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Abstract

We study the dynamic behavior of cross-sectional ranks over time for functional data
and show that the ranks of the observed curves at each time point and their evolution
over time can yield valuable insights into the time dynamics of functional data. This
approach is of interest in various application areas. To analyze the dynamics of
ranks, we obtain estimates of the cross-sectional ranks of functional data and discuss
several statistics of interest in ranked functional data. To quantify the evolution of
ranks over time, we develop a model for rank derivatives, in which we decompose
rank dynamics into two components. One component corresponds to population
changes and the other to individual changes that both affect the rank trajectories
of individuals. We establish the joint asymptotic normality for suitable estimates of
these two components. These approaches are illustrated with simulations and three
longitudinal data sets: Growth curves obtained from the Zürich Longitudinal Growth
Study, monthly house price data in the US from 1980 to 2015 and Major League
Baseball offensive data for the 2017 season.

Keywords: Decomposition of rank derivatives; Functional data analysis; House
price dynamics; Major League Baseball; Zürich Longitudinal Growth Study.

1. Introduction

In many statistical applications, practitioners are interested in relative, as opposed
to absolute, behavior of random quantities. For example, in growth studies, one is
often interested in growth faltering, stunting and more generally determining whether
children are tall, normal or small for their age. Such determinations are based on an
assessment of how individuals rank relative to others, where an individual’s rank
will change as the individual ages. In sports, many interested parties aim to track
the longitudinal changes in the relative rankings of the best players and teams. For
example, the compensation a player receives is tied to relative performance. Related
studies have been done on regression models for conditional distribution functions
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and quantiles [? ? ? ? ? ? , for example], while our focus here is on modeling the
temporal evolution of longitudinal ranks.

In the case of univariate measurements, ranking data is straightforward and well-
studied. However, one cannot rank multivariate data because there is no total order-
ing in Rp. For the same reason, functional data that correspond to infinite-dimensional
objects similarly cannot be ordered [for overviews, see, e.g., ? ? ? ]. In related work,
the analysis of sports data with functional data analysis techniques has been recently
considered in ? ], archetypoids of functional trajectories were applied to sports statis-
tics in ? ], and ? ] studied epigraph and hypograph indices which are the proportions
of sample trajectories entirely lying above or below certain curves.

While functional data cannot be ordered, they are time-indexed and a total or-
dering exists cross-sectionally at each fixed time. This can be utilized to transform
functional data into trajectories that consist of ranks, viewed as functions of time.
Of interest then is the modeling of the ranks of individuals and their patterns over
time. In this paper, we discuss statistical tools to study such rank dynamics. In par-
ticular, we introduce a novel decomposition for rank dynamics, where we show that
rank derivatives can be naturally decomposed into two components, corresponding
to a population and an individual contribution to the rank evolution, respectively. A
simple example for the effect of the population on individual ranks occurs when the
scores of the population improve overall, but a particular individual stays the same,
say a runner maintains a certain level of speed but the population of runners at large
is getting faster — then the individual runner’s rank will drop within the population,
even though the individual’s performance is not worse than before.

As rank dynamics depend on the interplay between individual and population
changes and make reference to the cross-sectional population at each time t where
functional values are obtained, rank dynamics is quite different from common dy-
namic models in functional data analysis, where only the time dynamics of individ-
uals viewed by themselves are the focus, with the associated notions of derivatives
of observed trajectories and empirical dynamics. These previous approaches could
be characterized as dynamics learning from functional data, and include derivative
principal components, identification of differential equations, and dynamic regression
modeling [? ? ? ? ? ? ? ? ].

More specifically, to study rank dynamics one first transforms the observed func-
tional data through a probability transform that is implemented at each time point.
We assume that the functional data are densely sampled with negligible noise and
that there is a stochastic process Y with square integrable trajectories which are in
the Hilbert space L2. The process Y generates the sample of trajectories, which are
the observed functional data. If the functional data are measured on a time grid with
additive noise, one can implement a pre-smoothing step [? ? ].

Our starting point is the cross-sectional distribution

P (Y (t) ≤ y) = Ft(y), (1)

2



for each t ∈ T , where the domain T is a compact interval. Without loss of generality,
we consider T = [0, 1]. The process of local probability transforms R(t) associated
with Y is then

R(t) = Ft(Y (t)), t ∈ T .
Since the subject-specific random process R(t) conveys the information which fraction
of individuals has larger and which fraction has lower values at time t compared to a
selected individual, we refer to R(t) as the rank process associated with the functional
process Y .

We note that the range of the rank process is always the interval [0, 1] and mul-
tiplying it by the sample size n gives the actual ranks. Indeed, the distribution of
R(t) is uniform on [0, 1] for every t ∈ T , as it corresponds to the local probabil-
ity transform. In a finite sample situation there are various ways to carry out the
probability transform from a sample of data Y (t), depending on how one estimates
the cumulative distribution function F . If one uses the empirical distribution func-
tion one obtains the actual ranks, but one can also use smooth versions of empirical
distribution functions, which often are advantageous [? ] and yield approximate
ranks.

The paper is organized as follows. In Section ??, we introduce a time-dynamic
model for ranked functional data to quantify the temporal evolution of rank processes,
which is a key contribution of this paper. In Section ??, we discuss several measures
for the central tendency and variation of the rank trajectories, and in Section ?? the
estimation of these population quantities. Asymptotic distributions and finite-sample
performance of the proposed estimates are demonstrated in Sections ?? and ??, re-
spectively. Data illustrations are provided in Section ??, where we demonstrate rank
dynamics for three scenarios including Zürich growth curves, house price trajectories
and Major League Baseball data.

2. A Time-Dynamic Model for Ranked Functional Data

Increases or decreases in an individual’s rank trajectory depend on both the sub-
ject’s functional trajectory Y (t) and the functional trajectories of all other individuals
in the sample, as the subject’s rank at time t depends on these two inputs. This de-
composition is exemplified by the keeping up with the Joneses paradigm, where sub-
jects’ happiness is assessed through an individual’s relative standing and its changes,
compared to their peers, i.e. critically important are the subject’s rank and especially
the changes in rank [e.g., ? ? ].

To quantify relative changes in a sample of functional data, it is expedient to
utilize derivatives R′(t). Recalling that Ft(y) is the cross-sectional distribution of Y
at time t and R(t) = Ft(Y (t)) and taking the derivative of R with respect to t leads
to

R′(t) = C1(t) + C2(t)

:= D1(Y (t), t) +D2(Y (t), t)Y ′(t),
(2)
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where

D1(y, t) :=
∂Ft(y)

∂t
and D2(y, t) :=

∂Ft(y)

∂y
= ft(y). (3)

The two terms in (??) provide the decomposition of the rank derivative into two
components for each subject. The first component C1(t) reflects the changes in the
distribution of the original process Y with respect to time. More specifically, C1(t)
indicates how population changes influence the rank of a given subject, where positive
(negative) values of C1(t) for a specific subject mean that the underlying functional
trajectories Y (t) for the other subjects are generally decreasing (increasing) at time t,
which leads to an increase (decrease) in rank for the selected subject that is entirely
due to a change in the characteristics of the general population. On the other hand,
the second component C2(t) represents the subject’s own contribution to the rank
dynamics. Since D2(y, t) = ft(y) ≥ 0, positive (negative) values of Y ′(t) contribute to
an increase (decrease) in rank due to individual change. Note that even if a subject’s
underlying functional trajectory Y (t) is increasing, the population change C1(t) could
increase even faster and potentially overpower a subject’s own contribution, leading
to a decrease in rank.

To gain a better understanding of the nature of the model in (??), it is helpful
to consider the case where Y (t) is a constant function. In this case, we have that
C2(t) = 0 for all t ∈ T , and the change in rank is completely determined by the rest
of the population, i.e. the rank only changes when the population changes. Similarly,
for a subject that traverses on a constant rank trajectory, it holds that R′(t) = 0 for
all t, which means that population and subject driven components match each other,
C1(t) = −C2(t) for all t.

To determine the contributions of population and individual effects, it is then of
interest to quantify the overall contributions of C1 and C2 to the rank derivative. For
this, we define the rank component contributions

Λ1 :=

∫
T E(|C1(t)|) dt∫

T E(|C1(t)|) dt+
∫
T E(|C2(t)|) dt

, Λ2 := 1− Λ1.

When Λ1 is large, changes in rank are primarily dictated by changes in the population
trajectories. In contrast, if Λ2 dominates Λ1, the changes in rank are due to changes
in individual trajectories.

3. Summary Measures for Rank Processes

Suppose we have a sample of trajectories Yi that are subject-specific indepen-
dently and identically distributed realizations of a smooth underlying process Y , for
i = 1, . . . , n. It is then of interest to have measures that quantify longitudinal cen-
tral tendency and stability of both subject-specific and population ranks that are
functionals of the corresponding rank processes Ri(t) = Ft(Yi(t)) with Ft as per (??)

4



and i = 1, . . . , n. A beneficial feature of the rank process approach is that like other
rank-based methods, the analysis does not depend on the scale of the data and al-
lows for direct comparisons of different data sources and measurement scales through
comparing the corresponding rank processes.

Subject-specific integrated rank. A natural way to summarize a subject’s overall rank
is to integrate the subject’s rank trajectory over the time domain, i.e. to consider the
subject-specific measure

ρi :=

∫
T
Ri(t) dt. (4)

Subject-specific rank volatility. It is also of interest to quantify how variable a subject
is in terms of rank, which can be quantified by

νi :=

∫
T

[Ri(t)− ρi]2 dt. (5)

Subject-specific rank dynamics. For smooth rank processes, one can define a rank
derivative R′(t), t ∈ T . If it is non-zero, then the subject’s rank trajectory crosses
the trajectories of other subjects, i.e. the rank of the subject will change over time.
Pertinent measures include

ζi :=

∫
T
R′i(t) dt = Ri(1)−Ri(0), and ηi :=

∫
T
R′2i (t) dt, (6)

quantifying how variable the rank of a subject is over the time interval.

Population rank stability. Since E[R(t)] = 1/2 for all t ∈ [0, 1], we have thatE[R′(t)] =
0 under mild assumptions. Although the mean functions are therefore not interest-
ing, the variation of R′ on subdomains is of interest, as it can pinpoint temporal
regions where ranks tend to change and the intensity of pairwise crossings of the rank
trajectories is high. We define time-dependent rank stability as

γ(t) := var[R′(t)] = E[R′(t)2]. (7)

Integrating this quantity leads to an overall population rank stability coefficient, for
which we choose

G := exp

(
−
∫
T
γ(t)dt

)
. (8)

Note that if the underlying functional data never cross paths, then γ(t) = 0 for all
t, and thus the overall rank stability is G = 1, while the closer G is to 0, the lower
is rank stability, i.e., the trajectories of the functional data exhibit more frequent
crossings.
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4. Estimation

The starting point is to estimate the rank trajectories Ri(t). Suppose for all
subjects, processes Yi are observed on a regular dense grid ti1 < · · · < timi

on the
time domain, i.e., there exists a design distribution function θ : T → [0, 1] such that
tij = θ−1((j − 1)/(mi − 1)) for j = 1, . . . ,mi and Yij = Yi(tij). We assume that the
underlying surface Ft(y) = P (Y (t) ≤ y) is differentiable in both y and t. To obtain
smooth estimates of the rank process, we utilize a kernel function K, which is a pdf,
and an integrated kernel H, which is a cdf. Furthermore, we assume:

(A1) With probability 1, the process Y has continuously differentiable sample paths
and there exists a constant M > 0 such that supt∈T |Y ′(t)| ≤M .

(A2) The kernel K is a symmetric pdf on R such that,∫
xlK(x) dx <∞, for l = 2, 4.

The kernel H is a cdf such that its derivative H ′(·) exists almost everywhere, is
bounded on R and is a symmetric pdf such that∫

xlH ′(x) dx <∞, for l = 2, 4.

(A3) The kernel K has a compact support, assumed to be [−1, 1]. On (−1, 1), the
first and second derivatives K ′ and K ′′ exist and are bounded.

(A4) The design distribution function θ is four times continuously differentiable on
[0, 1]. There exist 0 < a1 < a2 such that a1 ≤ θ′(t) ≤ a2 for all t ∈ [0, 1].

We provide two strategies for the estimation of R(t) based on the sample {tij, Yij}
as follows.

Cross-sectional empirical distributions. The most straightforward approach to obtain
a ranked sample from a dense functional sample is to estimate the empirical distri-
bution at each time point t ∈ T . Obtaining cross-sectional empirical distributions in
this manner is equivalent to taking cross-sectional ranks and scaling them, i.e.,

R̂i(t) =
1

n

∑
l 6=i

1{Yl(t)≤Yi(t)}. (9)

The empirical ranking defined in (??) has several benefits. It is very simple to im-
plement, and its interpretation is very clear. However, since we aim to obtain differ-
entiable rank functions that allow us to study the decomposition of rank dynamics
into population and individual components, we need smooth estimates of the rank
processes.
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Smooth rank functions. Smooth estimation of conditional/cross-sectional distribution
functions has been well investigated [e.g., ? ? ? ? ]. Define

Q̃1i(y, t) =
1

mi

mi∑
j=1

h−1T H

(
y − Yij
hY

)
K

(
t− tij
hT

)
,

Q̃2i(y, t) =
1

mi

mi∑
j=1

h−1T K

(
t− tij
hT

)
,

and for l = 1, 2,

Ql(y, t) =
1

n

n∑
i=1

Q̃li(y, t),

where hY , hT > 0 are bandwidths. Here, we utilize a kernel estimate of Ft(y) given
by well-established methods described in ? ] and ? ],

F̃t(y) =
Q1(y, t)

Q2(y, t)
. (10)

Thus, a smooth estimator for the rank process Ri(t) can be obtained by

R̃i(t) = F̃t(Yi(t)). (11)

We will discuss the selection of bandwidths hY and hT in the Supplementary Material.
Using one of the two methods described above, we obtain the estimated rank

for level Yij at time tij, yielding the surface {tij, Yij, R̂i(tij)} or {tij, Yij, R̃i(tij)}, and
hence estimate the measures ρi, νi and ζi given in (??)–(??), respectively, by plugging
in either of the two estimators of Ri(t), applying numerical integration. Estimation
of the measures ηi, γ(t) and G (??)–(??) requires the estimation of the rank deriva-
tives R′(t), while identifying the components of the time-dynamic model as per (??)
requires estimation of D1(y, t), D2(y, t), and Y ′(t).

For estimating Y ′(t), one can make use of local polynomial smoothing, or a similar
method. To estimate D1(y, t) and D2(y, t) defined in (??), we take partial derivatives
of (??), yielding

D̃1(y, t) =
Q3(y, t)

Q2(y, t)
− Q1(y, t)Q4(y, t)

Q2(y, t)
2

and D̃2(y, t) =
Q5(y, t)

Q2(y, t)
, (12)

where

Q̃3i(y, t) =
1

mi

mi∑
j=1

h−2T H

(
y − Yij
hY

)
K ′
(
t− tij
hT

)
,

Q̃4i(y, t) =
1

mi

mi∑
j=1

h−2T K ′
(
t− tij
hT

)
,

Q̃5i(y, t) =
1

mi

mi∑
j=1

h−1Y h−1T K

(
y − Yij
hY

)
K

(
t− tij
hT

)
,
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and for l = 3, 4, 5,

Ql(y, t) =
1

n

n∑
i=1

Q̃li(y, t),

where hY , hT > 0 are bandwidths as in Q̃1i and Q̃2i.
For subject i, the estimated components are

C̃1i(t) = D̃1(Yi(t), t) and C̃2i(t) = D̃2(Yi(t), t)Ỹ
′
i (t),

where Ỹ ′i (t) is an estimate of the derivative for example by local polynomial smooth-

ing. From these estimators we obtain the estimated decomposition R̃′i(t) = C̃1i(t) +

C̃2i(t). The component contributions Λ1 and Λ2 may be estimated by numerically

integrating the estimated components C̃1i(t) and C̃2i(t),

Λ̃1 =

∫
T n
−1∑n

i=1 |C̃1i(t)| dt∫
T n
−1
∑n

i=1 |C̃1i(t)| dt+
∫
T n
−1
∑n

i=1 |C̃2i(t)| dt
, Λ̃2 = 1− Λ̃1.

The measures ηi in (??) can then be estimated by plugging in R̃′i(t) based on trajectory
Yi(t); estimators for γ(t) and G in (??) and (??) are obtained using the sample mean

of R̃′i(t)
2.

5. Theoretical Justifications

We demonstrate the asymptotic normality of F̃t(y), the joint asymptotic normality

of [D̃1(y(t), t), D̃2(y(t), t)y′(t)]>, given a curve y(t), and the asymptotic normality of

R̃′(t) = D̃1(y(t), t) + D̃2(y(t), t)y′(t). We denote convergence in distribution by
D−→,

and define

σ2(K) =

∫
x2K(x) dx, σ2(H ′) =

∫
x2H ′(x) dx.

All proofs and auxiliary results are in the Supplementary Material. Throughout, we
use the notations Fs,s′(z, z

′) = P (Y (s) ≤ z, Y (s′) ≤ z′) and fs,s′(z, z
′) for the joint

cdf and pdf of Y (s) and Y (s′), and also the notation ∼, where hn ∼ nα indicates
limn→∞ hnn

−α = 1. We further need to assume:

(A5) The partial derivatives ∂k+l

∂tk∂yl
Ft(y) are bounded over t ∈ [0, 1] and y ∈ R, for

(k, l) ∈ {(3, 0), (0, 3), (2, 1), (1, 2)}.

(A6) The partial derivatives ∂2

∂s∂s′
Fs,s′(z, z

′), ∂2

∂z∂z′
Fs,s′(z, z

′) and ∂2

∂s∂z′
Fs,s′(z, z

′) are
bounded over s, s′ ∈ [0, 1] and z, z′ ∈ R.

The following proposition is similar to some results in literature, for example ? ];
we omit the proof. Theorem ?? is our main result. The proof and auxiliary lemmas
are in the Supplementary Material.
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Proposition 1. Assume ??–??, optimal bandwidth sequences hY ∼ n−1/4 and hT ∼
n−1/4, as n,mi → ∞ with limn→∞max1≤i≤nm

−1
i n1/2 = 0. Then the estimate for

Ft(y) as defined in (??) satisfies

√
n
[
F̃t(y)− Ft(y)

]
D−→ N

(
βF̃ , σ

2
F̃

)
,

where

βF̃ =
1

2
σ2(H ′)

∂

∂y
ft(y) +

1

2
σ2(K)

[
∂2

∂t2
Ft(y) + 2

θ′′(t)

θ′(t)

∂

∂t
Ft(y)

]
,

σ2
F̃

= Ft,t(y, y)− Ft(y)2.

Theorem 1. Assume ??–??. Given a curve y(t), the estimates C̃1(t) = D̃1(y(t), t),

C̃2(t) = D̃2(y(t), t)y′(t) with D̃1 and D̃2 defined in (??) for the two components
C1(t) = D1(y(t), t) and C2(t) = D2(y(t), t)y′(t) with D1 and D2 as per (??) are jointly
asympotically normal. With bandwidths hY ∼ n−1/4 and hT ∼ n−1/4, as n,mi → ∞
such that limn→∞max1≤i≤nm

−1
i n3/4 = 0,

√
n

[(
C̃1(t)

C̃2(t)

)
−
(
C1(t)
C2(t)

)]
D−→ N

(
βC̃ ,ΣC̃

)
,

where

βC̃ =

1
2
σ2(H ′) ∂2

∂t∂y
ft(y(t)) + 1

2
σ2(K)

[
∂3

∂t3
Ft(y(t)) + 2 ∂

∂t

θ′′(t) ∂
∂t
Ft(y(t))

θ′(t)

]
1
2
σ2(K)y′(t)

[
∂2

∂y2
ft(y(t)) + ∂2

∂t2
ft(y(t)) + 2

θ′′(t) ∂
∂t
ft(y(t))

θ′(t)

]  ,

and

ΣC̃ =

(
Σ11 Σ12

Σ12 Σ22

)
,

with

Σ11 =
∂2

∂s∂s′
Ft,t(y(t), y(t))−

[
∂

∂t
Ft(y(t))

]2
,

Σ12 = y′(t)

[
∂2

∂s∂z′
Ft,t(y(t), y(t))− ft(y(t))

∂

∂t
Ft(y(t))

]
,

Σ22 = y′(t)2
[
ft,t(y(t), y(t))− ft(y(t))2

]
.

By continuous mapping, the asymptotic normality of R̃′(t) = C̃1(t)+C̃2(t) follows.

Corollary 1. Under the assumptions of Theorem ??, with R′(t) = C1(t) + C2(t),

√
n
[
R̃′(t)−R′(t)

]
D−→ N

(
β(t), σ2(t)

)
,
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where

β(t) =
1

2
σ2(H ′)

∂2

∂t∂y
ft(y(t)) +

1

2
σ2(K)

[
∂3

∂t3
Ft(y(t)) + 2

∂

∂t

θ′′(t) ∂
∂t
Ft(y(t))

θ′(t)

]

+
1

2
σ2(K)y′(t)

[
∂2

∂y2
ft(y(t)) +

∂2

∂t2
ft(y(t)) + 2

θ′′(t) ∂
∂t
ft(y(t))

θ′(t)

]
,

and

σ2(t) =
∂2

∂s∂s′
Ft,t(y(t), y(t))−

[
∂

∂t
Ft(y(t))

]2
+ 2y′(t)

[
∂2

∂s∂z′
Ft,t(y(t), y(t))

− ft(y(t))
∂

∂t
Ft(y(t))

]
+y′2(t)

[
ft,t(y(t), y(t))− ft(y(t))2

]
.

These results provide rates of convergence and theoretical justifications for the
estimated rank dynamics.

6. Simulation

For the implementation of the dynamic model in Section ?? and the summary
measures in Section ??, two important auxiliary parameters hY and hT are involved
to obtain the kernel estimators for the rank trajectories Ri(·) and the two compo-
nents, C1(t) and C2(t), of the rank derivatives. In this section, we use simulations
to evaluate the finite-sample performance of the bandwidth selection method in the
Supplementary Material, and the kernel estimators for C1(t) and C2(t) in model (??).

Denote φ and Φ as the probability density function and cumulative distribution
function of the standard Gaussian distribution. Suppose we observe trajectories
Yi(t) =

∑5
k=1 ξikψk(t) for subjects i = 1, . . . , n on a dense time grid {j/m : j =

0, 1, . . . ,m} ⊂ T = [0, 1], where ψ1(t) = 6(t−0.5)21{t>0.5}, ψ2(t) = 0.4+(70/9)φ((t−
0.5)/0.09), ψ3(t) = 0.6 cos(8πt), ψ4(t) = sin(2πt) + 1, ψ5(t) = 8φ((t − 0.2)/0.05),
ξi1 ∼ N (1.4, 1.72), ξi2 ∼ N (1, 0.62), ξi3 ∼ N (0, 0.52), ξi4 ∼ N (0.8, 0.42), and
ξi5 ∼ N (0.4, 0.22), independently across i = 1, . . . , n. Hence, the true values of
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Ri(t), C1i(t) and C2i(t) are respectively

Ri(t) = Φ

∑5
k=1(ξik − µk)ψk(t)√∑5

k=1 σ
2
kψk(t)

2

 ,

C1i(t) =

 −∑5
k=1 µkψ

′
k(t)√∑5

k=1 σ
2
kψk(t)

2

−
[∑5

k=1(ξik − µk)ψk(t)
] [∑5

k=1 σ
2
kψk(t)ψ

′
k(t)
][∑5

k=1 σ
2
kψk(t)

2
]3/2


· φ

∑5
k=1(ξik − µk)ψk(t)√∑5

k=1 σ
2
kψk(t)

2

 ,

C2i(t) =

∑5
k=1 ξikψ

′
k(t)√∑5

k=1 σ
2
kψk(t)

2

· φ

∑5
k=1(ξik − µk)ψk(t)√∑5

k=1 σ
2
kψk(t)

2

 .

To assess the performance of the cross-validation (CV) selected bandwidths (hCV
Y , hCV

T ),

we compared the mean integrated squared error (MISE) of C̃1i(t) and C̃2i(t) obtained
with the CV bandwidths as well as with the optimal choice given by

(hoptY , hoptT ) = argmin
(hY ,hT )∈H

MISE(hY , hT ; C̃1) + MISE(hY , hT ; C̃2),

where H ∈ R2 is the set of bandwidth pairs considered,

MISE(hY , hT ; C̃1) =
1

n

n∑
i=1

∫ 1−hmax

hmax

[
C̃1i(t)− C1i(t)

]2
dt,

MISE(hY , hT ; C̃2) =
1

n

n∑
i=1

∫ 1−hmax

hmax

[
C̃2i(t)− C2i(t)

]2
dt,

and hmax is the maximum value of hT considered. The impact of boundary effects
is known to distort bandwidth selection and is removed by cutting off [0, hmax) and
(1− hmax, 1] in the integration.

In the simulations, we used m = 31, H = {(hY , hT ) = (2.4 × 0.6u, 0.3 × 0.6v) :
u, v = 0, 1, 2, 3}, and considered three different sample sizes n = 20, 50 and 200. The
kernels K and H used in Sections ?? and ?? are the pdf and cdf of standard normal
distributions truncated on [−4, 4], respectively. Specifically,

K(x) = φ(x)1[−1,1](x/4)/[Φ(4)− Φ(−4)], and

H(x) = [Φ(x)− Φ(−4)]1[−1,1](x/4)/[Φ(4)− Φ(−4)] + 1(1,∞)(x/4),

where φ and Φ are the pdf and cdf of standard normal distributions, respectively.
We use these kernels as due to their smoothness in practical implementations they
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yield smooth estimates F̃ , D̃1, and D̃2. Boxplots of the MISEs corresponding to the
optimal bandwidths chosen by MISE and CV in each of the 1000 Monte Carlo runs for
n = 20, 50 and 200 are shown in Figure ??. The main message is that CV performs
satisfactorily, as it tracks the optimal choice closely, especially for larger sample sizes
n.
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Figure 1: Boxplots of the MISEs of C̃1i(t) and C̃2i(t) corresponding to the optimal bandwidths
chosen by MISE and CV in 1000 runs.

Boxplots of the MSEs, ISE or SE for the estimation of the rank summary measures
(??)–(??) based on the kernel estimators R̃i(t) and R̃′i(t) obtained with the optimal
bandwidths chosen by CV are shown in Figure ??. Overall the proposed estimators
are seen to converge fast to the true values as n increases.

7. Applications

We demonstrate our methods with three functional datasets which are very dif-
ferent in nature. The first is the Zürich longitudinal growth data; the second is US
median house price data at the county level; the third is based on the 2017 Major
League Baseball (MLB) season, where our interest lies in offensive or hitting per-
formances. We find that by transforming the original processes into rank processes
we are able to find new and interesting characterizations for the individuals in each
dataset.

7.1. Zürich Longitudinal Growth Data

The Zürich longitudinal growth data consist of dense longitudinal height mea-
surements for 112 girls and 120 boys from birth to age 20 and the measurements

12
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Figure 2: Boxplots of the MSEs, ISE or SE of various rank summary statistics based on 1000 runs
and CV bandwidths. Panels (1)–(6) display the estimated values of ρi, νi, ζi, ηi, γ(t), and G,
respectively, indicating also the equation number where the corresponding quantity is defined.

are known to contain very little noise [? ]. It is helpful to compare the ranking for
individuals; we highlight the same six girls and six boys throughout, with their height
trajectories shown in Figure ??.

We find that the two ranking methods yield similar results, with the smooth rank
functions resembling the empirical ranks. Visually, it is clear that taking a ranked
perspective with functional data is appealing. For example, from Figure ??, Girl 1
and Boy 1 are seen to be generally tall throughout, and Girl 2 and Boy 2 are seen
to have volatile ranks as they age. Ranks are fairly stable from ages 5 until 10 and
12 for girls and boys, respectively; subsequently, the ranks are more dynamic, with
higher volatility.

We also obtained the estimates of the rank summary statistics (??)–(??) for the
Zürich longitudinal growth data, based on the smooth ranks defined in (??). In
Figure ?? we see that Girl 1 and Boy 1 have very high ranks and that the ranks are
almost constant throughout. On the other hand, we find that Girl 2 and Boy 2 have
overall middle ranks that are quite volatile. The rank volatility plots are bell-shaped,
as subjects with integrated ranks near 0 and 1 cannot have high volatility. On the
other hand, subjects with moderate integrated ranks have less restricted volatility.
We also highlight the subjects with the highest and lowest values of the subject-
specific rank increases from start to end ζi as in (??) in Figure ??, where ζi captures
the overall ranking trend for a subject, i.e., subjects with large values of ζi have large

13



0 5 10 15 20

50
10

0
15

0
20

0 Girls

Age (year)

H
ei

gh
t (

cm
)

1
2
3
4
5
6

0 5 10 15 20

50
10

0
15

0
20

0 Boys

Age (year)

H
ei

gh
t (

cm
)

1
2
3
4
5
6

Figure 3: Pre-smoothed Zürich growth curves with six subjects highlighted for boys and girls.
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Figure 4: Smoothly ranked Zürich growth trajectories.

increases or decreases in ranks from the beginning to the end of the time domain.
We also applied the rank decomposition (??) to the Zürich growth data. Figure ??

shows the rank derivative decomposition for all subjects in the study. The population
trends quantified by the negative terms C1 tend to lower an individual’s rank as
the population of children at large is growing, while individuals are also growing as
reflected by the positive terms C2. For the growth data, this decomposition indicates
that the population and individual components of the rank derivative are roughly
equal in size. Indeed, the estimated contributions from the first component Λ̃1 for
girls and boys are 0.487 and 0.486, with Λ̃2 = 0.513 and 0.514, respectively, for the
second component. We conclude that in human growth an individual’s change in
rank is the result of a fine balance of individual growth which is counterbalanced
by population trends in growth when considering individual rank trajectories. Rank
volatility is seen to increase during times of growth spurts, where the population tends
to grow relatively fast while individuals may have accelerated or delayed growth, with
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Figure 5: Rank volatility versus integrated rank in the Zürich growth data, with the same six subjects
highlighted as in Figures 3 and 4.
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Figure 6: Smoothly ranked Zürich growth data. Here we highlight the subjects with the highest
(light red) and lowest (blue) subject-specific rank stability measures ζi.

resulting rank changes.

7.2. House Price Data

House price data are available from Zillow. We consider here monthly longitudinal
median house prices after inflation adjustment for house transactions in 306 counties
in the US from May 1996 to August 2015. To compare the ranking for individual
markets, we highlight the same six counties throughout, as in Figure ??. Adopting
the smooth rank function version defined in (??), in Figure ?? house prices in Contra
Costa and Fayette are seen to be generally high and low throughout, respectively,
and those in Fresno are seen to have significant rank variation. We find that ranks
were fairly stable before 2002 and became more dynamic afterward.
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Figure 7: Rank derivative components for girls (left) and boys (right) in the Zürich growth data.
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Figure 8: Pre-smoothed inflation-adjusted median house price curves for U.S. counties with six
counties highlighted.

We also estimated the rank summary statistics for the house price data. In Fig-
ure ?? we see that Contra Costa county and Fayette county have very high and low
ranks respectively and that their ranks were almost constant throughout the time
period considered. On the other hand, we find that Kalamazoo has moderate ranks
that are very volatile. These findings are in agreement with Figure ?? and the rank
volatility plot has a similar shape to that in Figure ??, as expected. Highlighting the
counties with the highest and lowest gains in rank ζi as in (??) in Figure ??, we find
that the magnitudes of difference in ranks between the beginning and the ending for
the house price data are not as large as those for the Zürich growth curves.

We also applied the dynamic rank decomposition (??) to the house price curves.
Figure ?? shows the rank derivative decomposition for all counties in the study. The
house price ranks were more volatile a few years before and after the 2008 finan-
cial crisis. The population components also reveal that county median house prices
were increasing in general before 2006, turned to drop from 2007, and then gradu-
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Figure 9: Smoothly ranked house price trajectories.
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Figure 10: Rank volatility versus integrated rank for the house price data, with the same six counties
highlighted for clarity.

ally recovered and increased again since 2012. The individual component is seen to
contribute more to the rank derivative than the population component. This is also
reflected by the estimated contributions from the two components, Λ̃1 = 0.458 and
Λ̃2 = 0.542. As shown in Figure ??, a general trend cana be discerned from the house
price trajectories: Prices initially increased until 2005, decreased from 2005 to 2012,
and then increased again. The house price population dynamics points predominantly
downwards until 2008, with individual markets exercising strong counterforces; this
means a county where price growth was sluggish fell back in rank; the opposite hap-
pened between 2008 and 2012 — a county where house prices were stable was gaining
against the population and its rank increased.

7.3. Major League Baseball Offensive Data

Another area where relative rank is important is in sports. Major League Baseball
(MLB) teams routinely spend over $100 million on player salaries every year. It is
therefore of paramount interest to rank players in terms of ability so that teams
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Figure 11: Smoothly ranked house price data, highlighting the counties with the highest (light red)
and lowest (blue) county-specific rank gains ζi.
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Figure 12: Rank derivative components for the house price data.

can invest efficiently in individual players. Although there are many factors which
contribute to the overall value of a player, one of the most important is offensive
performance, and accordingly we focus on ranking MLB players in terms of offense.

Baseball has recently become a game dominated by statistics [see ? ? , and the
movie Moneyball for instance]. As such, statisticians and sabermetricians look for
simple yet informative measures for assessing player performance. By far, the most
widely used statistic to quantify offensive performance is the batting average (BA),
which is the number of hits a player has divided by the number of attempts. While
the batting average is simple to understand, it has several shortcomings; for example,
late in the season, when the number of attempts or at-bats is high, the average will
not easily reveal changes in performance.

In light of the drawbacks of using batting average as a response, we tracked the
number of hits a player accrued for each day in the 2017 MLB season (http://www.
baseballmusings.com/), and then took the derivative of this trajectory, which we
used as our functional response. This derivative can be viewed as a local batting
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Figure 13: Cumulative hits (left) and hits derivatives (right) for each day in the 2017 Major League
Baseball season for 237 players. Six curves are highlighted which correspond to the players with the
highest batting averages.

average, or the change in hits divided by the change in days. It is thus less affected
by long-term history because it is an instantaneous measure. This response therefore
characterizes the heat of a player, which is the level of their current performance.
The original hits trajectories and corresponding hits derivatives trajectories in Fig-
ure ??, obtained by local polynomial smoothing, are our starting point for the rank
analysis. The objective is to quantify the player’s ranks and changes in ranks in this
dataset, aiming to identify top players. We first transform the hit derivative tra-
jectories into rank trajectories using the smooth representation in (??), visualized in
Figure ??, where the differences in rank for the six highlighted players are highlighted.
For example, this visualization makes it clear that Joey Votto improved drastically
throughout the season, moving from a rank near 0.25 at the beginning of the season,
to finishing with a rank of nearly 1.
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Figure 14: Rank transformed baseball data, with the same six players highlighted.
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We also applied the rank summary statistics, which prove to be informative. The
rank volatility versus integrated rank plot, shown in Figure ?? has direct applications
in assessing offensive performance from the 2017 MLB season. Naturally, all six of the
highlighted players have relatively high ranks. In addition to average performance,
we can see that two of the players, Jose Altuve and Charles Blackmon, had high
integrated rank and low volatility, which are two features of the most valuable players.
These players are consistently performing at a high level with respect to the rest of
the sample. As shown in Figure ??, the player with the highest integrated rank and
fairly low volatility is Charlie Blackmon. Taking the viewpoint of a team deciding
on which players to acquire, this plot also allows one to select players which have
modest average ranks but have low volatility. Players of this type are desirable when
looking for consistent backup players, for example. Finally, the player-specific change
in ranks ζi quantifies whether players are generally improving or deteriorating over
the season.
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Figure 15: Rank volatility versus integrated rank for the baseball data, with the same six players
highlighted.

When fitting the rank derivative decomposition model (??) to these baseball data,
we find that the subject specific component C2(t) contributes much more than the
population component C1(t). This is not surprising as the population of hits derivative
curves Yi(t), i = 1, . . . , n does not have a very clear pattern. Thus rank is determined

to a large extent by individual effort alone, with estimated contributions Λ̃1 = 0.165
for the population component and Λ̃2 = 0.835 for the individual component. This is
visualized in Figures ?? and ??, where the second component is seen to dominate the
first. In addition, an ascent followed by a descent period can be seen in the population
component curves around Day 100. This is due to the “All Star Break”, which is a
break for all the players except the All Stars. i.e., the best players from each team,
who play in an exhibition game. Thus, the hits derivatives decrease toward zero for
almost all players during the break and then recover after the games are resumed.
Hence the population components first ascend and then descend accordingly. The
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ascending phase of the population component near the end of the season is due to
the same reason, i.e., fewer games are available at that time.
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Figure 16: Rank derivative components for 2017 Major League Baseball data.
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Figure 17: Rank derivative components for the six players with the highest batting averages of 2017.

Finally, the overall rank stability coefficient G in (??), which is an overall scaled
measure of how variable the rank trajectories are, can be used to compare all three
functional data set that we have considered, i.e., the Zürich growth data, the housing
price data and the baseball player data. The estimates of G based on the smooth
rank estimation are shown in Table ??. The baseball players’ rank curves have the
lowest stability, with the most volatility of ranks and a much higher degree of crossing
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trajectories. Moreover, the rank trajectories are not much influenced by population
trends. In the Zürich growth and house price data, we observe much higher degrees of
stability, with the highest level of rank stability and associated lowest rank volatility
for the growth data. Especially for the growth data, crossings of rank trajectories
are not common. Rank trajectories for the housing data and even more so for the
growth data are driven to a large extent by population trends, where population
distributions uniformly move to higher levels for the growth data with increasing age,
while they have increasing and decreasing phases for the house price data. Notably,
for the growth data, the trajectory dynamics are driven in equal parts by population
trends and individual growth patterns, while for the housing price data population
trends play a slightly smaller role.

Table 1: Estimates of G based on the smooth rank estimation for all the three datasets

Zürich growth
House price Baseball

Girls Boys
0.9866 0.9883 0.4500 3.409× 10−21

8. Discussion

Cross-sectional ranking of functional data is a powerful tool for exploratory func-
tional data analysis. To the best of our knowledge, the proposed perspectives in this
paper are new to the field of functional data analysis and allow for quantification
of the rank dynamics of a stochastic process. These methods are simple to under-
stand and straightforward to implement. The decomposition of rank dynamics into
population and individual components allows to better understand the forces that
shape observed rank trajectories, and the summary measures of rank volatility, rank
stability and rank gain are useful.

For the estimation of the two components D1(y, t) and D2(y, t) in (??), we could
alternatively use local quadratic regression. This would be asymptotically equivalent
to the kernel estimator in (??) under regularity assumptions on the smoothness of
weight functions and the shape of kernels [? ]. However, the kernel method we employ
here has an explicit form which facilitates theoretical derivations, and makes imple-
mentation straightforward, while the local quadratic regression involves the inverse of
a matrix of dimension at least 5×5. This provides strong motivation for the proposed
method.

Our estimation methods and theory are geared towards densely observed func-
tional data. One possible approach for the case of sparsely observed functional data
is to divide the time domain into bins in a preprocessing step, followed by estimat-
ing the cross-sectional distribution at time t by using local Fréchet regression [? ]
based on the preliminary distributions observed at the midpoints of the bins – these
are the empirical distributions derived from the observations falling into each bin.

22



The two components can then be obtained, e.g., by taking difference quotients of the
cross-sectional distribution estimates. To work out the details and full theoretical
justification of such a method will be a future research project.
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Appendix A. Supplementary Material

A data-driven approach for bandwidth selection for the kernel estimator in (??)
and details about the theoretical results and proofs are available in the online Sup-
plementary Material.
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