DERIVATIVE PRINCIPAL COMPONENT ANALYSIS FOR REPRESENTING
THE TIME DYNAMICS OF LONGITUDINAL AND FUNCTIONAL DATA

Xiongtao Dai, Hans-Georg Müller
Department of Statistics
University of California
Davis, CA 95616 USA

and

Wenwen Tao
Quora
Mountain View, CA 94041 USA

March 21, 2017

ABSTRACT

We propose a nonparametric method to explicitly model and represent the derivatives of smooth underlying trajectories for longitudinal data. This representation is based on a direct Karhunen–Loève expansion of the unobserved derivatives and leads to the notion of derivative principal component analysis, which complements functional principal component analysis, one of the most popular tools of functional data analysis. The proposed derivative principal component scores can be obtained for irregularly spaced and sparsely observed longitudinal data, as typically encountered in biomedical studies, as well as for functional data which are densely measured. Novel consistency results and asymptotic convergence rates for the proposed estimates of the derivative principal component scores and other components of the model are derived under a unified scheme for sparse or dense observations and mild conditions. We compare the proposed representations for derivatives with alternative approaches in simulation settings and also in a wallaby growth curve application. It emerges that representations using the proposed derivative principal component analysis recover the underlying derivatives more accurately compared to principal component analysis based approaches especially in settings where the functional data are represented with only a very small number of components or are densely sampled. In a second wheat spectra classification example, derivative principal component scores were found to be more predictive for the protein content of wheat than the conventional functional principal component scores.

Keywords: Derivatives, Empirical dynamics, Functional principal component analysis, Growth curves, Best linear unbiased prediction.

1Research supported by NSF grant DMS-1407852.
1 Introduction

Estimating derivatives and representing the dynamics for longitudinal data is often crucial for a better description and understanding of the time dynamics that generate longitudinal data (Müller and Yao 2010). Representing derivatives, however, is not straightforward. Efficient representations of derivatives can be based on expansions into eigenfunctions of derivative processes. Difficulties abound in scenarios with sparse designs and noisy data. To address these issues, we propose a method for representing the derivatives of observed longitudinal data by directly aiming at the Karhunen–Loève expansion (Grenander 1950) of derivative processes. Classical methods for estimating derivatives of random trajectories usually require observed data to be densely sampled. These methods include difference quotients, estimates based on B-splines (de Boor 1972), smoothing splines (Chambers and Hastie 1991; Zhou and Wolfe 2000), kernel-based estimators such as convolution-type kernel estimators (Gasser and Müller 1984), and local polynomial estimators (Fan and Gijbels 1996). In the case of sparsely and irregularly observed data, however, direct estimation of derivatives for each single function is not feasible due to the gaps in the measurement times.

For the case of irregular and sparse designs, Liu and Müller (2009) proposed a method based on functional principal component analysis (FPCA) (Rice and Silverman 1991; Ramsay and Silverman 2005) for estimating derivatives. The central idea of FPCA is dimension reduction by means of a spectral decomposition of the autocovariance operator, which yields functional principal component scores (FPCs) as coefficient vectors to represent the random curves in the sample. In Liu and Müller (2009), derivatives of eigenfunctions are estimated and plugged in to obtain derivatives of the estimated Karhunen–Loève representation for the random trajectories. While this method was shown to outperform several other approaches for recovering derivatives for sparse and irregular designs, including those using difference quotients, functional mixed effect models with B-spline basis functions (Shi et al. 1996; Rice and Wu 2001), or P-splines (Jank and Shmueli 2005; Reddy and Dass 2006; Bapna et al. 2008; Wang et al. 2008), it is suboptimal for representing derivatives, as the coefficients in the Karhunen–Loève expansion are targeting the functions themselves and not the derivatives.

This provides the key motivation for this paper: Represent dynamics by directly targeting
the Karhunen–Loève representation of derivatives of random trajectories. The Karhunen–Loève representations of derivatives will need to be inferred from available data, which are modeled as noisy measurements of the trajectories. We then aim to represent derivatives directly in their corresponding eigenbasis, yielding the most parsimonious representation, and leading to a novel Derivative Principal Component Analysis (DPCA). In addition, the resulting expansion coefficients, which we refer to as derivative principal component scores (DPCs) provide a novel representation and dimension reduction tool for functional data that complements other such representations such as the commonly used FPCs.

The proposed method is designed for both sparse and dense cases and works successfully under both cases. When the functional data are densely sampled with possibly large measurement errors, smoothing the observed trajectories and obtaining derivatives for each trajectory separately is subject to possibly large estimation errors, which are further amplified for derivatives. In contrast, the proposed method pools observations across subjects and utilizes information from measurements at nearby time points from all subjects when targeting derivatives, and therefore is less affected by large measurement errors. In scenarios where only a few measurements are available for each subject, the proposed method performs derivative estimation by borrowing strength from all observed data points, instead of relying on the sparse data that are observed for a specific trajectory. A key step is to model and estimate the eigenfunctions of the random derivative functions directly, by spectral-decomposing the covariance function of the derivative trajectories.

The main novelty of our work is to obtain empirical Karhunen–Loève representations for the dynamics of both sparsely measured longitudinal data and densely measured functional data, and to obtain the DPCA with corresponding DPCs. For the estimation of these DPCs, we employ a best linear unbiased prediction (BLUP) method that directly predict the DPCs based on the observed measurements. In the special case of Gaussian process with independent Gaussian noises the BLUP method coincides with the best prediction, i.e. the conditional expectation of DPCs given the observed measurements. This unified approach provides a straightforward implementation for the Karhunen–Loève representation of derivatives. Under a unified framework for the sparse and the dense case, we provide convergence rate results for the derivatives of the mean function, the covariance function, and the derivative eigenfunctions based on smoothing
the pooled scatter plots (Zhang and Wang 2016). We also derive convergence rates for the estimated DPCs based on BLUP, where the proof of the convergence rate results for the DPCs in the dense case overcomes some technical challenges.

The remainder of this paper is structured as follows: In Section 2, we introduce the new representations for derivatives. DPCs and their estimation are the topic of Section 3. Asymptotic properties of the estimated components and of the resulting derivative estimates are presented in Section 4. We compare the proposed method with alternative approaches in terms of derivatives recovery in Section 5 via simulation studies and in Section 6 using longitudinal wallaby body length data. As is demonstrated in Section 6, DPCs can be used to improve classification of functional data, illustrated by wheat spectral data. Additional details are provided in the Appendix.

2 Representing Derivatives of Random Trajectories

2.1 Preliminaries

Consider \(\nu \) -times differentiable stochastic process \(X \) on a compact interval \(T \subset \mathbb{R} \), with \(X^{(\nu)} \in L^2(T) \), mean function \(E(X(t)) = \mu(t) \), and auto-covariance function \(\text{cov}(X(s), X(t)) = G(s, t) \), for \(s, t \in T \). The independent realizations \(X_1, \ldots, X_n \) of \(X \) have the Karhunen–Loève expansion:

\[
X_i(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_{ik} \phi_k(t),
\]

(1)

where \(\xi_{ik} = \int (X_i(t) - \mu(t)) \phi_k(t) dt \) are the functional principal component scores (FPCs) of the random functions \(X_i \) that satisfy \(E(\xi_{ik}) = 0 \), \(E(\xi_{ik}^2) = \lambda_k \), \(E(\xi_{ik} \xi_{ij}) = 0 \) for \(k, j = 1, 2, \ldots \), \(k \neq j \); the \(\phi_k \) are the eigenfunctions of the covariance operator associated with \(G \), with ordered eigenvalues \(\lambda_1 > \lambda_2 > \ldots \geq 0 \).

By taking the \(\nu \)th derivative on \(t \) on both sides of (1), Liu and Müller (2009) obtained the following representation of derivatives,

\[
X_i^{(\nu)}(t) = \mu^{(\nu)}(t) + \sum_{k=1}^{\infty} \xi_{ik} \phi_k^{(\nu)}(t),
\]

(2)

assuming that both sides are well defined, with corresponding variance \(\text{var}(X_i^{(\nu)}(t)) = \sum_{k=1}^{\infty} \lambda_k[\phi_k^{(\nu)}(t)]^2 \).
One can then estimate derivatives by approximating \(X^{(\nu)}_i \) with the first \(K \) components

\[
X^{(\nu)}_{i,K}(t) = \mu^{(\nu)}(t) + \sum_{k=1}^{K} \xi_{ik} \phi^{(\nu)}_k(t).
\] (3)

In equations (2) and (3), \(\mu^{(\nu)} \) is the \(\nu \)-th derivative of the mean function \(\mu \) and can be estimated by local polynomial fitting applied to a pooled scatterplot where one aggregates all the observed measurements from all sample trajectories. The FPCs \(\xi_{ik} \) of the sample trajectories can be estimated with the principal analysis by conditional expectation (PACE) approach described in Yao et al. (2005). Starting from the eigenequations \(\int G(s,t)\phi_k(s)ds = \lambda_k \phi_k(t) \) with orthonormality constraints, under suitable regularity conditions, by taking derivatives on both sides, one obtains targets and respective estimates,

\[
\phi^{(\nu)}_k(t) = \frac{1}{\lambda_k} \int G^{(0,\nu)}(s,t)\phi_k(s)ds, \quad \hat{\phi}^{(\nu)}_k(t) = \frac{1}{\hat{\lambda}_k} \int \hat{G}^{(0,\nu)}(s,t)\hat{\phi}_k(s)ds,
\]

where \(G^{(0,\nu)}(s,t) = \partial^\nu G(s,t)/\partial t^\nu \) is the \((0, \nu)\)th partial derivative, \(\hat{G}^{(0,\nu)}(s,t) \) is a smooth estimate of \(G^{(0,\nu)}(s,t) \) obtained by for example local polynomial smoothing, and \(\hat{\phi}_k \) an estimate of the \(k \)-th eigenfunction. The derivative \(X^{(\nu)}_i \) is thus represented by

\[
\hat{X}^{(\nu)}_{i,K}(t) = \hat{\mu}^{(\nu)}(t) + \sum_{k=1}^{K} \hat{\xi}_{ik} \hat{\phi}^{(\nu)}_k(t),
\]

where \(K \) is a suitably chosen integer which needs to be data-adaptive, for example by cross-validation (Rice and Silverman 1991), AIC (Shibata 1981), BIC (Schwarz 1978), and fraction of variance explained (Liu and Müller 2009).

A conceptual problem with this approach is that the eigenfunction derivatives \(\phi^{(\nu)}_k, k = 1, 2, \ldots \) are not the orthogonal eigenfunctions of the derivatives \(X^{(\nu)}_i \). Consequently this approach does not lead to the Karhunen–Loève expansion of derivatives, and therefore is suboptimal in terms of parsimoniousness. This motivates our next goal, to obtain the actual Karhunen–Loève representation for derivatives.

2.2 Karhunen–Loève Representation for Derivatives

To obtain the Karhunen–Loève representation for derivatives, consider the covariance function \(G_\nu(s,t) = \text{cov}(X^{(\nu)}(s), X^{(\nu)}(t)) \) of \(X^{(\nu)}, s, t \in \mathcal{T} \), a symmetric, positive definite and continuous function on \(\mathcal{T} \times \mathcal{T} \). The associated autocovariance operator \((A_{G_\nu}f)(t) = \int_\mathcal{T} G_\nu(s,t)f(s)ds\) for
\(f \in L^2(T)\) is a linear Hilbert-Schmidt operator with eigenvalues denoted by \(\lambda_{k,\nu}\) and orthogonal eigenfunctions \(\phi_{k,\nu}\), \(k = 1, 2, \ldots\). This leads to the representation

\[
G_{\nu}(s, t) = \sum_{k=1}^{\infty} \lambda_{k,\nu} \phi_{k,\nu}(s) \phi_{k,\nu}(t),
\]

with \(\lambda_{1,\nu} > \lambda_{2,\nu} > \cdots \geq 0\), and the Karhunen–Loève representation for the derivatives \(X_i^{(\nu)}\),

\[
X_i^{(\nu)}(t) = \mu^{(\nu)}(t) + \sum_{k=1}^{\infty} \xi_{ik,\nu} \phi_{k,\nu}(t), \quad t \in T,
\]

with DPCs \(\xi_{ik,\nu} = \int_T (X_i^{(\nu)}(t) - \mu^{(\nu)}(t)) \phi_{k,\nu}(t) dt\), for \(i = 1, \ldots, n, k \geq 1\). For practical applications, one employs a truncated Karhunen–Loève representation

\[
X_i^{(\nu)}(t) = \mu^{(\nu)}(t) + \sum_{k=1}^{K} \xi_{ik,\nu} \phi_{k,\nu}(t),
\]

with a finite \(K \geq 1\).

In contrast to equation (2), where derivatives of eigenfunctions are used in conjunction with the FPCs of processes \(X\) to represent \(X_i^{(\nu)}\), the proposed approach is based on the derivative principal component scores \(\xi_{ik,\nu}\) (DPCs) and the derivative eigenfunctions \(\phi_{k,\nu}\). Note that the proposed representation (6) is more efficient in representing \(X_i^{(\nu)}\) than using (3), i.e., it holds that

\[
\sum_{k=1}^{K} \lambda_{k,\nu} \geq \sum_{k=1}^{\infty} \lambda_k \int \{\phi_k^{(\nu)}(t)\}^2 dt, \quad \text{for all } K \geq 1.
\]

In other words, for any finite integer \(K \geq 1\), the proposed representation (6) captures at least as much or more variation than the representation as in (3).

The eigenfunctions of the derivatives can be obtained by the spectral decomposition of \(G_{\nu}\). Define \(G^{(\nu,\nu)} = \partial^{2\nu} G / (\partial s^\nu \partial t^\nu)\). Under regularity conditions,

\[
G_{\nu}(s, t) = E \left\{ \frac{\partial^{\nu}}{\partial s^\nu} \frac{\partial^{\nu}}{\partial t^\nu} [X_i(s) - \mu(s)] [X_i(t) - \mu(t)] \right\} = G^{(\nu,\nu)}(s, t),
\]

i.e. the covariance of derivatives is equal to a mixed partial derivative of the covariance function \(G(s, t)\). To fully implement this approach, we need to identify the components of the representation (5), as described in the next subsection.
2.3 Sampling Model and BLUP

The sampling model needs to reflect that longitudinal data are typically sparsely sampled with random locations of the design points, while functional data such as the spectral data discussed in Subsection 6.2 are sampled at a dense grid of design points. Assuming that for the i-th trajectory X_i, $i = 1, \ldots, n$, one obtains measurements Y_{ij} made at random times $T_{ij} \in T$, for $j = 1, \ldots, N_i$, where for sparse longitudinal designs one has that the number of observations per subject N_i is bounded, while for dense functional designs $N_i = m \to \infty$. For both scenarios the observed data are assumed to be generated as

$$Y_{ij} = X_i(T_{ij}) + \epsilon_{ij} = \mu(T_{ij}) + \sum_{k=1}^{\infty} \xi_{ik} \phi_k(T_{ij}) + \epsilon_{ij}, \quad (9)$$

where ϵ_{ij} are i.i.d. measurement errors with $E(\epsilon_{ij}) = 0$ and $\text{var}(\epsilon_{ij}) = \sigma^2$, independent of X_i, and the T_{ij} are generated according to some fixed density f, which has certain properties. All expected values in the following are interpreted to be conditional on the random locations T_{ij}, which is not explicitly indicated in the following.

Let Σ_{Y_i} be an $N_i \times N_i$ matrix representing the covariance of Y_i with (j,l)-th element $(\Sigma_{Y_i})_{j,l} = \text{cov}(Y_{ij}, Y_{il}) = G(T_{ij}, T_{il}) + \sigma^2 \delta_{jl}$, where $\delta_{jl} = 1$ if $j = l$ and 0 otherwise. In addition, μ_i is a vector obtained by evaluating the mean function at the vector $(T_{i1}, \ldots, T_{iN_i})$ of measurement times, and $\zeta_{ik,\nu}$ is a column vector of length N_i with j-th element $\text{cov}(\xi_{ik,\nu}, Y_{ij}), j = 1, 2, \ldots, N_i$, where

$$\text{cov}(\xi_{ik,\nu}, Y_{ij}) = E \left[\int (X_i^{(\nu)}(s) - \mu^{(\nu)}(s)) \phi_{k,\nu}(s) ds \{ X_i(T_{ij}) - \mu(T_{ij}) \} \right]$$

$$= \int E \left[(X_i^{(\nu)}(s) - \mu^{(\nu)}(s))(X_i(T_{ij}) - \mu(T_{ij})) \right] \phi_{k,\nu}(s) ds$$

$$= \int G^{(\nu,0)}(s, T_{ij}) \phi_{k,\nu}(s) ds. \quad (10)$$

For the prediction of the DPCs $\xi_{ik,\nu}$, we use best linear unbiased predictors (BLUP, Rice and Wu 2001)

$$\tilde{\xi}_{ik,\nu} = \zeta_{ik,\nu}^T \Sigma^{-1}_{Y_i}(Y_i - \mu_i), \quad (11)$$

which is always defined without distributional assumptions. In the special case that errors ϵ and processes X are jointly Gaussian, $\tilde{\xi}_{ik,\nu}$ equals the conditional expectation of $\xi_{ik,\nu}$ given Y_i, which is the optimal prediction of $\xi_{ik,\nu}$ under squared error loss.
For estimation, we provide details for the most important case of the first derivative where $\nu = 1$. Higher order derivatives are handled similarly. By (5), approximate derivative representations are given by

$$X_{i,K}^{(1)}(t) = \mu^{(1)}(t) + \sum_{k=1}^{K} \xi_{ik,1}\phi_{k,1}(t),$$

with approximation errors $\int(X_{i,K}^{(1)}(t) - X_i^{(1)}(t))^2 dt = \sum_{k=K+1}^{\infty} \lambda_{k,1}$, the convergence rate of which is determined by the decay rate of the $\lambda_{k,1}$. We then obtain plug-in estimates for $X_{i,K}^{(1)}$, $i = 1, 2, \ldots, n$, by substituting $\mu^{(1)}, \phi_{k,1}$ and $\xi_{ik,1}$ in (12) with corresponding estimates, leading to

$$\hat{X}_{i,K}^{(1)}(t) = \hat{\mu}^{(1)}(t) + \sum_{k=1}^{K} \hat{\xi}_{ik,1}\hat{\phi}_{k,1}(t).$$

Here we obtain $\hat{\mu}^{(1)}(t)$ by applying local polynomial smoothing to a pooled scatterplot which aggregates the observed measurements from all sample trajectories, and $\hat{\lambda}_{k,1}$ and $\hat{\phi}_{k,1}(t)$ by spectral decomposition of $\hat{G}^{(1,1)}$, where $\hat{G}^{(1,1)}$ is the estimate for the mixed first-order partial derivative of $G(s, t)$, obtained by two-dimensional local polynomial smoothing. For more details and related discussion about these estimates of $\mu^{(1)}(t)$ and $G^{(1,1)}(s, t)$ we refer to Appendix A.1.

Estimating the DPCs $\xi_{ik,1}$ is an essential step for representing derivatives as in (12). From the definition $\xi_{ik,\nu} = \int (X_i^{(\nu)}(t) - \mu^{(\nu)}(t))\phi_{k,\nu}(t)dt$, it seems plausible to obtain $\hat{\xi}_{ik,1}$ using plug-in estimates and numerical integration, $\hat{\xi}_{ik,1} = \int \{\hat{X}_{i,K}^{(1)}(t) - \hat{\mu}^{(1)}(t)\}\hat{\phi}_{k,1}(t)dt$. However, this approach requires that one already has derivative estimates $\hat{X}_{i,K}^{(1)}(t)$, which is not viable, especially for sparse/longitudinal designs.

An alternative approach is to construct BLUPs $\tilde{\xi}_{ik,\nu}$ from the observed measurements Y_i that were made at time points $T_i = (T_{i1}, T_{i2}, \ldots, T_{iN_i})^T$ as in (11), where $\tilde{\xi}_{ik,\nu}$ can be consistently estimated. Applying (11) for $\nu = 1$, the BLUP for $\xi_{ik,1}$ given observations Y_i is

$$\tilde{\xi}_{ik,1} = \zeta_{ik}^{-1}(Y_i - \mu_i),$$

where ζ_{ik} is the covariance vector of $\xi_{ik,1}$ and Y_i with length N_i and j-th element $\zeta_{ikj} = \int G^{(1,0)}(s, T_{ij})\phi_{k,1}(s)ds$, as per (10). Estimates $\hat{\xi}_{ik,1}$ for the $\hat{\xi}_{ik,1}$ are then obtained by substituting estimates for ζ_{ik}, Σ_{Y_i}, and μ_i in (13), i.e.

$$\hat{\xi}_{ik,1} = \hat{\zeta}_{ik}^{-1}(Y_i - \hat{\mu}_i),$$

where $\hat{\zeta}_{ikj} = \int \hat{G}^{(1,0)}(s, T_{ij})\hat{\phi}_{k,1}(s)ds$ and $(\hat{\Sigma}_{Y_i})_{j,l} = \hat{G}(T_{ij}, T_{il}) + \hat{\sigma}^2\delta_{jl}$.

3 Estimation of Derivative Principal Components
Note that when the joint Gaussianity of ϵ and X holds, $\tilde{\xi}_{ik,1}$ is the conditional expectation of $\xi_{ik,1}$ given Y_i and thus is the best prediction. The required estimates $\hat{G}^{(1,0)}(s,T_{ij})$ of the partial derivative of the covariance function and estimates $\hat{G}(T_{ij},T_{il})$ can be obtained by local polynomial smoothing (Liu and Müller (2009) equation (7)). In addition, estimates $\hat{\sigma}^2$ of the error variance σ^2 may be obtained using the method described in equation (2) of Yao et al. (2005).

In practice, the number of included components K may be chosen by a variety of methods, including leave-one-curve-out cross-validation (Rice and Silverman 1991), pseudo-AIC (Shibata 1981), or pseudo-BIC (Schwarz 1978; Yao et al. 2005). Another fast and stable option that works quite well in practice is to choose the smallest K so that the inclusion of the first K components explains a preset level of variation, which can be set at 90%.

4 Asymptotic Results

We take a unified approach in our estimation procedure for the DPCs and other model components that encompasses both the dense and the sparse case. Estimation of the derivatives of the mean and the covariance function, and the derivative eigenfunctions are based on smoothing the pooled scatter plots (Zhang and Wang 2016); the estimation for the DPCs is based on best linear unbiased predictors as in (14). Best linear predictors are equivalent to conditional expectations if Gaussian assumptions are satisfied. We derive convergence rate results, which make use of a novel argument for the dense case. Consistency of the estimator $\hat{X}_{i,K}^{(1)}$ for $X_{i,K}^{(1)}$ can be obtained by utilizing the convergence of estimators $\hat{\mu}^{(1)}(t)$, $\hat{\xi}^{(1,1)}(s,t)$, and $\hat{\xi}_{ik,1}$ to their respective targets $\mu^{(1)}(t)$, $G^{(1,1)}(s,t)$, and $\xi_{ik,1}$ as in Theorem 1 and 2 below. Regularity conditions include assumptions on the number and distribution of the design points, smoothness of the mean and the covariance functions, bandwidth choices, and moments for $X(t)$, as detailed in Appendix A.2.

The following result provides asymptotic convergence rates in the supremum norm for the estimates of the mean and the covariance functions for derivatives and the corresponding estimates of eigenfunctions. Note that each of the first three theorems below covers two separate cases, the case of sparse/longitudinal designs where the number of design points N_i is bounded and the case of dense/functional designs where $N_i = m \rightarrow \infty$. For convenience of notation we
define the rates

\[a_{n1} = h^2_{\mu} + \sqrt{\frac{\log(n)}{n h_{\mu}}}, \quad b_{n1} = h^2_{G} + \sqrt{\frac{\log(n)}{n h^2_{G}}}, \]
\[a_{n2} = h^2_{\mu} + \sqrt{\left(1 + \frac{1}{mh_{\mu}}\right) \frac{\log(n)}{n}}, \quad b_{n2} = h^2_{G} + \left(1 + \frac{1}{mh_{G}}\right) \sqrt{\frac{\log(n)}{n}}. \]

\[(15) \]

\[(16) \]

Theorem 1. Suppose (A1)--(A8) in Appendix A.2 hold. Setting \(a_n = a_{n1} \) and \(b_n = b_{n1} \) for the sparse case when \(N_i \leq N_0 < \infty \), and \(a_n = a_{n2} \) and \(b_n = b_{n2} \) for the dense case when \(N_i = m \to \infty \), for \(i = 1, \ldots, n \),

\[\sup_{t \in T} | \hat{\mu}^{(1)}(t) - \mu^{(1)}(t) | = O(a_n) \quad \text{a.s.}, \]
\[\sup_{s,t \in T} | \hat{G}^{(1,1)}(s,t) - G^{(1,1)}(s,t) | = O(a_n + b_n) \quad \text{a.s.}, \]
\[\sup_{t \in T} | \hat{\phi}_{k,1}(t) - \phi_{k,1}(t) | = O(a_n + b_n) \quad \text{a.s.} \]

\[(17) \]

\[(18) \]

\[(19) \]

for any \(k \geq 1 \).

This result covers both the sparse and the dense case and provides the basis for the convergence of the DPCs. For ease of notation, denote \(\alpha_n \propto \beta_n \) if \(K_1 \alpha_n \leq \beta_n \leq K_2 \alpha_n \) for some constants \(0 < K_1 < K_2 < \infty \). In the sparse case, the optimal supremum convergence rates for \(\hat{G}^{(1,1)} \) and \(\hat{\phi}_{k,1} \) are of order \(O((n/\log(n))^{-1/3}) \) almost surely, achieved for example if \(h_{\mu} \propto (n/\log(n))^{-1/5}, \ h_{G} \propto (n/\log(n))^{-1/6}, \ alpha > 5/2 \) and \(\beta > 3 \) as in (A6) and (A8). In the dense case, if the number of observations per curve \(m \) is at least of order \((n/\log(n))^{1/4} \), then a root-\(n \) rate is achieved for our estimates if \(h_{\mu}, h_{G} \propto (n/\log(n))^{-1/4}, \ alpha > 4 \), and \(\beta > 4 \).

Using asymptotic results in Liu and Müller (2009) for auxiliary estimates of the mean and the covariance functions and their derivatives or partial derivatives, one can apply the results in **Theorem 1** to obtain the following asymptotic convergence rates of \(\hat{\xi}_{ik,1} \) towards the appropriate target, which is \(\tilde{\xi}_{ik,1} \) as in equation (13) for the sparse case and \(\xi_{ik,1} \) in the dense case.

Theorem 2. Under the conditions of **Theorem 1**,

\[| \hat{\xi}_{ik,1} - \tilde{\xi}_{ik,1} | = O_p(N^2_i(a_n + b_n)). \]
\[(20) \]

If furthermore (A9) holds, \((X, \epsilon) \) are jointly Gaussian, and \(N_i = m \to \infty \), then

\[| \hat{\xi}_{ik,1} - \xi_{ik,1} | = O_p(m^{-1/2}). \]
\[(21) \]
For example, in the sparse case if we choose \(h_\mu \asymp (n/\log(n))^{-1/5} \) and \(h_G \asymp (n/\log(n))^{-1/6} \), then \(|\hat{\xi}_{ik,1} - \tilde{\xi}_{ik,1}| = O_p((n/\log(n))^{-2/5}) \). In the dense case, the \(\xi_{ik,1} \) can be consistently estimated if \(mh_\mu \to 0 \), \(mh_G \to 0 \), and \(m = o((n/\log(n))^{1/4}) \), with the optimal rate for \(|\hat{\xi}_{ik,1} - \xi_{ik,1}| = O_p((n/\log(n))^{-1/3}m^{4/3} + m^{-1/2}) \), which is achieved when \(h_\mu, h_G = (n/\log(n))^{-1/6}m^{-1/3} \).

For the next two theorems, we define \(\hat{X}_{i,K}^{(1)} \) similarly to \(X_{i,K}^{(1)} \) in (12) except that we replace the population quantities by their corresponding estimates, and \(\tilde{X}_{i,K}^{(1)} \) by replacing \(\xi_{ik,1} \) by \(\tilde{\xi}_{ik,1} \) in (12).

Theorem 3. Assume the conditions of Theorem 1 hold. For all \(i = 1, 2, \ldots, n \) and any fixed integer \(K \),

\[
\sup_{t \in \mathcal{T}} |X_{i,K}^{(1)}(t) - \tilde{X}_{i,K}^{(1)}(t)| = O_p(N_t^2(a_n + b_n)).
\]

(22)

If furthermore (A9) holds, \((X, \epsilon)\) are jointly Gaussian, and \(N_i = m \to \infty \), then

\[
\sup_{t \in \mathcal{T}} |\tilde{X}_{i,K}^{(1)}(t) - X_{i,K}^{(1)}(t)| = O_p(m^2(a_n + b_n) + m^{-1/2}).
\]

(23)

If again we choose the bandwidths as described after Theorem 2, then in the sparse case \(\sup_{t \in \mathcal{T}} |\hat{X}_{i,K}^{(1)}(t) - \tilde{X}_{i,K}^{(1)}(t)| = O_p((n/\log(n))^{-2/5}) \), and in the dense case \(\sup_{t \in \mathcal{T}} |\hat{X}_{i,K}^{(1)}(t) - X_{i,K}^{(1)}(t)| = O_p((n/\log(n))^{-1/3}m^{4/3} + m^{-1/2}) \).

5 Simulation Studies

To examine the practical utility of the DPCs, we compared them with various alternatives under different simulation settings, which included a dense and a sparse design. To evaluate the performance of each method in terms of recovering the true derivative trajectories, we examined the mean and standard deviation of the relative mean integrated square errors (RMISE), defined as

\[
\text{RMISE} = \frac{1}{n} \sum_{i=1}^{n} \frac{\int_0^1 \{\hat{X}_{i}^{(1)}(t) - X_{i}^{(1)}(t)\}^2 dt}{\int_0^1 \{X_{i}^{(1)}(t)\}^2 dt}.
\]

(24)

The following methods were included in the comparisons: the proposed approach based on model (5), referred to as DPCA; and a PACE method (Yao et al. 2005) followed by differentiating the eigenfunctions of observed processes as in Liu and Müller (2009), corresponding to (2), referred to as FPC approach or FPCA. Each simulation consisted of 400 Monte Carlo samples with the number of random trajectories chosen as \(n = 200 \) per simulation sample.
We emphasize that our methodology is intended to address the difficult problem of derivative estimation for the case of sparse designs. However, the Karhunen–Loève expansion for derivatives is of interest in itself and therefore also applicable to densely sampled functional data. Specifically, the proposed method also has advantages for densely sampled data with large measurement errors. Only applicable for the case of dense designs, another straightforward approach to obtain derivatives is LOCAL, a method that corresponds to local quadratic smoothing of each trajectory separately, then taking the coefficient at the linear term as estimate of the derivative; and SMOOTH-DQ, where difference quotients are smoothed with local linear smoothers. These two methods are obvious tools to obtain derivatives, but their application is only reasonable for densely sampled trajectories as these methods are obviously not appropriate for sparsely sampled functional data.

All simulated longitudinal data were generated according to the data sampling model described in Section 2, with mean function \(\mu(t) = 4t + (0.02\pi)^{-1/2}\exp\left(-\frac{(t - 0.5)^2}{2(0.1)^2}\right) \); five eigenfunctions \(\phi_k(t) \) which are the \(k \)th orthonormal Legendre polynomial on \([0, 1] \); eigenvalues \(\lambda_k = 3, 2, 1, 0.1, 0.1 \) for \(k = 1, \ldots, 5 \); and FPC scores \(\xi_{ik} \) generated from \(\mathcal{N}(0, \lambda_k) \), \(k = 1, 2, \ldots, 5 \). The additional measurement errors \(\epsilon_{ij} \) were i.i.d generated from \(\mathcal{N}(0, \sigma^2) \), where the value of \(\sigma \) varied for different simulation settings. The following two simulation scenarios were considered:

Simulation A – Sparsely Sampled Longitudinal Data. The number of observations for each trajectory, denoted by \(N_i \), was generated from a discrete uniform distribution from 2 to 9. The measurement times of the observations were randomly sampled in \([0, 1] \) according to a Beta(2/3, 1) distribution with mean 0.4 and standard deviation 0.3, so that the design is genuinely sparse and unbalanced. Measurement errors were generated by a Gaussian distribution with standard deviation \(\sigma = 0.5 \) or \(\sigma = 1 \).

Simulation B – Densely Sampled Functional Data. Each random trajectory consists of 51 equidistant observations measured at the same dense time grid on the interval \([0, 1] \). In this setting, the proposed DPC method is compared with FPC, LOCAL and SMOOTH-DQ. In LOCAL, we estimate the derivatives by applying local quadratic smoothing to individual subjects, with bandwidth selected by minimizing the average cross-validated integrated squared deviation between the resulting derivatives and the raw difference quotients formed from adjacent
measurements. In SMOOTH-DQ, individual derivative trajectories are estimated by local linear smoothing of the difference quotients, with smoothing bandwidth chosen by a similar strategy as for LOCAL. Gaussian measurement errors were added with standard deviation $\sigma = 1$ or $\sigma = 2$.

For the smoothing steps, Gaussian kernels were used and the bandwidths h_μ, h_G were selected by a generalized cross-validation method (GCV). For DPC, we took the partial derivative of $\hat{G}^{(0,0)}$ to obtain $\hat{G}^{(1,0)}$, which was superior in performance compared to smoothing the raw data directly, and then we applied a one-dimensional smoother on $\hat{G}^{(1,0)}$ to obtain $\hat{G}^{(1,1)}$, where the smoothing bandwidth was chosen to be the same as h_G. The smoothers for $\hat{G}^{(1,0)}$ and $\hat{G}^{(1,1)}$ enjoy better finite sample performance than two-dimensional smoothers due to more stable estimates and better boundary behavior. We let the number of components K range from 1 to 5 for estimating the derivative curves, and we also included an automatic selection of K based on FVE with threshold 90%. The population fraction of variance explained for FPC is $\sum_{k=1}^{5} \lambda_k \int \phi_k^{(\nu)}(t)^2 dt / \sum_{k=1}^{5} \lambda_{k,\nu}$, which were 0%, 18%, 61%, 74%, 100% for $K = 1, \ldots, 5$, respectively. In contrast, the FVEs for DPC are $\sum_{k=1}^{5} \lambda_{k,\nu} / \sum_{k=1}^{5} \lambda_{k,\nu}$, which were 56%, 77%, 92%, 100%, 100% in our simulation. It is evident that DPC explains more variance than FPC given the same number of components, as expected in view of (7).

The results for sparse and irregular designs (Simulation A) are shown in Table 1. For sparse and irregular designs, the sparsity of the observations for each subject precludes the applicability of LOCAL and SMOOTH-DQ, so we compared the proposed DPCA only with FPCA, given that the latter was shown to have much better performance compared to mixed effect modeling with B-splines in Liu and Müller (2009). We also include the RMISE for the simple-minded approach of estimating individual derivatives by the estimated population mean derivative $\hat{\mu}^{(1)}$.

As the results in Table 1 demonstrate, given the same number of components K, the representation of derivatives with DPCA works equally well or better than FPCA in terms of RMISE, where in the latter derivatives are represented with the standard FPCs and the derivatives of the eigenfunctions. The DPC method performs well with as few as $K = 2$ components, while FPC performs well only when $K \geq 3$. The performance over individual trajectories for representation with $K = 2$ is illustrated in Figure 1, which shows the derivative curves and corresponding estimates by the FPC and DPC approaches for four randomly selected samples generated under measurement error $\sigma = 1$. We find that in the sparse case the estimated derivatives using FPCA
Table 1: RMISE for Simulation A, sparse designs, with error standard deviations $\sigma = 0.5$ or $\sigma = 1$. We report the mean of the RMISE based on 400 Monte Carlo repeats, where the standard deviations are all between 0.07 and 0.09 (not shown). The first 5 columns correspond to FPCA and DPCA using different fixed numbers of components K; the 6th column corresponds to selecting K according to FVE, with the mean of the selected K in brackets.

<table>
<thead>
<tr>
<th>$\sigma = 0.5$</th>
<th>$K = 1$</th>
<th>$K = 2$</th>
<th>$K = 3$</th>
<th>$K = 4$</th>
<th>$K = 5$</th>
<th>FVE</th>
<th>$\mu^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPCA</td>
<td>0.59</td>
<td>0.53</td>
<td>0.44</td>
<td>0.43</td>
<td>0.44</td>
<td>0.44 (4.6)</td>
<td>0.59</td>
</tr>
<tr>
<td>DPCA</td>
<td>0.50</td>
<td>0.44</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43 (2.2)</td>
<td>0.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\sigma = 1$</th>
<th>$K = 1$</th>
<th>$K = 2$</th>
<th>$K = 3$</th>
<th>$K = 4$</th>
<th>$K = 5$</th>
<th>FVE</th>
<th>$\mu^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPCA</td>
<td>0.60</td>
<td>0.54</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46 (4.5)</td>
<td>0.59</td>
</tr>
<tr>
<td>DPCA</td>
<td>0.52</td>
<td>0.47</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46 (2.2)</td>
<td>0.59</td>
</tr>
</tbody>
</table>

and DPCA are overall similar.

![Figure 1: True derivative curves and the corresponding estimates obtained by FPCA and DPCA, for four randomly selected sparsely sampled trajectories generated in Simulation A (sparse designs) with $\sigma = 2$. Each of the four panels represents an individual derivative trajectory and consists of the true underlying derivative (solid), the derivative estimates by FPCA (dashed) and by DPCA (dash-dot).](image)

The results for Simulation B for dense designs are shown in Table 2. We found that under both small ($\sigma = 1$) and large ($\sigma = 2$) measurement errors, the proposed DPC method clearly outperforms the other three methods in terms of RMISE. The runner-up among the other
methods is FPC, but it became highly unstable for more than five components. Performance for all methods was better with smaller measurement errors (σ = 1), due to the fact that it is particularly difficult to infer derivatives in situations with large measurement errors. Also, unsurprisingly, under the same level of measurement errors, all methods achieve smaller RMISE for dense designs, compared to their respective performance under sparse designs. This shows that the DPC method has a significant advantage over the FPC method in the dense setting.

Table 2: Relative mean integrated squared errors (RMISE) for Simulation B, dense designs, with error standard deviation σ = 1 or σ = 2. We report the mean of the RMISE based on 400 Monte Carlo repeats, where the standard deviations are all between 0.01 and 0.02 for all except LOCAL. For LOCAL, the derivative of each curve is estimated individually using local quadratic kernel smoothing; for SMOOTH-DQ, the derivative of each curve is obtained via smoothing of the difference quotients of the observed measurements. The first 5 columns correspond to FPCA and DPCA using different numbers of fixed K; the 6th column corresponds to selecting K according to FVE, with the mean of the selected K in brackets.

<table>
<thead>
<tr>
<th>σ = 1</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 3</th>
<th>K = 4</th>
<th>K = 5</th>
<th>FVE</th>
<th>LOCAL</th>
<th>SMOOTH-DQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPCA</td>
<td>0.51</td>
<td>0.42</td>
<td>0.27</td>
<td>0.2</td>
<td>0.16</td>
<td>0.16 (5.0)</td>
<td>0.23</td>
<td>0.65</td>
</tr>
<tr>
<td>DPCA</td>
<td>0.32</td>
<td>0.22</td>
<td>0.16</td>
<td>0.13</td>
<td>0.08</td>
<td>0.13 (3.9)</td>
<td>0.51</td>
<td>0.76</td>
</tr>
<tr>
<td>σ = 2</td>
<td>K = 1</td>
<td>K = 2</td>
<td>K = 3</td>
<td>K = 4</td>
<td>K = 5</td>
<td>FVE</td>
<td>LOCAL</td>
<td>SMOOTH-DQ</td>
</tr>
<tr>
<td>FPCA</td>
<td>0.51</td>
<td>0.43</td>
<td>0.29</td>
<td>0.27</td>
<td>0.26</td>
<td>0.26 (5.0)</td>
<td>0.51</td>
<td>0.76</td>
</tr>
<tr>
<td>DPCA</td>
<td>0.34</td>
<td>0.26</td>
<td>0.22</td>
<td>0.19</td>
<td>0.18</td>
<td>0.20 (3.9)</td>
<td>0.51</td>
<td>0.76</td>
</tr>
</tbody>
</table>

6 Applications

6.1 Modeling Derivatives of Tammar Wallaby Body Length Data

We apply the proposed DPC approach for derivative estimation first to the Wallaby growth data, which can be found at http://www.statsci.org/data/oz/wallaby.html, from the Australian Dataset and Story Library (OzDASL). This dataset includes body length measurements for 36 tammar wallabies (Macropus eugenii), which were longitudinally taken and collected from wallabies in their early age. A detailed introduction of the dataset is given by Mallon (1994). To gain a better understanding of the growth pattern of wallabies, we investigated the dynamics of their body length growth by estimating the derivatives of their growth trajectories.
One main difficulty of this study is that the body length measurements are very sparse, irregular, and fragmentary as shown in Figure 2, making these data a good test case to reveal the difficulties in recovering derivatives from sparse longitudinal designs. The 36 wallabies included in the dataset had their body length measured from 1 to 12 times per subject, with a median of 3.5 measurements per subject.

Figure 2: The trajectory spaghetti plot of body length growth for 36 wallabies. The recorded measurements over time for each wallaby are quite sparse, with measurement counts ranging from 1 to 12.

Aiming at a number of components with 90% FVE leads to inclusion of the first $K = 3$ derivative eigenfunctions. The estimated first derivative of the mean function, eigenfunctions of the original growth trajectories and those of the derivatives by the proposed approach are shown in Figure 3. The average dynamic changes in body length are represented by the mean derivative function (upper left panel), which exhibits a monotonically decreasing trend, from greater than 25 cm/yr at age 1 to less than 10 cm/yr at age 1.8, where the decline rate of the mean derivative function becomes generally slower as age increases. The first eigenfunction (solid) of the trajectories reflects overall body length at different ages, the second eigenfunction (dashed) characterizes a contrast in length between early and late stages, and the third eigenfunction
(dotted) corresponds to a contrast between a period around 1.5 years and the other stages (upper right panel).

![Figure 3](image)

Figure 3: Upper left: estimated mean derivative function of the body length for wallabies; upper right: estimated first three eigenfunctions of body length trajectories, explaining 97%, 2.4%, and 0.59% of overall variance, respectively; lower left: estimated derivatives of the eigenfunctions of body length trajectories; lower right: estimated eigenfunctions for derivatives, explaining 62.8%, 26.1%, and 10.9% of overall variance in the derivatives. First, second and third eigenfunctions are denoted by solid, dashed, and dotted lines, respectively.

The primary mode of dynamic changes in body length, as reflected by the first eigenfunction of the derivatives in the lower right panel (solid) of Figure 3, represents the overall speed of growth which has a decreasing trend as wallabies get older. The second mode of dynamic variation is determined by the second eigenfunction of the derivatives (dashed) that mainly contrasts dynamic variation during young age with that of late ages. The third eigenfunction of the derivatives (dotted) emphasizes growth variation around age 1.38 and stands for a contrast of
growth speed between middle age and early/late ages. The eigenfunctions of derivatives are seen to clearly differ from the derivatives of the eigenfunctions (lower left panel) of the trajectories themselves, and are well interpretable.

Figure 4: Data and corresponding estimated derivatives of body length growth for four randomly selected wallabies. Left panels: original body length data connected by lines; right panels: the derivative estimates obtained by FPCA (dash-dot) and the proposed DPCA (dashed).

Figure 4 exhibits the trajectories and corresponding derivatives estimates by FPCA and DPCA for four randomly selected wallabies, where the derivatives were constructed using $K = 3$ components, the smallest number that leads to 90% FVE. Here the DPC-derived derivatives are
seen to be reflective of the data dynamics.

6.2 Classifying Wheat Spectra

In the second example we apply the proposed DPC approach to the near infrared (NIR) spectral dataset of wheat, which consists of NIR spectra of 87 wheat samples with known protein content. The spectra of the samples were measured by diffuse reflectance from 1100 to 2500 nm with 10 nm intervals, as displayed in the left panel of Figure 5. For these data, it is of interest to investigate whether the spectrum of a wheat sample can be utilized to predict its protein content. Protein content is an important factor for wheat storage, and higher protein contents may increase the market price. For a more detailed description of these data, we refer to Kalivas (1997). Functional data analysis of these data has been studied by various authors, including Reiss and Ogden (2007), and Delaigle and Hall (2012).

![Figure 5: Left panel: observed trajectories for the NIR spectra of 87 wheat samples (high: solid; low: dashed). Right panel: estimated derivatives of the wheat sample NIR spectra trajectories using DPCA, based on the first four DPCs.](image)

As can be seen from the left panel of Figure 5, the wheat samples are found to exhibit very similar spectral patterns: the overall trend for all trajectories is increasing, with three major local peaks appearing at wavelengths around 1200 nm, 1450 nm and 1950 nm. The trajectories are almost parallel to each other, with only minor differences in the overall level. The response to be predicted is the protein content of a wheat sample, which is grouped into categories—
high if a sample has more than 11.3% protein, and low if less than 11.3%. From the trajectory graphs it appears to be a non-trivial problem to classify the wheat samples, since the trajectories corresponding to the high protein wheats are highly spread out vertically and overlap on the lower side with those corresponding to the low group.

It has been suggested (Delaigle and Hall 2012) that derivatives of wheat spectra are particularly suitable for classification of these spectra. We therefore applied the proposed DPCA for the fitting of these spectra and this leads to the estimated derivatives of wheat spectra shown in the right panel of Figure 5. These fits are based on including the first four DPCs, which collectively explain 99.2% of the total variation in the derivatives.

Table 3: The mean fraction of misclassified samples, by randomly taking 30 samples as the training set and the rest 57 samples as the test set. The standard deviations of the misclassification rates are between 0.05 and 0.07. Classification models were built with different numbers of FPCs and DPCs, respectively. The first 8 columns are for fixed K ranging from 1 to 8; the last column corresponds to selecting K by 5-fold CV, with the mean of the chosen K in brackets.

<table>
<thead>
<tr>
<th></th>
<th>$K = 1$</th>
<th>$K = 2$</th>
<th>$K = 3$</th>
<th>$K = 4$</th>
<th>$K = 5$</th>
<th>$K = 6$</th>
<th>$K = 7$</th>
<th>$K = 8$</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPCA</td>
<td>0.274</td>
<td>0.253</td>
<td>0.267</td>
<td>0.284</td>
<td>0.293</td>
<td>0.280</td>
<td>0.273</td>
<td>0.280</td>
<td>0.282 (3.5)</td>
</tr>
<tr>
<td>DPCA</td>
<td>0.503</td>
<td>0.238</td>
<td>0.249</td>
<td>0.259</td>
<td>0.274</td>
<td>0.284</td>
<td>0.294</td>
<td>0.299</td>
<td>0.264 (3.5)</td>
</tr>
</tbody>
</table>

For a comparative evaluation of the performance of using FPCA as opposed to DPCA for the purpose of classifying protein contents of wheat samples, we used a logistic regression with one to eight FPCs or DPCs as predictors. We randomly drew 30 samples as training sets and 57 as test sets, repeated this 500 times and report the average misclassification rates for the test sets in Table 3, in which the first eight columns stand for using a fixed number of components, and the last column for selecting K based on 5-fold CV, minimizing the misclassification rate. We found that the DPCA-based classifier outperforms the FPCA-based classifier if two to five predictor components were included, or if CV was used to select K. The minimal misclassification rate is 23.8% using two components, while the best FPCA-based misclassification rate is 25.3%. The poor performance of DPCA when $K = 1$ indicates the first DPC does not provide information for classification alone, while the second DPC may be a superior predictor of interest. While there are some improvements in the misclassification rates when using DPCs, they are relatively small in terms of misclassification error.
Appendix

A.1 Estimating Mean Function and Eigenfunctions For Derivatives

To implement representation (12), one needs to obtain \(\mu^{(1)}(t) \), the first order derivative of the mean function. Let \(N = \sum_{i=1}^{n} N_i, w_i = N^{-1}, \) and \(v_i = \left[\sum_{i=1}^{n} N_i(N_i - 1) \right]^{-1} \). Applying local quadratic smoothing to a pooled scatterplot, one may aggregate the observed measurements from all sample trajectories and minimize

\[
\sum_{i=1}^{n} w_i \sum_{j=1}^{N_i} K_{h_{\mu}} \left(\frac{T_{ij} - t}{h_{\mu,1}} \right) \left[Y_{ij} - \sum_{p=0}^{2} \alpha_p (T_{ij} - t)^p \right]^2 \tag{25}
\]

with respect to \(\alpha_p, p = 0, 1, 2 \). The minimizer \(\hat{\alpha}_1(t) \) is the estimate of \(\mu^{(1)}(t) \), i.e. \(\hat{\mu}^{(1)}(t) = \hat{\alpha}_1(t) \) (Liu and Müller 2009, equation (5)). Here \(K_h(x) = h^{-1}K(x/h) \), and \(K(\cdot) \) is a univariate density function, and \(h_{\mu} \) is a positive bandwidth which can be chosen by GCV in practical implementation.

In order to estimate the eigenfunctions \(\phi_{k,1} \) of the derivatives \(X^{(1)} \), we proceed by first estimating the covariance kernel \(G_1(s,t) \) (in (4) with \(\nu = 1 \)), followed by a spectral decomposition of the estimated kernel. According to equation (8), \(G_1(s,t) = G^{(1,1)}(s,t) \) for the case \(\nu = 1 \), which can be estimated by a two-dimensional kernel smoother targeting the mixed partial derivatives of the covariance function. Specifically, we aim at minimizing

\[
\sum_{i=1}^{n} v_i \sum_{1 \leq j \neq l \leq N_i} K_{h_{G}}(T_{ij} - t)K_{h_{G}}(T_{il} - s) \left[G_{i}(T_{ij},T_{il}) - \sum_{0 \leq p+q \leq 3} \alpha_{pq}(T_{ij} - t)^p(T_{il} - s)^q \right]^2, \tag{26}
\]

with respect to \(\alpha_{pq} \) for \(0 \leq p+q \leq 3 \), and set \(\hat{G}^{(1,1)}(s,t) \) to the minimizer \(\hat{\alpha}_{11}(s,t) \). For theoretical derivations we adopt this direct estimate of \(\hat{G}^{(1,1)}(s,t) \), while in practical implementation it was found to be more convenient to first obtain \(\hat{G}^{(1,0)}(s,t) \) and then to apply a local linear smoother on the second direction, which also led to better stability and boundary behavior.

After obtaining estimates \(\hat{G}^{(1,1)} \) of \(G^{(1,1)} \), eigenfunctions and eigenvalues of the derivatives can be estimated by the spectral decomposition of \(\hat{G}^{(1,1)}(s,t) \), i.e.

\[
\hat{G}^{(1,1)}(s,t) = \sum_{k=1}^{\infty} \hat{\lambda}_{k,1} \hat{\phi}_{k,\nu}(s) \hat{\phi}_{k,1}(t).
\]
A.2 Assumptions, Proofs and Auxiliary Results

For our theoretical results we make the following assumptions, where (A1)–(A8) parallel assumption (A1)–(A2), (B1)–(B4), (C1c)–(C2c), and (D1c)–(D2c) in Zhang and Wang (2016). Denote the inner product on $L^2(\mathcal{T})$ by $\langle x, y \rangle$.

(A1) $K(\cdot)$ is a symmetric probability density function on $[-1,1]$ and is Lipschitz continuous:

There exists $0 < L < \infty$ such that $|K(u) - K(v)| \leq L|u - v|$ for any $u,v \in [0,1]$, which implies $K(\cdot)$ is bounded.

(A2) $\{T_{ij} : i = 1, \ldots, n, j = 1, \ldots, N_i\}$ are i.i.d. copies of a random variable T defined on \mathcal{T}, and N_i are regarded as fixed. The density $f(\cdot)$ of T is bounded below and above,

$$0 < m_f \leq \min_{t \in \mathcal{T}} f(t) \leq \max_{t \in \mathcal{T}} f(t) \leq M_f < \infty.$$ Furthermore $f^{(2)}$, the second derivative of $f(\cdot)$, is bounded.

(A3) $X, e, \text{ and } T$ are independent.

(A4) $\mu^{(3)}(t)$ and $\partial^4 G(s,t)/\partial^p \partial^{4-p}$ exist and are bounded on \mathcal{T} and $\mathcal{T} \times \mathcal{T}$, respectively, for $p = 0, \ldots, 4$.

(A5) $h_\mu \to 0$ and $\log(n) \sum_{i=1}^n N_i w^2_i / h_\mu \to 0$.

(A6) For some $\alpha > 2$, $E(\sup_{t \in \mathcal{T}} |X(t) - \mu(t)|^\alpha) < \infty$, $E(|e|^\alpha) < \infty$, and

$$n \left[\sum_{i=1}^n N_i w^2_i h_\mu + \sum_{i=1}^n N_i(N_i - 1)w^2_i h^2_\mu \right] \left[\frac{\log(n)}{n} \right]^{2/\alpha - 1} \to \infty.$$

(A7) $h_G \to 0$, $\log(n) \sum_{i=1}^n N_i(N_i - 1) v^2_i / h^2_G \to 0$.

(A8) For some $\beta > 2$, $E(\sup_{t \in \mathcal{T}} |X(t) - \mu(t)|^{2\beta}) < \infty$, $E(|e|^{2\beta}) < \infty$, and

$$n \left[\sum_{i=1}^n N_i(N_i - 1)v^2_i h^2_G + \sum_{i=1}^n N_i(N_i - 1)(N_i - 2)v^2_i h^3_G \right] \left[\frac{\log(n)}{n} \right]^{2/2\beta - 1} \to \infty.$$

(A9) For any $k = 1, 2, \ldots$, there exists $J = J(k) < \infty$ such that $\langle \phi^{(1)}_j, \phi_{k,1} \rangle = 0$ for all $j > J$.

21
Note that (A9) holds for any infinite-dimensional processes where the eigenfunctions correspond to the Fourier basis or Legendre basis.

Proof of Theorem 1: We prove the rate of convergence in the supremum norm for $\hat{\mu}^{(1)}$ to $\mu^{(1)}$ first, by following the proof of Theorem 5.1 in Zhang and Wang (2016). Denote for $r = 0, \ldots, 4$

$$S_r = \sum_{i=1}^{n} w_i \sum_{j=1}^{N_i} K_{h_{\mu}}(T_{ij} - t) \left(\frac{T_{ij} - t}{h_{\mu}} \right)^r, \quad R_r = \sum_{i=1}^{n} w_i \sum_{j=1}^{N_i} K_{h_{\mu}}(T_{ij} - t) \left(\frac{T_{ij} - t}{h_{\mu}} \right)^r Y_{ij},$$

$$S = \begin{bmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{bmatrix}, \quad \hat{\alpha}_0 = \begin{bmatrix} R_0 \\ R_1 \\ R_2 \end{bmatrix}, \quad \hat{h}_{\mu} = \begin{bmatrix} S_0 \\ S_1 \\ S_2 \end{bmatrix}$$

For a square matrix A let $|A|$ denote its determinant and $[A]_{a,b}$ denote the (a,b)th entry of A. Then $h_{\mu}\hat{\mu}^{(1)}(t) = h_{\mu}\hat{\alpha}_0 = |S|^{-1}(C_{12}R_0 + C_{22}R_1 + C_{32}R_2)$ by Cramer’s rule (Lang 1987), where

$$C_{12} = \begin{bmatrix} S_1 & S_3 \\ S_2 & S_4 \end{bmatrix}, \quad C_{22} = \begin{bmatrix} S_0 & S_2 \\ S_2 & S_4 \end{bmatrix}, \quad C_{23} = \begin{bmatrix} S_0 & S_2 \\ S_1 & S_3 \end{bmatrix}$$

are the cofactors for $[S]_{1,2}$, $[S]_{2,2}$, and $[S]_{3,2}$, respectively. Then

$$h_{\mu}(\hat{\alpha}_1 - \mu^{(1)}(t)) = |S|^{-1}\{[C_{12}R_0 + C_{22}R_1 + C_{32}R_2]$$

$$- [C_{12}S_0 + C_{22}S_1 + C_{32}S_2]$$

$$- [C_{12}S_2 + C_{22}S_3 + C_{32}S_4] \mu^{(2)}(t) h_{\mu}^2$$

$$- [C_{12}S_1 + C_{22}S_2 + C_{32}S_3] \mu^{(1)}(t) h_{\mu} \}$$

$$= |S|^{-1}\sum_{p=0}^{2} C_{(p+1),2} (R_p - S_p - \mu^{(1)}(t) h_{\mu} S_{p+1} - \mu^{(2)}(t) h_{\mu} S_{p+2})$$

$$= |S|^{-1}\sum_{p=0}^{2} C_{(p+1),2} \left[\sum_{i=1}^{n} w_i \sum_{j=1}^{N_i} K_{h_{\mu}}(T_{ij} - t) \left(\frac{T_{ij} - t}{h_{\mu}} \right)^p \delta_{ij} \right.$$

$$+ \sum_{i=1}^{n} w_i \sum_{j=1}^{N_i} K_{h_{\mu}}(T_{ij} - t) \left(\frac{T_{ij} - t}{h_{\mu}} \right)^p h_{\mu}^3 \mu^{(3)}(z) \right]$$

$$= |S|^{-1}\sum_{p=0}^{2} C_{(p+1),2} O\left(\log(n) \left\{ \sum_{i=1}^{n} N_i w_i^2 h_{\mu} + \sum_{i=1}^{n} N_i (N_i - 1) w_i^2 h_{\mu}^2 \right\}^{1/2} + O(h_{\mu}^3) \right)$$

a.s.,

where the first equality is due to the properties of determinants, the third due to Taylor’s theorem, and the last due to Lemma 5 in Zhang and Wang (2016), (A1), and (A4), where the
O(·) terms are seen to be uniform in \(t \in T \). By Theorem 5.1 in Zhang and Wang (2016), the \(S_r \) converge almost surely to their respective means in supremum norm and are thus bounded almost surely for \(r = 0, \ldots, 4 \), so that \(C_{(p+1),2} \) is bounded almost surely for \(p = 0, 1, 2 \). Then \(|S|^{-1}\) is bounded away from 0 by the almost sure supremum convergence of \(S_r \) and Slutsky’s theorem. Therefore the convergence rate for \(\hat{\mu}^{(1)} \) is

\[
\sup_{t \in T} |\hat{\mu}^{(1)}(t) - \mu^{(1)}(t)| = O\left(\left\{\log(n)\left[\sum_{i=1}^{n} N_i w_i^2 / h_\mu + \sum_{i=1}^{n} N_i (N_i - 1) w_i^2\right]\right\}^{1/2} + h_\mu^2\right) \quad \text{a.s.}
\]

The rate (17) then follows by replacing \(N_i \) by \(N_0 \) in the sparse case where \(N_i \leq N_0 < \infty \), and by \(m \) in the dense case where \(m \to \infty \), respectively.

The supremum convergence rate for \(\hat{G}^{(1,1)} \) can then be proven similarly, following the development of Theorem 5.2 in Zhang and Wang (2016). The supremum convergence rate for \(\hat{\phi}_{k,1} \) is a direct consequence of that for \(\hat{G}^{(1,1)} \); see the proof of Theorem 2 in Yao et al. (2005).

Proof of Theorem 2: For a vector \(v \) denote \(\|v\| \) as the vector \(L^2 \) norm, and for a square matrix \(A \) let \(\|A\| = \sup_{v \neq 0} \|Av\| / \|v\| \) be the matrix operator norm. We will use the following proposition, which follows from the proof of Corollary 1 in Yao et al. (2005), our Theorem 1 and a lemma from Facer and Müller (2003).

Proposition 1. Under the conditions of Theorem 1,

\[
\sup_{t \in T} |\hat{\mu}(t) - \mu(t)| = O(a_n) \quad \text{a.s.,}
\]

\[
\sup_{s,t \in T} |\hat{G}(s,t) - G(s,t)| = O(a_n + b_n) \quad \text{a.s.,}
\]

\[
\sup_{s,t \in T} |\hat{G}^{(1,0)}(s,t) - G^{(1,0)}(s,t)| = O(a_n + b_n) \quad \text{a.s.,}
\]

\[
|\hat{\sigma}^2 - \sigma^2| = O(a_n + b_n) \quad \text{a.s.}
\]

Lemma 1 (Lemma A.3, Facer and Müller (2003)). Let \(A \in \mathcal{M}_m(\mathbb{R}) \) be invertible. For all \(B \in \mathcal{M}_m(\mathbb{R}) \) such that \(\|A - B\| < \frac{1}{2\|A^{-1}\|} \),

\(B^{-1} \) always exists and there exists a constant \(0 < c < \infty \) such that

\[
\|B^{-1} - A^{-1}\| \leq c\|A^{-1}\|^2\|A - B\|.
\]
To prove the first statement of Theorem 2, note

\[
|\hat{\xi}_{ik1} - \hat{\xi}_{ik1}| = \hat{\epsilon}_{ik1}^T \hat{\Sigma}_{Yi}^{-1}(Y_i - \hat{\mu}_i) - \xi_{ik1}^T \Sigma_{Yi}^{-1}(Y_i - \mu_i) \\
= \hat{\epsilon}_{ik1}^T (\Sigma_{Yi}^{-1} - \Sigma_{Yi}^{-1})(Y_i - \mu_i) + (\hat{\xi}_{ik} - \xi_{ik})^T \Sigma_{Yi}^{-1}(Y_i - \hat{\mu}_i) \\
+ \hat{\xi}_{ik} \Sigma_{Yi}^{-1}(\mu_i - \hat{\mu}_i) - (\hat{\xi}_{ik} - \xi_{ik})^T \Sigma_{Yi}^{-1} (\mu_i - \hat{\mu}_i) \\
\leq \|\hat{\xi}_{ik}\| \|\Sigma_{Yi}^{-1} - \Sigma_{Yi}^{-1}\| \|Y_i - \hat{\mu}_i\| + \|\hat{\xi}_{ik} - \xi_{ik}\| \|\Sigma_{Yi}^{-1}\| \|Y_i - \hat{\mu}_i\| \\
+ \|\hat{\xi}_{ik}\| \|\Sigma_{Yi}^{-1}\| \|\mu_i - \hat{\mu}_i\| \leq \|\hat{\xi}_{ik} - \xi_{ik}\| \|\Sigma_{Yi}^{-1}\| \|\mu_i - \hat{\mu}_i\|. \tag{27}
\]

We bound each term as follows, using the notation \(\lesssim\) to indicate that the left hand side is smaller than a constant multiple of the right hand side. Note \(\|\hat{\xi}_{ik} - \xi_{ik}\| \leq \sqrt{N_i} \sup_j |\hat{\xi}_{ikj} - \xi_{ikj}|\), and

\[
\sup_j |\hat{\xi}_{ikj} - \xi_{ikj}| = \sup_j \left| \int \hat{G}^{(1,0)}(s, T_{ij}) \hat{\phi}_{k,1}(s) ds - \int G^{(1,0)}(s, T_{ij}) \phi_{k,1}(s) ds \right| \\
\leq \sup_{t \in T} \left| \int \hat{G}^{(1,0)}(s, t) - G^{(1,0)}(s, t) \hat{\phi}_{k,1}(s) ds + \sup_{t \in T} \int G^{(1,0)}(s, t) \phi_{k,1}(s) ds \right| \sup_{s, t \in T} |\hat{\phi}_{k,1}(t) - \phi_{k,1}(t)| \\
\lesssim \sup_{t \in T} \left(\int |\hat{G}^{(1,0)}(s, t) - G^{(1,0)}(s, t)|^2 ds \right)^{1/2} \sup_{s, t \in T} |\hat{\phi}_{k,1}(t) - \phi_{k,1}(t)| \\
= O(\sup_{t \in T} |\hat{G}^{(1,0)} - G^{(1,0)}|) + O(\sup_{t \in T} |\hat{\phi}_{k,1}(t) - \phi_{k,1}(t)|),
\]

where the last equality is due to (A4). By Proposition 1 we have

\[
\|\hat{\xi}_{ik} - \xi_{ik}\| = O(\sqrt{N_i}(a_n + b_n)) \quad \text{a.s.} \tag{28}
\]

Similarly, \(\sup_j |\xi_{ikj}| \leq \sup_{t \in T} |G^{(1,0)}(s, t) \phi_{k,1}(s) ds| = O(1)\). Define \(\epsilon_i = (\epsilon_{i1}, \ldots, \epsilon_{im})^T\) and \(X_i = (X(T_{i1}), \ldots, X(T_{im}))^T\). Then

\[
\|\hat{\xi}_{ik}\| \leq \|\xi_{ik}\| + \|\hat{\xi}_{ik} - \xi_{ik}\| = \sqrt{N_i}(O(1) + O(a_n + b_n)) = O(\sqrt{N_i}) \quad \text{a.s.}, \tag{29}
\]

\[
\|\mu_i - \hat{\mu}_i\| \leq \sqrt{N_i} \sup_{t \in T} |\hat{\mu}(t) - \mu(t)| = O(\sqrt{N_i} a_n) \quad \text{a.s.}, \tag{30}
\]

\[
\|Y_i - \hat{\mu}_i\| \leq \|\epsilon_i\| + \|X_i - \mu_i\| + \|\hat{\mu}_i - \mu_i\| = O_p(\sqrt{N_i}) \tag{31}
\]

where (31) is by the weak law of large numbers. From the definition of \(\Sigma_{Yi}\), we have \(\|\Sigma_{Yi}^{-1}\| \leq \)
\(\sigma^{-2} \). Then

\[
\| \hat{\Sigma}_Y - \Sigma_Y \| \leq c \sigma^{-4} \| \hat{\Sigma}_Y - \Sigma_Y \|
\]

\[
\leq c \sigma^{-4} N_i \sup_{a,b} |[\hat{\Sigma}_Y]_{ab} - [\Sigma_Y]_{ab}|
\]

\[
= O(N_i(a_n + b_n)) \quad \text{a.s.},
\]

(32)

where the first inequality is by Lemma 1, the second by a property of matrix operator norm, and the last is due to \(\sup_{a,b} |[\hat{\Sigma}_Y]_{ab} - [\Sigma_Y]_{ab}| \leq |\hat{\sigma}^2 - \sigma^2| + \sup_{s,t \in \mathcal{T}} |\hat{G}(s,t) - G(s,t)| = O(a_n + b_n) \) a.s. by Proposition 1. Combining (27)–(32) leads to the proof of the first statement.

Proceeding to the second statement, recall under the dense assumption we have \(N_i \to \infty \). Since \(\zeta_{ikl} = \int_{\mathcal{T}} \hat{G}^{(1,0)}(s, T_{il}) \phi_{k,1}(s) ds = \int_{\mathcal{T}} \sum_{j=1}^{\infty} \lambda_j \phi_{j}^{(1)}(s) \phi_{j}(T_{il}) \phi_{k,1}(s) ds = \sum_{j=1}^{\infty} \lambda_j \langle \phi_{j}^{(1)}, \phi_{k,1} \rangle \phi_{j}(T_{il}) \) for \(l = 1, \ldots, m \), under (A9) we have \(\zeta_{ik} = \sum_{j=1}^{J} \lambda_j \langle \phi_{j}^{(1)}, \phi_{k,1} \rangle \phi_{j} \), where we define \(\phi_{j} = (\phi_{j}(T_{1l}), \ldots, \phi_{j}(T_{im}))^T \). Then

\[
\hat{\xi}_{ik,1} = \zeta_{ik} \Sigma_{Y_i}^{-1} (Y_i - \mu_i) = \sum_{j=1}^{J} \lambda_j \langle \phi_{j}^{(1)}, \phi_{k,1} \rangle \phi_{j}^T \Sigma_{Y_i}^{-1} (Y_i - \mu_i),
\]

\[
\xi_{ik,1} = \langle X^{(1)}, \phi_{k,1} \rangle = \sum_{j=1}^{\infty} \xi_{ij} \phi_{j}^{(1)}(s), \phi_{k,1} \rangle = \sum_{j=1}^{J} \xi_{ij} \langle \phi_{j}^{(1)}, \phi_{k,1} \rangle,
\]

so it suffices to prove for \(j = 1, \ldots, J \),

\[
\phi_{j}^T \Sigma_{Y_i}^{-1} (Y_i - \mu_i) = \xi_{ij} / \lambda_j + O_p(m^{-1/2}).
\]

(33)

Under joint Gaussianity of \((X, \epsilon) \), \(E(\xi_{ij} | Y_i) = \lambda_j \phi_{j}^T \Sigma_{Y_i}^{-1} (Y_i - \mu_i) \) is the posterior mean of \(\langle X_i, \phi_j \rangle \) given the observations \(Y_i \). By the convergence results for nonparametric posterior distributions as in Theorem 3 of Shen (2002), we have

\[
|E(\xi_{ij} | Y_i) - \xi_{ij}| = O_p(m^{-1/2})
\]

as \(m \to \infty \), which implies (33) and therefore the second statement.

\(\square \)
Proof of Theorem 3: For all $i = 1, 2, \ldots$ and any fixed K,

$$\sup_{t \in T} |\hat{X}^{(1)}_{i,K}(t) - X^{(1)}_{i,K}(t)| = \sup_{t \in T} \left| \sum_{k=1}^{K} (\hat{\xi}_{ik,1} - \tilde{\xi}_{ik,1}) \hat{\phi}_{k,1}(t) + \sum_{k=1}^{K} \tilde{\xi}_{ik,1}(\hat{\phi}_{k,1}(t) - \phi_{k,1}(t)) \right|$$

$$= \sum_{k=1}^{K} |\hat{\xi}_{ik,1} - \tilde{\xi}_{ik,1}| O_p(1) + \sum_{k=1}^{K} |\tilde{\xi}_{ik,1}| \sup_{t \in T} |\hat{\phi}_{k,1}(t) - \phi_{k,1}(t)|$$

$$= O_p(N_i^2(a_n + b_n) + (a_n + b_n)) = O_p(N_i^2(a_n + b_n)).$$

A similar rate for $\sup_{t \in T} |\hat{X}^{(1)}_{i,K}(t) - X^{(1)}_{i,K}(t)|$ in the dense case is obtained by applying Theorem 2 and repeating the previous argument.

REFERENCES

