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Department of Statistics, University of California, Davis

One Shields Avenue, Davis, CA 95616, U.S.A.
hgmueller@ucdavis.edu 10

AND B. U. PARK
Department of Statistics, Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea

bupark@stats.snu.ac.kr

FOR THE ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE∗ 15

SUMMARY

We propose and investigate an additive regression model for symmetric positive-definite ma-
trix valued responses and multiple scalar predictors. The model exploits the abelian group struc-
ture inherited from either the Log-Cholesky metric or the Log-Euclidean framework that turns
the space of symmetric positive-definite matrices into a Riemannian manifold and further a bi- 20

invariant Lie group. The additive model for responses in the space of symmetric positive-definite
matrices with either of these metrics is shown to connect to an additive model on a tangent space.
This connection not only entails an efficient algorithm to estimate the component functions but
also allows to generalize the proposed additive model to general Riemannian manifolds. Beyond
symmetric positive-definite matrix valued responses the proposed additive model also covers 25

more general Lie groups. Optimal asymptotic convergence rates and normality of the estimated
component functions are established and numerical studies show that the proposed model en-
joys good numerical performance and is not subject to the curse of dimensionality when there
are multiple predictors. The practical merits of the proposed model are demonstrated through an
analysis of brain diffusion tensor imaging data. 30
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1. INTRODUCTION

Data in the form of symmetric positive-definite matrices arise in many areas, including com-
puter vision (Caseiro et al., 2012; Rathi et al., 2007), signal processing (Arnaudon et al., 2013;35

Hua et al., 2017), medical imaging (Dryden et al., 2009; Fillard et al., 2007) and neuroscience
(Friston, 2011), among other fields and applications. For instance, they are used to model brain
functional connectivity that is often characterized by covariance matrices of blood-oxygen-level
dependent signals (Huettel et al., 2008). In diffusion tensor imaging analysis (Le Bihan, 1991), a
3× 3 symmetric positive matrix that is computed for each voxel describes the dominant shape of40

local diffusion of water molecules. While the analysis of symmetric positive-definite matrices as
responses in a regression model is our primary emphasis in this paper, our results more generally
extend to responses with a Lie group structure that include data on the torus.

The space S+ of symmetric positive-definite matrices is a nonlinear metric space and, depend-
ing on the metric, forms a Riemannian manifold. Various metrics have been studied (Pigoli et al.,45

2014); an important criterion for choosing a metric is to avoid the swelling effect. This refers to
the phenomenon that the determinant of the Fréchet mean of a set of symmetric positive-definite
matrices may be substantially larger than that of any of the constituent matrices. The swelling
effect becomes evident in the geodesics connecting two elements of S+ (Arsigny et al., 2007),
negatively affects specifically the Frobenius metric and various other metrics, and is problematic50

for many applications. These include diffusion tensor imaging, where a diffusion tensor is rep-
resented by a symmetric positive-definite matrix and the determinant quantifies diffusion of the
tensor. The swelling effect will then lead to distortions when quantifying diffusion.

The abundance of S+-valued data in many areas stands in contrast with the relative sparsity
of work on their statistical analysis, in particular regarding regression with S+-valued responses.55

Existing work includes Riemannian frameworks to analyze diffusion tensor images with a focus
on averages and modes of variation (Fletcher & Joshib, 2007; Pennec et al., 2006) and various
versions of nonparametric regression such as spline regression (Barmpoutis et al., 2007), lo-
cal constant regression (Davis et al., 2010), intrinsic local linear regression (Yuan et al., 2012),
wavelet regression (Chau & von Sachs, 2019) and Fréchet regression (Petersen et al., 2019). Var-60

ious metric, manifold and Lie group structures have been proposed, for example, the trace metric
(Lang, 1999), affine-invariant metric (Moakher, 2005; Pennec et al., 2006; Fletcher & Joshib,
2007), Log-Euclidean metric (Arsigny et al., 2007), Log-Cholesky metric (Lin, 2019), scaling-
rotation distance (Jung et al., 2015) and Procrustes distance (Dryden et al., 2009). As S+is a
Riemannian manifold and more generally a metric space, regression techniques developed for65

general Riemannian manifolds (e.g. Pelletier, 2006; Shi et al., 2009; Steinke et al., 2010; Davis
et al., 2010; Fletcher, 2013; Hinkle et al., 2014; Cornea et al., 2017, among many others) and
metric spaces (Hein, 2009; Chen & Müller, 2022; Lin & Müller, 2021) also apply to S+.

Additive regression originated with Stone (1985) and is known to be an efficient way of avoid-
ing the well known curse of dimensionality problem that one faces in nonparametric regression70

when the dimension of the covariate vector increases, but so far has been by and large limited
to the case of real-valued and functional responses. Examples for additive regression approaches
for real-valued responses include the original work on smooth backfitting (Mammen et al., 1999)
and extensions to generalized additive models (Yu et al., 2008), additive quantile models (Lee
et al., 2010), generalized varying coefficient models (Lee et al., 2012), errors-in-variables (Han75

& Park, 2018) and functional or distributional responses (Scheipl et al., 2015; Park et al., 2018;
Han et al., 2020; Jeon & Park, 2020).

This paper contains three major contributions. First, to the best of our knowledge, this is
the first paper to study additive regression for S+-valued responses, counteracting the curse
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of dimensionality while maintaining a high degree of flexibility. Previous studies for model- 80

ing S+-valued responses focused on unstructured nonparametric regression such as local con-
stant/polynomial regression that are well known to be subject to the curse of dimensionality when
there are many predictors.

Second, by focusing on abelian Lie group-valued responses that include data on the torus
(Eltzner et al., 2018) as well as S+-valued responses, we propose a novel intrinsic group additive 85

regression model that directly exploits the abelian group structure of the responses. This sets our
work apart, as previously only the general manifold structure of responses was considered in
the few existing non-additive regression approaches. To the best of our knowledge, this is the
first work to connect additive regression with Lie groups. This connection extends the reach of
additive models in a very natural way. 90

Third, we show that this group additive model can be transformed into an additive model on
tangent spaces by utilizing the Riemannian logarithmic map, which paves the way for extending
the additive model to the case of responses that lie on more general manifolds. While throughout
we showcase the proposed approaches for the space S+m of symmetric positive-definite matrices
with suitable metrics, our results are by no means limited to this type of responses and are 95

applicable to additive regression modeling for a much larger class of manifold-valued responses.

2. PRELIMINARIES ON DIFFERENTIAL GEOMETRY

We compile here some basic notions for Riemannian manifolds and Lie groups, referring
readers to Section S.1 of Shao et al. (2022+) for a self-contained note on basic concepts of Rie- 100

mannian geometry and to the text by Lee (2018) for a comprehensive treatment. In the following,
L denotes a simply connected smooth manifold situated in a D-dimensional Euclidean space.

Tangent vectors, tangent spaces and Riemannian metrics. The tangent space at y ∈ L, denoted
by TyL, is a linear space consisting of velocity vectors α′(0) where α : (−1, 1)→ L represents
a differentiable curve passing through y, i.e. α(0) = y. Each tangent space TyL is endowed with 105

an inner product gy that varies smoothly with y and is a D-dimensional Hilbert space with the
induced norm denoted by ‖ · ‖y. The inner products {gy : y ∈ L} are collectively denoted by g,
referred to as the Riemannian metric of L that also defines a distance d on L.

Geodesics and exponential maps. A geodesic γ is a constant-speed curve defined on [0,∞)
such that for each t ∈ [0,∞), the segment γ([t, t+ ε]) is the shortest path connecting γ(t) and 110

γ(t+ ε) for all sufficiently small ε > 0. The Riemannian exponential map Expy at y ∈ L is a
function mapping TyL into L and defined by Expy(u) = γ(1) with γ(0) = y and γ′(0) = u ∈
TyL. Conversely, γy,u(t) = Expy(tu) is a geodesic starting at y and with direction u.

Cut time and logarithmic maps. For a tangent vector u ∈ TyL, the cut time cu is the pos-
itive number such that γy,u([0, cu]) is a shortest path connecting γy,u(0) and γy,u(cu), but 115

γy,u([0, cu + ε]) is not a shortest path for any ε > 0. It turns out that the exponential map
Expy(tu) for u ∈ TyL is invertible before the cut time cu. Formally, the inverse of Expy, de-
noted by Logy and called the Riemannian logarithmic map at y, can be defined by Logyz = tu
for z ∈ Ey := {Expy(tu) : u ∈ TyL, ‖u‖y = 1, 0 ≤ t < cu} such that Expy(tu) = z.

Covariant derivative of smooth functions. Let C∞(L) denote the collection of smooth real-
valued functions defined on L. For a smooth function f ∈ C∞(L) and a tangent vector v ∈ TyL,
the covariant derivative of f at y along the direction v, denoted by∇vf , is defined by

∇vf := (f ◦ γ)′(0) = lim
t→0

f{γ(t)} − f(y)

t
,
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where γ : [−1, 1]→ L is a differentiable curve such that γ(0) = y and γ′(0) = v.120

Covariant derivative of smooth vector fields. A smooth vector field U is a smooth function
defined on L such that U(y) ∈ TyL for all y ∈ L. The covariant derivative measures how fast
a map changes along a direction ands is defined for smooth vector fields as follows. Let Γ(L)
denote the collection of smooth vector fields on L. A connection is a map ∇ : Γ(L)× Γ(L)→
Γ(L), with (V,U) 7→ ∇V U , that satisfies the following properties:125 r ∇V U is linear over C∞(L) in V , i.e.∇fV1+gV2U = f∇V1U + g∇V2U for f, g ∈ C∞(L)

and V1, V2 ∈ Γ(L);r ∇V U is linear over R in U , i.e.∇V (a1U1 + a2U2) = a1∇V U1 + a2∇V U2 for a1, a2 ∈ R
and U1, U2 ∈ Γ(L);r ∇V (fU) = f∇V U + (∇V f)U for f ∈ C∞(L),130

where, for f ∈ C∞(L) and a smooth vector field U , fU denotes a smooth vector field defined
by (fU)(y) = f(y)U(y) for all y ∈ L, and ∇V f is a smooth real-valued function defined by
(∇V f)(y) = ∇V (y)f for y ∈ L. The quantity ∇V U is called the covariant derivative of U in
the direction V . Note that the value of ∇V U at y depends on V only through its value at y
(Proposition 4.5, Lee, 2018), which makes the expression ∇vU sensible for v ∈ TyL; ∇vU is135

called the covariant derivative of U at y in the direction v.
Levi–Civita covariant derivative. For U, V ∈ Γ(L), the function fU,V defined by fU,V (y) =

gy(U(y), V (y)) is in C∞(L). A connection ∇ on L is compatible with the metric g on L if
∇vfU,V = gy(∇vU, V (y)) + gy(U(y),∇vV ) for all U, V ∈ Γ(L), each y ∈ L and each tan-
gent vector v ∈ TyL. For U, V ∈ Γ(L), [U, V ] denotes a new vector field satisfying ∇[U,V ]f =140

∇U∇V f −∇V∇Uf for all f ∈ C∞(L). If ∇UV −∇V U = [U, V ] for all U, V ∈ Γ(L), then
we say the connection ∇ is torsion-free. For a Riemannian manifold, there exists a unique con-
nection that is both torsion-free and compatible with the Riemannian metric. It is called the
Levi–Civita connection with Levi–Civita covariant derivative as its induced covariant derivative.

Sectional Curvature. Curvature quantifies the degree of deviation from being flat. Define
the map R(U, V,W ) = ∇U∇VW −∇V∇UW −∇[U,V ]W for U, V,W ∈ Γ(L). The value of
R(U, V,W ) at y depends only on the values of U, V,W at y, and therefore we can write
R(u, v, w) for tangent vectors u, v, w at the same point. The sectional curvature at y ∈ L is
a real-valued function on TyL × TyL defined for u, v ∈ TyL by

K(u, v) =
gy{R(u, v, v), u}

gy(u, u)gy(v, v)− gy(u, v)2
.

A Hadamard manifold is a complete and simply connected Riemannian manifold that has every-145

where non-positive sectional curvature and thus is a Hadamard space.
Parallel transport. Given a curve γ(t) on L, t ∈ I for a real interval I , a vector field U along γ

is a smooth map defined on I such that U(t) ∈ Tγ(t)L. We say U is parallel along γ if∇γ′(t)U =
0 for all t ∈ I . In this paper, we primarily focus on parallel vector fields along geodesics. Let
γ : [0, 1]→ L be a geodesic connecting y and z, and U a parallel vector field along γ such150

that U(0) = u and U(1) = v. Then we say v is the parallel transport of u along γ, denoted by
τy,zu = v. Parallel transport can be used as an intrinsic mechanism to compare tangent vectors
residing at different points, e.g. via parallelly transporting the tangent vectors to the tangent space
at a fixed point on L, where they can be easily compared.

Lie algebra. A Lie algebra is a vector space g endowed with an alternating binary operation155

[·, ·] : g× g→ g satisfying the following axioms:



Additive Models 5r (Bilinearity) [au+ bv, w] = a[u,w] + b[v, w] and [w, au+ bv] = a[w, u] + b[w, v] for all
a, b ∈ R and u, v, w ∈ g;r (Alternativity) [u, u] = 0 for all u ∈ g;r (Jacobi identity) [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ g. 160

Lie group. When L is a group such that the group operation ⊕ and inverse ι : y 7→ y−1 are
smooth, (L,⊕) is a Lie group L. We say a vector field U on a Lie group (L,⊕) is left-invariant if
U(y ⊕ z) = (DzLy)(U(z)) for all y, z ∈ L, whereLy : z 7→ y ⊕ z is the left translation induced
by y and DzLy is the differential of Ly at z. Right-invariant vector fields are defined in a similar
fashion via right translations. One can show that any left-invariant vector fieldU is fully specified 165

by its value U(e) at the group identity element e. Consequently, the collection of left-invariant
vector fields, denoted by h, can be identified with the tangent space TeL. In addition, the space
h gives rise to a Lie algebra, as follows. For two smooth vector fields U, V on the Lie group
L, the Lie bracket [U, V ] is the vector field determined by [U, V ](f) = ∇U∇V f −∇V∇Uf for
f ∈ C∞(L). It can be shown that the vector space h endowed with the Lie bracket is a Lie 170

algebra. If L is abelian, then [U, V ] = 0 for any U, V ∈ h.
Fréchet function and Fréchet means. For random elements Y ∈ L, for a Lie group L, the

Fréchet function is F (y) = Ed2(y, Y ), where d is the Riemannian distance function induced
by the metric on L. If L is a Hadamard manifold and F (y) <∞ for some y ∈ L, and hence
F (y) <∞ for all y ∈ L according to the triangle inequality,the minimizer of F (y) exists and is 175

unique (Sturm, 2003). It is known as the Fréchet mean and is denoted by EoplusY .
Bi-invariant metric. A Riemannian metric g on a Lie group is left-invariant if gz(u, v) =

gy⊕z{(DzLy)u, (DzLy)v} for all y, z ∈ L and u, v ∈ TzL. Right-invariant metrics can be de-
fined in a similar fashion. A metric is bi-invariant if it is both left-invariant and right-invariant.

Fréchet function and Fréchet mean. For random elements Y ∈ L, for a Lie group L, the 180

Fréchet function is F (y) = Ed2(y, Y ), where d is the Riemannian distance function induced
by the metric on L. If L is a Hadamard manifold and F (y) <∞ for some y ∈ L, and hence
F (y) <∞ for all y ∈ L according to the triangle inequality, the minimizer of F (y) exists and is
unique (Sturm, 2003). It is known as the Fréchet mean and is denoted here by E⊕Y .

Lie exponential and logarithmic maps. The Lie exponential map, denoted by exp that maps 185

g into L, is defined by exp(u) = γ(1) where γ : R→ L is the unique one-parameter subgroup
such that γ′(0) = u ∈ g. Its inverse, if it exists, is called the Lie logarithmic map and denoted
by log. When g is bi-invariant, exp = Expe, i.e. the Riemannian exponential map at the identity
element coincides with the Lie exponential map.

3. ADDITIVE MODELS FOR LIE GROUPS 190

While we develop additive regression models for Lie group-valued responses, the main mo-
tivating examples are symmetric positive matrices due to their ubiquity and practical relevance.
Accordingly, we first provide details about this motivating example and then consider the general
Lie group framework, of which this is a special case. The space of m×m symmetric positive-
definite matrices S+m is a smooth submanifold of Rm×m. Its tangent spaces are Sm, the collection 195

of m×m symmetric matrices. Upon endowing these tangent spaces with a Riemannian metric
g, S+m becomes a Riemannian manifold. Here we focus on the Log-Euclidean (Arsigny et al.,
2007) and Log-Cholesky (Lin, 2019) metrics, which are designed to eliminate the swelling ef-
fect; extensions to other metrics and general Riemannian manifolds will be discussed in the
next section. Each of these metrics is associated with a group operation ⊕ that turns S+m into an 200

abelian Lie group in which the metric is bi-invariant. In our experience, the Log-Cholesky metric
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is computationally more efficient but it is not invariant to permutation, while the Log-Euclidean
metric is invariant to permutation but is not affine-invariant (Arsigny et al., 2007).

Example 1 (Log-Cholesky metric). The Log-Cholesky metric utilizes the Cholesky decompo-
sition to transfer a Lie group structure on the space of lower triangular matrices of positive diag-205

onals to the space of symmetric positive-definitive matrices. Specifically, let LT(m) be the space
ofm×m lower triangular matrices and LT+(m) ⊂ LT(m) the subspace such thatL ∈ LT+(m)
if all diagonal elements of L are positive. One can show that LT+(m) is a smooth submanifold
of LT(m) and its tangent spaces are identified with LT(m). For a fixed L ∈ LT+(m), we define
a Riemannian metric g̃ on LT+(m) by g̃L(A,B) =

∑
1≤j<i≤mAijBij +

∑m
j=1AjjBjjL

−2
jj ,210

whereAij denotes the element ofA in the ith row and jth column. It is an abelian Lie group with
the operation � defined by L1 � L2 = L(L1) + L(L2) + D(L1)D(L2), where L(L) is the strict
lower triangular part ofL, that is, (L(L))ij = Lij if j < i and (L(L))ij = 0 otherwise, and D(L)
is the diagonal part of L, that is, a diagonal matrix whose diagonals are equal to the respective
diagonals of L. One can show that g̃ is a bi-invariant metric for the Lie group LT+(m) with the215

group operation �. It is well known that a symmetric positive-definite matrix P is associated with
a unique matrixL in LT+(m) such thatLL> = P . We refer toL as the Cholesky factor of P . For
U, V ∈ TPS+m = Sm, we define the metric gP (U, V ) = g̃L(L(L−1UL−>) 1

2
, L(L−1V L−>) 1

2
),

where (S) 1
2

= L(S) + D(S)/2 for a matrix S. We also turn S+m into an abelian Lie group with

the operator ⊕ such that P1 ⊕ P2 = (L1 � L2)(L1 � L2)
>, where L1 and L2 are the Cholesky220

factors of P1 and P2, respectively. The metric g is a bi-invariant metric of the Lie group (S+m,⊕)
and turns S+m into a Hadamard manifold.

Example 2 (Log-Euclidean metric). The matrix logarithm is a smooth bijective map between
S+m and Sm and thus can be used to transfer the canonical Euclidean structure of Sm to S+m.
Recall that for a symmetric matrix S, exp(S) = Im +

∑∞
j=1

1
j!S

j is a symmetric positive-225

definite matrix. The inverse of exp, denoted by log, exists and is called the matrix logarith-
mic map. Both exp and log are smooth maps between S+m and Sm. The operation ⊕ defined
as P1 ⊕ P2 = exp(log(P1) + log(P2)) for P1, P2 ∈ S+m turns S+m into an abelian group. The
canonical Riemannian metric on Sm is trace(S1S2) for S1, S2 ∈ Sm and can be transferred
to a Riemannian metric on S+m given by gP (U, V ) = trace

[{
(DP log)U

}{
(DP log)V

}]
for230

U, V ∈ Sm, where DP log denotes the differential of the log at P . It turns out that g is a bi-
invariant metric on (S+m,⊕) that is isomorphic to the group of Sm with the usual matrix addi-
tion as the group operation (Proposition 3.4, Arsigny et al., 2007). This metric turns S+m into a
Hadamard manifold.

Another example for a relevant Lie group that is not related to the space S+m and shows that our235

approach is not limited to symmetric positive matrices is as follows.

Example 3 (Tori). Let S = {a+ b
√
−1 : a, b ∈ R, a2 + b2 = 1} be the unit circle. It is an

abelian Lie group when the group operation is the standard multiplication of complex num-
bers. In addition, S is a Riemannian submanifold of R2. An m-torus Tm is the direct prod-
uct of m copies of S, and therefore, is also an abelian Lie group. Its Lie algebra is g =240 √
−1Rm = {(a1

√
−1, . . . , am

√
−1) : a1, . . . , am ∈ R} with the trivial Lie bracket [u, v] = 0

for all u, v ∈ g. The Riemannian metric on Tm is the product Riemannian metric of S, and this
metric is bi-invariant. Data on tori occur in the statistical analysis of wind directions (Hundrieser
et al., 2021) and RNA data (Eltzner et al., 2018).
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We note that it follows from (...) that Fréchet means are unique if L = S+m, equipped with the 245

Log-Cholesky or Log-Euclidean metric. Given scalar variables X1 ∈ X1, . . . , Xq ∈ Xq, which
are predictors that are paired with a Lie group valued response Y and where Xj ⊂ R, j =
1, . . . q, are compact domains, the proposed Lie group additive model is as follows, where we
make use of the Lie group operation ⊕,

Y = µ⊕ w1(X1)⊕ · · · ⊕ wq(Xq)⊕ ζ. (1)

Here µ = E⊕Y is the Fréchet mean of Y , each wk is a function that maps Xk into L, and 250

ζ is random noise with E⊕ζ = e, the group identity element e. For identifiability, we require
E⊕{wk(Xk)} = e, k = 1, · · · , q. This model generalizes the additive model for Euclidean re-
sponses to L-valued responses. It includes the effect of of the additive component functions on
the mean response and of noise in the responses, neither of which can be additively modeled in
the absence of a linear structure of the responses. The task at hand is to estimate the unknown 255

parameter µ and the component functionsw1, . . . , wq, given a sample of independently and iden-
tically distributed (i.i.d.) observations of size n. To overcome the challenge of the absence of a
linear structure in L, the following result proves essential.

PROPOSITION 1. If (L,⊕) is an abelian Lie group endowed with a bi-invariant metric g that
turns L into a Hadamard manifold, then (1) is equivalent to 260

LogµY =

q∑
k=1

τe,µlogwk(Xk) + τe,µlogζ. (2)

In (2), we transform the left-hand side of (1) by the Riemannian log map Logµ, so that
ELogµY = 0, and the right-hand side of (1) by the Lie log map log, whereupon w1(X1)⊕
· · · ⊕ wq(Xq) is decomposed into additive components in the vector space TµL, so that the
standard smooth backfitting algorithm can be adopted to estimate w1, . . . , wq. Specifically, let
fk(Xk) = τe,µlogwk(Xk) and ε = τe,µlogζ. Then according to Proposition 1, one may rewrite 265

the model (1) as LogµY =
∑q

k=1 fk(Xk) + ε, where Eε = Eτe,µlogζ = τe,µElogζ = 0 since
E⊕ζ = e. Note that E

(∑q
k=1 fk(Xk)

)
= 0 since ELogµY = 0. The identifiability of the indi-

vidual component functions fk follows from Efk(Xk) = 0 for all k = 1, . . . , q, which is a con-
sequence of E⊕{wk(Xk)} = e in (1). These considerations motivate to estimate the component
functions wk through estimation of the fk, as follows. 270

Step 1: Compute the sample Fréchet mean µ̂. Closed-form expressions of µ̂ are available for
special cases of L, including when L = S+m with the Log-Cholesky or Log-Euclidean
metric; see Section S1 of the Supplementary Material for details. Alternative numeri-
cal algorithms (e.g. Yang, 2007) are also available.

Step 2: Compute Logµ̂Yi. There are closed-form expressions available for L = S+m with the 275

Log-Cholesky or Log-Euclidean metric; see Section S1 of the Supplementary Mate-
rial. Numerical methods as described in Section 5.3 of Brun (2007) are also available.

Step 3: Solve the system of integral equations

f̂k(xk) = m̂k(xk)− n−1
n∑
i=1

Logµ̂Yi −
∑
j:j 6=k

∫
Xj

f̂j(xj)
p̂kj(xk, xj)

p̂k(xk)
dxj , 1 ≤ k ≤ q,

(3)
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subject to the constraints
∫
Xj
f̂k(xk)p̂k(xk)dxk = 0 for 1 ≤ k ≤ q. Here, p̂k(xk) =

n−1
∑n

i=1Khk(xk, Xik), p̂kj(xk, xj) = n−1
∑n

i=1Khk(xk, Xik)Khj (xj , Xij), and280

m̂k(xk) = n−1p̂k(xk)
−1

n∑
i=1

Khk(xk, Xik)Logµ̂Yi, (4)

where Khj is a kernel function with
∫
Xj
Khj (u, v) du = 1 for all v ∈ Xj , see Jeon &

Park (2020). Note that n−1
∑n

i=1 Logµ̂Yi = 0 since µ̂ is the sample Fréchet mean.
Step 4: Finally, estimate wk(xk) by ŵk(xk) = exp{τµ̂,ef̂k(xk)}.

Step 3 is a multivariate version of the standard Smooth Backfitting (SBF) system of equations
(Mammen et al., 1999). Since the tangent space Tµ̂S+m is also a Hilbert space, the above SBF285

system of equations can be interpreted from a Bochner integral perspective, see Jeon & Park
(2020), where also the empirical selection of bandwidths hk is discussed.

Remark 1. According to Theorem 3.6 of Bröcker & tom Dieck (1985), any abelian Lie group
is isomorphic to Tk × Rs, where Tk denotes a k-torus defined in Example 3. However, our
model, estimation and theory do not rest on this isomorphism, as it does not lead to a natural ex-290

tension to general Riemannian manifolds. Instead, in the above development we connect the ad-
ditive model (1) on Lie groups to an additive model (2) on the tangent space at the Fréchet mean
via Proposition 1. This allows an immediate extension to general Riemannian manifolds. Since
neither our estimation method nor the theory presented in Section 5 rely on the isomorphism to
Tk × Rs, our methods and theory cover both Lie groups and general Riemannian manifolds.295

4. EXTENSION TO RIEMANNIAN MANIFOLDS

When S+m is endowed with the affine-invariant metric (Moakher, 2005; Pennec et al., 2006;
Fletcher & Joshib, 2007), it generally is not an abelian Lie group with a bi-invariant metric
and then model (1) depends on the order of operations and thus is not additive. Specifically
Proposition 1 ceases to hold. However, model (2) remains additive in all cases, suggesting a300

natural extension to accommodate other metrics and general Riemannian manifolds. IfM is a
Riemannian manifold that is not necessarily an abelian Lie group, consider

LogµY =

q∑
k=1

fk(Xk) + ε, (5)

where µ = E⊕Y , ε ∈ TµM is centered and of finite variance, and f1, . . . , fq : R→ TµM
are unknown functions to be estimated. Model (5) includes (1) as a special case by setting
fk(x) = τe,µlogwk(x) and ε = τe,µlogζ according to Proposition 1, transforms the response into305

the tangent space TµM and thus is applicable to general Riemannian manifolds, at the expense
of interpretability in the original space, as per the group operation in model (1).

For general Riemannian manifolds that might feature positive sectional curvature, the Fréchet
mean may not exist and therefore additional conditions are required for model (5). Specifically,
if (M, g) denotes a general Riemannian manifold and Y a random element onM, we assume310

(A1) The minimizer of the Fréchet function F exists and is unique.

This is automatically satisfied whenM is a Hadamard manifold. For other manifolds, we refer
to Bhattacharya & Patrangenaru (2003) and Afsari (2011) for conditions that imply (A1).
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For a nonempty subset A ⊂ L, let d(y,A) = inf{d(y, z) : z ∈ A} denote the distance be-
tween y and the set A. For a positive real number ε, set Aε = {y : d(y,A) < ε} and A−ε = 315

M\(M\A)ε. When A = ∅, set Aε = ∅. The following assumption (A2) is only needed for the
case whereM is not a Hadamard manifold:

(A2) Pr{Y ∈ E−ε0µ } = 1 for some ε0 > 0, where Eµ is defined in Section 2.

If (A1) and (A2) are satisfied, the proposed manifold additive model (5) remains well defined,
and the first three steps of the estimation method described in the previous section are still valid 320

and can be employed to estimate f1, . . . , fq, with S+m replaced by L.

5. THEORY

We first establish convergence rates and asymptotic normality of the estimators for the mean
and the component functions for general manifolds in the manifold additive model (5) and then
provide additional details for the space S+m endowed with either the Log-Cholesky metric or the 325

Log-Euclidean metric. We consider a manifoldM that satisfies at least one of

(M1) M is a finite-dimensional Hadamard manifold that has sectional curvature bounded
from below by c0 ≤ 0.

(M2) M is a complete compact Riemannian manifold.

The space S+m with the Log-Cholesky metric, Log-Euclidean metric or affine-invariant metric 330

is a manifold that satisfies (M1), while the unit sphere that is used to model compositional data
(Dai & Müller, 2018) serves as an example of a manifold that satisfies (M2).

To establish the convergence rate of µ̂, we also make the following assumptions.

(A3) The manifoldM satisfies at least one of the conditions (M1) and (M2).
(A4) For some constant c2 > 0, F (y)− F (µ) ≥ c2d

2(y, µ) when d(y, µ) is sufficiently small. 335

(A5) For some constant c3 > 0, for all y, z ∈M, the linear operator Hy,z : TzM→ TzM,
defined by gz(Hy,zu, v) = gz(∇uLogzy, v) for u, v ∈ TzM, has an operator norm that
is bounded by c3{1 + d(z, y)}.

Condition (A4) is satisfied for Hadamard manifolds with c2 = 1 according to Lemma S.7 of Lin
& Müller (2021) and the CAT(0) inequality that holds for Hadamard manifolds (Chapter II.1, 340

Bridson & Häfliger, 1999). The condition also holds for some manifolds of positive curvature
when data concentrate on a small region; see Example 4 of Lin & Müller (2021). The operator
Hy,z in the technical condition (A5) is the Hessian of the squared distance function d; see also
equation (5.4) of Kendall & Le (2011). Assumption (A5) is superfluous if the manifold M is
compact and is satisfied by manifolds of zero curvature. It can also be replaced by a uniform 345

moment condition on the operator norm of Hz,Y over all z in a small local neighborhood of µ.
We then obtain a parametric convergence rate for the estimates µ̂ of the Fréchet mean µ.

PROPOSITION 2. Assume that (A1), (A3) and (A4) hold and Y is of the second order. Then
d(µ̂, µ) = OP (n−1/2).

To obtain convergence rates of the estimated component functions, we require some additional 350

conditions that are standard in the literature on additive regression.

(B1) The kernel function K is positive, symmetric, Lipschitz continuous and supported on
[−1, 1] with

∫
K(x) dx = 1.

(B2) The bandwidths hk satisfy n1/5hk → αk > 0.
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(B3) The joint density p of X1, . . . , Xq is bounded away from zero and infinity on X ≡ X1 ×355

· · · × Xq. The densities pkj are continuously differentiable for 1 ≤ j 6= k ≤ q.
(B4) The additive functions fk are twice continuously (Fréchet) differentiable.

Without loss of generality, assume Xk = [0, 1] for all k and let Ik = [2hk, 1− 2hk]. The mo-
ment condition on ε in the following theorem is required to control the effect of the error of µ̂ as
an estimator of µ on the discrepancies of Logµ̂Yi from LogµYi after parallel transportation; see360

Lemma S3 of the Supplementary Material. It is a mild requirement and is satisfied for example
when the manifold is compact or ‖ε‖µ follows a sub-exponential distribution.

THEOREM 1. Under (A1)–(A5) and (B1)–(B4), if E‖ε‖αµ <∞ for some α ≥ 10 and
E(‖ε‖2µ |Xj = ·) are bounded on Xj , respectively, for 1 ≤ j ≤ q, it holds that

max
1≤k≤q

∫
Ik
‖τµ̂,µf̂k(xk)− fk(xk)‖2µ pk(xk)dxk = OP (n−4/5),365

max
1≤k≤q

∫
Xk

‖τµ̂,µf̂k(xk)− fk(xk)‖2µ pk(xk)dxk = OP (n−3/5),

where τµ̂,µ is the parallel transport operator along geodesics.

The following corollary is an immediate consequence.

COROLLARY 1. Under the conditions of Theorem 1, if L is S+m endowed with either the Log-
Cholesky metric or the Log-Euclidean metric,370

max
1≤k≤q

∫
Ik
‖logŵk(xk)− logwk(xk)‖2e pk(xk)dxk = OP (n−4/5),

max
1≤k≤q

∫
Xk

‖logŵk(xk)− logwk(xk)‖2e pk(xk)dxk = OP (n−3/5).

To derive the asymptotic distribution of f̂k, we define Ck(x) = E{ε⊗ ε | Xk = x}, where
u⊗ v : TµM→ TµM is a tensor product operator such that (u⊗ v)z = gµ(u, z)v. Define

Σk(x) = α−1k pk(x)−1
∫
K(u)2du · Ck(x), (6)375

δk(x) =
p′k(x)

pk(x)

∫
u2K(u) du · f ′k(x), (7)

δjk(x, v) =
∂pjk(x, v)

∂v

1

pjk(x, v)

∫
u2K(u) du · f ′k(v), (8)

∆̃k(x) = α2
k · δk(x) +

∑
j:j 6=k

α2
j

∫
Xj

pkj(x, u)

pk(x)
· δkj(x, u) du, (9)

where αk are the constants in the condition (B2). Let (∆1, . . . ,∆q) be a solution of the system
of equations380

∆k(x) = ∆̃k(x)−
∑
j:j 6=k

∫
Xj

pkj(x, u)

pk(x)
·∆j(u)du, 1 ≤ k ≤ q, (10)

satisfying the constraints∫
Xk

pk(x) ·∆k(x)dx = α2
k ·
∫
Xk

pk(x) · δk(x)dx, 1 ≤ k ≤ q. (11)
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Finally, define ck(x) = 1
2

∫
u2K(u) du · f ′′k (x) and θk(x) = α2

k · ck(x) + ∆k(x).
We assume that

(B5) E{ε⊗ ε | Xk = ·} are continuous operators on Xk for all 1 ≤ k ≤ q and operators
E{ε⊗ ε | Xj = ·, Xk = ·} are bounded on Xj ×Xk for all 1 ≤ j 6= k ≤ q. 385

(B6) ∂p/∂xk, k = 1, . . . , q, exist and are bounded on X =
∏q
k=1Xk.

Note that condition (B5) is superfluous if the random noise ε is independent of the predictors
X1, . . . , Xq. Let Nµ(x) be the product measure N(θ1(x1),Σ1(x1))× · · · ×N(θq(xq),Σq(xq))
on (TµL)q, where N(θ,Σ) denotes a Gaussian measure on TµL with the mean vector θ and
covariance operator Σ. For a set A, let Int(A) denote the interior of A. 390

THEOREM 2. Assume that conditions (A1)–(A5) and (B1)–(B6) hold, that E‖ε‖αµ <∞
for some α > 10 and that there exists α′ > 5/2 such that E(‖ε‖α′µ | Xk = ·) are
bounded on Xk for all 1 ≤ k ≤ q. Then, for x = (x1, . . . , xq) ∈ Int(X ), it holds

that
[
n2/5

{
τµ̂,µf̂k(xk)− fk(xk)

}
: 1 ≤ k ≤ q

]
→ Nµ(x) in distribution. In addi-

tion, n2/5
{∑q

k=1 τµ̂,µf̂k(xk)−
∑q

k=1 fk(xk)
}

converges to Nµ(θ(x),Σ(x)), where 395

θ(x) =
∑q

k=1 θk(xk) and Σ(x) = Σ1(x1) + · · ·+ Σq(xq).

When L is S+m equipped with either the Log-Cholesky metric or the Log-Euclidean met-
ric, the above asymptotic normality can be formulated on the Lie algebra g. To this end, as-
sume that ΣSPD

1 , . . . ,ΣSPD
q and ∆SPD

1 , . . . ,∆SPD
q are defined by equations (6)–(11) with Ck(x)

and fk replaced by E{logζ ⊗ logζ | Xk = x} and ψk := logwk, respectively. Also, let cSPD
k = 400

1
2

∫
u2K(u) du · ψ′′k(x) and θSPD

k (x) = α2
k · cSPD

k (x) + ∆SPD
k (x), for k = 1, . . . , q. The follow-

ing corollary is an immediate consequence of Theorem 2, by noting that the manifold S+m when
equipped with the Log-Cholesky metric or the Log-Euclidean metric satisfies the conditions
(A1)–(A4) when the second moment of the random noise ζ is finite.

COROLLARY 2. Assume that the conditions (B1)–(B6) hold and that E‖logζ‖αµ <∞ 405

for some α > 10. Furthermore, assume that there exists α′ > 5/2 such that E(‖logζ‖α′e |
Xk = ·) are bounded on Xk for all 1 ≤ k ≤ q. For S+m endowed with either the Log-
Cholesky metric or the Log-Euclidean metric, for x = (x1, . . . , xq) ∈ Int(X ), it holds
that

[
n2/5

{
logŵk(xk)− logwk(xk)

}
: 1 ≤ k ≤ q

]
→ NIm(x) in distribution. In addition,

n2/5
{∑q

k=1 logŵk(xk)−
∑q

k=1 logwk(xk)
}

converges to NIm{θ(x),Σ(x)}, where Im is the 410

m×m identity matrix, θ(x) =
∑q

k=1 θ
SPD
k (xk) and Σ(x) = ΣSPD

1 (xq) + · · ·+ ΣSPD
q (xq).

These results generalize the work of Jeon & Park (2020) One of the major technical challenges
that is addressed in Lemmas S1 and S2 in the Supplementary Material is to uniformly quantify
the discrepancy between Logµ̂Yi and LogµYi due to µ̂ 6= µ, as the asymptotic behavior of this
discrepancy plays an important role in the theoretical analysis. 415

6. SIMULATIONS

To illustrate the numerical performance of the proposed manifold additive model estimators,
we conducted simulations for L = S+m endowed with the Log-Cholesky and Log-Euclidean met-
rics, respectively. We consider two matrix dimensions, m = 3 and m = 10. We set Xk = [0, 1]
for k = 1, . . . , q. The predictors X1, . . . , Xq are set to X1 = B2/3,2/3(T1) and Xk = Φ(Tk) for 420

k = 2, . . . , q, where B2/3,2/3 denotes the cumulative distribution function of the beta distribu-
tion with both shape parameters equal to 2/3, Φ denotes the cumulative distribution function of
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Table 1. Prediction RMSE and its Monte Carlo standard error with m = 3 (Log-Cholesky)

Setting q n
MAM ILPR CHOL

SNR=2 SNR=4 SNR=2 SNR=4 SNR=2 SNR=4

I

3
50 1.046 (0.093) 0.967 (0.092) 1.604 (0.105) 1.546 (0.233) 1.376 (0.112) 1.329 (0.120)
100 0.695 (0.049) 0.624 (0.040) 1.528 (0.127) 1.452 (0.218) 1.248 (0.108) 1.171 (0.123)
200 0.541 (0.040) 0.412 (0.038) 1.392 (0.110) 1.320 (0.151) 1.200 (0.109) 1.187 (0.117)

4
50 1.665 (0.082) 1.458 (0.154) 1.865 (0.065) 1.871 (0.170) 1.931 (0.096) 1.890 (0.074)
100 1.087 (0.049) 0.965 (0.065) 1.786 (0.033) 1.759 (0.028) 1.829 (0.134) 1.678 (0.045)
200 0.754 (0.073) 0.608 (0.050) 1.743 (0.029) 1.726 (0.033) 1.683 (0.087) 1.616 (0.050)

II

3
50 1.121 (0.045) 1.073 (0.063) 1.399 (0.161) 1.195 (0.128) 1.186 (0.064) 1.156 (0.052)
100 0.910 (0.045) 0.822 (0.037) 1.191 (0.131) 1.125 (0.103) 1.016 (0.085) 0.915 (0.055)
200 0.774 (0.042) 0.711 (0.025) 1.151 (0.122) 1.093 (0.126) 0.861 (0.043) 0.782 (0.026)

4
50 1.495 (0.037) 1.463 (0.049) 1.601 (0.075) 1.644 (0.117) 1.654 (0.076) 1.582 (0.070)
100 1.203 (0.064) 1.117 (0.099) 1.521 (0.025) 1.507 (0.021) 1.569 (0.094) 1.451 (0.062)
200 0.916 (0.051) 0.817 (0.043) 1.481 (0.022) 1.469 (0.020) 1.396 (0.103) 1.350 (0.103)

III

3
50 0.640 (0.054) 0.629 (0.055) 0.713 (0.107) 0.696 (0.101) 0.593 (0.053) 0.609 (0.050)
100 0.574 (0.041) 0.555 (0.050) 0.678 (0.051) 0.616 (0.077) 0.559 (0.042) 0.547 (0.063)
200 0.530 (0.043) 0.515 (0.045) 0.637 (0.084) 0.589 (0.067) 0.535 (0.037) 0.526 (0.051)

4
50 0.603 (0.059) 0.551 (0.036) 0.647 (0.068) 0.624 (0.097) 0.602 (0.055) 0.597 (0.036)
100 0.584 (0.048) 0.549 (0.046) 0.616 (0.092) 0.617 (0.054) 0.573 (0.041) 0.576 (0.045)
200 0.540 (0.063) 0.521 (0.039) 0.586 (0.058) 0.583 (0.037) 0.584 (0.061) 0.566 (0.038)

the standard Gaussian distribution, and (T1, . . . , Tq) is sampled from the centered q-dimensional
Gaussian distribution with the covariance matrix whose (j, k)-entry is 1 if j = k and 1/5 if
j 6= k. Consequently, X1, . . . , Xq are correlated and X1 has a non-uniform distribution on [0, 1].425

The mean µ is an m×m matrix whose (j, k)-entry is 2−|j−k|. We then generate the response
variable Y by Y = µ⊕ w(X1, . . . , Xq)⊕ ζ, where w(X1, . . . , Xq) = expτµ,ef(X1, . . . , Xq)
with three settings for f :

I. f(x1, . . . , xq) =
∑q

k=1 fk(xk) with fk(xk) being an m×m matrix whose (j, l)-entry is
g(xk; j, l, q) = exp(−|j − l|/q) sin(2qπ(xk − (j + l)/q));430

II. f(x1, . . . , xq) = f12(x1, x2) +
∑q

k=3 fk(xk), where fk is defined as in setting I, while
f12(x1, x2) is an m×m matrix whose (j, l)-entry is g(x1; j, l, q)g(x2, j, l, q);

III. f(x1, . . . , xq) = f12(x1, x2)
∏q
k=3 fk(xk), where f12(x1, x2) is an m×m matrix whose

(j, l)-entry is exp{−(j + l)(x1 + x2)}/3, and fk(xk) is an m×m matrix whose (j, l)-
entry is sin(2πxk).435

The random noise ζ is generated according to logζ =
∑p

j=1 Zjvj , where p = m(m+ 1)/2 is
the dimension of TeS+m, Z1, . . . , Zp are independently sampled from N(0, σ2), and v1, . . . , vp
form an orthonormal basis of the tangent space TeS+m. The signal-to-ratio (SNR) is measured
by SNR = E‖logw(X1, . . . , Xq)‖2e/E‖logζ‖2e. We tweak the value of the parameter σ2 to cover
two settings for the SNR, namely, SNR = 2 and SNR = 4. We note that the model for f in I440

is an additive model, while models II and III are not additive. In particular, model III has no
additive components and thus represents the most challenging scenario for the proposed additive
regression. We consider q = 3 and q = 4 to probe the effect of the dimensionality of the predictor
vector and study sample sizes n = 50, 100, 200.

The quality of the estimation is measured by the root mean squared error

RMSE =

[∫
[0,1]q

d2
{
µ̂⊕ ŵ1(x1)⊕ · · · ⊕ ŵq(xq), f(x1, . . . , xq)

}
dx1 · · · dxq

]1/2
.
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Table 2. Prediction RMSE and its Monte Carlo standard error with m = 3 (Log-Euclidean)

Setting q n
MAM ILPR CHOL

SNR=2 SNR=4 SNR=2 SNR=4 SNR=2 SNR=4

I

3
50 2.452 (0.258) 2.122 (0.218) 3.450 (0.396) 3.121 (0.351) 3.441 (0.323) 3.129 (0.301)
100 1.576 (0.094) 1.305 (0.127) 3.135 (0.240) 3.120 (0.217) 3.034 (0.218) 2.890 (0.260)
200 1.217 (0.067) 0.914 (0.060) 3.025 (0.109) 2.945 (0.190) 2.922 (0.172) 2.823 (0.223)

4
50 3.573 (0.182) 3.355 (0.350) 3.949 (0.205) 3.879 (0.132) 4.478 (0.299) 4.388 (0.223)
100 2.436 (0.201) 2.079 (0.163) 3.712 (0.196) 3.680 (0.184) 4.173 (0.224) 4.059 (0.276)
200 1.802 (0.176) 1.333 (0.120) 3.621 (0.152) 3.603 (0.137) 4.015 (0.231) 3.701 (0.274)

II

3
50 2.418 (0.107) 2.239 (0.120) 2.736 (0.259) 2.517 (0.126) 2.756 (0.175) 2.467 (0.112)
100 1.960 (0.149) 1.750 (0.077) 2.493 (0.290) 2.480 (0.301) 2.491 (0.183) 2.140 (0.155)
200 1.665 (0.083) 1.563 (0.051) 2.440 (0.311) 2.411 (0.223) 1.954 (0.112) 1.782 (0.062)

4
50 3.292 (0.341) 3.150 (0.254) 3.396 (0.266) 3.412 (0.276) 3.693 (0.245) 3.654 (0.289)
100 2.769 (0.286) 2.442 (0.108) 3.215 (0.286) 3.201 (0.251) 3.475 (0.250) 3.424 (0.189)
200 2.151 (0.102) 1.872 (0.073) 3.149 (0.230) 3.130 (0.235) 3.289 (0.279) 3.207 (0.308)

III

3
50 0.850 (0.030) 0.937 (0.138) 1.093 (0.080) 0.922 (0.063) 0.875 (0.042) 0.833 (0.059)
100 0.801 (0.050) 0.762 (0.042) 0.895 (0.055) 0.813 (0.074) 0.875 (0.165) 0.823 (0.060)
200 0.706 (0.048) 0.674 (0.063) 0.829 (0.033) 0.801 (0.037) 0.773 (0.067) 0.753 (0.074)

4
50 0.853 (0.066) 0.832 (0.058) 1.002 (0.074) 0.902 (0.062) 0.889 (0.077) 0.872 (0.096)
100 0.837 (0.044) 0.832 (0.039) 0.890 (0.066) 0.845 (0.071) 0.871 (0.058) 0.855 (0.057)
200 0.815 (0.059) 0.802 (0.032) 0.844 (0.056) 0.810 (0.052) 0.860 (0.088) 0.839 (0.043)

As a comparison method for the proposed manifold additive model (MAM), we also imple- 445

mented the intrinsic local polynomial regression (ILPR) proposed in Yuan et al. (2012), which
is a fully nonparametric approach. In addition, we implemented the following baseline method
proposed by an anonymous reviewer, which provides a simple and straightforward approach
based on the Cholesky decomposition (CHOL): Each symmetric positive-definite matrix is rep-
resented by its Cholesky factor and then a standard multivariate additive model is applied for the 450

Cholesky factor. Note that this simple method may be subject to the swelling effect as it does
not use a swelling-free geometry on S+m; see Example 1 of Lin (2019) for an illustration. Each
simulation setting was repeated 100 times. The Monte Carlo prediction RMSE and its standard
error are shown in Table 1 for the Log-Cholesky metric and in Table 2 for the Log-Euclidean
metric for m = 3; the results for m = 10 are similar and can be found in Tables S1 and S2 of 455

the Supplementary Material, where we also graphically illustrate the estimation quality of the
proposed method for SNR = 4, q = 3, m = 3 and the Log-Euclidean metric in Figure S1.

When the model is correctly specified as in Setting I, the proposed model outperforms ILPR
and CHOL by a significant margin. When the underlying model is not fully additive but contains
some additive components, such as the model in Setting II, the MAM approach still outperforms 460

the other two methods. When the true model has no additive components, such as the model
in Setting III, all methods have comparable performance when data are sampled from the Log-
Cholesky metric, while MAM and CHOL exhibit advantages for the Log-Euclidean metric. Also,
MAM enjoys smaller prediction RMSE, compared to the baseline method CHOL in Settings I
and II, while both have similar prediction RMSE in Setting III. As the true model is unknown in 465

reality and MAM is competitive even when there are no additive components, MAM is overall
preferrable in applications. In terms of computational efficiency, we found that the Log-Cholesky
metric is computationally faster than the Log-Euclidean metric. In addition, the proposed method
for the Log-Cholesky metric and the baseline method have comparable computational efficiency,
while ILPR is fastest in computation; see Table S3 of the Supplementary Material. 470
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Fig. 1. A random sample of 15 observations from the data.

7. APPLICATION TO DIFFUSION TENSOR IMAGING

We applied the proposed additive model for diffusion tensors obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) at http://adni.loni.usc.edu/ and www.
adni-info.org. Diffusion tensors are 3× 3 symmetric positive-definite matrices that char-
acterize diffusion of water molecules in tissues and convey rich information about brain tissues475

with important applications in tractography. They are utilized to to aid in the diagnosis of brain
related diseases. In statistical modeling, diffusion tensors are typically considered to be random
elements in the space S+3 (Fillard et al., 2005; Arsigny et al., 2006; Lenglet et al., 2006; Pennec,
2006; Zhou et al., 2016; Fletcher & Joshib, 2007; Dryden et al., 2009; Zhu et al., 2009; Pennec,
2020). A traditional Euclidean framework for diffusion tensors suffers from significant swelling480

effects that undesirably inflate the diffusion tensors (Arsigny et al., 2007) and impede their inter-
pretation. In our analysis we use diffusion tensors as responses under the Log-Euclidean metric,
which is designed to eliminate the swelling effect and relate these responses to several covariates.

We focus on the hippocampus, which plays a central role in Alzheimer’s disease (Lindberg
et al., 2012). In the ADNI study, brain images and assessment of memory, executive functioning485

and language ability were obtained for participating subjects. For each raw diffusion tensor im-
age, a standard preprocessing protocol including denoising, eddy current and motion correction,
skull stripping, bias correction and normalization was applied and then diffusion tensors for each
hippocampal voxel were extracted, followed by computing their Log-Euclidean mean. For each
raw image this resulted in an average diffusion tensor representing the typical hippocampal dif-490

fusion of the corresponding subject at the time of visit. To study the relation between the average
hippocampal diffusion tensor and memory, executive functioning and language ability of the sub-
ject, we utilized the neuropsychological summary scores available from ADNI (Gibbons et al.,
2012). We only included data from the first visit of subjects who were diagnosed as having either
early mild cognitive impairment, mild cognitive impairment, late mild cognitive impairment or495

Alzheimer’s disease and excluded records with missing values. This resulted in 220 data tuples
of the form (Y,X1, X2, X3), where Y is the average diffusion tensor, which serves as response,
while the predictors X1, X2, X3 are standardized scores for memory, executive functioning and
language ability, respectively. A subset of the data is presented in Figure 1.

The estimated component functions ŵ1(x1), ŵ2(x2), ŵ3(x3) and their individual effect on the500

diffusion tensors are depicted in Figure 2. For interpretation, we denote the coordinate system
of R3 that was adopted to record the diffusion tensors by {e1, e2, e3}, so that the matrices pre-
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sented in Figures 1 and 2 indicate the coefficients of the corresponding diffusion tensors in this
coordinate system. We find that the component functions have distinct effects on the outcome.

Considering for example how ŵ3, which encodes the fit for language ability as predictor and 505

acts on the average diffusion tensor µ̂ by the group operation ⊕, affects the diffusion along the
directions e1 and e2 we find that they become increasingly negatively correlated as the stan-
dardized language ability drops, while the opposite happens for e2 and e3, indicating nonlinear
changes in the diffusion that are associated with changing language ability. As a second example
consider ŵ1, which encodes the effect of memory. A negative correlation between e2 and e3 at 510

high memory levels changes into a positive correlation as memory levels drop in a nonlinear
fashion, while the correlation between e1 and e2 oscillates between mildly positive and mildly
negative, suggesting distinctive relationships between diffusion patterns and performance scores.

This leads to the question whether the covariates Xk, for k = 1, 2, 3, are significantly related
to the spatially averaged hippocampal diffusion tensor and motivates testing the global null hy- 515

pothesis

H0 : wk(xk) = I3 for all xk, (12)

where I3 denotes the 3× 3 identity matrix that is also the group identity of the Lie group (S+m,⊕)
in the Log-Euclidean framework, that is, P ⊕ I3 = P for all P ∈ S+3 . Corollary 2 can be em-
ployed for testing this hypothesis: For a set Hk of values of X1, a test based on the asymptotic
normality of Corollary 2 can be implemented to obtain the p-value for testing the local null hy- 520

pothesis H0 : wk(xk) = I3 for each xk ∈ Hk, followed by adjustment for multiple comparisons,
e.g. by the Benjamini–Hochberg method. Here, a natural choice of Hk is the set of the observed
values for Xk in the data. The global null hypothesis (12) is then rejected if at least one adjusted
p-value is less the nominal level α. Implementing this apporach and applying it to the ADNI data
leads to rejecting the null hypothesis (12) at the level α = 0.05 for all k = 1, 2, 3, with the mini- 525

mal corrected p-values 1.028× 10−9, 1.80× 10−5 and< 10−10, respectively. This suggests that
there are indeed associations between the spatially averaged hippocampal diffusion tensor and
memory, executive functioning and language ability.

8. DISCUSSION

There are at least three potential extensions of the proposed methods and theory. First, in the 530

data application we consider the spatially averaged hippocampal diffusion tensor. Although sig-
nificantly reducing the data noise level, the average may conceal some spatial structure of interest
within the hippocampus. One way to address this problem is to view all hippocampal diffusion
tensors derived from an image as a S+3 -valued function Y : s 7→ Y (s) ∈ S+3 with s ranging over
all hippocampal voxels. This functional perspective enables one to borrow information from 535

neighboring voxels to counter the high-level data noise. However, it is rather challenging to de-
velop an additive model for S+3 -valued functions (see Dubey & Müller, 2020).

Second, we focus only on the first visit of each subject, and thus do not utilize all available
data. To analyze the data of repeated visits which by default are correlated, the theory needs to be
extended to account for such correlation, which seems nontrivial, especially when the number of 540

visits may grow with the sample size. Third, when testing hypothesis (12), we perform multiple
local tests by using the pointwise asymptotic normality of Corollary 2 and then make corrections
for multiple comparisons. This approach, although sufficient for our data application, will be too
conservative in general. An alternative method is to develop an asymptotic normality result for
the random process {ŵk(x) : x ∈ Xk}, which may lead to more powerful one-step tests. These 545

extensions are left for future studies.
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rŵ

1
,ŵ
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µ̂⊕ ŵ1 X2 ŵ2
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Fig. 2. Estimated additive component functions ŵ1, ŵ2, ŵ3

and their effect on the response when other component
functions are fixed at identity.
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