in a stickiness measure that reflects

the entire time course of the data, we take expected values with respect to random sam-

pling times T1 and T2. Superficially, the stickiness coefficient appears related to the concept

of the auto-covariance function in time series analysis. However, the expression in (2) is a

coefficient rather than a bivariate function and is designed for a sample of non-stationary

functional data, rather than a time series where stationarity usually is a basic assumption.

The stickiness coefficient SX has a convenient representation in terms of the eigenvalues
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and eigenfunctions of the covariance operator of the process X. In order to explore this

connection, we give a brief review of functional principal components below.

2.2 Functional Principal Components

Functional Principal Component Analysis (FPCA) is a crucial methodology for both model-

ing and dimension reduction of sparse, irregular noise-corrupted longitudinal data. We make

the minimal assumptions that the underlying unobserved random trajectories X(t) that gen-

erate the available sparse observations are square integrable on the domain T with mean

function EX(t) = µ(t) and auto-covariance function cov(X(s), X(t)) = G(s, t), s, t ∈ T .

Here G(s, t) is a smooth, symmetric and non-negative definite surface. Using G as the ker-

nel in a linear operator leads to the Hilbert-Schmidt operator (AGf)(t) =
∫
T G(s, t)f(s)ds.

Denoting the ordered eigenvalues (in declining order) of this operator by λ1 ≥ λ2 ≥ . . . ≥ 0

and the corresponding orthonormal eigenfunctions by φk, one obtains the well-known rep-

resentation G(s, t) =
∑∞

k=1 λkφk(s)φk(t) for the covariance surface and the Karhunen-

Loève representation Xi(t) = µ(t) +
∑∞

k=1 ξikφk(t) for the individual trajectories. Here,

ξik =
∫
T (Xi(t) − µ(t))φk(t)dt, k = 1, 2, . . ., are the functional principal components (FPCs)

of the random trajectories Xi which are uncorrelated random variables with E(ξik) = 0,

Eξ2ik = λk, and
∑

k λk < ∞ (Ash and Gardner 1975). The eigenfunctions φk are the solu-

tions of the eigen-equations
∫
G(s, t)φk(s) ds = λkφk(t), k = 1, 2, . . ., under the constraint of

orthonormality. Estimation of these components will be discussed in Appendix A.1.

2.3 Alternative Representation of the Stickiness Coefficient

Expressing the proposed coefficient in terms of the eigenvalues and eigenfunctions of the

covariance operator easily demonstrates that the coefficient can only take values in the interval

[0, 1] and also leads to a potential estimation scheme. Using the joint uniform distribution of

(T1, T2) and conditioning we obtain from (2),

SX =
E[E[{X(T1)− µ(T1)}{X(T2)− µ(T2)}|T1, T2]]

E{Var(X(T1)− µ(T1))|T1}+ Var{E(X(T1)− µ(T1))|T1}

=
E{
∑∞

k=1 ξkφk(T1)
∑∞

j=1 ξjφj(T2)}
E{Var(X(T1)− µ(T1))|T1}
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=

∑∞
k=1{λk

∫
T φk(t1)fT1(t1)dt1

∫
T φk(t2)fT2(t2)dt2}

1
|T |
∑∞

k=1 λk
,

whence

SX =
1

|T |

∑∞
k=1 λk[

∫
T φk(t)dt]

2∑∞
k=1 λk

. (3)

It follows immediately from the Cauchy-Schwarz inequality that 0 ≤ SX ≤ 1. An alternate

expression for SX can also be given directly in terms of the smooth covariance operator

G(s, t),

SX =
1

|T |

∫
T ×T G(s, t)dsdt∫
T G(t, t)dt

. (4)

3 Theoretical Examples

3.1 Stickiness Coefficient for Brownian Motion

While Brownian motion has a physical interpretation in terms of the diffusion of a par-

ticle suspended in a fluid, it is also a key process for modeling time-dynamic phenom-

ena from financial markets to biological growth and development (Karatzas and Shreve

1991). Brownian motion on [0, 1] is a Gaussian process X(t), with X(0) = 0, and covari-

ance function cov(X(s), X(t)) = G(s, t) = min(s, t) for s, t ∈ [0, 1]. It has eigenfunctions

φk(t) =
√

2sin{(k − 1
2)πt}, eigenvalues λk = 4

(2k−1)2π2 and independent functional principal

components ξk ∼ N(0, λk), k = 1, 2, . . ..

From (3), one finds

SX =

∑∞
k=1

4
(2k−1)2π2

8
(2k−1)2π2∑∞

k=1
4

(2k−1)2π2

=
8

π2

∑∞
k=1

1
(2k−1)4∑∞

k=1
1

(2k−1)2
=

2

3
. (5)

Figure 2 shows three simulated trajectories of Brownian motion on [0, 1], demonstrating

a certain degree of inherent stickiness. Once a trajectory deviates significantly from the

mean function, the zero line, it is unlikely for the process to cross the line again in the near

future. We can view the stickiness of Brownian motion in (5) as providing a natural threshold

between processes that are sticky and those that are not. We would therefore characterize a

process as particularly sticky if its stickiness coefficient exceeds 2
3 .
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Figure 2: Three simulated Brownian motion trajectories.

3.2 Case of One Eigenfunction

In this section we explore the case where the expansion of the process X(t) consists of a single

eigenfunction φ. This is an important theoretical example, but is also of practical importance

as many processes are generated by one dominant eigenfunction. In this situation, (3) reduces

to

SX =
1

|T |

[∫
T
φ(t)dt

]2
. (6)

Thus the magnitude of SX is entirely determined by the shape of φ. For simplicity, we

restrict our attention to centered processes, µ(t) = 0, on T = [0, 1]. If φ(t) =
√

12(t − 1
2),

a quick calculation verifies SX = 0. In this situation, in the absence of measurement error,

all trajectories will necessarily cross the mean trajectory. On the other hand if φ(t) ≡ 1,

SX = 1. In this case, in the absence of measurement error, trajectories will always remain

on one side or another of the mean trajectory.

In fact, the preceding case is the only situation in which SX = 1. It holds that, SX = 1

if, and only if, G(s, t) is a constant function. Without loss of generality, suppose T =[0,1].

A straightforward calculation shows that if G(s, t) = λ, then indeed SX = 1. Conversely

suppose SX = 1. Then from (3),

∞∑
k=1

λk

[∫
T
φk(t)dt

]2
=
∞∑
k=1

λk. (7)
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Since
∫
φ(t)dt ≤

∫
φ2(t)dt = 1, it follows that

[∫
T φk(t)dt

]2 ≤ 1, for all k. Thus (7) can

only hold when
[∫
φk(t)dt

]2
= 1 for all k such that λk > 0. Now, the two statements[∫

φk(t)dt
]2

= 1,
∫
φ2k(t)dt = 1 can only hold simultaneously if φk(t) ≡ 1. This means

there can only be one eigenfunction with a non-zero eigenvalue, φ(t) ≡ 1 and thus G(s, t) is

constant.

3.3 Estimation Procedures

Equation (3) suggests a natural method for the estimation of SX in which plug-in estimators

are used to estimate the eigenvalues λk and eigenfunctions φk(t). For estimation, one must

truncate the expression at a finite number K = K(n) of included eigen-components, which

needs to be determined from the data. For asymptotic consistency, K(n)→∞ as n→∞ is

required. The resulting estimator is

ŜKX =
1

|T |

∑K
k=1 λ̂k[

∫
T φ̂k(t)dt]

2∑K
k=1 λ̂k

. (8)

An alternative estimator could be based on directly targeting expected values in (2), con-

ditioning on pairs of times T1 and T2 and using an empirical covariance estimator. However,

this would require a dense, balanced design across subjects, which often is not available in

the case of longitudinal measurements. In contrast, the proposed estimation procedure in (8)

allows for the estimation of the required components even in the case that the longitudinal

observations are sparse, irregular and noise corrupted. This strategy requires us to borrow

strength from the entire sample. Details about this procedure can be found in (Yao et al.

2005a,b) and a brief summary is provided in Appendix A.1.

A second alternative estimator would involve directly estimating the quantities in expres-

sion (4) yielding the estimate,

ŜX,A =
1

|T |

∫
T ×T Ĝ(s, t)dtds∫
T Ĝ(t, t)dt

. (9)

This method does not require estimating the eigen-components and rather relies on an esti-

mate of G(s, t). One can obtain such an estimate from two-dimensional surface smoothing,

as described in Appendix A.1. However, there is no guarantee that the outcome of such an

estimation procedure yields a positive definite surface and therefore this method can yield

estimates that are negative or greater than 1. For further details, we refer to Appendix B.1.
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4 Stickiness in Action for Longitudinal Data

We present several health and economic related data examples to demonstrate the wide

variety of design schemes that can arise in longitudinal studies. In addition to providing a

point estimate for the stickiness coefficient in each case based on Equation (8), confidence

intervals for the estimates can be obtained via bootstrap.

4.1 Berkeley Growth Data

The Berkeley growth data contains height measurements for 54 girls and 38 boys from 1 to

18 years of age. The children were measured 4 times between the ages of 1 and 2, yearly

from ages 2 to 8 and twice yearly from ages 8 to 18. This design results in 31 measurements

over years 1 to 18. For both girls and boys 2 eigen-components were used to summarize

the process which accounts for 95% and 94% of the variability, respectively. We obtain an

estimated stickiness coefficient of 0.87 and 0.83, for girls and boys, respectively, confirming

our intuition about the stickiness of human growth based on Figure 1. Bootstrap confidence

intervals at the 95% level are given by [0.813, 0.945] and [0.787, 0.898], respectively. These

results indicate that there is a strong tendency in the growth process for deviations from

the mean curve to co-vary over time. As anticipated, this implies that a taller than average

one-year old is more likely to be a taller-than average child over his or her entire childhood.

4.2 Aging Related Health Measures

In this section we analyze data from a longitudinal study on aging (Pearson et al. 1997; Shock

et al. 1984). Systolic Blood Pressure (SBP, measured in mmHg) and Body Mass Index (BMI,

measured in kg/m2) were recorded on each visit of 1590 male volunteers bi-annually. This

data set is truly sparse and noisy as many study participants frequently missed visits. As

a result, both number of observations per subject and observation times vary widely (see

Yao et al. 2005b). Despite the large noise in the measurements and the highly irregular

sampling times, these data can still be reasonably viewed as being generated by underlying

smooth random trajectories of blood pressure and body mass index. For analysis we select

subjects for whom at least two measurements are available between age 40 and 70, which is

the minimum number of repeated measurements needed for meaningful analysis (see Section
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(4) assumption (A1)). Furthermore, we only consider subjects who survived beyond 70, to

avoid problems of selection bias due to non-survival. The resulting sample size is n = 266

subjects.

Stickiness coefficients were estimated for the BMI and SBP processes separately. The

BMI process is almost completely described by the first eigenfunction which accounts for

98% of the variability, while 2 eigenfunctions were used to summarize the SBP process ac-

counting for 93% of the variability. We obtain stickiness coefficient estimates of 0.95 and 0.80

and 95% bootstrap confidence intervals [0.901, 0.998] and [0.678, 0.872] for BMI and SBP,

respectively. These confidence intervals indicate that there is a relatively large amount of

sampling variability in the estimates, but nevertheless these processes are clearly quite sticky.

Furthermore, since the two measurements are observed on the same collection of men, we can

easily obtain a 95% bootstrap confidence interval for the difference between the two stick-

iness coefficients. We obtain [0.063, 0.285], providing strong evidence that the Body Mass

Index trajectory is indeed stickier than the Systolic Blood Pressure trajectory. This confirms

our intuition that on average, weight is a particularly sticky process over one’s lifetime and

requires a great deal of sustained effort to change.

4.3 Online Auction Data

There has been a fair amount of recent interest in the statistical analysis of online auction

data (Bapna et al. 2008; Reddy and Dass 2006; Wang et al. 2008). In this section we explore

the stickiness of a particular eBay auction. The data consist of 156 auctions of Palm Personal

Digital Assistants in 2003 (courtesy of Wolfgang Jank). The data correspond to ‘live bids’

that are entered by bidders at irregular times over a seven day period and correspond to

the actual price a winning bidder would pay for the item. More details on the eBay bidding

process can be found in Jank and Shmueli (2006) and Liu and Müller (2009). The time unit

of these 7-day auctions is hours and thus the domain is [0, 168]. In order to estimate the

stickiness coefficient, we log transform the data and restrict our analysis to the last four days

of the seven day bidding cycle because there is a considerable amount of initial variability

which is of less interest. This process is well described by two eigenfunctions accounting for

95% of the variability.

As discussed in the Introduction, we would expect that auction prices tend to self-stabilize
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over time. Price trajectories rarely remain significantly below or above the average price

trajectory for long periods of time. This is quite reasonable given the mechanisms of online

auctions. For example, a particularly cheap item is unlikely to remain under-priced over

time as bidders notice the deal and eventually bid the price up. The estimated stickiness

coefficient is consistent with this intuition. A point estimate for the coefficient was found to

be 0.72 which is smaller than any of the health related data examples and the 95% bootstrap

confidence interval was found to be [0.575, 0.777].

4.4 Stickiness of Economic Indices

In this section we analyze data obtained from the World Bank (http://data.worldbank.org/).

We begin by analyzing income inequality data alluded to in the Introduction. The Gini

index measures the extent of the deviation of household incomes within a nation from a

perfectly equal distribution. Therefore a nation with a Gini index of 100 would have complete

inequality whereas a nation with a Gini index of 0 would have perfect equality. The World

Bank recorded Gini indices for 204 countries sporadically over the last 30 years. This is a

sparse and irregular data set as many countries have only a handful of measurements over

this time period. In order to obtain a meaningful analysis we only considered countries with

at least two measurements in [1979, 2009]. This led to a sample size of 93 countries entering

the analysis. This process was well described by two eigenfunctions accounting for 97% of the

variability. The point estimate for the stickiness coefficient of this processes was high at 0.89.

A 95% bootstrap confidence interval was [0.526, 0.973]. This indicates a strong tendency for

the distribution of wealth within a country to persist over time.

Next we discuss the economic index Gross Domestic Product (GDP), focusing on GDP

growth rates. The data consist of the annual percentage growth rate of GDP at market

prices, based on the local currency for 203 countries over the last 50 years. We might expect

GDP growth to be a very volatile process, sensitive to all types of global and local economic

pressures. In fact, 9 eigenfunctions were required to adequately describe this process, ac-

counting for 93% of the variability. Based on our sample, we obtain an estimated stickiness

coefficient of 0.19 with 95% bootstrap confidence interval of [0.137, 0.286]. This indicates

that this process is decidedly unsticky.
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5 Asymptotic Properties

In this section we obtain rates of convergence and establish asymptotic consistency for ŜX ,

the estimator of SX . These results require a collection of regularity conditions concerning

the distribution of the design points and the behavior of the eigenfunctions and eigenvalues

as their order increases. Also required are assumptions about the large sample behavior

of the smoothing bandwidths hµ for the estimation of the mean function µ(t), and hG for

the estimation of the covariance surface G(s, t). Specifically, for the observations (Tij , Yij),

i = 1, . . . , n, j = 1, . . . , Ni, corresponding to the i-th trajectory, we require that

(A1) Ni are random variables with Ni
i.i.d.∼ N , where N is a bounded positive discrete

random variable with P{N ≥ 2} > 0, and measurement times Tij as well as responses

Yij , 1 ≤ · · · ≤ Ni, are independent of Ni, 1 ≤ i ≤ n.

Writing Ti = (Ti1, . . . , TiNi)
T and Yi = (Yi1, . . . , YiNi)

T , the triples {Ti,Yi, Ni} are assumed

to be i.i.d. and the pairs {Ti, Ni} are assumed to be independent of the process X. For the

bandwidths used in the smoothing steps for µ(t) and G(s, t), we require that as n→∞,

(A2) max(hµ, hG)→ 0, nhµ →∞, nh2G →∞.

For asymptotic consistency, we will require assumptions about the behavior of the eigen-

functions φk and eigenvalues λk as their order k increases. For this we define

α(K) =
∞∑

k=K+1

λk, δk = min
1≤j≤k

(λj − λj+1). (10)

In addition to assumptions (A1)-(A2) given above, additional assumptions are needed

about the kernels used in the local linear smoothing steps and the underlying densities.

These more technical conditions, (B1)-(B3), are deferred to the Appendix.

Theorem 1. Under (A1)-(A2) and (B1)-(B3), if λk > 0 for all k ≥ 1,

∣∣∣ŜKX − SX ∣∣∣ = O (α(K)) +

(
K∑
k=1

δ−1k +K

)
Op

(
1√
nhG

+ h2G

)
. (11)

Theorem 1 provides a convergence rate for the proposed estimate of the stickiness coeffi-

cient. Asymptotic consistency follows immediately if we require the additional assumption

(A3)
∑K

k=1 δ
−1
k = o(min{

√
nh2G, h

−2
G }),K = o(min{

√
nh2G, h

−2
G }), as n→∞.
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Note that if the process is well approximated by the first few leading terms of its eigen-

expansion, then condition (A3) is easily satisfied. The proof of Theorem 1 and additional

details about the required regularity conditions are provided in Appendix A.2. Note that if

the assumption made in Theorem 1 that λk > 0 for all k ≥ 1 does not hold, then there exists

a K0 such that for all k < K0, λk > 0 and for all k ≥ K0, λk = 0. In this case, it is easy to

see that
∣∣∣ŜKX − SX ∣∣∣ = Op

(
1√
nhG

+ h2G

)
.

Theorem 1 can be used to determine the best choice K = K(n) given a particular form

of the eigenvalues and a choice of the smoothing parameter hG. For example, in the special

case that the eigenvalues are decaying exponentially, that is λk = e−ρk for some ρ > 0, we

can explicitly solve for the best choice of included eigen-components K(n). In this case,

α(K) = e−ρ(K+1)

1−e−ρ and
∑K

k=1
1
δk

= eρ(eρK−1)
(1−e−ρ)(eρ−1) . Suppose that the smoothing parameter hG

decays at a rate hG = n−α for some 0 < α < 1
2 . Then the number of included eigen-

components K(n) = − 1
2ρ ln

(
nα−

1
2 + n−2α

)
minimizes the leading terms of the right hand

side of (11).

6 Discussion

There is a substantial body of literature on the interface of longitudinal and functional data

analysis that covers diverse and complicated statistical issues. In this paper, we took a

more elementary approach to the topic and introduced the stickiness coefficient, a summary

statistic for longitudinal data. The purpose is to provide the data analyst with a simple

and intuitive calculation in the initial data exploration of a set of sparsely sampled curves.

Formally, this coefficient summarizes the extent to which deviations in individual curves from

the mean trajectory tend to co-vary over time. Intuitively, populations of curves with high

stickiness coefficients are those for which individual curves tend to get stuck above or below

the mean trajectory over time. We choose the word ‘stickiness’ to highlight this property of

the coefficient.

The estimation of this coefficient was discussed for a general class of longitudinal data.

The only assumption is that the observed data are generated by a smooth process, although

the entire process need not be observed. Rather, the observations can be sparsely observed

and corrupted by noise. In fact, if the locations are random, two observations of the process
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suffice (Hall et al. 2006; Yao et al. 2005b). The reason for this surprising results is that

one gains strength for statistical inference by pooling all the data together for estimation of

eigenvalues and eigenfunctions. In this context, we established a rate of convergence that

depends on smoothing parameters and number of included eigen-components. Using this

rate, we were able to determine an asymptotically ideal choice of included eigen-components

for a particular eigenvalue structure.

Although human growth data provided a motivating example, the stickiness coefficient

was not developed solely for a particular application. Rather, this coefficient is applicable

to any field where trajectory data are collected. In the context of financial markets, the

stickiness coefficient could be used to evaluate potential winners in the stock market. In a

market with a particularly low stickiness index, one should pick a stock with returns below

the mean because it is likely to cross above the mean in the near future. Conversely in a very

sticky market choosing a stock with returns below the mean is a poor idea as it is likely to

remain below average.

In our applications section we examined data sets from the health, social and economic

sciences. For the health related examples, the coefficient estimates confirmed our intuition

that human growth is a sticky process and that weight (measured as BMI) is a particularly

sticky process. Concerning the socio-economic data, we observed that income inequality

tends to persist over time in a country while GDP growth can be much more variable. In

each case, we were able to ascertain some crucial information about the structure of the

process generating the data by examining the stickiness coefficient.
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Appendix

A.1 Estimation Procedures

For estimation, we require a method that can handle not only entirely observed functional

trajectories but also the type of sparse, irregular data that arises in many longitudinal studies.

Although we assume such data are generated by an underlying smooth random process, the

observed measurements can be sparse, irregular and corrupted by noise. We follow the

procedures introduced in Yao et al. (2005a) and extended in Yao et al. (2005b). In order

to overcome the limitations of sparse designs, we borrow strength across subjects by pooling

the data to achieve estimates of µ(t) and G(s, t).

The first step involves aggregating measurements across subjects into one scatterplot and

applying a local linear smoother to obtain an estimate for the mean function µ(t). For a

given univariate density function κ1 and bandwidth hµ, one would minimize

n∑
i=1

Ni∑
j=1

κ1

(
Tij − t
hµ

){
Yij − {α0 + α1(Tij − t)}

}2
(12)

for each t with respect to α0 and α1 from which one obtains µ̂(t) = α̂0(t) (Fan and Gijbels

1996).

Also required is an estimate of the covariance surface G(s, t). In this step, one forms a

pooled scatterplot of pairwise raw covariances Gi(Tij , Til) = (Yij− µ̂(Tij))(Yil− µ̂(Til)), j 6= l,

and minimizes the objective function

n∑
i=1

∑
1≤j 6=l≤Ni

κ2

(
Tij − t
hG

,
Til − s
hG

){
Gi(Tij , Til)− (α0 + α11(Tij − t) + α21(Til − s))

}2
(13)

for a fixed (s, t) with respect to α0, α11 and α21. One must choose a bivariate density function

as kernel κ2(s, t) and a bandwidth hG. This leads to the estimate Ĝ(s, t) = α̂0(s, t). Notice

here that elements along the diagonal are excluded because for these points, cov(Yij , Yij |Tij) =

cov(X(Tij), X(Tij)) + σ2. Therefore the diagonal of the raw covariances should be excluded

and only Gi(Tij , Til) for j 6= l should be included in the smoothing step. One can obtain a

consistent estimator for σ by taking the difference between a smoother that uses only the

diagonal elements and the diagonal estimate obtained from smoothing step (13). We refer to

Yao et al. (2005a) for more details.
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The last step is to obtain estimates of λk and φk(t). This is achieved by numerically

solving the eigen-equations, ∫
T
Ĝ(s, t)φ̂k(s)ds = λ̂kφ̂k(t) (14)

where the φ̂k(t) are subject to
∫
T φ̂k(t)

2dt = 1 and
∫
T φ̂k(t)φ̂m(t)dt = 0 for m < k.

For the theoretical analysis developed in the next sections one requires that K = K(n)→

∞ as n→∞. However, for any data analysis, the number of included eigen-terms K must be

chosen by the practitioner. There are several methods for doing so, including AIC/BIC cri-

terion based on marginal/conditional pseudo-likelihood or thresholding of the total variation

explained by the included components (Yao et al. 2005b). For the data analysis of Section 3,

the latter method was employed with threshold 0.9.

A.2 Additional Assumptions and Auxiliary Results

Assumptions about the distribution of the design points and behavior of the bandwidths

hµ, for estimation of the mean function µ(t) and hG, for the estimation of the covariance

surface G(s, t) were stated as assumptions (A1)-(A2).

In addition to (A1)-(A2), assumptions about the kernels used in the local linear smoothing

steps and underlying densities and moment functions are required. We denote the densities

of T and (T1, T2) by f1(t) and f2(s, t) respectively, and embed the interval T = [a, b], within

Tδ = [a − δ, b + δ] for some δ > 0. Regularity conditions for the densities and the targeted

moment functions, where `1, `2 are non-negative integers, are given by (B1)-(B3).

(B1) f
(4)
1 (t) exists and is continuous on Tδ with f1(t) > 0, ∂4

∂t`1∂s`2
f2(s, t) exists and is

continuous on T 2
δ for `1 + `2 = 4.

(B2) µ(4)(t) exists and is continuous on Tδ, ∂4

∂t`1∂s`2
G(s, t) exists and is continuous on T 2

δ for

`1 + `2 = 4.

(B3) Kernel function κ1 is a symmetric, continuous, non-negative density with compact

support. Kernel κ2 is a continuous bivariate density with compact support such that

κ2(u, v) is symmetric in u for each fixed v and is also symmetric in v for each fixed u.

The following lemma provides an L2 convergence rate for the eigenfunction estimate φ̂k.
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Lemma 1. Under (A1)-(A2) and (B1)-(B3), for φk(t) corresponding to λk of multiplicity 1,

‖φ̂k(t)− φk(t)‖ = Op

(
1

λkδk

( 1√
nhG

+ h2G
))

, |λ̂− λ| = Op

(
1√
nhG

+ h2G

)
, (15)

where the Op(·) term in (15) is uniform in k ≥ 1.

A proof of this lemma along with a few additional auxiliary assumptions can be found in

Müller and Yao (2010). This lemma establishes a L2 rate of convergence for the eigenfunction

estimate φ̂k that is uniform in the order k. Our asymptotic results given in Theorem 1 depends

crucially on this uniformity.

A.3 Proof of Theorem 1

Throughout the proof of Theorem 1 we will make repeated use of the Cauchy-Schwarz in-

equality | 〈f, g〉 | ≤ ‖f‖‖g‖. Specifically, we will need to make use of both inequalities,

[
∫
T φk(t)dt]

2 ≤ |T | and [
∫
T φ̂k(t)dt]

2 ≤ |T |. We note here that the first inequality is a conse-

quence of the C-S inequality as well as the required orthonormality of the eigenfunctions of the

auto-covariance operation G(s, t). The second inequality is a consequence of our estimation

scheme which produces estimates φ̂k(t) which satisfy
∫
T φ̂

2
k(t)dt = 1. Noting that,

∆ =: |T |
∞∑
k=1

λk

∣∣∣ŜKX − SX ∣∣∣
≤

∑K
k=1 λ̂k

[∫
T φ̂k(t)dt

]2
∑K

k=1 λ̂k

∣∣∣∣∣
∞∑
k=1

λk −
K∑
k=1

λ̂k

∣∣∣∣∣+

∣∣∣∣∣
K∑
k=1

λ̂k

[∫
T
φ̂k(t)dt

]2
−
∞∑
k=1

λk

[∫
T
φk(t)dt

]2∣∣∣∣∣
= I + II,

we find by Lemma 1,

I ≤
|T |
∑K

k=1 λ̂k∑K
k=1 λ̂k

∣∣∣∣∣
∞∑
k=1

λk −
K∑
k=1

λ̂k

∣∣∣∣∣
≤ |T |

(
K∑
k=1

∣∣∣λ̂k − λk∣∣∣+ α(K)

)
= KOp

(
1√
nhG

+ h2G

)
+ |T |α(K) and, again by Lemma 1,

II ≤

∣∣∣∣∣
K∑
k=1

λk

([∫
T
φ̂k(t)dt

]2
−
[∫
T
φk(t)dt

]2)∣∣∣∣∣+

∣∣∣∣∣
K∑
k=1

[∫
T
φ̂k(t)dt

]2
(λk − λ̂k)−

∞∑
k=K+1

λk

[∫
T
φk(t)dt

]2∣∣∣∣∣
≤

K∑
k=1

λkOp

(
1

λkδk

(
1√
nhG

+ h2G

))
+KOp

(
1√
nhG

+ h2G

)
+ |T |α(K).
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Therefore, ∆ ≤ I + II = O (α(K)) +
(∑K

k=1 δ
−1
k +K

)
Op

(
1√
nhG

+ h2G

)
and thus we have

established Theorem 1.

B.1 Comparison of Estimation Methods ŜX,A and ŜKX with Simulation

The data analysis of Section 4 was completed using both estimators ŜKX in equation (8)

and ŜX,A in equation (9). Estimator ŜKX requires a choice of K, the number of included

eigenfunctions. In Table 1, we show the results for various estimators including ŜKX for

different K = K(p) where K(p) is selected as the minimum number of eigen-components

such that 100p% of the variation was explained. We find that there is a general agreement

between the two types of estimators, however ŜX,A produces an estimate of the stickiness of

BMI that exceeds 1.

Data Set ŜX,A Ŝ
K(0.85)
X Ŝ

K(0.90)
X Ŝ

K(0.95)
X Ŝ

K(0.99)
X

Female Growth 0.84 0.93 0.87 0.87 0.84

Male Growth 0.79 0.87 0.83 0.80 0.78

BMI 1.06 0.95 0.95 0.95 0.94

SBP 0.76 0.80 0.80 0.75 0.75

GINI 0.89 0.97 0.89 0.89 0.87

GDP Growth 0.19 0.20 0.19 0.18 0.17

Auction Data 0.71 0.72 0.72 0.69 0.68

Table 1: Comparison of various estimators for SX for the data sets discussed in Section 4

where Ŝ
K(p)
X means that K(p) is selected such that K is the minimum number of eigen-

components so that 100p% of the variation was explained

A small simulation study was conducted to compare the proposed estimators and also to

verify that both low and high values of SX can be reliably estimated. In each simulation

setting we constructed 100 sparsely observed trajectories where the number of observations

from each process was uniformly selected from 2 to 20 measurements. Once the number of
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observations was determined, the locations of the measurements were generated uniformly

on [0,1]. Additionally each observation was additively perturbed by a random measurement

error εij ∼ N(0, 0.01).

We considered 3 simulation settings. In simulation 1, we used the mean function µ(t) = 0

and a single eigenfunction φ(t) =
√

12(t − 1
2) with eigenvalue λ = 2. In this setting SX

should be 0. For simulation 2, we used the mean function µ(t) = 0 and a single eigenfunction

φ(t) = 1 with eigenvalue λ = 2. In this setting SX = 1. Finally for simulation 3, we set

µ(t) = 0 and used two eigenfunction φ1(t) =
√

2 sin(π2 t), φ2(t) =
√

2 sin(3π2 t) with eigenvalues

λ1 = 2, and λ2 = 1. In this case SX= 0.57. For all three simulation settings, each trajectory

was generated with FPCs ξik ∼ N(0, λj). The simulation results are in Table 2.

Simulation Number SX ŜX,A (SD) Ŝ
K(0.9)
X (SD)

1 0.0 -0.004 (0.04) 0.01 (0.02)

2 1.0 1.004 (0.04) 0.99 (0.02)

3 0.57 0.59 (0.06) 0.58 (0.06)

Table 2: Simulation study where Ŝ
K(p)
X means that K(p) is selected such that K is the

minimum number of eigen-components so that 100p% of the variation was explained.

We find that we are able to reliably estimate small, large and intermediate values of SX .

Estimators ŜX,A and ŜKX provide similar results except that ŜX,A can be negative or greater

than 1.
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