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ABSTRACT

We present the application of a nonparametric method to perform functional principal com-

ponents analysis for functional curve data that consist of measurements of a random trajectory

for a sample of subjects. This design typically consists of an irregular grid of time points on which

repeated measurements are taken for a number of subjects. We introduce shrinkage estimates for

the functional principal component scores that serve as the random effects in the model. Scatter-

plot smoothing methods are used to estimate the mean function and covariance surface of this

model. We propose improved estimation in the neighborhood of and at the diagonal of the covari-

ance surface, where the measurement errors are reflected. The presence of additive measurement

errors motivates shrinkage estimates for the functional principal components scores. Shrinkage

estimates are developed through best linear prediction and in a generalized version, aiming at min-

imizing one-curve-leave-out prediction error. The estimation of individual trajectories combines

data obtained from that individual as well as all other individuals. We apply our methods to new

data regarding the analysis of the level of 14C-folate in plasma as a function of time since dosing

healthy adults with a small tracer dose of 14C-folic acid. A time transformation was incorporated

to handle design irregularity concerning the time points on which the measurements were taken.

The proposed methodology incorporating shrinkage and data-adaptive features is seen to be well

suited for describing population kinetics of 14C-folate specific activity and random effects, and

can also be applied to other functional data analysis problems.

Key words: Covariance, Cross-Validation, Eigenfunctions, Functional Data, Measurement Error,

Pharmacokinetics, Random Effects, Repeated Measurements, Smoothing.
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1 Introduction

We develop a version of functional principal components (FPC) analysis that includes shrinkage of

the FPC scores as a means to handle measurement errors and improve the prediction error of the

representation of individual trajectories in functional principal components analysis. We apply

the new methodology to analyze the kinetics of the appearance and disappearance of 14C-folate

in plasma of healthy adults who were given a small tracer dose of 14C-folic acid per os. Folate

is an important vitamin, folate deficiency in pregnant mothers being associated with increased

risk for spina bifida and with other disorders, and its plasma kinetics is of interest in nutritional

research.

Since a parametric model will only find features in the data which are already incorporated

a priori in the model, parametric approaches might be not adequate if, as is the case in our

application, the time courses are not well defined and do not fall into a preconceived class of

functions. In such situations an exploratory analysis through nonparametric methods is advisable.

There has been increasing interest in the nonparametric analysis of data that are in the form of

samples of curves or trajectories (“functional data analysis”, see, e.g., Ramsay and Silverman,

1997).

Smoothing methods for analyzing functional data have been applied to detect new features in

growth curves (Gasser et al., 1984). Substantial work has been done to model longitudinal data

nonparametrically by estimating the eigenfunctions corresponding to the covariance function of

a random curve with continuous sample curves [Berkey and Kent (1983), Besse and Ramsay

(1986), Castro, Lawton, and Sylvestre (1986), Rice and Silverman (1991), Silverman (1996)].

FPCA attempts to find the dominant modes of variation around an overall trend function, and

is thus a key technique in functional data analysis. In previous work, the FPC scores, which

are a key feature in Karhunen-Loève representation of random trajectories, were obtained as

approximations to the integrals of the defining scalar products. We propose here more a more

general approach through shrinkage estimation.

The main contributions of this paper are, first, the proposed shrinkage estimates of the FPC

scores, which improve upon the estimates obtained by the integration method especially when

the measurements are contaminated with noise, as is usually the case in practical applications.

A consequence is improved prediction of individual trajectories. Second, we demonstrate with a

new data set consisting of a sample of longitudinal measurements on the kinetics of plasma folate
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the usefulness of these methods for biostatistical data.

Our approach is related to that of Staniswalis and Lee (1998), who also used scatter-plot

smoothing to obtain mean and covariance functions, and proposed modifications to allow for

additional measurement errors. We also propose an improved estimate for the variance of these

errors through improved estimation in the neighborhood of and at the diagonal of the covariance

surface, by fitting local quadratic components along the direction perpendicular to the diagonal.

In practice, smoothing the covariance surface guarantees a symmetric but not always nonnegative

definite estimate. We implement a simple modification where we neglect the negative eigenvalues

and corresponding eigenfunctions to obtain a nonnegative definite estimate of the covariance,

without changing the main characteristics of the covariance estimate. We use one-curve-leave-out

cross-validation for choosing auxiliary parameters such as the degree of smoothing and the model

dimension, corresponding to the number of eigenfunctions to be included, similar to Rice and

Silverman (1991).

In our application, the time courses of 14C-folate in plasma were recorded for 13 healthy adults

that were administered a small oral dose of 14C-folic acid (80 nmol, 100 nCi). Use of labelled

nutrients and drugs is common in nutritional and pharmacologic research because it provides the

only realistic way of tracking their overall fate in the body in an appropriate time frame. The time

courses of plasma folate of these thirteen subjects are unknown a priori; this motivates the use of

nonparametric methods for exploratory analysis. The numbers and locations of the time points

on which measurements are available are irregular for these 13 subjects. Measurements are very

dense during the first day, and then become increasingly sparse. This motivates a preprocessing

step that consists of a time transformation. We found that a square-root logarithm transformation

of time (days) is appropriate.

The remainder of the paper is organized as follows: In Section 2 we present the FPCA model

incorporating measurements errors. Section 3 contains a description of the estimation of the

mean, covariance surface, and eigenfunctions. The proposed shrinkage estimates for the FPC

scores are discussed in Section 4. A simulation study is included in Section 5 to demonstrate the

performance of the proposed methods. The application to longitudinal folate data is described in

Section 6, and concluding remarks are given in section 7.
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2 Modelling Trajectories Through Functional Principal Compo-

nents

We model the sample curves or trajectories as independent realizations of a stochastic process

X(t) that has mean E[X(t)] = µ(t) and covariance function cov(X(s), X(t)) = G(s, t). We assume

that there is an orthogonal expansion (in the L2 sense) of G in terms of eigenfunctions φk and

non-increasing eigenvalues λk:

G(s, t) =
∑

k

λkφk(s)φk(t), t, s ∈ [0, T ] (1)

where [0, T ] is the time range of the measurements. The classical FPCA model assumes that the

ith random curve from the population can be expressed in a model without additional measure-

ment errors by

Xi(t) = µ(t) +
∑

k

ξikφk(t), t ∈ [0, T ], i = 1, · · · , N, (2)

where the ξk are uncorrelated random variables with zero mean and variances E[ξ2
k] = λk, where

∑
k λk < ∞. The deviation of each sample curve from the mean is thus a sum of orthogonal

curves with uncorrelated random amplitudes. We shall suppose that the mean curve and the first

few eigenfunctions are smooth functions.

Often it is realistic to incorporate uncorrelated measurement errors with mean zero and con-

stant variance σ2 into the model, reflecting additional variation in the measurements, compare

Rice and Wu (2000). Let Yij be the observations of the random function Xi(·) at time points

tij , and εij additional measurement errors that are assumed to be i.i.d. and independent of the

random coefficients ξik, i = 1, · · · , N , j = 1, · · · , ni, i.e.,

Yij = Xi(tij) + εij = µ(tij) +
∞∑

k=1

ξikφk(tij) + εij , 0 ≤ tij ≤ T, (3)

where E[εij ] = 0, var(εij) = σ2. In special cases, one might assume in addition that the ξik, εij

are all jointly normally distributed, but we do not make this assumption except where explicitly

noted.
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3 Estimating the Components of the Model

3.1 Estimation of the mean and covariance functions

In the functional context, it is appropriate to assume that the mean function µ(t) is a smooth

curve. We use local weighted polynomial smoothing (Fan and Gijbels, 1996), fitting local lines, to

estimate µ based on the pooled data from all individual curves. In practice, it is often satisfactory

to choose the smoothing bandwidth subjectively, but data-adaptive methods are available, for

example, see Müller and Prewitt (1993) for surface smoothing and Rice and Silverman (1991)

for one-curve-leave-out cross-validation. In this method, one minimizes the cross-validation score

with respect to the bandwidth b, given by CV(b) =
∑N

i=1

∑ni
j=1{Yij − µ̂(−i)(tij ; b)}2/N , where

µ̂(−i) is the estimate of µ after removing the data of the ith subject, using bandwidth b. For

issues of smoothing dependent data, compare Lin and Carroll (2000).

We apply two-dimensional scatter-plot smoothing, based on local weighted linear smoothing

and fitting local planes, to the data. Note that in model (3), cov(Yij , Yil) = cov(X(tij), X(til)) +

σ2δjl, where δjl is 1 if j = l and 0 otherwise. Let Ci(tij , til) = (Yij − µ̂(tij))(Yil − µ̂(til)) be the

raw covariances, where µ̂(t) is the estimated mean function obtained from the previous step. It

is easy to see that E[Ci(tij , til)] ≈ cov(X(tij), X(til)) + σ2δjl. Therefore the diagonal of the raw

covariances should be removed, i.e., only Ci(tij , til), j 6= l, should be included as predictors in the

smoothing step (Staniswalis and Lee, 1998). We again use one-curve-leave-out cross-validation,

minimizing CV(h) =
∑N

i=1

∑
j 6=l{Ci(tij , til) − Ĝ(−i)(tij , til; h)}2/N , to choose the smoothing pa-

rameter h in the surface smoothing step. Here Ĝ(−i)(s, t; h) is the smoothed covariance function

obtained by removing the ith individual curve, using bandwidth h.

We note that the estimate Ĝ(s, t) will always be symmetric if a symmetric weight function is

used in the local linear smoothers, but not necessarily nonnegative definite for finite samples, as

local linear smoothers may assign negative weights in some local windows. We implement a simple

modification by neglecting negative estimates of eigenvalues and the corresponding eigenfunctions

in the usual expansion of the covariance function into eigenvalues/eigenfunctions. In this way,

one obtains an estimate that is guaranteed to be nonnegative definite, without changing the

characteristics of the covariance estimate for larger sample sizes, where estimated eigenvalues are

closer to the non-negative true eigenvalues.

The variance σ2 of measurement errors is of special interest for our proposed shrinkage es-
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timates. Since the covariance of X(t) is maximal along the diagonal, we expect that the shape

of the surface in the direction orthogonal to the diagonal can be better approximated by a lo-

cal quadratic rather than a local linear fit. Indeed, we found that the standard fitting of local

planes around the diagonal leads to overestimation of σ2. In order to improve the estimation in

the neighborhood of and at the diagonal, we fit a local quadratic component along the direction

perpendicular to the diagonal, and a local linear component in the direction of the diagonal;

implementation of this local smoother is achieved easily by rotating the coordinates by 45◦.

Prior to this smoothing step, the diagonal elements of the raw covariances, that is Ci(tij , tij), i =

1, . . . , N, j = 1, . . . , ni, are removed. Denote the diagonal of the resulting surface estimate by G̃(t).

An estimate V̂ (t) of {G(t, t) + σ2} is then obtained in a second local weighted linear smoothing

step, applied to the scatter plot (tij , Ci(tij , tij)) with pooled raw variances Ci(tij , tij), i = 1, · · · , N ,

j = 1, · · · , ni. To mitigate against boundary effects, we cut off the two ends of the interval to

get a more stable estimate, following a suggestion of Staniswalis and Lee (1998). The resulting

estimate of σ2, adjusted to avoid the possibility of negative estimates, is

σ̂2 =
2
T

∫ 3T/4

T/4
{V̂ (t)− G̃(t)}dt, (4)

if σ̂2 > 0 and σ̂2 = 0 otherwise.

3.2 Estimating the Eigenfunctions and Eigenvalues

The estimates of eigenfunctions and eigenvalues correspond to the solutions φ̂k and λ̂k of the

eigenequations,
∫ T
0 Ĝ(s, t)φ̂k(s)ds = λ̂kφ̂k(t), where φ̂k are subject to

∫ T
0 φ̂k(t)2dt = 1 and

∫ T
0 φ̂k(t)φ̂m(t)dt = 0 for m < k. We estimate the eigenfunctions by discretizing the smoothed

covariance, as previously described in Rice and Silverman (1991) and Capra and Müller(1997).

The FPC scores ξik =
∫

(Xi(t)−µ(t))φk(t)dt have traditionally been estimated by numerical inte-

gration. However, the presence of additional contaminating errors, that are pervasive in practice,

motivates shrinkage estimates for the FPC scores ξik that have not yet been considered before.

Since the Yij are only available at discrete times tij , the integrals in the definition of the FPC

scores ξik are usually approximated by sums, substituting Yij as defined in (3) for Xi(tij).

For notational convenience, we define Yi(t) as a step function with jumps at midpoints between

neighboring tij , using Yij as the size of the steps, and analogous for εi(t). Set X̃i = Yi(t)− εi(t),

and let ξ̃ik =
∫ T
0 {X̃i(t)− µ(t)}dt be the discrete version of the FPC scores ξik. Since neither Xi
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nor X̃i is available, due to the contaminating errors εi, we instead consider the approximations

ηik =
∫ T
0 {Yi(t) − µ(t)}φk(t)dt. In practice, µ and φk are also unknown and must be estimated

from the data. It is common practice, using estimates µ̂(tij) for µ(tij) and φ̂k(tij) for φk(tij), to

estimate ηik by approximating sums, letting ti0 = 0,

η̂ik =
∫ T

0
(Yi(t)− µ̂(t))φ̂k(t)dt ≈

ni∑

j=1

(Yij − µ̂(tij))φ̂k(tij)(tij − ti,j−1). (5)

In order to choose the number of principal component curves that provide a reasonable ap-

proximation to the infinite-dimensional process, we use the cross-validation score based on the

one-curve-leave-out prediction error. Let µ̂
(−i)
i and φ̂

(−i)
k be the estimated mean function and

eigenfunctions after removing the ith individual’s curve. Then we choose the number of compo-

nents K to be included in the model so as to minimize the cross-validation scores

CV(K) =
1
N

N∑

i=1

‖Yi − Ŷ
(−i)
i ‖2, (6)

where ‖ · ‖ here and in the following is defined by approximating the usual L2 distance through

‖Yi − Ŷ
(−i)
i ‖2 =

∑ni
j=1(Yij − Ŷ

(−i)
i (tij))2(tij − ti,j−1). Note that Ŷ

(−i)
i is the predicted curve

for the ith subject after removing this sample curve from fitting model (3), i.e., Ŷ
(−i)
i (t) =

µ̂(−i)(t) +
∑K

k=1 η̂
(−i)
ik φ̂

(−i)
k (t).

4 Shrinkage Estimation of Functional Principal Component Scores

We reconsider the estimation of the functional principal components (FPC) in Model (3). Setting

ε̃ik =
∫ T
0 εi(t)φk(t)dt, we note that ηik = ξ̃ik + ε̃ik. We conclude that the best linear predictors of

the approximate FPC scores ξ̃ik are not given by ηik, but rather by

λ̃k

λ̃k + var(ε̃ik)
ηik, (7)

where λ̃k = var(ξ̃ik). This is a shrinkage formula, moving ηik closer towards the origin, whenever

var(ε̃ik) > 0. If we assume that ξik and εij , and also that the discrete versions ξ̃ik and ε̃ik are

independent and jointly Gaussian, the best predictors of the approximate FPC scores ξ̃ik are

E[ξ̃ik| ηik] = λ̃kηik/{λ̃k + var(ε̃ik)}, i.e., predictors (7). The variation of the shrinkage estima-

tors is reduced, observing that var(ηik) = var(E[ξ̃ik| ηik]) + E[var(ξ̃ik| ηik)] > var(E[ξ̃ik| ηik]), if

E[var(ξ̃ik| ηik)] > 0.
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The quantities ε̃ik can be approximated by the sums
∑ni

j=1 εijφk(tij)(tij − ti,j−1). Note that

var(ξ̃ik) ≈ σ2
∑ni

j=1 φ2
k(tij)(tij − ti,j−1)2, and if the number and density of measurements are

sufficiently large, var(ε̃ik) can be approximated by σ2/ni, where ni is the number of repeated

measurements for the ith subject. A reasonable estimate of the shrinkage factor (7) is therefore

ξ̂ik =
λ̂k

λ̂k + σ̂2/ni

η̂ik, (8)

where σ̂2 is the sample variance estimate obtained from (4), λ̂k is the estimated kth eigenvalue

and η̂ik is the raw sample estimate for the kth FPC score of the ith individual given in (5). In

what follows, we refer to (8) as Gaussian shrinkage since it provides the appropriate shrinkage

factor for the Gaussian case.

Since the presence of additional measurement errors is a main motivation of shrinkage estima-

tion, stochastic variation in estimating the variance of the measurement errors can be expected

to have an impact on the shrinkage estimates. Neglecting the variation in the estimation of eigen-

values λk, we note that the shrinkage factor λ/(λ + σ2

ni
) is a convex function of σ2. Assume a

multiplicative error model for the behavior of the variance estimate σ̂2, σ̂2 = εE[σ̂2], where ε > 0

is a r.v. with E[ε] = 1. Then the targeted shrinkage factor is λ/(λ + E[σ̂2]
ni

), and from Jensen’s

inequality, we have

E[λ/(λ +
σ̂2

ni
)] > λ/(λ +

E[σ̂2]
ni

). (9)

We see from (9) that the appropriate shrinkage factor is smaller than that given by (8), on the

average, under reasonable assumptions about randomness in the error variance. This observation

motivates a generalized shrinkage method, where we replace the Gaussian shrinkage factor λ/(λ+
σ2

ni
) by a generalized shrinkage factor λ/(λ + ρ

ni
) for an unknown ρ. To achieve the target λ/(λ +

E[σ̂2]
ni

) in the random error variance, we see that ρ should be greater than σ̂2 on the average, which

means more shrinkage is needed than provided by the Gaussian shrinkage method.

A second motivation for the generalized shrinkage method is minimization of the squared pre-

diction error over a class of linear shrinkage factors. Let X̂i(ρ) be the prediction for the true process

Xi obtained by using the linear shrinkage estimates ξ̂ik = λ̂kη̂ik/(λ̂k + ρ
ni

). The orthonormality of

the eigenfunctions (analogous to the derivation of Parseval’s equality, see Courant and Hilbert,

1953) leads to ‖X̂i(ρ)−Xi‖2 =
∑

k(λ̂kη̂ik/(λ̂k + ρ
ni

)−ξik)2. Setting Z(ρ) = 1
N

∑N
i=1 ‖X̂i(ρ)−Xi‖2,

f(Z) = minρ Z(ρ), the best linear predictor property of Gaussian shrinkage implies that ρ = σ̂2

is an approximate minimizer of E[Z(ρ)]. Due to the concavity of f , using Jensen’s inequality, we
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find that

E[min
ρ

Z(ρ)] ≤ min
ρ

E[Z(ρ)] ≈ E[Z(σ̂2)]. (10)

Therefore, on the average, generalized shrinkage which corresponds to minimizing Z(ρ) leads an

improved estimate as compared to Gaussian shrinkage. For large sample sizes Z(ρ) will be closer

to E[Z(ρ)] and therefore the relative gain of generalized over Gaussian shrinkage is predicted

to be more pronounced for smaller samples by this argument. Indeed this is what we found in

simulations (Section 5).

The initial form of the generalized shrinkage formula is therefore given by ξ̂ik = λ̂k

λ̂k+ρ/ni
η̂ik,

where ρ > 0 is an unspecified shrinkage parameter. We note that Gaussian shrinkage (8) is a

special case with ρ = σ̂2. The generalized shrinkage parameter ρ is chosen in such a way as

to minimize the estimated prediction error, where the estimated prediction error is obtained by

one-curve-leave-out cross-validation. Let Ŷ
(−i)
i (·, ρ) be the predicted curve for the ith subject,

using shrinkage parameter ρ and removing the data of the ith subject. We then minimize the

cross-validated integrated prediction error with respect to ρ ≥ 0, to obtain

ρ̂ =arg min
ρ≥0

1
N

N∑

i=1

‖Yi − Ŷ
(−i)
i (ρ)‖2, (11)

leading to the generalized shrinkage formula

ξ̂ik =
λ̂k

λ̂k + ρ̂/ni

η̂ik. (12)

The generalized shrinkage method leads to the best possible shrinkage estimates in this class

in terms of prediction error. It thus in general will lead to improvements over Gaussian shrinkage

(8) according to (10), and Gaussian shrinkage leads to improvements over the customary FPC

scores η̂ik, which are motivated by approximating the integrals that define the FPC scores (see

Section 3.2). The customary FPC scores η̂ik will nearly always overestimate the FPC scores that

are optimal for prediction, and Gaussian shrinkage, while improving on this situation, often will

not produce enough shrinkage especially in small sample situations.

5 Simulation Results

To illustrate the advantage of shrinkage estimation of FPC scores compared to customary esti-

mation without shrinkage, we devised a simulation study, using 100 i.i.d. normal and 100 i.i.d
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non-normal samples consisting of N = 10, 20, 50 random trajectories. The data were generated

following model (3). The simulated process had mean function µ(t) = t+sin (2πt), 0 ≤ t ≤ 1. We

construct the covariance function of the process according to (1) from two orthonormal functions

φ1(t) = −√2 cos (πt), and φ2(t) =
√

2 sin (πt), 0 ≤ t ≤ 1. For the ith partially observed path

in a single sample, the number of observations, ni, was randomly chosen between 30 to 40. For

an equally spaced grid {c1, · · · , cni} on [0, 1] with c1 = 0, cni = 1, d = 1/(ni − 1), the tij were

uniform on [cj − d/2, cj + d/2], for j = 2, · · · , ni − 1, ti1 uniform on [0, d/2], and tini uniform on

[T − d/2, T ], allowing for non-equidistant “jittered” designs. We chose λ1 = 2 and λ2 = 1 as the

eigenvalues, λk = 0, j ≥ 3, and σ2 = 0.25 as the variance of the additional measurement errors

εij in (3), which were assumed to be normal with mean 0.

For the 100 normal samples, the FPC scores ξik were generated from N (0, λk), while ξik in

the non-normal samples were generated from a mixture of two normals, N (
√

λk/2, λk/2) with

probability 1/2 and N (−
√

(λk/2, λk/2) with probability 1/2. We used the cross-validation pro-

cedures described earlier for selection of bandwidths, number of eigenfunctions, and generalized

shrinkage parameter ρ̂ (11).

To demonstrate the performance of the proposed shrinkage estimates, we report in Table 1

the averages of the estimates of the variances σ̂2 in (4) and the mean shrinkage factor estimates

for ρ = σ̂2 in the case of Gaussian shrinkage (8), and for ρ = ρ̂ in the case of generalized shrinkage

(12), also cross-validation scores in (11) and squared prediction errors

SPE(ρ) =
1
N

N∑

i=1

‖Yi − Ŷi(ρ)‖2. (13)

We find that on the average, the generalized shrinkage (12) leads to larger downsizing of the raw

estimators than Gaussian shrinkage (8) in both normal and mixture distribution situations.

For sample sizes N = 10/20/50, and underlying normal distribution, Gaussian shrinkage

results in decreases in CV of about 9%/8%/7% and in SPE of about 7%/6%/6%, while for gener-

alized shrinkage the corresponding decreases are 12%/10%/8% and 10%/8%/6%. Just looking at

decreases in SPE for the mixture distribution, Gaussian shrinkage leads to decreases of 6%/4%/6%

for N = 10/20/50, and generalized shrinkage to corresponding decreases of 11%/9%/7%. We draw

the following conclusions: The gains are largest for small samples, and are always larger for gen-

eralized shrinkage as compared to Gaussian shrinkage. The differences in gains between the two

shrinkage methods decrease as the sample size gets larger, as was predicted in the discussion

following (10) in Section 4. The generalized shrinkage parameter ρ̂ also is seen to move closer to
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σ̂2 with increasing sample size. We find that the gains do not depend much on the nature of the

distribution of the principal components.

Another outcome measure of interest is the average squared error for the two FPC scores,

ASE(ξk) =
∑N

i=1(ξ̂ik − ξk)2/N , k = 1, 2, also listed in Table 1. These errors show similar be-

havior as the prediction errors. With regard to all measures, the gains obtained from shrinkage

as compared to no shrinkage remain substantial even for large sample sizes. Among the two

shrinkage methods considered, generalized shrinkage uniformly achieves additional gains which

are particularly pronounced for small sample sizes.

6 Application to Longitudinal Plasma Folate Data

6.1 14C-Folate Specific Activity

In an experiment conducted at UC Davis, repeated measurements of the fraction of labelled

folate among total folate in plasma were obtained for 13 healthy adult volunteers. Measurements

were labelled by time since the volunteers orally ingested a small tracer dose of 14C-folic acid.

The fraction of 14C-folate among total folate in plasma (the so-called plasma 14C-folate specific

activity) was measured in about 20 plasma specimens drawn during the first day after dosing.

After the first day, the drawing of additional blood specimens became less frequent, with a total

of about 50 specimens being taken during the 200 day period after dosing.

Our main interest is characterizing the dynamic behavior of plasma 14C-folate specific activity

in healthy adults. Methods for the collection, processing, and laboratory analyses of specimens

were as described in Clifford et al. (1998). The plot of the plasma 14C-folate specific activity in

the first four subjects versus time (after dosing) at which these measurements were taken is shown

in the left panel of Figure 1 and reveals some common patterns that are described in Section 6.4.

6.2 Time Transformation to Address Sparseness

We note that the numbers and locations of the time points at which measurements were taken are

not the same for these 13 subjects. Measurements are very dense during the first day, and then

become increasingly sparse. From the left panel of Figure 1, using the original time scale, it is

not easy to observe the shapes of the curves. Moreover, because we use global bandwidths in the
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smoothing steps for mean function and covariance surface, the increasing time lag between the

measurements for individual subjects leads to oversmoothing when choosing an overall appropriate

smoothing parameter.

Our solution to this problem is preprocessing of the data with the time transformation t′ =
√

log (1 + t). In fact we obtain a reasonably even distribution of measurement times after this

transformation. Folate measurements versus transformed time are shown in the right panel of

Figure 1 for the first four subjects. The transformed time scale is more conducive for observing

the shapes of the curves and for data smoothing.

6.3 Diagnostics for Trajectories and Outlier Detection

Initially we applied our methods to the plasma folate data of the entire sample consisting of 13

healthy adult volunteers. Whether the trajectories recorded for the subjects come from the same

population, and whether there are outliers is of biological interest. To address such questions,

we desire quantities that are analogous to residuals or deviances, but apply to entire trajectories

rather than traditional scatterplots. As a summary measure, we consider the integrated squared

residual error in the original time scale. This criterion reflects the ability of the model to predict

an observed sample curve.

Let Yi(t) be the step function determined by Yij in the original time scale for the ith subject,

as described in Section 3.2, Ŷi(t) the predicted curve, and [0, T ′] the original time range for all

subjects. We define the integrated squared residual error for the ith subject by

REi =
∫ T ′

0
{Yi(s)− Ŷi(s)}2ds. (14)

A large value of REi, i = 1, · · · , N , may point to an outlying sample curve that is poorly fitted

by the model.

We calculated this integrated squared residual errors for all 13 subjects, and found that RE2 =

1.6 is much larger than REi ≤ 0.55, i 6= 2. This provides some evidence that this subject is poorly

fitted by the proposed model, and may be an outlier. The predicted curve and observed values

of subject #2 in the original time scale are shown in Figure 2. The predicted curve is clearly

underestimating the observed data after about 25 days, especially in the right tail, while the

predicted curves for the other subjects are fairly close to the observations. Indeed, it was found

that subject #2 had been exposed to 14C earlier through participation in an unrelated medical
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trial several years prior to the present study. This fact would have disqualified this subject from

participating in the present study, but had not been known. This finding attests not only to the

astonishing accuracy of the 14C detection methods used in this study, but also to the usefulness of

the FPC approach for data screening and outlier detection. Since subject #2 was thus confirmed

to be a clear outlier, it was not used in the subsequent analysis. Using the integrated squared

residual error REi in the transformed time scale leads to the same conclusion.

6.4 Mean and Covariance Functions

The estimated mean curve obtained using local weighted linear smoothing for the remaining 12

subjects is shown in the left panel of Figure 3. The bandwidth b = 0.11 was chosen, guided by

cross-validation. The estimated mean curve reflects the overall trend of the individual curves.

One notes a short slow increase (about 4 minutes in the original time scale) in the appearance

of 14C-folate in plasma. This delay corresponds to the time needed for the dose to reach and be

absorbed from the small intestine. Then the mean plasma 14C-folate specific activity by time

since dosing exhibits a sharp initial rise to a peak at about 2 hours (in the original time frame)

as the administered dose enters the blood plasma pool. Then it drops at a decreasing rate as it

enters cells where the 14C-folate is sequestered and converted to other chemical forms of folate.

Finally, the pattern changes into a smooth slow decline toward zero.

The estimated covariance surface obtained using local weighted linear smoothing after the

diagonal was removed is shown in the right panel of Figure 3. The bandwidth was h = (0.15, 0.15),

chosen by one-curve-leave-out cross-validation. We note that the last two small eigenvalues of this

covariance estimate were found to be negative. To obtain a nonnegative definite covariance surface,

we implemented the simple modification described in Section 3.1, omitting the components with

negative eigenvalues. The covariance surface shows high variability at the beginning with a sharp

increase followed by a rapid decline. The estimate σ̂2 (4) for the variance σ2 of the measurement

error was σ̂2 = 0.0037.

6.5 Eigenfunctions

The smooth estimates of the first three eigenfunctions are presented in the left panel of Figure 4 (in

transformed time scale). The cross-validation scores level off when more than three eigenfunctions

are used, suggesting that the first three principal component curves are sufficient to describe the
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modes of variability. These three principal component functions explain about 98.5% of the total

variation.

The first eigenfunction indicates that a large portion of the variability between subjects is

roughly in the direction of the amplitude of the mean curve, as the first eigenfunction has a

similar shape as the mean function. In particular, 89.48% of the total variability is “explained”

by the first eigenfunction, which indicates that this mode of variation is dominant. The second

eigenfunction takes the shape of an approximate contrast between observations around 1 hour and

4.5 hours, and contributes 6.29% to the total variation. The third eigenfunctions is indicative of

a contrast of observations before and after 8 hours, and contributes 2.73% to the total variation.

6.6 Shrinkage Estimates and Predicted Trajectories

We applied functional principal components analysis without shrinkage, with Gaussian shrinkage

(8) and with generalized shrinkage (12). Since σ̂2 = 0.0037, the additional errors in model (3) are

small. The number of observations for each subject is around 40. Together with the eigenvalue

estimates, 0.1052, 0.0074, and 0.0032, we that find Gaussian shrinkage factors (8) are close to

1. This situation changes for the generalized shrinkage (12). The estimate of the generalized

shrinkage parameter ρ is ρ̂ = 0.038. The mean values of shrinkage factors and of estimated

prediction errors based on one-curve-leave-out cross-validation are shown in Table 2. We find that

gains of 4% are realized in this example over Gaussian shrinkage by using generalized shrinkage.

From the estimates of the first FPC scores, ξ̂i1, we find that subjects #3 and #11 have the first

and second largest FPC scores with regard to the first eigenfunction, corresponding to the first

and second highest peaks. Subjects #7, #8, #9 and #10 have large negative scores corresponding

to low peaks. The predicted trajectories for individual subjects are shown in Figure 5, based on

generalized shrinkage estimates. Since there are about 40 measurements for each subject, the

time points are dense after transformation, so that the proposed method is quite feasible. One

can see that the predictions are reasonably close to the observations except for minor deviations

near the peaks. To illustrate the effectiveness of the predictions, we also show predictions after

transforming the time back to the original scale. The observations and predictions for the 12

subjects, excluding Subject #2, are shown in Figure 6 for the first three days. The agreement

between observed and fitted values indicates that the proposed method reasonably explains the

dynamic behavior of the plasma 14C-folate specific activity responses to a small oral dose of
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14C-folic acid.

7 Concluding Remarks

In this paper we propose Gaussian and generalized shrinkage estimates for the FPC scores. The

shrinkage estimates are simple to obtain and improve upon the customary integral approximation,

both from a theoretical as well as practical viewpoint. For the folate data, generalized shrinkage

leads to improved estimates of the FPC scores as manifested by improved cross-validation pre-

diction errors. We also introduced scatter-plot smoothing methods that are specially adapted to

the presence of additional measurement errors. By fitting local quadratic components along the

direction perpendicular to the diagonal, we improve estimation in the neighborhood of and at

the diagonal of the covariance surface. A square-root logarithm time transformation is shown to

address the increasing time lags and sparsity of measurements in the right tail.

The proposed nonparametric method combining data-driven flexible features and shrinkage

estimates seems well suitable for the description of samples of biological trajectories. Integrated

squared residual error is shown to be a useful criterion for diagnostics and the detection of outliers.

One such outlier was identified by this criterion and was confirmed to belong to a biologically

different population.
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Table 1: Results of 100 Monte Carlo runs with N = 10, 20, 50 trajectories per sample. Shown

are averages of estimates ρ = σ̂2 (4) for Gaussian (8) and of estimates ρ = ρ̂ (11) for generalized

(12) shrinkage, cross-validation scores CV (11), squared prediction errors SPE (13) and average

squared errors (ASE) for the two functional principal component scores ξ1 and ξ2.

Model Normal Mixture

Sample Shrinkage None Gaussian Generalized Gaussian Generalized

Size Type (ρ = σ̂2) (ρ = ρ̂)
None

(ρ = σ̂2) (ρ = ρ̂)

True σ2 — .250 — — .250 —

Ave. ρ — .273 .945 — .271 1.34

Ave. CV 1.35 1.24 1.19 1.32 1.26 1.16

N = 10 Ave. SPE .971 .909 .873 .964 .908 .862

ASE(ξ1) .386 .361 .354 .371 .353 .338

ASE(ξ2) .442 .414 .398 .453 .438 .409

Ave. ρ — .261 .881 — .267 1.15

Ave. CV 1.14 1.06 1.03 1.12 1.04 .985

N = 20 Ave. SPE .866 .814 .793 .910 .876 .831

ASE(ξ1) .352 .334 .327 .336 .328 .315

ASE(ξ2) .417 .396 .389 .425 .409 .384

Ave. ρ — .257 .421 — .259 .578

Ave. CV .961 .893 .887 .948 .887 .875

N = 50 Ave. SPE .812 .767 .762 .830 .781 .774

ASE(ξ1) .343 .329 .319 .331 .320 .308

ASE(ξ2) .406 .387 .371 .408 .398 .381
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Table 2: Shrinkage estimation of functional principal component scores for folate data. Average

shrinkage parameter (ASP) is ρ = σ̂2 (4) for Gaussian shrinkage and ρ = ρ̂ (11) for generalized

shrinkage. Average shrinkage factor for the kth functional principal component score is ASF(ξk) =
1
N

∑N
i=1(ξ̂ik/η̂ik), k = 1, 2, 3, using (8) for Gaussian and (12) for generalized shrinkage, and CV

denotes the observed minimum of cross-validation score (6).

Shrinkage Type None Gaussian Generalized

ASP — 0.0037 0.038

ASPF(ξ1) 1 .999 .987

ASPF(ξ2) 1 .987 .886

ASPF(ξ3) 1 .972 .771

CV .355 .354 .342
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Figure 1: Left: Observed individual trajectories for the first 4 subjects, #1(solid), #2(dashed),

#3(dashdot), #4(dotted), in the original time scale. Right: The same four individual trajectories

shown in the transformed time scale.
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Figure 2: Observed values (dots) and predictions (solid) for subject #2 in original time scale.
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Figure 3: Left: Smooth estimate of the mean function (transformed time scale). Right: Smooth

estimate of the covariance surface (transformed time scale).
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Figure 4: The first three eigenfunctions in the transformed time scale, first (solid), second

(dashed), and third eigenfunction (dash-dot).
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Figure 5: Observed (dots) and predicted (solid curves) folate values for the 12 subjects (excluding

Subject #2), shown in transformed time scale.
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Figure 6: Same as Figure 5 for the first three days, shown in the original time scale.
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