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ABSTRACT

Available data may reflect a true but unknown random variable of interest plus an

additive error which is a nuisance. The problem to predict the unknown random variable

arises in many applied situations where measurements are contaminated with errors; it is

known as the regression-to-the-mean problem. There exists a well-known solution when

both the distributions of the true underlying random variable and of the contaminating

errors are normal. This solution is given by the classical regression-to-the-mean formula,

which has a data shrinkage interpretation. We discuss the extension of this solution

to cases where one or both of these distributions are unknown, and demonstrate that

the fully nonparametric case can be solved for the case of small contaminating errors.

The resulting nonparametric regression-to-the-mean paradigm can be implemented by a

straightforward data sharpening algorithm that is based on local sample means. Asymp-

totic justifications and practical illustrations are provided.

———————————–
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Introduction

The regression-to-the-mean phenomenon was named by Galton (1), who noticed that the height

of sons tends to be closer to the population mean than the height of the father. The phenomenon

is observed in uncontrolled clinical trials, where subjects with a pathological measurement tend to

yield close-to-normal subsequent measurements (2,3) and motivates controlled clinical trials for the

evaluation of therapeutic interventions (4,5). Classical regression-to-the-mean has been mainly studied

in the context of multivariate normal distributions (6).

In the typical regression-to-the-mean situation one has observations which are contaminated by

random errors. The well-known basic result for the situation of a multivariate normal distribution

corresponds to shrinkage to the mean and provides the best prediction for a new observation based

on past observations and also a method for denoising contaminated observations.

Extensions of the normality-based regression-to-the-mean strategies have been studied by various

authors. While the contaminating errors are still assumed to be normal, Das and Mulder (7) derived a

regression-to-the-mean formula allowing for an arbitrary distribution of the underlying observations.

This result was combined with an Edgeworth approximation of this unkown distribution in (8), and

it forms the starting point of our investigation as well, see Eq. 2 below. Regression-to-the-mean for

more complex treatment effects has been studied in (9,10).

We propose a new procedure for the case where both the distribution of the true underlying uncon-

taminated observations (which are to be predicted), as well as the distribution of the contaminating

errors are unknown. As we demonstrate, if repeated observations are available, it is possible to ob-

tain consistent predictors under minimal assumptions on the distributions if either the error variance

declines or the number of repeated measurements increases asymptotically. We establish asymptotic

normality and propose an intuitively appealing and simple implementation based on local sample

moments, that is illustrated with a data set consisting of a bivariate sample of repeated blood sugar

measurements for pregnant women.

The Regression-to-the-Mean Problem

The general problem can be stated as follows: Given unknown independently and identically

distributed random variables Xi, we observe a sample {X̃1, ..., X̃n} of data contaminated with errors

δi,

X̃i = Xi + δi, i = 1, ..., n.

Here, Xi and δi are independent and the contaminating errors δi are independently and identically

distributed with zero means. The goal is to predict the uncontaminated values Xi from the observed
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contaminated data X̃i. The best linear unbiased predictor for Xi is given by the Bayes estimator

E(Xi|X̃i). Assuming the existence of probability density functions (pdf’s) fX̃ for X̃, fX for X, and

fδ for δ, we find by elementary calculations

fX̃(x) =
∫
fδ(x− y)fX(y)dy,

and

fX̃,X(x1, x2) = fδ(x1 − x2)fX(x2),

where we denote the joint pdf of (X̃,X) by fX̃,X . This leads to the following general form for the

regression-to-the-mean function:

E(X|X̃ = x0) =
∫
yfδ(x0 − y)fX(y)dy∫
fδ(x0 − y)fX(y)dy

. (1)

We show that the difficulty that is caused by the fact that both fδ and fX are unknown can be addressed

with a nonparametric method. The proposed method produces consistent predictors of the uncontam-

inated X, whenever the errors δ can be assumed to be shrinking asymptotically, as in situations where

an increasing number of repeated measurements become available. In classical regression-to-the-mean

a critial assumption is that the contaminating pdf fδ is Gaussian; even then its variance is typically

unknown and must be estimated, requiring the availability of repeated measurements for at least some

subjects.

The key argument for the Gaussian case can be found in (7), see also (11) and (12). We reproduce

the argument here for the one-dimensional case. Assume δ ∼ N (0, σ2), fX̃(x0) > 0 for a given x0 and

denote the standard Gaussian density function by ϕ. Then, substituting 1
σϕ

( ·
σ

)
for fδ in (1), and

using the fact that x = −ϕ(1)(x)/ϕ(x),

E
(
X|X̃ = x0

)
=

{
σ2

∫ [
∂
∂xϕ

(x−y
σ

)
|x=x0

]
fX(y)dy

+
∫
x0ϕ

(x0−y
σ

)
fX(y)dy

}
/

∫
ϕ

(x0−y
σ

)
fX(y)dy

= x0 + σ2 ∂
∂xfX̃(x)|x=x0/fX̃(x0).

(2)

Under the additional assumption X ∼ N (µ, τ2), we have X̃ ∼ N (µ, σ2 + τ2). Substituting
1

(τ2+σ2)1/2ϕ
(

·
(τ2+σ2)1/2

)
for fX̃ in Eq. 2 then produces the classical regression-to-the-mean formula

E
(
X|X̃ = x0

)
=

σ2

σ2 + τ2
µ+

τ2

σ2 + τ2
x0. (3)
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Both Eq. 1 and 2 reveal that regression-to-the-mean corresponds to shrinkage towards the mean; in

Eq. 2, this becomes shrinkage to the mode, rather, as ∂
∂xfX̃(x)|x=x0/fX̃(x0) = 0 at a mode of the

density fX̃ .

Extending Eq. 2 to the p-dimensional case, one finds analogously

E
(
X|X̃ = x0

)
= x0 + V

∇fX̃(x)|x=x0

fX̃(x0)
. (4)

Here V = cov (δ) is the p × p covariance matrix of the contaminating errors δ, which are assumed

p-variate normal, δ ∼ Np(0, V ), and ∇fX̃(x) =
(

∂fX̃
∂x1

(x), ..., ∂fX̃
∂xp

(x)
)T

is the gradient of the p-

dimensional pdf fX̃ .

The Nonparametric Case

The general regression-to-the-mean formula (Eq. 1) is not applicable in practice when neither fδ

nor fX are contained in a parametric class; indeed it is easily seen that these components are then

unidentifiable. The derivation of Eq. 2-4 is tied to the feature that the Gaussian pdf is the unique

solution of the differential equation g(1)(x)/g(x) = −x.

The following basic assumptions are made.

(A1) The p-dimensional (p ≥ 1) measurements that are observed for n subjects are generated as

follows:

X̃i = Xi + δi, 1 ≤ i ≤ n,

where the uncontaminated unobservable data Xi are independently and identically distributed

(i.i.d.) with pdf fX , and the measurement errors δi are i.i.d. with pdf

fδ(x) = |Vn|−1/2ψ(V −1/2
n x) for x ∈ <p, (5)

where ψ is an unknown pdf and Vn is a sequence of covariance matrices V = Vn = (vkl)1≤k, l≤p

of full rank, with ‖Vn‖ → 0, where ‖Vn‖ = (
∑

1≤k, l≤p vkl
2)1/2 and |V | denotes the determinant

of V. Moreover, Xi and δi are independent for all i. For the case p = 1, we set Vn = (σn) = σ.

The X̃i are i.i.d. with pdf fX̃ .

(A2) At a given point x0 in the interior of the support of fX , such that fX(x0) > 0, the pdf’s ψ and

fX are twice continuously differentiable, and ψ satisfies the moment conditions (p = 1)∫
ψ(x)xdx = 0,

∫
ψ(x)x2dx = µ2 = 1,∫

ψ(x)x3dx = µ3, µ3 <∞,

and for p > 1, ψ satisfies
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∫
ψ(x)xjdx = 0,

∫
ψ(x)xjxkdx = δjk

(δjk = 0 for j 6= k, δjk = 1 for j = k), and all third order moments are bounded.

We note that in the case of repeated measurements per subject,

X̃ij = Xi + δij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, (6)

assuming all δij and (Xi, δij) are independent, one may work with averages

X̃i. = Xi. + δi., (7)

where δi. = 1
m

∑n
j=1 δij , and analogously for X̃i, Xi. Then, for p = 1, Eq. 5 is replaced by

fδ.(x) =
m1/2

σ
ψ(
m1/2

σ
x) (8)

for fixed m (and analogously for p > 1). If the number of repeated measurements is large, we may

consider the case m = m(n) →∞ as n→∞, where

fδ.(x) = fδ.,n(x) =
1

σm(n)
ψn(

x

σm(n)
) (9)

for σm(n) = σ/m(n)1/2, with ψ replaced by ψn, satisfying the moment properties as in (A2); this case

is covered, as long as ψn and its first order derivatives are uniformly bounded for all n.

For simplicity, we develop the following argument for the case p = 1; the extension to p > 1 is

straightforward. The central observation under (A1) and (A2) is the following argument: From Eq.

1,

E
(
X|X̃ = x0

)
=

∫
y 1

σψ
(x0−y

σ

)
fX(y)dy/

∫
1
σψ

(x0−y
σ

)
fX(y)dy

=
∫

(x0 − σz)ψ(z)fX(x0 − σz)dz/
∫
ψ(z)fX(x0 − σz)dz

= x0 + σ
∫
{−zψ(z)}fX(x0 − σz)dz/

∫
ψ(z)fX(x0 − σz)dz,

(10)

and for the denominator ∫
ψ(z)fX(x0 − σz)dz = −fX̃(x0).

Let µj =
∫
ψ(x)xjdx for j ≥ 1. Combining a Taylor expansion with the moment conditions (A2) and

observing that, since ψ is a pdf,
∫
ψ(1)(z)dz = 0,

∫
ψ(1)(z)zdz = −

∫
ψ(z)dz = −1,

∫
ψ(1)(z)z2dz =

−2
∫
ψ(z)zdz = 0, and

∫
ψ(1)(z)z3dz = −3µ2, we find∫

{ψ(1)(z)− (−zψ(z))}fX(x0 − σz)dz =
σ2

2
µ3f

(2)
X (x0) + o(σ2). (11)
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We note that in the Gaussian case, where ψ = ϕ, the term on the l.h.s. of Eq. 11 vanishes, as

then ψ(1)(z) = −zψ(z). In case the contaminating errors have a symmetric pdf, or more generally

whenever µ3 = 0, and the pdfs are three times continuously differentiable, the Taylor expansion can

be carried one step further to yield

∫
{ψ(1)(z)− (−zψ(z))}fX(x0 − σz)dz = σ3

6 [3µ2 − µ4]f
(3)
X (x0) + o(σ3). (12)

Likewise, the difference in Eq. 11, 12 can be made of even smaller order by requiring additional

moments to be equal to those of a Gaussian error distribution. Finally,

∂
∂xfX̃(x)|x=x0 =

∫
1
σ2ψ

(1)(x0−y
σ )fX(y)dy

= − 1
σ

∫
ψ(1)(z)fX(x0 − σz)dz.

(13)

Combining Eq. 10, 11 and 13,

E
(
X|X̃ = x0

)
= x0 + σ

fX̃(x0)

∫
zψ(z)fX(x0 − σz)dz

= x0 + σ2 f
(1)

X̃
(x0)

fX̃(x0) + 1
2σ

3µ3
f
(2)

X̃
(x0)

fX̃(x0) + o(σ3),

(14)

and if µ3 = 0, the leading remainder term is σ4[3µ3−µ4]f
(3)

X̃
(x0)/6fX̃(x0). Finally, for the multivariate

case the same arguments lead to the following extension of Eq. 14,

E
(
X|X̃ = x0

)
= x0 + V

∇fX̃(x0)
fX̃(x0)

+O(V 3/2). (15)

Local Sample Means for Nonparametric Regression-to-the Mean

The concept of local moments and local sample moments is related to the data sharpening ideas

proposed in (13) and was formulated in (14). The special case of a local sample mean is used implicitly

in “mean update” mode finding algorithms (15,16) and provides an attractive device for implementing

nonparametric regression-to-the-mean.

The starting point is a random variable Z with twice continuously differentiable density fZ . Given

an arbitrary point x0 ∈ <p, x0 = (x01, ..., x0p)
′
, and choosing a sequence of window widths γ = γn >

0, define a sequence of local neighborhoods

S = Sn =
p∏

j=1

[x0j − γ, x0j + γ].
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The local mean at x0 is defined as µz = (µz1 , ..., µzp)
′
, with

µzj = lim
γ→0

1
γ2

E{(Z − x0)ej |Z ∈ S}, j = 1, ..., p, (16)

where in ej = (0, ..., 1, ..., 0)
′
the 1 occurs in the j-th position. According to (14),

µzj =
1
3
DejfZ(x0)/fZ(x0). (17)

The empirical counterpart to these local means are the local sample means. Given an i.i.d. sample

(Z1, ..., Zn) of <p-valued random variables with pdf fZ , where Zi = (Zi1, ..., Zip)
′
, the local sample

mean is µZ = (µZ1 , ..., µZp)′, where

µ̂Zj =
1
γ2

n∑
i=1

(Zij − x0j) 1S(Zi)/
n∑

i=1

1S(Zi), j = 1, ..., p, (18)

and γ = γn > 0 is a sequence with γ → 0 as n → ∞. This is the sample mean found from the data

falling into the local neighborhood S(x0), standardized by γ−2. By (14), Eq. (3.4) and (3.8),

µ̂Z =
1
3
∇fZ(x0)
fZ(x0)

+Op

((
nγ2+p

)−1/2
)
, (19)

motivating the connection to nonparametric regression-to-the mean as in Eq. 15.

Usually the covariance matrix V of the contaminating errors δ is unknown and can be estimated

via the sample covariance matrix

V̂ = (
1
n

mi∑
k=1

1
mi

(X̃ikr − X̃i.r)(X̃iks − X̃i.s))rs, 1 ≤ r, s ≤ p, (20)

given a contaminated sample with repeated measurements, (X̃ik1, ..., X̃ikp)
′
, 1 ≤ i ≤ n, 1 ≤ k ≤ mi,

and X̃i.r = 1
mi

mi∑
k=1

Xikr, where mi ≥ 2, 1 ≤ r ≤ p.

We note that consistency V̂ = V (1 + op(1)) holds as long as
n∑

i=1
mi → ∞, n → ∞. Then the

estimate

Ê(X|X̃ = x0) = x0 + 3V̂ µ̂X̃ (21)

satisfies

Ê(X|X̃ = x0) = E(X|X̃ = x0)(1 + op(1)), (22)

as long as γ → 0, σ → 0 and nγ2+p →∞.

The following additional regularity conditions are needed for asymptotic results.

(A3) As n→∞, γ → 0, nγ2+p →∞, and for a λ ≥ 0, nγ2+p+4 → λ2 .
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(A4) It holds that V = Vn = σ2
nV0 for a fixed covariance matrix V0 with trace(V0) = p and a sequence

σ2 = σ2
n → 0 as n → ∞. Here, V0 is the covariance matrix associated with the error pdf ψ

defined in (A2).

(A5) As n→∞, (nγ2+p)1/2σ → 0, σ/γ → 0.

We then obtain, using local sample means of Eq. 18 and estimates V̂ of Eq. 20, the following main

result on asymptotic normality and consistency of the shrinkage estimates in Eq. 21:

Theorem 4.1 Under (A1)-(A5), as n→∞,

(nγ2+p)1/2V̂ −1{Ê(X|X̃ = x0)− E(X|X̃ = x0)} → N (λB,Σ) in distribution, (23)

where B = (β1, ..., βp)′,

βj = 1
10D

3ejfX(x0)− 1
2D

ejfX(x0)
p∑

l=1

D2elfX(x0)
fX(x0) + 1

6

p∑
l=1,l 6=j

Dej+2elfX(x0),

j = 1, ..., p,
(24)

and

Σ = (σkl), σkl = (3× 2−pfX(x0)δkl), 1 ≤ k, l ≤ p. (25)

In the one-dimensional case (p = 1), this simplifies to

β1 =
1
10
f

(3)
X (x0)−

1
2
f

(1)
X (x0)f

(2)
X (x0)

fX(x0)
, Σ = (

3
2
fX(x0)).

Simulation Results

To illustrate the advantage of nonparametric regression-to-the-mean in Eq. 21, we compare it with

the Gaussian analog. If X ∼ N(µX ,Σ), δ ∼ N(0, V ), X̃ = X+δ, with X, δ independent, the extension

of Eq. 3 to the multivariate case is

E(X|X̃ = x0) = Σ(Σ + V )−1x0 + V (Σ + V )−1µX (26)

A total of 300 observations were generated from the (1
2 ,

1
2)-mixture of two bivariate normal distributions

with means (−1,−1) and (1, 1) and common covariance matrix 1
8I, where I stands for the identity

matrix. Samples were then contaminated by adding Gaussian noise with zero mean and covariance

matrix V = 1
4I.
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Parametric and nonparametric regression-to-the-mean estimates, assuming that V is known, while

µX is estimated through the sample mean of the observed X̃i, are presented in Figure 1 for a typical

simulation run. Circles represent the generated uncontaminated data and arrows point from the

original data to the contaminated data, which correspond to the tips of the arrows. The graphical

results clearly indicate that the nonparametric procedure tracks the original uncontaminated data well,

whereas the parametric procedure shrinks the data towards the origin, which is the wrong strategy

for these non-normal data.

As a measure of accuracy in recovering the original uncontaminated data, we computed the average

sum of squared differences between original uncontaminated data and regression-to-the-mean estimates

for the Gaussian method of Eq. 26 and the nonparametric method of Eq. 21 over 500 Monte Carlo

samples under the above specifications. The resulting average squared error measures for the Gaussian

and nonparametric procedures were 414.44 and 60.19, respectively, indicating an almost seven-fold

improvement for nonparametric relative to Gaussian regression-to-the-mean in this example.

Application to Repeated Blood Sugar Measurements

Blood sugar measurements are a common tool in diabetes testing. In a glucose tolerance test,

glucose level in blood is measured after a period of fasting (Fasting Glucose measurement) and again

one hour after giving the subject a defined dose of glucose (Postprandial Glucose measurement).

Pregnant women are prone to develop subclinical or manifest diabetes and establishing the distribution

of blood glucose levels under fasting and after a dose of glucose is therefore of interest.

O’Sullivan and Mahan (17) collected data on n = 52 pregnant women whose blood glucose levels

(fasting and postprandial) were measured during three subsequent pregnancies, thus establishing a

series of repeated bivariate measurements with three repetitions (m = 3, p = 2); see also (18), p.

211. In a pre-processing step, the data were standardized by subtracting the mean and dividing by

the standard deviation for each of the two variables Fasting Glucose (mean 72.9 mg/100ml, st.dev.

6.05) and Postprandial Glucose (mean 107.8 mg/100ml, st.dev. 18.65) separately. Subsequently, 52

bivariate sample means X̃i. were obtained by averaging over the three repeated measurements for each

subject. These data are shown as open circles in Figure 2.

Applying Eq. 19-21 with window width γ = 1.4 and sample covariance matrix V̂ = (v̂ij), v̂11 =

.531, v̂22 = .415, and v̂12 = v̂21 = .107, we obtain the predictions Ê
(
Xi|X̃i.

)
. The arrows in Figure 2

show the displacement from observed to predicted values, the latter corresponding to the tips of the

arrows.

Moving from the original observations to the predictions has a data sharpening effect. This can
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be seen quite clearly from Parzen-Rosenblatt nonparametric kernel density estimates of the bivariate

density, comparing the density of the original observations (upper panel) with that of the predictors

(lower panel) in Figure 3.

Concluding Remarks

We have generalized the regression-to-the-mean paradigm to a nonparametric situation, where both

the nature of the target distribution of given observations as well as that of the contaminating errors

are unknown. It is shown that in this fairly general situation regression-to-the-mean corresponds to

shrinkage towards the mode of the distribution. We propose a straightforward estimation scheme for

the shrinkage factor based on local sample means. Thus a connection emerges between nonparametric

regression-to-the-mean with data shrinkage ideas and the mean update algorithm which has been used

previously for mode finding and cluster analysis.

Open questions concern choice of smoothing parameters. A plug-in approach could be based

on estimating the unknown quantities in the asymptotic distribution provided in Eq. 23-25, and

bootstrap methods based on residuals are another option. Procedures for more elaborate designs where

nonparametric regression-to-the-mean would be incorporated into more complex models involving

comparison of means, analysis of variance, or regression components are also of interest, as is the

estimation of the contaminating errors and their distribution from the ”residuals” Ê(X|X̃)− X̃.

Appendix: Proof of Theorem 4.1

We first establish the following result on multivariate asymptotic normality of local sample means,

computed from random samples (X1, ..., Xn) with pdf fX .

Theorem A.1 For vectors of local sample means µ̂ = (µ̂1, ..., µ̂p)
′
of Eq. 18 and µ = (µ1, ..., µp)

′
, µj =

DejfX(x0)/3fX(x0) of Eq. 17, it holds under (A1)-(A3) that

(nγ2+p)1/2{µ̂− µ} → Np(λB̃, Σ̃) in distribution, (A.1)

where B̃ = B/3 (see Eq. 24) and Σ̃ = Σ/9 (see Eq. 25).

Proof. Extending an argument of (14), p. 105, consider random variables

Uj = (X − x0)ej1S(X)− γ2µj(x0)1S(X).

By third order Taylor expansion of fX , EUj = γ4|S|β̃j + o(γ4|S|), EU2
j = γ2|S|fX(x0)/3 + o(γ2|S|)

and EUjUk = O(γ4|S|) for j 6= k. Defining random variables

Winj =
1

n|S|σ2
(Xi − x0)ej1S(Xi)− γ2µj(x0)1S(Xi)
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and using fixed constants α1, ..., αp, we find that

E{(nγp+2)1/2
n∑

i=1

p∑
j=1

αiWinj} → λ1/2
p∑

j=1

αj β̃j (n→∞)

and

var{(nγp+2)1/2
n∑

i=1

p∑
j=1

αiWinj} → 2−p
p∑

j=1

α2
jfX(x0)/3 (n→∞).

Applying the Cramér-Wold device and Slutsky’s theorem completes the proof.

Proof of Theorem 4.1. Observing Eq. 15, 19, 21, (A4), (A5) and the consistency of V̂ ,

(nγp+2)1/2V̂ −1(Ê(X|X̃ = x0)−E(X|X̃ = x0)) = 3V̂ −1V [(nγp+2)1/2(V −1V̂ µ̂X̃−µX̃)]+O(σ4(nγp+2)1/2),

is seen to have the same limiting distribution as 3(nγp+2)1/2(µ̂X̃ − µX̃). Therefore, Theorem 4.1 is a

direct consequence of Theorem A.1 once we establish the following two results:

(nγp+2)1/2)(µX̃j
− µXj )

p−→ 0, j = 1, ..., p, (A.2)

and

(nγp+2)1/2µ̂X̃j
− µ̂Xj )

p−→ 0, j = 1, ..., p. (A.3)

The moment conditions for ψ (see (A2)) in the multivariate case are, with constants βα and ζα,∫
ψ(y)yαdy = 1, α = 0; = 0, |α| = 1; = βα, |α| = 2;

and this leads to (see (19), ch. 6, and (20))∫
Dejψ(y)yαdy = 0, forα = 0, |α| = 1 and α 6= ej , |α| = 2;

= −1, α = ej ; = ζα, |α| = 3.

Using these moment conditions in second order Taylor expansions,

fX̃(x0)− fX(x0) = σ2
∑
|α|=2

βαD
αfX(x0) + o(σ2), (A.4)

DejfX̃(x0)−DejfX(x0) = σ2
∑
|α|=3

ζαD
αfX(x0) + o(σ2), (A.5)

whence (A.2) follows by (A5).

We next discuss the denominators of µ̂X and µ̂X̃ . Abbreviating ρn = (nγp+2)1/2, we find, based

on the kernel density estimator with uniform kernel and window S, denoting the indicator function

by I(·),

ρn(f̂X̃(x0)− f̂X(x0)) =
ρn

n|S|

n∑
i=1

{I(X̃i ∈ S,Xi 6∈ S)− I(X̃i 6∈ S,Xi ∈ S)},
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and since by (A.4), EI(X̃i ∈ S)− EI(Xi ∈ S) = O(|S|σ2), we arrive at

E[ρn(f̂X̃(x0)− f̂X(x0))] = O(ρnσ
2). (A.6)

Note that due to (A5),∫
u∈S

fδ(u− x0)du =
∫

u∈S

1
σpψ((σ2V0)−1/2(u− x0))du −→ 1, as n→∞,

which implies

E(I(X̃i ∈ S)− I(Xi ∈ S))2

=
∫

u∈S

fX̃(u)du+
∫

u∈S

fX(u)du− 2
∫

u∈S

∫
v∈S

fδ(u− v)fX(v)dudv

=

|S|{fX̃(x0) + fX(x0)} − 2
∫

u∈S

fδ(u− x0){|S|fX(x0)}

 (1 + o(1))

= O(|S|σ2),

again using (A.4). We conclude var(ρn(f̂X̃(x0)− f̂X(x0))) = O(ρ2
nσ

2/n|S|), whence, with (A.6),

ρn

{
1

n|S|

n∑
i=1

[
I(Xi ∈ S)− I(X̃i ∈ S)

]}
p−→ 0 (A.7)

Regarding the numerator, the terms to consider are

Tn =
ρn

n|S|

{
n∑

i=1

(X̃ij − x0j)I(Xi ∈ S)−
n∑

i=1

(X̃ij − x0j)I(X̃i ∈ S)

}
, (A.8)

and the terms that include x0j are handled in the same way as the denominator, using (A.7). Since

X̃ij = Xij + δij , it therefore remains to consider

ρn

n|S|

{
n∑

i=1

X̃ij [I(Xi ∈ S)− I(X̃i ∈ S)]−
n∑

i=1

δijI(Xi ∈ S)

}
= I + II.

The same argument as for the denominator and additional Cauchy-Schwarz bounds lead to EI → 0,

EI2 → 0 and therefore I
p−→ 0. For II, note that

E II = − ρn

n|S|

n∑
i=1

EδijEI(Xij ∈ S) = 0,

as Xij and δij are independent. Furthermore, E(δijI(Xij ∈ S))2 = O(σ2|S|) leads to var(II) =

O(γ2σ2) = o(1), according to (A5). Therefore, Tn
p−→ 0, and (A.3) follows, concluding the proof.
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Figure 1: Sample of size 300 from a mixture of bivariate normal distributions (top row left), con-

taminated sample (top row right), nonparametic-regression-to-the-mean using Eq. 21 (middle row

left), arrows pointing from contaminated to predicted observations (middle row right) and Gaussian

estimates using Eq. 26 (bottom row left) with corresponding arrows (bottom row right). Only data

falling into the window [−2, 2]× [−2, 2] are shown.
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Figure 2: Bivariate nonparametric regression-to-the-mean (Eq. 21) for glucose measurements for 52

women, with repeated measurements over three pregnancies. Circles are observed sample means ob-

tained from the three repetitions of the standardized values of (Fasting Glucose, Postprandial Glucose).

Arrows point from observed to predicted values.
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Figure 3: Bivariate kernel density estimates of the joint density of (Fasting Glucose, Postprandial

Glucose) data, with bandwidth (1, 1). Upper panel: Density estimate based on original observations.

Lower panel: Density estimate based on predicted values after applying nonparametric-regression-to-

the-mean (Eq. 21).

17


