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Summary: Multivariate functional data present theoretical and practical complications which are not found in

univariate functional data. One of these is a situation where the component functions of multivariate functional data

are positive and are subject to mutual time warping. That is, the component processes exhibit a common shape but

are subject to systematic phase variation across their domains in addition to subject-specific time warping, where

each subject has its own internal clock. This motivates a novel model for multivariate functional data that connects

such mutual time warping to a latent deformation-based framework by exploiting a novel time warping separability

assumption. This separability assumption allows for meaningful interpretation and dimension reduction. The resulting

Latent Deformation Model is shown to be well suited to represent commonly encountered functional vector data. The

proposed approach combines a random amplitude factor for each component with population based registration across

the components of a multivariate functional data vector and includes a latent population function, which corresponds

to a common underlying trajectory. We propose estimators for all components of the model, enabling implementation

of the proposed data-based representation for multivariate functional data and downstream analyses such as Fréchet

regression. Rates of convergence are established when curves are fully observed or observed with measurement error.

The usefulness of the model, interpretations, and practical aspects are illustrated in simulations and with application

to multivariate human growth curves and multivariate environmental pollution data.
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1. Introduction

Functional data analysis (FDA) has found important applications in many fields of research

(e.g. biology, ecology, economics) and has spawned considerable methodological work as a

subfield of statistics (Ramsay and Silverman, 2005; Wang et al., 2016; Ferraty and Vieu,

2006). In particular, the analysis of univariate functional data has driven the majority of

developments in this area such as functional principal component analysis (Kleffe, 1973),

regression (Cardot et al., 1999; Yao et al., 2005), and clustering (Chiou and Li, 2007; Jacques

and Preda, 2014). In this paper we develop novel modeling approaches for multivariate

functional data, which consist of samples of a finite dimensional vector whose elements

are random functions (Chiou et al., 2014; Jacques and Preda, 2014) and have been much

less studied. Dimension reduction is a common approach, with many studies focusing on

extending univariate functional principal components analysis to the multivariate case (Happ

and Greven, 2018; Han et al., 2018) and decomposition into marginal component processes

and their interactions (Chiou et al., 2016).

Most methodological work has focused on traditional amplitude variation-based models

for dimension reduction, while phase variation-based methods for multivariate functional

data have found attention more recently: Brunel and Park (2014) proposed a method for

estimating multivariate structural means and Park and Ahn (2017) introduced a model for

clustering multivariate functional data in the presence of phase variation, while Carroll et al.

(2021) combined the notions of dimension reduction and phase variability through a multi-

variate version of the shape-invariant model (Kneip and Engel, 1995), in which component

processes share a common latent structure that is time-shifted across components. However,

the assumption of a rigid shift-warping framework in this precursor work imposes a major

parametric constraint on the warping structure and often the class of models that only feature

simple shifts between the components is not rich enough for many real-world data. Our
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main contribution is a less-restrictive alternative approach, in which time characterization

of individual-specific temporal effects and component-specific effects is achieved through a

fully non-parametric deformation-based model.

A major motivation for this framework is that in many contexts, the component functions

of a multivariate data vector may share a common structure that is subject to variation across

modalities; the fundamental shape of growth curves is similar but not identical when studying

timing patterns across body parts, for instance. A reviewer suggested to alternatively align

the components for each subject in a constrained way; we demonstrate in this paper that an

overall more compelling model is obtained by assuming a latent common curve is present at

the population level, which brings with it the benefits of dimension reduction and a principled

and novel representation of mutually time-warped functional data.

The proposed latent curve model introduces a shared shape-based model along with a char-

acterization of individual- and component-level variation and allows for flexible and nuanced

component effects. This ensures broad viability of the proposed approach and improved data

fidelity when describing component-specific effects, which inform the time dynamics of a

larger system at work. To this end, we introduce a representation of multivariate functional

data which uses tools from time warping (Marron et al., 2015) and template deformation

modeling (Bigot et al., 2009; Bigot and Charlier, 2011).

The organization of this paper is as follows. Section 2 discusses existing approaches for

univariate curve registration and introduces the proposed Latent Deformation Model for

component-warped multivariate functional data. We derive estimators of model components

in Section 3 and illustrate the utility and performance of the proposed methodology through

data analysis in Section 4. Asymptotic results are established in Section 5, and a discussion

of goodness-of-fit issues and a simulation study are provided in the Appendix, which also

contains auxiliary results and proofs.
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2. Curve Registration and The Latent Deformation Model

The main idea of the Latent Deformation Model (LDM) that we introduce in this paper is

to decompose multivariate phase variation into subject-specific and variable-specific warp-

ing components. When combined with a common, shape-defining template, these warping

functions provide a lower-dimensional representation of the functional vector trajectories

while characterizing the subject-level warping and population-wide patterns in the time

dynamics across variables. In addition to the existence of a template function shared across

subjects, the proposed LDM includes a modeling assumption that each subject has an

“internal clock,” which is quantified through a subject-specific warping function. Similar

assumptions have been previously explored in the cross-component registration paradigm

of Carroll et al. (2021), which however restricted the component-wise phase variation to

simple parametric shift functions. A major contribution of this paper is to widen the class of

potential component warps beyond rigid shifts to allow for more flexible warping functions,

so as to better capture variation that occurs non-uniformly across the time domain.

Before introducing the detailed mathematical machinery of the model, a brief overview of

the general idea is as follows. We first introduce a flexible and separable component structure

for warping functions, which are factorized into subject- and component-specific warpings

and then proceed to develop estimates of these factor warping functions. The first step is to

construct consistent estimates of the subject-specific warping functions which correspond to

the internal clock of each subject. This is done by considering univariate warping problems

for each functional variable separately and then averaging the resulting estimates of the

component warping functions for each subject, resulting in a consistent estimate of the

subject-specific time warping function. Eventually this then leads to consistent estimates of

the underlying latent curve. Assuming that time-warped versions of this underlying latent

curve generate the functional vector component-level distortions, in order to recover it, one
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component function is selected at random per subject, discarding the data from the other

components, then aligning these curves across subjects. Once this consistent estimate of

the underlying template curve has been obtained, consistent estimates of the component-

level distortion functions are recovered by solving a penalized cost minimization problem.

A schematic of the data generating mechanism of the LDM is provided in Figure 1. More

detailed descriptions follow below.

[Figure 1 about here.]

2.1 The Univariate Curve Registration Problem

The classical univariate curve registration problem is characterized by the observation of a

sample of curves Xi(t), i = 1, . . . , n, observed on an interval T , which are realizations of

a fixed template ξ(t) subject to variation in their time domains. This domain variation is

characterized by the monotonic time-warping functions hi(t) which act as random homeo-

morphisms of T . A classical model for this scenario is

Xi(t) = (ξ ◦ hi)(t), for all t ∈ T , i = 1, . . . , n. (1)

The goal of curve registration is to estimate the distortions, hi, which are typically considered

nuisance effects, in order to account for them before proceeding with further analysis, e.g.,

estimation of ξ, functional principal component analysis, etc. A major branch of time-warping

techniques is based on the idea of aligning processes to some reference curve which carries the

main features in common across subjects. This reference curve is referred to as a template

function and is employed by landmark-based registration methods (Kneip and Gasser, 1992;

Kneip and Engel, 1995), pairwise curve alignment (Tang and Müller, 2008) or the Procrustes

approach (Ramsay and Li, 1998), among many others. For a comprehensive review and

additional references we refer to Marron et al. (2015).

While the curve registration literature is varied and rich in methodology, no single method

has prevailed as a silver bullet in all warping contexts. Indeed, the debate over desirable
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properties of existing and future registration techniques continues and a gold-standard re-

mains elusive. With this in mind, we emphasize that our aim here is not to advocate for one

alignment method over another, but rather extend the ideas available for univariate regis-

tration to a multivariate problem with a composite warping function with fixed and random

effects. In practice, any suitable registration method may be employed in the estimation step

of the proposed Latent Deformation Model (see Estimation).

2.2 A Unified Model for Multivariate Time Dynamics and Time Warping Separability

Let {Xj}pj=1 denote a generic set of random functions with each component process Xj

in L2(T ) for an interval T = [T1, T2], T1, T2 ∈ R. Suppose further that each component is

positive-valued, i.e. Xj(t) > 0 for all t ∈ T , j = 1, . . . , p; the assumption of positivity is made

to make estimation of model components more straightforward and is certainly satisfied for

applications to growth curves. Without loss of generality we consider the unit domain case

T = [0, 1]. In the following, Greek letters denote fixed, unknown population quantities, while

Latin letters represent random, individual-specific quantities.

The Latent Deformation Model (LDM) is motivated by situations where the functional

forms of the component processes Xj, j ∈ {1, . . . , p} (or any subset thereof) exhibit struc-

tural similarity, so that the information inherent in each component may be combined

for overall improved model fitting and to estimate and analyze the mutual time warping

structure. Denoting a random sample from a p-dimensional stochastic process by {Xi}ni=1,

where Xi(t) = (Xi1(t), . . . , Xip(t))
T , we model this shared structure through a latent curve

λ, which characterizes the component curves through the relation

Xij(G
−1
ij (t)) = Aijλ(t), i = 1, . . . , n, j = 1, . . . , p, (2)

where λ is a fixed function, and the random amplitude factors A and random time distortion

functions G reflect differences in realized curves across components and individuals. Without
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loss of generality we assume sup
t∈T
|λ(t)| = ||λ||∞ = 1 since it is always possible to rescale the

latent curve without changing the model by employing amplitude factors Ãij := Aij||λ||∞

and a standardized curve λ̃(t) = λ(t)/||λ||∞.

The distortion functions G are elements of W , the convex space of all smooth, strictly

increasing functions with common endpoints, i.e., W := {g : T → T | g ∈ C2(T ), g(T1) =

T1, g(T2) = T2, g is a strictly increasing homeomorphism}. The elements of this space

represent random homeomorphisms of the time domain and capture the presence of non-

linear phase variation. We further assume that the distortion functions G may be decomposed

as follows,

Gij(t) = (Ψj ◦Hi)(t), i = 1, . . . , n, j = 1, . . . , p, (3)

where the deterministic functions Ψ describe the component-based effects of time distortion

and the random functions H describe the subject-level phase variation.

This decomposition is key to our approach. A reviewer suggested to refer to it as a

separability assumption and indeed it is analogous to the well-known notion of separability

of covariance in function-valued stochastic process modeling (Chen et al., 2017; Liang et al.,

2022) and we have adopted this suggestion, as it brings out a key aspect of the proposed

LDM. As in the related covariance separability paradigm, time warping separability confers

the advantages of better interpretability and dimension reduction over the more complex

approaches that do not include this assumption.

Under the warping separability assumption, the time warping functionsGij are decomposed

into the warping maps Ψj that convey the relative time scale of the jth component and

the warping maps Hi that quantify the internal clock of the ith subject. These warping

maps can be viewed as deformations from standard clock time, id(t) ≡ t, to the system

time of a given component or individual. As such we refer to the collection of functions
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Ψ = {Ψj : j = 1, . . . , p} as component-level deformation functions and the collection of

functions H = {Hi : i = 1, . . . , n} as subject-level deformation functions.

The random subject level deformation functions Hi obey some probability law on the

convex space W , where we assume that this probability law is such that EH−1
i exists and

that there is no net distortion on average, i.e., EH−1
i (t) = t for t ∈ T . This assumption has

been referred to as “standardizing” the registration procedure (Kneip and Ramsay, 2008).

It is a mild assumption, since were it the case that EH−1
i (t) = h−1

0 (t), with h−1
0 6= id, then

a standardized registration procedure is given by reparameterizing the warping functions as

H̃i = h−1
0 ◦ Hi so that EH̃−1

i (t) = E(H−1
i ◦ h0)(t) = t. Component deformation functions

are also assumed to be standardized, but because they are deterministic and not random,

the assumption becomes 1
p

∑p
j=1 Ψ−1

j (t) = t for t ∈ T . Together these conditions imply

E(1
p

∑p
j=1 G

−1
ij (t)) = t so that there is no net distortion from the latent curve λ.

Combining (2) and (3) yields the Latent Deformation Model (LDM) for multivariate

functional data, given by

Xij(t) = Aij (λ ◦Ψj ◦Hi) (t), i = 1, . . . , n, j = 1, . . . , p. (4)

In practice, it may be useful to pose the model in an equivalent form, defining the component-

warped versions of the latent curve as γj = λ ◦Ψj so that

Xij(t) = Aij (γj ◦Hi) (t), i = 1, . . . , n, j = 1, . . . , p. (5)

In this form, the curves γj(t) convey the “typical” time progression of the latent curve accord-

ing to the jth component’s system time, so we refer to this composition as the jth component

tempo function. The component tempo functions can be viewed as the synchronized processes

for each component after accounting for random subject-level time distortions.

2.3 Cross-Component Deformation Maps

Marginal Cross-Component Deformations

To understand and quantify the relative timings between any pair of components, j, k ∈
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{1, . . . , p}, it is useful to define their cross-component deformation Tjk, which is the de-

formation that, when applied to the jth component, maps its tempo to that of the kth

component,

Tjk = Ψ−1
j ◦Ψk, (6)

so that γj(Tjk) = λ ◦ Ψj ◦ Ψ−1
j ◦ Ψk = λ ◦ Ψk = γk. Because the component deformations

Ψk can be represented as distribution functions and are closed under composition, the cross-

component deformation (XCD) may also be represented as a distribution function and is

interpreted similarly to an ordinary component tempo. While the component tempo Ψk

expresses the kth component’s timing patterns in terms of clock time, the cross-component

deformation Tjk expresses the same patterns relative to the tempo of the jth component.

For example, consider a pair of component processes, Component A and Component B, for

which Component A tends to lag behind the latent curve, while the Component B precedes

it. An example of this can be seen in the red and orange curves, respectively, in Figure

1. The corresponding red deformation, ΨA, falls below the diagonal and conveys the lagged

tempo, while the orange deformation, ΨB lies above the diagonal and expresses an accelerated

system time. The deformation function TAB then sits above the diagonal and represents the

time-acceleration needed to bring the red tempo in line with the orange component.

Subject-Level Cross-Component Deformations

While the marginal XCDs describe the general time relations between components on a

population level, we may also be interested to see how an individual’s component processes

relate to one another. This perspective may be especially useful when trying to understand

intercomponent dynamics which are mediated by covariate effects. Conceptually it is straight-

forward to extend the notion of cross-component deformations to individuals by searching

for the warping function T
(i)
jk which brings the ith individual’s jth component in line with the
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kth. A natural definition under the LDM is then

T
(i)
jk = G−1

ij ◦Gik, (7)

since this choice gives Xij ◦T (i)
jk ∝ Aij(λ◦Gij ◦G−1

ij ◦Gik) ∝ (λ◦Gik) ∝ Xik. In practice, this

proportionality will become equality once random amplitude factors are dealt with during

estimation. Statistics based on the XCDs can be used in downstream analyses like hypothesis

testing and regression. Several data illustrations are given in the applications of Section 4.

3. Model Estimation and Curve Reconstruction

3.1 Internal Clock Estimation and Component-wise Alignment

The proposed model estimation procedure relies on solving several univariate warping prob-

lems of type (1). It is important to note that any of the warping methods described in Section

2 may be used for practical implementation. In our implementation we choose the pairwise

alignment method of Tang and Müller (2008), which provides an explicit representation

of the warping functions and satisfies some properties required by our theory in order to

derive convergence rates. This pairwise alignment is easily implemented with the R package

fdapace (Carroll et al., 2020). For a detailed discussion of the pairwise warping method we

refer to the supplement.

For the estimation of the model components, under the LDM, each component Hj, j =

1, . . . , p, gives rise to a univariate warping problem. To see this, consider for a fixed com-

ponent j the sample of univariate curves Sj := {Xij}ni=1. Using the normalized curves

X∗ij = Xij/||Xij||∞, estimation of γj and Hi for the jth component is a consequence of

X∗ij(t) = (λ ◦Ψj ◦Hi)(t), (8)

which coincides with a warping framework of type (1) with ξ = λ◦Ψj, and hi = Hi. Replacing

X by X∗ in (8) is necessary in order to eliminate the random amplitude factors Aij. Since

the random functions Gij are homeomorphisms, we have ||Xij||∞ = Aij||λ ◦ Gij||∞ = Aij.

Thus the normalized curves X∗ij(t) = (λ ◦Ψj ◦Hi)(t) do not depend on the factors Aij.
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Applying an estimation method like pairwise warping for each of the subcollections S1, . . . , Sp,

results in p estimates of the subject-level warping function, H̃
(1)
i (t), . . . , H̃

(p)
i (t). Taking the

mean of the resulting p warping functions gives an estimate for the subject-specific warp,

Ĥi = p−1

p∑
j=1

H̃
(j)
i , i = 1, . . . , n. (9)

For the overall penalty parameter associated with the pairwise warping implementation we

set

η1 = max
16j6p

η1j, (10)

where η1j = 10−4 × {n−1
∑n

i=1

∫
T (Xij(t) − X̄j(t))

2dt}, j = 1, . . . , p, is the default choice of

the penalty parameter for each of the p registrations, as per Tang and Müller (2008). With

subject time warping estimators in hand, a plug-in estimate of γj is obtained by averaging

the component-aligned curves,

γ̂j = n−1

n∑
i=1

(Xij ◦ Ĥ−1
i )/||Xij||∞, for j = 1, . . . , p. (11)

3.2 Global Alignment and Latent Curve Estimation

A central idea in the estimation of the LDM is the fact that any univariate curve Xij

contains information about the latent curve, regardless of which component j is considered.

This motivates a perspective in which we temporarily ignore the multivariate structure of

the data and expand our scope to the full collection of curves, S = ∪pj=1Sj. For each subject

i, select one of its component curves at random as a representative. Call this representative

curve Zi and denote its normalized counterpart by Z∗i . Selecting one of the components at

random ensures that we have P (Zi = Xij) = 1/p for all i = 1, . . . , n, j = 1, . . . , p. The

collection of curves {Zi, i = 1, . . . , n} can be thought of as realizations of λ subject to some

random distortion Di, where Di = Gij if the jth component curve is selected. Define Iij as the

event that the curve Zi comes from the collection of jth component curves, Sj. Conditional

on the event Iij (which happens with probability 1/p for all i = 1, . . . , n), it follows that
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Di = Gij = Ψk ◦Hi. Then, on average there is no net warping from the latent curve, as

E[D−1
i ] = E{E[D−1

i |Iij]} =

p∑
j=1

E[H−1
i ◦Ψ−1

k ]P (Iij) = p−1

p∑
j=1

Ψ−1
j = id. (12)

This observation motivates the warping problem

Z∗i = λ ◦Di, for i = 1, . . . , n. (13)

The critical implication of this relation is that if we expand our scope to the full collection

S and apply a traditional method like pairwise warping to obtain D̂i for all i = 1, . . . , n, the

latent curve can be estimated by averaging the globally-aligned curves,

λ̂ = n−1

n∑
i=1

(Zi ◦ D̂−1
i )/||Zi||∞. (14)

The estimators of the component deformations are motivated by recalling that

γj = λ ◦Ψj, j = 1, . . . ., p.

Using a spline representation (see Section A of Appendix), we write

Ψj(t) = θTα(t) (15)

and estimate the component warps by solving the penalized minimization problem,

θ̃Ψj
= argmin

θ∈Θ
Cη2(θ; γ̂j, λ̂),

Cη2(θ; γ̂j, λ̂) =

∫
T
d2
(
γ̂j, λ̂(θTα(t))

)
dt+ η2

∫
T

(θTα(t)− t)2dt,

(16)

with η2 = 10−4 × {p−1
∑p

j=1

∫
T (γ̂j(t)− λ̂(t))2dt} as the default choice of penalty parameter

in line with Tang and Müller (2008). Finally, we obtain the component warps as

Ψ̂j(t) = θ̃TΨj
α(t). (17)

3.3 Measurement Error and Curve Reconstruction

Note that under the assumption of fully observed curves without measurement error, the

amplitude factors Aij = ||Xij||∞ are known. Often in practice, this is not realistic, and the

factors must be estimated by, e.g., Âij = ||X̃ij||∞ where X̃ denotes a smoothing estimate

of a function X that is observed with noise, as described in the following section. We note



12 Biometrics, 2022

that these smoothing methods introduce a finite bias on the amplitude factors, but as the

number of time points in the observation grid goes to infinity, our proposed estimate is

asymptotically unbiased as shown in Theorem 1f. of Section 5. We refer to the Appendix for

a detailed discussion of applying smoothing methods with the LDM.

After the smoothing step, estimates are obtained by substituting the smoothed curves

in for Xij and implementing the procedure described in Sections 3.2 and 3.3. Once all

model components are estimated, plug-in estimates of the composite distortion functions and

marginal and subject-level component deformation functions are an immediate consequence,

Ĝij = Ψ̂j ◦ Ĥi, (18)

T̂jk = Ψ̂−1
j ◦ Ψ̂k, (19)

T̂
(i)
jk = Ĝ−1

ij ◦ Ĝik, i = 1, . . . , n, j, k = 1, . . . , p. (20)

Additionally, fitted curves based on the LDM can be obtained as

X̂ij(t) = Âij(λ̂ ◦ Ĝij)(t)

= Âij(λ̂ ◦ Ψ̂j ◦ Ĥi)(t), i = 1, . . . , n, j, k = 1, . . . , p.

(21)

These fits can be viewed through the lens of dimension reduction as their calculation require

only n+p+1 estimated functions as opposed to np curves in the original data. This constitutes

a novel representation for multivariate functional data that is distinct from the common

functional principal component representations.

4. Data Applications

4.1 Zürich Growth Study

From 1954 to 1978, a longitudinal study on human growth and development was conducted

at the University Childrens Hospital in Zürich. The sitting heights, arm lengths, and leg

lengths of a cohort of children were measured on a dense time grid and these data can be

viewed as densely sampled multivariate functional data. We focus on the timing of pubertal

growth spurts, which usually occur between ages 9 and 18. It is standard in the growth curve
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literature to examine the derivatives of the growth curves, i.e. the growth velocities, instead

of the curves themselves (Gasser et al., 1984). The velocities have a peak during puberty,

with the crest location representing the age when an individual is growing fastest.

The timings and curvatures of these peaks are critical in informing growth patterns. In

a first step, we estimated these growth velocities by local linear smoothing (Fig. 2). It is

well known that there is a difference in the pubertal growth patterns of boys and girls. This

distinction is clear from just a simple inspection of the growth velocities in Figure 1. It is then

of scientific interest, with practical implications for auxologists, pediatricians and medical

practitioners, to further study and quantify the differential between the onset of puberty for

boys and girls, differentiated by different body parts.

For the Zürich Longitudinal Growth Study, the biological clocks accelerate and deviate

from clock time rapidly between the ages of 9 and 12 for girls and between the ages of 12

and 15 for boys (represented by the black dashed line on the diagonal). Component tempos

for boys and girls are a simple way to summarize these differences (Fig. 2, dashed and dotted

lines, respectively), as they serve as the structural means of the timing functions.

[Figure 2 about here.]

[Figure 3 about here.]

Considering the joint time dynamics of the p = 3 modalities, we restrict our analysis to the

boys for the sake of brevity. A natural place to start when comparing growth patterns is the

component tempos, which are displayed for each modality in the left panel of Fig. 3. The

dynamics of joint development emerges when examining the order of peaks across modalities.

Leg length is first, followed by arm length, while sitting height lags behind. The tempos have

similar slopes during puberty, though leg length has the most gradual spurt and sitting height

the sharpest, perhaps because its lagged onset results in a smaller window between the onset

of its growth spurt and the maturation date of 18 years. While it is possible for an individual
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to experience some minor growth past the age of 18, in the Zürich study such cases were rare

and so this complication was ignored. The component deformations displayed in Fig. 3 (right)

further illustrate the nature of each body part’s tempo relative to baseline. Remarkably, the

tempo of arm length is nearly identical to the latent curve. This suggests that the arm can

be used a representative modality which mirrors a child’s overall development.

[Figure 4 about here.]

We also can interpret the cross-component deformations, T̂jk, j, k ∈ {1, . . . , p}, estimated

as per (19). The magnitude of the XCD map’s deviation from the identity shows how

dissimilar two components are. For example, sitting height and leg length are the most

distinct modalities of growth among those considered here, and their XCD map exhibits

the most pronounced departure from the identity. An intuitive interpretation of the map is

that Tjk expresses the kth component’s timing patterns relative to the jth component’s as a

baseline. For example, when the leg tempo is at time t = 13.5, the comparable time point

for the sitting height tempo is approximately at Tjk(13.5) ≈ 14.5, as illustrated in Fig. 4.

4.2 Air Pollutants in Sacramento, CA

The study of air pollutants has been a topic of interest for atmospheric scientists and

environmentalists alike for several decades. In particular, increased ground-level ozone (O3)

concentrations have been shown to have harmful effects on human health. Unlike many

air pollutants, surface ozone is not directly emitted by sources of air pollution (e.g. road

traffic); it is formed as a result of interactions between nitrogen oxides and volatile organic

compounds in the presence of sunlight (Abdul-Wahab, 2001). Because of this interaction,

compounds such as nitrogen dioxide are known and important precursors of increased ozone

concentrations (Tu et al., 2007).

The California Environmental Protection Agency has monitored hourly air pollutant con-

centrations at several station locations since the 1980s. Here we consider the sample of
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weekday trajectories of ozone (O3), and nitrogen oxides (NOx) concentrations during the

summer of 2005 in Sacramento (Fig. 5). Smooth trajectories were obtained from raw data

using local linear weighted least squares. Gervini (2015) has previously investigated a similar

dataset in the context of warped functional regression, where the primary aim was to model

phase variation explicitly in order to relate the timing of peak concentrations of NOx to

those of O3.

The chemistry of the compounds as well as a visual inspection of the curves suggests

that the are two distinct classes of pollutants. NOx concentrations tend to peak around 8

a.m., reflecting standard morning commute hours and the impact of traffic emissions on

air quality. On the other hand, ozone levels peak around 2 to 3 p.m., indicating that the

synthesis mechanism induces a lag of up to approximately 6 hours.

[Figure 5 about here.]

It is then of interest to study whether meteorological factors might affect the rate of

ozone synthesis. Individual component deformations combined with Fréchet regression for

distributions provide a natural framework for this (Petersen and Müller, 2019). Subject-

specific deformations from NOx concentrations to ozone concentrations, T
(i)
NOx→O3

, were

calculated as per (20) for each day. Global Fréchet regression was then applied through

fitting the model

m̂⊕(x) = argmin
T∈W

Mn(T, x),

Mn(T, x) = n−1

n∑
i=1

qind
2
W (Ti, T ),

(22)

where m⊕ denotes the conditional Fréchet mean of the deformation given the covariate

x, the wind speed recorded a given day. Here, dW is the 2−Wasserstein distance (Villani,

2003) and the weights qin are derived from global linear regression and defined as qin =

1 + (xi − x̄)(x − x̄)/ŝ2
x (Petersen and Müller, 2019), where x̄ and ŝ2

x represent the sample

mean and variance of the observed wind speeds, respectively. The model was fit using the R
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package frechet, observing that the deformation functions can be represented as distribution

functions (Chen et al., 2020).

[Figure 6 about here.]

Figure 6 displays the observed deformations and the fits obtained from Fréchet regression

using windspeed as a predictor. The rainbow gradient corresponds to windspeeds ranging

from 3 to 10 knots and their associated fitted deformations are overlaid the original data. The

regression fits suggest that days with lower windspeeds correspond with deformations which

are further from the diagonal, indicating an exaggerated lag between peak concentrations of

NOx and ozone. On the other hand, days with high wind speeds have fitted deformations

very near the diagonal which suggests that windier settings accelerate the synthesis process.

Intuitively this is a reasonable result in terms of the physical interpretation, as more wind

will result in a higher rate of collisions of the particles, and thus quicker production of ozone

after peak NOx emission. The Fréchet R2
⊕ value was 0.44, which suggests that wind speed

explains a considerable amount of variation in the observed deformations.

5. Theoretical Results

Our results focus on convergence of the components of the LDM described in (4) as the

number of curves n and the number of observations per curve m tend to infinity. We require

the following assumptions on (L) the components of the Latent Deformation Model and (S)

the smoothing methodology in the presence of discretely observed curves:

(L1) The latent curve λ(t) ∈ C2(D) is a bounded function. For any non-degenerate interval

T0 ⊂ T , 0 <
∫
T0 λ

′(t)2dt <∞.

(L2) For j = 1, . . . , p, sup
16i6n

Aij = OP (1) and sup
16i6n

A−1
ij = OP (1).

Assumption (L1) bounds the latent curves and its derivatives and ensures there are no flat

stretches and the uniqueness of the component estimates. (L2) ensures that the ranges of
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the random processes are bounded away from zero and infinity with high probability; this

condition is needed for the uniform convergence of the smoothing estimate.

(S0) The time points t1, . . . , tm, depend on the sample size n, m = m(n) and constitute a

dense regular design with smooth design density f with inf
t∈T

f(t) > 0 that generates the time

points according to ts = F−1( s−1
m−1

), s = 1, . . . ,m, where F−1 denotes the quantile function

associated with f . The second derivative f ′′ is bounded, sup
t∈T ◦
|f ′′(t)| <∞.

(S1) The kernel function K is a probability density function with support [−1, 1], symmetric

around zero, and uniformly continuous on its support, with
∫ 1

−1
K2(u)du <∞.

(S2) For each j = 1, . . . , p, the sequences m = m(n) and b = b(n) satisfy (1) 0 < b <∞, and (2)

m→∞, b→ 0, and mb2(log b)−1 →∞ as n→∞.

These assumptions guarantee the consistent estimation of n curves simultaneously, as shown

in the following Proposition. We observe that (S2) is for example satisfied if the bandwidth

sequence is chosen such that b = b(n) ∼ m(n)−1/6.

Proposition 1: Under assumptions (S0−S2), if E||X(ν)(t)||2∞ <∞, ν = 0, 1, 2, we have

the uniform convergence

sup
t∈T
|X̃ij(t)−Xij(t)| = OP (m−1/3). (23)

The rate also extends to the standardized versions X∗ij = Xij/||Xij||∞,

sup
t∈T

∣∣∣∣∣ X̃ij(t)

||X̃ij||∞
− Xij(t)

||Xij||∞

∣∣∣∣∣ = OP (m−1/3). (24)

This result agrees with the existing results in the literature, in that it is a special case of

a general result for metric-space valued functional data (see Chen and Müller (2022)), now

here in the case of real-valued functions. The estimators of the latent curve and component

deformations involve averages of the smoothing estimates over the sample of curves as n→

∞. The corresponding rates of convergence will thus rely on the uniform summability of the

difference between the smoothed and true curves over n and we then have a uniform rate of
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τm = m−(1−δ)/3 for an arbitrarily small δ > 0 in lieu of the above rate m−1/3; see Lemma 1 in

the Appendix. The proposed estimators also rely on the mechanics of the pairwise warping

methods, whose convergence properties have been established in a general form in Tang and

Müller (2008) and Chen and Müller (2022). Lemma 2 in the Appendix states these rates in

the specific framework of the Latent Deformation Model. We are now in a position to state

our main result, which establishes rates of convergence for the estimators of the components

of the Latent Deformation Model as follows.

Theorem 1: Under assumptions (L1), (L2), and (S0−S2), with τm = m−(1−δ)/3 for an

arbitrarily small δ > 0 and penalty parameters as described in (10) and (16), we have for all

i = 1, . . . , n, j = 1, . . . , p,

a. sup
t∈T
|Ĥi(t)−H(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 ),

b. sup
t∈T
|γ̂j(t)− γj(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 )

c. sup
t∈T
|λ̂(t)− λ(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(η

1/2
1 ),

d. sup
t∈T
|Ψ̂j(t)−Ψj(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2),

e. sup
t∈T
|Ĝij(t)−Gij(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2), and

f. |Âij − Aij| = OP (m−1/6).

The three terms in the rates correspond, in order, to (1) the parametric rate achieved

through the standard central limit theorem, (2) the smoothing rate which is dependent on

the number of observations per curve m, and (3) a rate due to the well-known bias introduced

by the penalty parameters used in the regularization steps. Additionally, if we suppose that

m is bounded below by a multiple of n3(1−δ)−1
, then the rates corresponding to the smoothing

steps are bounded above by n−1/2. If we take the penalty parameters to be η1 ∼ η2 = O(n−1),

a n−1/2 rate of convergence can be achieved for each of the estimators in Theorem 1 a.-e.

Otherwise if m ∼ n∆(1−δ)−1
, for any ∆ < 3, the convergence is limited by the smoothing step

and achieves the rate of n−∆/6.
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Corollary 1: Suppose the penalty parameters η1 ∼ η2 = O(n−1). If the random

trajectories are fully observed without error or the trajectories are recorded with at least

a multiple of m ∼ n∆(1−δ)−1
observations per curve, with ∆ > 3, then under the assumptions

of Theorem 1, we have for all i = 1, . . . , n, j = 1, . . . , p,

a. sup
t∈T
|Ĥi(t)−H(t)| = OP (n−1/2),

b. sup
t∈T
|γ̂j(t)− γj(t)| = OP (n−1/2)

c. sup
t∈T
|λ̂(t)− λ(t)| = OP (n−1/2),

d. sup
t∈T
|Ψ̂j(t)−Ψj(t)| = OP (n−1/2),

e. sup
t∈T
|Ĝij(t)−Gij(t)| = OP (n−1/2), and

f. |Âij − Aij| = OP (n−1/2).

The asymptotic results for the cross-component deformations then follow immediately from

the rates established in Theorem 1.

Theorem 2: Under assumptions of Theorem 1 for i = 1, . . . , n, 1 6 j, k 6 p,

a. sup
t∈T
|T̂jk(t)− Tjk(t)| = OP (n−1/2) +OP (τ

1/2
m ) +O(max(η1, η2)1/2), and

b. sup
t∈T
|T̂ (i)
jk (t)− T (i)

jk (t)| = OP (n−1/2) +OP (τ
1/2
m ) +O(max(η1, η2)1/2).

A similar corollary for cross-component deformations follows in the case of fully observed

curves or dense enough designs.

Corollary 2: Suppose the penalty parameters η1 ∼ η2 = O(n−1). If the random trajec-

tories are fully observed without error or are recorded with at least a multiple of m ∼ n∆(1−δ)−1

observations per curve, with ∆ > 3, then under the assumptions of Theorem 1, we have

for i = 1, . . . , n, 1 6 j, k 6 p,

a. sup
t∈T
|T̂jk(t)− Tjk(t)| = OP (n−1/2), and

b. sup
t∈T
|T̂ (i)
jk (t)− T (i)

jk (t)| = OP (n−1/2).
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Corollaries 1 and 2 suggest that, on dense enough measurement schedules, parametric rates

of convergence are achievable for the components of the LDM.

Remark 1: For any cycle of components indexed by the sequence,

π1 → π2 → π3 → · · · → πL → π1,

with arbitrary length L and π1, . . . , πL ∈ {1, . . . , p}, their respective cross-component defor-

mations satisfy

Tπ1π2 ◦ Tπ2π3 ◦ · · · ◦ TπLπ1 = id.

This result ensures that the system of cross-componentdeformations maps prevents incon-

sistencies within itself. For example, if for three components A, B, and C, the pairwise

deformations TAB and TBC suggest that Component A tends to precede Component B which

itself tends to precede Component C, this implies that the deformations TAC must indicate

that Component A tends to precede Component C. Furthermore, mapping a component

tempo through other components and then back to itself will result in the original component

tempo, unchanged. Next we consider the convergence rates of reconstructed curves as per

(21), putting all model components together.

Theorem 3: Under assumptions of Theorem 1 for i = 1, . . . , n, j = 1, . . . , p,

sup
t∈T
|X̂ij(t)−Xij(t)| = OP (n−1/2) +OP (τ 1/2

m ) +O(max(η1, η2)1/2).

Again a parametric rate is achievable on dense enough designs.

Corollary 3: Suppose the penalty parameters η1 ∼ η2 = O(n−1). If the random

trajectories are fully observed without error or the trajectories are recorded with at least

a multiple of m ∼ n∆(1−δ)−1
observations per curve, with ∆ > 3, then under the assumptions

of Theorem 1, we have for i = 1, . . . , n, j = 1, . . . , p,

sup
t∈T
|X̂ij(t)−Xij(t)| = OP (n−1/2).
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6. Concluding Remarks

The Latent Deformation Model (LDM) provides a novel decomposition for a large class of

practically relevant multivariate functional data by quantifying their inter-component time

dynamics. A separability assumption that makes it possible to factor overall time warping

into component-specific and subject-specific time warping components is crucial. The ensuing

simple representation for multivariate functional data includes two fixed effect terms (the

latent curve and a collection of component-level warping functions) and two random effect

terms (a random amplitude vector and a collection of subject-level warping functions). This

representation requires the estimation of only one random warping function and amplitude

vector per subject, in addition to p+ 1 deterministic functions overall.

In some cases these components may be reduced even further. For example, when subject-

level warping is negligible or part of a pre-processing step, a special case of the model arises in

which time dynamics are fully characterized by the p+ 1 fixed effect curves and one random

scalar per component. Alternatively, if subject-level time warping is present but further

dimension reduction is desired, transformation of warps by the LQD transform (Petersen

et al., 2016) or other means (see, e.g. Happ et al. (2019)) will permit a Karhunen-Loève

expansion in L2−space. Applying the LDM and truncating this expansion at an appropriate

number of eigenfunctions, say K0, creates a representation of multivariate functional data

using only p + K0 random scalars, as opposed to a standard FPCA representation which

requires p×K0 variables.

A limitation of this framework is the fact that slight deviations from a common latent

curve will always occur in practice. An implicit assumption in applying the LDM is that

the magnitude of nuisance peaks is negligible in comparison to the dominant features of

the latent curve. Simulations which examine the robustness of component estimates in the

presence of model misspecification or more pronounced nuisance peaks are in the supplement.
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The LDM serves both as an extension of existing univariate functional warping methods,

as well as a stepping stone for many new potential models for multivariate functional data

analysis and registration. Future directions of note include harnessing cross-component defor-

mation maps for imputating components in partially observed multivariate functional data,

or relaxing structural assumptions to allow for more flexible functional relationships between

different latent curves for distinct subsets of components; e.g. allowing for multiple latent

curves, λ1(t), λ2(t), with λ1(t) = g(λ2(t)) for some function g. Spatiotemporal applications

are also promising for the LDM, in which the vector components are indexed by location.

Then component warping functions may reveal time trends across geographic regions.
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Figure 1. Schematic of the Latent Deformation Model, where λ denotes the latent base
curve (top-left), Ψ denotes component deformations (bottom-left), γ denotes component
tempos (top-center), H denotes random subject-wise time distortion functions (bottom-
right), and X denotes the observed multivariate curve data (top-right) resulting from the
complete data generating mechanism. This figure appears in color in the electronic version
of this article, and any mention of color refers to that version.
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Figure 2. Growth velocities (in cm/year) during puberty for boys (blue) and girls (red).
Scaled component tempo functions are marked for boys and girls with dashed and dotted
lines, respectively. This figure appears in color in the electronic version of this article, and
any mention of color refers to that version.
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Figure 3. Component tempos γ (left) and deformations Ψ (right) for growth modalities.
The dashed line represents the tempo and deformation for the latent tempo, λ. This figure
appears in color in the electronic version of this article, and any mention of color refers to
that version.
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Figure 4. The cross-component deformation map T12 which expresses the sitting height’s
timing patterns relative to the leg length’s as a baseline. The peak of pubertal growth rate
for the leg occurs at approximately age 13.5, while the maximum growth velocity for sitting
height growth occurs at approximately T12(13.5) ≈ 14.5 years old. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.
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Figure 5. 24-hour trajectories of NOx (left) and ozone (right), concentrations in parts per
billion (ppb) on a log scale.
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Figure 6. Fréchet regression of NOx-to-O3 cross-component deformations onto daily max
windspeeds in knots. Windier days correspond to more linear deformation functions, which
suggests O3 synthesis more closely follow NOx emission. Less windy days are associated with
more pronounced lags between the pollutants. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.


