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Abstract

Situations of a functional predictor paired with a scalar response are increasingly

encountered in data analysis. Predictors are often appropriately modeled as square in-

tegrable smooth random functions. Imposing minimal assumptions on the nature of the

functional relationship, we aim at estimating the directional derivatives and gradients

of the response with respect to the predictor functions. In statistical applications and

data analysis, functional derivatives provide a quantitative measure of the often intricate

relationship between changes in predictor trajectories and those in scalar responses. This

approach provides a natural extension of classical gradient fields in vector space and pro-

vides directions of steepest descent. We suggest a kernel-based method for the nonpara-

metric estimation of functional derivatives that utilizes the decomposition of the random

predictor functions into their eigenfunctions. These eigenfunctions define a canonical set

of directions into which the gradient field is expanded. The proposed method is shown

to lead to asymptotically consistent estimates of functional derivatives and is illustrated

in an application to growth curves.
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1. Introduction

Situations where one is given a functional predictor and a continuous scalar response are

increasingly common in modern data analysis. While most studies to date have focused on

functional linear models, the structural constraints imposed by these models are often unde-

sirable. To enhance flexibility, several nonparametric functional regression approaches have

been discussed. Since these models are not subject to any assumptions except smoothness,

they are very widely applicable. The price one pays, of course, is that convergence will be

slower when compared with functional linear models. The situation is comparable to that of

extending ordinary linear regression to nonparametric regression. By abandoning restrictive

assumptions, such extensions greatly enhance flexibility and breadth of applicability. Un-

der suitable regularity assumptions, convergence of such functional nonparametric models is

guaranteed for a much larger class of functional relationships and this insurance is often well

worth the slower rates of convergence.

Suppose we observe a sample of i.i.d. data (X1, Y1), . . . , (Xn, Yn), generated by the model

Y = g(X) + ε , (1)

where X is a random function in the class L2(I) of square-integrable functions on the interval

I = [0, 1], g is a smooth functional from L2(I) to the real line, and ε represents an error, inde-

pendent of X, with zero expected value and finite variance. In the nonparametric approach,

one aims to conduct inference about g without imposing specific structure, usually that g is a

linear functional. The traditional functional linear model would have g(x) = a+
∫

bx, where a

is a constant and b a function, but even here the “regression parameter function” b cannot be

estimated at the parametric rate n−1/2 unless it is subject to a finite-parameter model; this

model has been well investigated in the literature. Examples of such investigations include

Ramsay and Dalzell (1991); Cuevas et al. (2002); Cardot et al. (2003a,b); Hall and Horowitz

(2007); James and Silverman (2005); Ramsay and Silverman (2005); Yao et al. (2005b).

While the functional linear regression model has been shown to provide satisfactory fits
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in various applications, it imposes a linear restriction on the regression relationship and

therefore cannot adequately reflect nonlinear relations. The situation is analogous to the

case of a simple linear regression model where a nonparametric regression approach often

provides a much more adequate and less biased alternative approach. Likewise, there is

sometimes strong empirical evidence, for example in the form of skewness of the distributions

of empirical component scores, that the predictor function X is not Gaussian. The problem

of estimating a nonparametric functional regression relation g in the general setting of (1) is

more difficult compared to functional linear regression, and the literature is much sparser. It

includes the works of Gasser et al. (1998) and Hall and Heckman (2002) on the estimation

of distributions and modes in function spaces, and of Ferraty and Vieu (2003, 2004, 2006)

on nonparametric regression with functional predictors. Recent developments are reviewed

in Ferraty et al. (2007).

To lay the foundations for our study we introduce an orthonormal basis for L2(I), say

ψ1, ψ2, . . ., which in practice would generally be the basis connected to the spectrum of the

covariance operator, V (s, t) = cov{X(s), X(t)}:

V (s, t) =
∞∑

j=1

θj ψj(u) ψj(v) , (2)

where the ψj ’s are the orthonormal eigenfunctions, and the θj ’s are the respective eigenvalues,

of the linear operator with kernel V . The terms in (2) are ordered as θ1 ≥ θ2 ≥ . . .. The

empirical versions of the ψj ’s and θj ’s arise from a similar expansion of the standard empirical

approximation V̂ to V ,

V̂ (s, t) =
1
n

n∑

i=1

{Xi(s)− X̄(s)} {Xi(t)− X̄(t)} =
∞∑

j=1

θ̂j ψ̂j(s) ψ̂j(t) , (3)

where X̄ = n−1
∑

i Xi and order is now determined by θ̂1 ≥ θ̂2 ≥ . . .. The eigenvalues θ̂j

vanish for j ≥ n + 1, so the functions ψ̂n+1, ψ̂n+2, . . . may be determined arbitrarily.

The centered form of X admits a Karhunen-Loève expansion,

X −E(X) =
∞∑

j=1

ξj ψj , (4)
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where the principal components ξj =
∫
I X ψj are uncorrelated and have zero means and

respective variances θj . Their empirical counterparts are computed using ψ̂j in place of ψj .

The paper is organized as follows. In section 2, we describe the kernel-based estimators

that we consider for estimating the nonparametric regression function g in model (1) on the

functional domain and for estimating functional derivatives in the directions of the eigen-

functions ψj . Rates of convergence for kernel estimators ĝ of the nonparametric regression

function g are obtained under certain regularity assumptions on predictor processes and their

spectrum (Theorems 1–3). These results then lead to the consistency property (Theorem 4)

for functional derivatives. A case study concerning an application of functional derivatives to

the Berkeley longitudinal growth study is the theme of section 4, followed by a compilation

of the proofs in section 5.

2. Proposed Estimation Procedures

Define the Nadaraya-Watson estimator,

ĝ(x) =
∑

i Yi Ki(x)∑
i Ki(x)

,

where Ki(x) = K(‖x−Xi‖/h), K is a kernel function and h a bandwidth. Here ‖ · ‖ denotes

the standard L2 norm. Similar kernel estimators have been suggested in the literature. We

refer to Ferraty and Vieu (2006) for an overview regarding these proposals and also for the

previously published consistency results for the estimation of g. While the focus of this paper

is on the estimation of functional derivatives in the general framework of model (1), using

the spectral decomposition for predictor processes X and characterizing these processes by

their eigenbasis also leads to useful and relevant results regarding the estimation of g. These

results are given in Theorems 1 and 2 below, while Theorem 3 provides relevant bounds

for the probability that X lies in a small ball and Theorem 4 yields the desired asymptotic

consistency of the proposed functional derivative estimator defined at 7).

For simplicity we shall suppose the following (although more general conditions may be

imposed).
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Assumption 1. Kernel K is nonincreasing on [0, c], where c > 0, and the support of K

equals [0, c].

The derivative of g at x is defined to be the linear operator gx with the property that, for

functions y and scalars δ,

g(x + δy) = g(x) + δ gxy + o(δ)

as δ → 0. We may write

gx =
∞∑

j=1

γxj tj , (5)

where γxj = gxψj is a scalar, and tj denotes the operator that takes y to yj = tj(y) =
∫

y ψj .

We can think of γxj as the component of gx in the direction ψj .

From knowledge of the operator gx, accessible through the components γxj , we can ob-

tain information about functional gradients and extrema. For example, suppose amin
x =

(amin
x1 , amin

x2 , . . .) and amax
x = (amax

x1 , amax
x2 , . . .) are defined as the vectors a = (a1, a2, . . .) that

respectively minimize and maximize |gxa|, where

gxa =
∞∑

j=1

γxj aj , (6)

over functions a =
∑

j aj ψj for which ‖a‖ = 1, i.e. such that
∑

j a2
j = 1. Then the function

g changes fastest as we move away from x in the direction of amax
x =

∑
j amax

xj ψj , which

therefore is a gradient direction. The function changes least when we move from x in the

direction of amin
x =

∑
j amin

xj ψj . Extremal points are characterized by γxj = 0 for all j

and their identification is of obvious interest to identify predictor functions associated with

maximal or minimal responses, and also the level of these responses.

Thus, the components γxj are of intrinsic interest. As a prelude to estimating them,

we introduce Yi1i2 = Yi1 − Yi2 and ξ̂i1i2j =
∫
I(Xi1 − Xi2) ψ̂j , the latter being an empirical

approximation to ξi1i2j = ξi1j − ξi2j , i.e. to the difference between the principal components

ξij =
∫

Xi ψj for i = i1, i2. Define

Qi1i2j = 1− | ∫ (Xi1 −Xi2) ψ̂j |2
‖Xi1 −Xi2‖2

= 1− ξ̂2
i1i2j

‖Xi1 −Xi2‖2
,
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which represents the proportion of the function Xi1−Xi2 that is “not aligned in the direction

of ψ̂j .” Therefore, Qi1i2j will be small in cases where Xi1 − Xi2 is close to being in the

direction of ψ̂j , and will be larger in other settings. We suggest taking

γ̂xj =

∑∑(j)
i1,i2

Yi1i2 K(i1, i2, j |x)
∑∑(j)

i1,i2
ξ̂i1i2j K(i1, i2, j |x)

. (7)

Here,
∑∑(j)

i1,i2
denotes summation over pairs (i1, i2) such that ξ̂i1i2j > 0,

K(i1, i2, j |x) = K

(‖x−Xi1‖
h1

)
K

(‖x−Xi2‖
h1

)
K

(
Qi1i2j

h2

)
, (8)

K is a kernel function and h1 and h2 denote bandwidths. On the right-hand side of (8), the

last factor serves to confine the estimator’s attention to pairs (i1, i2) for which Xi1 −Xi2 is

close to being in the direction of ψ̂j , and the other two factors restrict the estimator to i1

and i2 such that both Xi1 and Xi2 are close to x. The estimator γ̂xj uses two smoothing

parameters, h1 and h2.

3. Theoretical Properties

3.1 Consistency and convergence rates of estimators of g

To ensure consistency we ask that the functional g be continuous at x, i.e. that for functions

y and scalars δ, the following holds.

Assumption 2.

sup
y : ‖y‖≤1

|g(x + δy)− g(x)| → 0 as δ ↓ 0, (9)

and the bandwidth h does not decrease to zero too slowly, in the sense that, with c as in

Assumption 1,

h = h(n) → 0 and nP (‖X − x‖ ≤ c1h) → ∞ as n → ∞, where c1 = c if K(c) > 0,

and otherwise c1 ∈ (0, c). (10)

Given C > 0, x ∈ L2(I) and α ∈ (0, 1], let G(C, x, α) denote the set of functionals g such

that |g(x + δy) − g(x)| ≤ C δα, for all y ∈ L2(I) satisfying ‖y‖ ≤ 1, and for all 0 ≤ δ ≤ 1.

When deriving convergence rates we strengthen (9) by asking that g be in G(C, x, α).
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Let X = {X1, . . . , Xn} denote the set of explanatory variables.

Theorem 1. If Assumptions 1 and 2 hold, then ĝ(x) → g(x) in mean square, conditional

on X , and

sup
g∈G(C,x,α)

E
[
{ĝ(x)− g(x)}2

∣∣∣ X
]

= op(1). (11)

Furthermore, for all η > 0,

sup
g∈G(C,x,α)

P{|ĝ(x)− g(x)| > η} → 0.

Moreover, if h is chosen to decrease to zero in such a manner that

h2α P (‖X − x‖ ≤ c1h) ³ n−1 (12)

as n → ∞, then for each C > 0 the rate of convergence of ĝ(x) to g(x) equals Op(h2α),

uniformly in g ∈ G(C, x, α):

sup
g∈G(C,x,α)

E
[
{ĝ(x)− g(x)}2

∣∣∣ X
]

= Op

(
h2α

)
, (13)

lim
C1→∞

lim sup
n→∞

sup
g∈G(C,x,α)

P
{|ĝ(x)− g(x)| > C1 hα

}
= 0. (14)

To interpret (11) and (13), assume that the pairs (Xi, εi), for 1 ≤ i < ∞, are all defined on

the same probability space, and then put Yi = Yi(g) = g(Xi) + εi. Write Eg( · | X ) to denote

expectation in the distribution of the pairs (Xi, Yi(g)), conditional on X . In section 5.1

below we shall discuss appropriateness of conditions such as (12) which relate to “small

ball probabilities”. Asymptotic consistency results for g and mean squared errors have been

derived in Ferraty et al. (2007) under different assumptions. The convergence rate at (14) is

optimal in the following sense.

Theorem 2. If the error ε in (1) is normally distributed, and if, for a constant c1 > 0,

nP (‖X−x‖ ≤ c1 h) →∞ and (12) holds, then for any estimator g̃(x) of g(x), and for C > 0

sufficiently large in the definition of G(C, x, α), there exists a constant C1 > 0 such that

lim sup
n→∞

sup
g∈G(C,x,α)

P
{|g̃(x)− g(x)| > C1 hα

}
> 0 .
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According to this result, uniformity of the convergence holds over the Lipschitz class

of functionals G(C, x, α). This result applies for a fixed argument x in the domain of the

predictor functions, where the functionals are evaluated. Further discussion of the bounds

on P (‖X − x‖ ≤ u) as relevant for (12) is provided in Section 5.1.

3.2 Consistency of derivative estimator

We shall establish consistency of the estimator γ̂xj . To this end, let

q12j = 1− | ∫ (X1 −X2) ψj |2
‖X1 −X2‖2

denote the version of Q12j when ξ̂i1i2 is replaced by the quantity ξj that ξ̂i1i2 approximates,

and let ki1i2j denote the version of K(i1, i2, j |x), defined at (8), when Qi1i2j there is replaced

by qi1i2j .

Assumption 3.

(a) supt∈I E{X(t)4} < ∞;

(b) there are no ties among the eigenvalues θ1, . . . , θj+1;

(c) |g(x + y)− g(x)− gxy| = o(‖y‖) as ‖y‖ → 0;

(d) the distribution of ξ1j − ξ2j has a well-defined density in a neighborhood of the origin,

not vanishing at the origin;

(e) K is supported on [0, 1], nondecreasing and with a bounded derivative on the positive

half-line, and 0 < K(0) < ∞; and

(f) h1, h2 → 0 as n increases, sufficiently slowly to ensure that n1/2 min(h1, h2) →∞ and

(nh1)2 E(ki1i2j) →∞.

Finite variance of X guarantees that the covariance operator V , leading to the eigenfunc-

tions ψj and their estimators ψ̂j in section 3.1, is well defined; and finite fourth moment,

stipulated by Assumption 4(a), ensures that ‖ψ̂j − ψj‖ converges to zero at the standard

root-n rate. This assumption is for example satisfied for Gaussian processes with smooth

mean and covariance functions.
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If we suppose in addition that X is a process with independent principal component

scores
∫

X ψj (or the stronger assumption that X is Gaussian) and all the eigenvalues θj are

nonzero (we shall refer to these properties jointly as (P1)), then Assumption 3(f) implies that

n−ε = O(hj) for j = 1, 2 and for all ε > 0 (call this property (P2)). That is, both bandwidths

are of larger order than any polynomial in n−1. To see why, note that (P1) entails P (‖x−X‖ ≤
h1) = O(hC1

1 ) for all C1 > 0. Also, 3(f) implies that nh1 P (‖x−X‖ ≤ C2 h1) →∞ for some

C2 > 0, and this, together with (P1), leads us to conclude that nhC1+1 →∞ for all C1 > 0.

That result is equivalent to (P2) for the bandwidth h1. Property (P1) also implies that

P (q12j ≤ h2) = O(hC1
2 ) for all C1 > 0, and 3(f) implies that nP (q12j ≤ C2 h2) →∞ for some

C2 > 0, which as before leads to (P1), this time for the second bandwidth.

Theorem 3. If Assumption 3 holds, then γ̂xj → γxj in probability.

Using notation (5), if e =
∑j0

j=1 ejψj with
∑

j e2
j = 1 and j0 < ∞, the functional direc-

tional derivative in direction e at x is gxe =
∑

j ejγxj ; see also (6), where e is obtained by

choosing aj = ej , 1 ≤ j ≤ j0, aj = 0, j > j0. If Assumption 3 holds for all j ≤ j0, it is an

immediate consequence of Theorem 3 that the estimated functional derivative ĝxe =
∑

j ej γ̂xj

at x in direction e is consistent, i.e., satisfies ĝxe → gxe in probability. As this holds uniformly

over all direction vectors e, the functional gradient field for directions anchored in the span

of {ψ1, . . . , ψj0} can be estimated consistently.

If we take the operator ĝx, defined by ĝxa =
∑

j≤r γ̂xj aj (where r ≥ 1 is an integer

and a =
∑

j aj ψj is function), to be an empirical approximation to gx, the operator given

by gxa =
∑

j γxj aj , if the conditions in Assumption 3 hold for each j, and in addition
∑

j γ2
xj < ∞, then there exists a (generally unknown) deterministic sequence r = r(n, x)

with the following properties: r(n, x) → ∞ as n → ∞; whenever ‖a‖ < ∞, ĝxa − gxa →
0 in probability; and moreover, ĝx → gx in norm as n → ∞, where the convergence is

again in probability. An explicit construction of such a sequence r(n, x), and thus of an

explicit estimate of the derivative operator with these properties, would require further results

regarding the convergence rates for varying j in Theorem 3, and remains an open problem.

8



4. Application of functional derivative estimation to growth data

The analysis of growth data has a long tradition in statistics. It played a pioneering role

in the development of functional data analysis, as evidenced by the studies of Rao (1958);

Gasser et al. (1984); Kneip and Gasser (1992); Ramsay and Li (1998) and Gervini and Gasser

(2005) and remains an active field of statistical research to this day.

We explore the relationship between adult height, measured at age 18 (scalar response),

and the growth rate function observed to age 10 (functional predictor), for 39 boys. Of interest

is the following question: How do shape changes in the prepubertal growth velocity curve

relate to changes in adult height? Which changes in the shape of a prepubertal growth velocity

curve of an individual will lead to the largest adult height gain for an individual? These and

similar questions can be addressed by obtaining the functional gradient of the regression of

adult height versus the prepubertal growth velocity trajectory. Such analyses are expected

to provide us with better understanding of the intricate dynamics and regulatory processes

of human growth. Functional differentiation provides an excellent vehicle for studying the

effects of localized growth velocity changes during various stages of prepubertal growth on

adult height.

For this exploration, we use growth data for 39 boys from the Berkeley longitudinal

growth study (Tuddenham and Snyder, 1954), where we include only measurements obtained

up to age 10 for the growth velocity predictor processes. The 15 time points before age 10

at which height measurements are available for each boy in the Berkeley study correspond

to ages {1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8, 8.5, 9, 9.5, 10}, denoted by {sj}j=1,...,15. Raw growth

rates were calculated as first order difference quotients Xij = (hi,j+1 − hij)/(tj+1 − tj),

where hij are the observed heights at times sj for the ith boy, and tj = (sj + sj+1)/2, i =

1, . . . , 39, j = 1, . . . , 14. These raw data form the input for the computation of the functional

decomposition of the predictor processes into mean function, eigenfunctions and functional

principal component scores. To obtain this decomposition, we used an implementation of the

functional spectral methods described in Yao et al. (2003) and Yao et al. (2005a).
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Applying a BIC type criterion based on marginal pseudo-likelihood to choose the number

of components in the eigenrepresentation, three components were selected. The resulting

smooth estimates of fitted individual and mean growth velocity curves are shown in Figure

1. The first three components explain 99.5% of the total variation (78.9%, 17% and 3.6%,

respectively), and the corresponding estimated eigenfunctions are displayed in the left panel

of Figure 2. The first eigenfunction corresponds to a rapid initial decline in growth velocity,

followed by a relatively flat increase with onset around age 5 towards the right end of the

considered age range, while the second eigenfunction contains a sign change and provides a

contrast between growth rates after age 2 and those before age 2. The third eigenfunction

describes a midgrowth spurt around ages 6–7, coupled with an especially rapid decline in

growth rate before age 3.

To visualize the estimated functional derivatives, a derivative scores plot as shown in the

right panel of Figure 2 is of interest. The coefficient estimates for the first two eigendirections

are plotted, i.e., the points (γXi,1, γXi,2) (defined at (5)), evaluated at each of the 39 predictor

functions Xi. This figure thus represents the canonical functional gradient vectors at the

observed data points, truncated at the first two components. These gradient vectors are

seen to vary quite a bit across subjects, with a few extreme values present in the derivative

corresponding to the first eigendirection.

The gradients are generally positive in the direction of the first eigenfunction and negative

in the direction of the second. Their interpretation is relative to the shape of the eigenfunc-

tions, including the selected sign for the eigenfunctions (as the sign of the eigenfunctions is

arbitrary). If the gradient is positive in the direction of a particular eigenfunction ψj , it

means that adult height tends to increase as the corresponding functional principal compo-

nent score ξj increases. So in order to interpret the gradients in the right panel of Figure

2, one needs to study the shapes of the corresponding eigenfunctions as depicted in the left

panel. When observing the shapes of first and second eigenfunction in the left panel of Figure

2, adult height is seen to increase most if the growth velocities towards the right end of the
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domain of the growth rate predictor curves are larger, a result that is in line with what one

would expect.

Using the first K components, we define functions g∗i (t) =
∑K

j=1 γXi,jψj(t) for each subject

i. Then for any test function z(t) =
∑K

j=1 zjψj(t) with ‖z‖ = 1 one has
∫

g∗i (t)z(t) dt =
∑K

j=1 γXi,jzj so that the functional directional derivative at Xi in direction z is obtained

through an inner product of z with g∗i . We therefore refer to g∗i as the derivative generating

function at Xi. In the application to growth curves, we choose K = 3 and this function can

be interpreted as a subject-specific weight function, whose inner product with a test function

z provides the gradient of adult height when moving from the trajectory Xi in the direction

indicated by z. It is straightforward to obtain estimates

ĝ∗i (t) =
K∑

j=1

γ̂Xi,jψ̂j(t) (15)

of these derivative generating functions by plugging in estimates for γXi,j and ψj(t) as ob-

tained in (3) and (7).

Estimated derivative generating functions ĝ∗i for K = 3 are depicted in Figure 3 for all

39 trajectories Xi in the sample. These empirical derivative generating functions are found

to be relatively homogeneous. Estimated functional directional derivatives in any specific

direction of interest are then easily obtained. We find that gradients are largest in directions

z = g∗i /‖g∗i ‖, i.e., in directions that are parallel to the derivative generating functions g∗i .

This means that largest increases in adult height are obtained in the presence of increased

growth velocity around 2-4 years and past 8 years, while growth velocity increases between

5-7 years have only a relatively small effect.

It is of interest to associate the behavior of the derivative operators with features of the

corresponding predictor trajectories. The predictor trajectories Xi for which the derivative

coefficients γXi,j have the largest and smallest absolute values in each of the first three eigendi-

rections (for j = 1, 2, 3) are depicted in the upper panels of Figure 4. The lower panels show

the corresponding derivative generating functions. One finds that the functional gradients of

growth velocity curves that contain time periods of relatively small growth velocity are such
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that increased growth velocity in these time periods is associated with the largest increases

in subsequent adult height (dashed curves in left and middle panel, dotted curve in right

panel), as does slowing of above-normal high post-partum growth velocities (dashed curve in

right panel).

A systematic visualization of the connection of predictor functions and the gradient field,

as represented by the derivative generating functions, is obtained by considering families

of predictor trajectories X(t; αj) = µ̂(t) + αjψ̂j(t) that move away from the mean growth

velocity trajectory in the direction of a specific eigenfunction, while the other eigenfunctions

are ignored, as shown in the upper panels of Figure 5 for the first three eigenfunctions. The

corresponding derivative generating functions are in the lower panels. This visually confirms

that adult height gains are associated with increased growth velocities in those areas where

a subject’s velocities are relatively low, especially towards the right end of the domain of the

velocity predictor curves.

As the sample size in this example is relatively small, it is clear that caution needs to

be exercised in the interpretation of the results of this data analysis. The results presented

here follow the spirit of exploratory data analysis. We find that the concept of functional

derivatives can lead to new insights when analyzing functional data which extend beyond

those available when using established functional methods. Many practical and theoretical

issues require further study. These include for example choice of window widths and the

estimation of functional derivatives for data which are irregularly or sparsely measured.

5. Additional results and proofs

5.1 Bounds on P (‖X − x‖ ≤ u)

Reflecting the infinite-dimensional nature of functional-data regression, the rate of conver-

gence of the “small ball probabilities” P (‖X − x‖ ≤ u) to zero as u → 0 is generally quite

rapid, in fact faster than any polynomial in u. See (19) below. In consequence, the con-

vergence rate of ĝ(x) to g(x) can be particularly slow. Indeed, unless the Karhunen-Loève
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expansion of X is actually finite-dimensional, the rate of convergence evidenced by (14) is

slower than the inverse of any polynomial in n.

The fastest rates of convergence arise when the distribution of X is closest to being finite-

dimensional, for example when the Karhunen-Loève expansion of X can be written as X =
∑

j ξj ψj , where var(ξj) = θj and the eigenvalues θj , j ≥ 1, decrease to zero exponentially,

rather than polynomially, fast as j increases, where the ξj are uncorrelated. Therefore we

shall focus primarily on this case and require

Assumption 4. For constants B, β > 0,

log θj = −B jβ + o(jβ) as j →∞, (16)

and the random variables ηj = ξj/θ
1/2
j are independent and identically distributed as η, the

distribution of which satisfies

B1 ub ≤ P (|η| ≤ u) ≤ B2 ub for all sufficiently small u > 0, and

P (|η| > u) ≤ B3 (1 + u)−B4 for all u > 0, where B1, . . . , B4, b > 0. (17)

Take x = 0, the zero function, and, with b, B and β as in (16) and (17), define

π(u) = exp
{
− bβ

β + 1

( 2
B

)1/β
| log u|(β+1)/β

}
. (18)

Theorem 4. If (16) and (17) hold, then, with π(u) given by (18),

P (‖X‖ ≤ u) = π(u)1+o(1) as u ↓ 0. (19)

Combining Theorems 1 and 3 we deduce that if the eigenvalues θj decrease as indicated

at (16), if the principal components ξj have the distributional properties at (17), and if the

bandwidth h is chosen so that (12) holds, then the kernel estimator ĝ(x) converges to g(x)

at the mean-square rate of

h2α = exp(−2α | log h|)

= exp
[
− {1 + o(1)} 2α

(β + 1
bβ

)β/(β+1) (B

2

)1/(β+1)
(log n)β/(β+1)

]
.
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For each fixed β, this quantity decreases to zero more slowly than any power of n−1,

although the rate of decrease increases as β increases. A typical example where conditions

(16) and (17) are satisfied is that of a process where θj = exp(−B jβ), where the distribution

of η in Assumption 4 has a bounded, nonzero density in a neighborhood of the origin, and

where {φj} is the standard Fourier series. In this case one finds that β = b = 1 and

π(u) = exp{−c(log u)(β+1)/β} = u−c(log u)1/β
for some c > 0, corresponding to faster than

polynomial convergence towards 0. Of course, the condition on the distribution of η is

satisfied if the process X is Gaussian.

Theorem 4 establishes that, in the case x = 0, the probability P (‖X − x‖ ≤ u) typically

does not vanish, even for very small u; and, in this context, (19) gives a concise account of the

size of the probability. If we take x = 0 and replace X by X1−X2, for which the calculations

leading to (19) are identical in all essential respects to those leading to (19), then we obtain

a formula for the average value of P (‖X1 − x‖ ≤ u) over all realizations x of X2. Therefore

(19) provides substantially more than just the value of the probability when x = 0. The case

of fixed but nonzero x, where x =
∑

j θ
1/2
j xj and the xj ’s are uniformly bounded, can be

treated with related arguments, and also the setting where the xj ’s are unbounded, although

it needs more detailed arguments.

If θj decreases to zero at a polynomial rate, rather than at the exponential rate stipulated

by (16), then the probability P (‖X − x‖ ≤ u) decreases to zero at rate exp(−C1 u−C2) as

u decreases to 0, rather than at the rate exp(−C1 | log u|C2) indicated by Theorem 3 for

constants C1, C2 > 0. Very accurate results of this type, in the case where x = 0, are given

by Gao et al. (2003), who also provide additional relevant references. It is noteworthy that

these results also pertain to non-Gaussian processes, while early results along these lines for

Gaussian processes can be found in Anderson and Darling (1952). Decay rates of the closely

related type uC3 exp(−C1 u−C2) for C3 > 0 were featured in Ferraty et al. (2007), among

several other rates that are primarily associated with finite-dimensional processes.

We conclude from this discussion that the decay rates of the small ball probabilities are

14



intrinsically linked to the decay rates of the eigenvalues of the underlying process. The fast

decay rates associated with polynomially converging eigenvalues mean that this case is not

particularly desirable from a statistical point of view.

5.2 Proof of Theorem 1

Let σ2 denote the variance of the error ε in (1). Set Nj =
∑

i Ki(x)j for j = 1, 2, and note

that N2 ≤ K(0) N1, as K(·) is non-increasing and compactly supported on [0, c]. Therefore,

E
[
{ĝ(x)− g(x)}2

∣∣∣ X
]

=
[
E{ĝ(x)

∣∣X} − g(x)
]2

+ var(ĝ(x)|X )

≤ max
i=1,...,n

|g(Xi)− g(x)|I(‖Xi − x‖ ≤ ch) +
σ2

∑
i K

2
i (x)

{∑i Ki(x)}2

≤ sup
y : ‖y‖≤ch

|g(x)− g(x + y)|2 +
σ2 K(0)

N1
. (20)

Continuity of g at x, i.e. (9), implies that the first term on the right-hand side of (20) converges

to zero. Note that Ki(x) ≥ Ki(x)I(‖Xi − x‖ ≤ c1h) ≥ K(c1)I(‖Xi − x‖ ≤ c1h), where c1

is as in (A2). Then (10) entails N−1
1 → 0 with probability 1, and by monotone convergence

E(N−1
i ) → 0. Together with (20), these properties imply the first part of the theorem. The

second part, comprising (13) and (14), is obtained on noting that (20) entails,

sup
g∈G(C,x,α)

E
[
{ĝ(x)− g(x)}2

∣∣∣ X
]
≤ C2(ch)2α +

σ2 K(0)
N1

≤ C2(ch)2α +
σ2 K(0) {1 + op(1)}

K(c1) nP (‖X − x‖ ≤ c1h)
,

and E(N−1
1 ) ≤ E

[{∑i I(‖Xi − x‖ ≤ c1h)}−1
] ³ {nP (‖X − x‖ ≤ c1h)}−1.

5.3 Proof of Theorem 2

Without loss of generality, x = 0. Let f denote a function defined on the real line, with a

derivative bounded in absolute value by B1, say, supported only within the interval [−B2, B2],

and not vanishing everywhere. Then f itself must be uniformly bounded, by B3 say. Define

g1 ≡ 0 and g2(y) = hα f(‖y‖/h). If ‖y‖ ≤ h then, since 0 < α ≤ 1,

|g2(y)− g2(0)| = hα |f(‖y‖/h)− f(0)| ≤ hα B1 ‖y‖/h ≤ hα B1 (‖y‖/h)α = B1 ‖y‖α ,

15



while if ‖y‖ > h,

|g2(y)− g2(0)| ≤ 2hα B3 ≤ 2B3 ‖y‖α .

Therefore, g2 ∈ G(C, 0, α) provided max(B1, 2B3) ≤ C.

The theorem will follow if we show that, in a classification problem where we observe n

data generated as at (1), with the errors distributed as Normal N(0, 1) and g = g1 or g2, with

prior probability 1
2 on either of these choices, the likelihood-ratio rule fails, in the limit as

n →∞, to discriminate between g1 and g2. That is, with Yi = εi (the result of taking g = g1

in the model), and with ρ defined by

ρ =
∏

i exp[−1
2 {Yi − g1(Xi)}2]∏

i exp[−1
2 {Yi − g2(Xi)}2]

,

we should show that

P (ρ > 1) is bounded below 1 as n →∞ . (21)

Now,

2 log ρ =
n∑

i=1

{
g2(Xi)2 − 2 εi g2(Xi)

}
,

which, conditional on X , is normally distributed with mean s2
n =

∑
i g2(Xi)2 and variance

4 s2
n. Therefore, (21) holds if and only if

lim
B→∞

lim sup
n→∞

P
(
s2
n > B

)
= 0 , (22)

and so we can complete the proof of Theorem 2 by deriving (22).

If we choose the radius B2 of the support of f so that 0 < B ≤ c1, then |g2(x)| ≤
B3 hα I(‖x‖ ≤ c1h), in which case

s2
n ≤ B2

3 h2α
n∑

i=1

I(‖Xi‖ ≤ c1h) . (23)

Since, by assumption, nP (‖X‖ ≤ c1h) →∞, then

∑
i I(‖Xi‖ ≤ c1h)

nP (‖X‖ ≤ c1h)
→ 1

in probability. This property, (12) and (23) together imply (22).
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5.4 Proof of Theorem 3

Write simply Ki1i2j for K(i1, i2, j |x). Assumption 3(e) implies that

Ki1i2j = 0 unless each of the following holds: ‖Xi1 − x‖ ≤ h1,

‖Xi2 − x‖ ≤ h1 and Qi1i2 ≤ h2. (24)

Given δ > 0, let s(δ) equal the supremum of |g(x + y) − g(x) − gxy| over functions y with

‖y‖ ≤ δ. Then, by Assumption 3(c),

δ−1 s(δ) → 0 as δ ↓ 0 . (25)

Write Ei1i2 for the event that ‖Xik − x‖ ≤ h1 for k = 1, 2. If Ei1i2 holds,

∣∣g(Xi1)− g(Xi2)− gx(Xi1 −Xi2)
∣∣ ≤ 2 s(h1) .

Therefore, defining εi1i2 = εi1 − εi2 and assuming Ei1i2 ,

∣∣∣Yi1 − Yi2 − {gx(Xi1 −Xi2) + εi1i2}
∣∣∣ ≤ 2 s(h1) .

Hence, defining ξi1i2j = ξi1j − ξi2j , noting that gx(Xi1 −Xi2) =
∑

k ξi1i2k γxk, and using (24),

we have,
∣∣∣∣
∑∑(j)

i1,i2

(Yi1 − Yi2) Ki1i2j

−
(∑ ∑(j)

i1,i2

Ki1i2j

∞∑

k=1

ξi1i2k γxk +
∑∑(j)

i1,i2

εi1i2 Ki1i2j

)∣∣∣∣

≤ 2 s(h1)
∑ ∑(j)

i1,i2

Ki1i2j . (26)

Now,

∣∣ξ̂i1i2j − ξi1i2j

∣∣ =
∣∣∣∣
∫

(Xi1 −Xi2) (ψ̂j − ψj)
∣∣∣∣

≤ ‖Xi1 −Xi2‖ ‖ψ̂j − ψj‖ ≤ 2h1 ‖ψ̂j − ψj‖ , (27)

where the last inequality holds under the assumption that the event Ei1i2 obtains. Combining

(24), (26) and (27) we deduce that
∣∣∣∣
∑ ∑(j)

i1,i2

(Yi1 − Yi2) Ki1i2j −
(

γxj

∑∑(j)

i1,i2

ξ̂i1i2j Ki1i2j

17



+
∑∑(j)

i1,i2

Ki1i2j

∑

k : k 6=j

ξi1i2k γxk +
∑∑(j)

i1,i2

εi1i2 Ki1i2j

)∣∣∣∣

≤ 2
{
s(h1) + |γxj |h1 ‖ψ̂j − ψj‖

} ∑ ∑(j)

i1,i2

Ki1i2j . (28)

Note too that

∣∣∣∣
∑∑(j)

i1,i2

Ki1i2j

∑

k : k 6=j

ξi1i2k γxk

∣∣∣∣ =
∣∣∣∣
∑∑(j)

i1,i2

Ki1i2j

∑

k : k 6=j

γxk

∫
(Xi1 −Xi2) ψk

∣∣∣∣

≤
∑∑(j)

i1,i2

Ki1i2j

( ∑

k : k 6=j

γ2
xk

)1/2
[ ∑

k : k 6=j

{ ∫
(Xi1 −Xi2) ψk

}2
]1/2

≤ ‖gx‖
∑∑(j)

i1,i2

Ki1i2j

[
‖Xi1 −Xi2‖2 −

{∫
(Xi1 −Xi2) ψj

}2
]1/2

≤ ‖gx‖
∑∑(j)

i1,i2

Ki1i2j

[
‖Xi1 −Xi2‖2 −

{∫
(Xi1 −Xi2) ψ̂j

}2

+8 ‖ψ̂j − ψj‖ ‖Xi1 −Xi2‖2

]1/2

≤ 2 ‖gx‖h1

∑∑(j)

i1,i2

Ki1i2j

(
Qi1i2j + 8 ‖ψ̂j − ψj‖

)1/2

≤ 2 ‖gx‖h1 (h2 + 8 ‖ψ̂j − ψj‖)1/2
∑∑(j)

i1,i2

Ki1i2j . (29)

To obtain the third-last inequality in (29) we used the fact that, with a = | ∫ (Xi1 −Xi2) ψj |,
b = | ∫ (Xi1 −Xi2) ψ̂j | and

c = ‖Xi1 −Xi2‖ ‖ψ̂j − ψj‖ ≤ 2 ‖Xi1 −Xi2‖ ≤ 4h1 , (30)

where (in each of (30) and in (31) below) the last inequality is correct provided Ei1i2 holds,

we have used the fact that |a− b| ≤ c and |a| ≤ ‖Xi1 −Xi2‖ imply that

∣∣a2 − b2
∣∣ ≤ c (2a + c) ≤ 4 ‖ψ̂j − ψj‖ ‖Xi1 −Xi2‖2 ≤ 8 ‖ψ̂j − ψj‖h2

1 . (31)

To obtain the last inequality in (29) we used (24) and the fact that Qi1i2j ≤ h2 if Ki1i2j 6= 0.

Combining (28) and (29) we find that

∣∣∣∣
∑∑(j)

i1,i2

(Yi1 − Yi2) Ki1i2j −
(

γxj

∑∑(j)

i1,i2

ξ̂i1i2j Ki1i2j +
∑∑(j)

i1,i2

εi1i2 Ki1i2j

)∣∣∣∣

≤ 2h1

{
h−1

1 s(h1) + |γxj | ‖ψ̂j − ψj‖
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+‖gx‖ (h2 + 8 ‖ψ̂j − ψj‖)1/2
} ∑∑(j)

i1,i2

Ki1i2j . (32)

Result (32) controls the numerator in the definition of γ̂xj at (7). To control the denominator

there, use (27) to show that

∑∑(j)

i1,i2

ξ̂i1i2j Ki1i2j ≥
∑∑(j)

i1,i2

max
(
0 , ξi1j − ξi2j − 2h1 ‖ψ̂j − ψj‖

)
Ki1i2j

≥
∑∑(j)

i1,i2

max(0 , ξi1j − ξi2j) Ki1i2j

−2h1 ‖ψ̂j − ψj‖
∑∑(j)

i1,i2

Ki1i2j . (33)

(Recall that
∑∑(j)

i1,i2
denotes summation over (i1, i2) such that ξ̂i1i2j > 0.) Using Assump-

tion 4(d), (e) and (f) it can be proved that, for a constant B > 0,

∑ ∑(j)

i1,i2

max(0 , ξi1j − ξi2j) Ki1i2j ≥ {1 + op(1)}B h1

∑∑(j)

i1,i2

Ki1i2j . (34)

(Note that, by Assumption 3(f), n−1/2/min(h1, h2) → 0.) From Assumption 3(a) and (b) it

follows that

‖ψ̂j − ψj‖ = Op

(
n−1/2

)
. (35)

Together, (33)–(35) imply that

∑∑(j)

i1,i2

ξ̂i1i2j Ki1i2j ≥ {1 + op(1)}B h1

∑∑(j)

i1,i2

Ki1i2j , (36)

for the same constant B as in (34). This result controls the denominator at (7).

From (7), (25), (32) and (36) we deduce that

γ̂xj = γxj + Op

(∑∑(j)
i1,i2

εi1i2 Ki1i2j

h1
∑∑(j)

i1,i2
Ki1i2j

)
+ op(1) . (37)

The variance of the ratio on the right-hand side of (37), conditional on the explanatory

variables Xi, equals

Op

{(
h2

1

∑∑(j)

i1,i2

Ki1i2j

)−1
}

= Op

[{
(nh1)2 E(ki1i2j)

}−1
]

= op(1) ,

where to obtain the last identity we used Assumption 3(f). Therefore (37) implies that

γ̂xj = γxj + op(1), which proves Theorem 3.
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5.5 Proof of Theorem 4

Observe that, for each t ∈ (0, 1) and with Dt = (
∑

j θ1−t
j )−1,

P (‖X‖ ≤ u) = P

( ∞∑

j=1

θj η2
j ≤ u2

)




≤ ∏∞
j=1 P

(
θj η2

j ≤ u2
)

≥ ∏∞
j=1 P

(
θt
j η2

j ≤ Dt u2
)
,

(38)

where to obtain the lower bound we used the property,

P

( ∞∑

j=1

θj η2
j ≤ u2

)
= P

{ ∞∑

j=1

θ1−t
j

(
θt
j η2

j −Dt u2
) ≤ 0

}

≥ P
(
θt
j η2

j ≤ Dt u2 for each j
)

.

Define J = J(u) to be the largest integer such that u/θ
1/2
j ≤ ζ, where ζ is chosen so small

that B1 ub ≤ P (|η| ≤ u) ≤ B2 ub for 0 ≤ u ≤ ζ. Then,

∞∏

j=1

P
(
θj η2

j ≤ u2
) ≤

J∏

j=1

P
(|η| ≤ u θ

−1/2
j

)

= ubJ exp
{

1
2 bB

J∑

j=1

jβ + o
(
Jβ+1

)}

= exp
{
− bBβ

2(β + 1)
Jβ+1 + o

(
Jβ+1

)}
= π(u)1+o(1), (39)

as u ↓ 0, where π is defined at (18).

Redefine J to be the largest integer such that D
1/2
t u/θ

t/2
j ≤ ζ. Then, using the argument

leading to (39) we may show that

J∏

j=1

P
(
θt
j η2

j ≤ Dt u2
)

= exp
{
− bβ

β + 1

( 2
Bt

)1/β
| log u|(β+1)/β + o

(| log u|(β+1)/β
)}

= π(u)t−1/β+o(1) (40)

Also, for j ≥ J + 1,

πj ≡ P
(
θt
j η2

j > Dt u2
) ≤ B3

{
1 +

(
D

1/2
t u

/
θ

t/2
j

)}−B4 . (41)

Note too that, for a constant B5 = B5(t) ∈ (0, 1) we have πj ∈ (0, B5) for j ≥ J + 1, and

1− πj = exp
(
−

∞∑

k=1

πk
j

k

)
≥ exp(−B6 πj) ,
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from which it follows that

∞∏

j=J+1

(1− πj) ≥ exp
(
−B6

∞∑

j=J+1

πj

)
≥ exp

{
−B7

∞∑

j=J+1

(
θ

t/2
j

/
u
)B4

}
,

which is of smaller order than the right-hand side of (40). Combining this result with (40),

and noting that t ∈ (0, 1), on the right-hand side of (40), can be taken arbitrarily close to 1,

we deduce that as u ↓ 0,

∞∏

j=1

P
(
θt
j η2

j ≤ Dt u2
)

= π(u)1+o(1) . (42)

Together, (38), (39) and (42) imply (19).
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Figure 1: Fitted trajectories for individual predictor growth velocity curves (left panel) and

mean growth velocity curve (right panel) for the Berkeley growth data (n = 39).
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Figure 2: Smooth estimates of the first three eigenfunctions for the velocity growth curves,

explaining 78.9% (solid), 17% (dashed) and 3.6% (dash-dotted) of the total variation, re-

spectively (left panel) and estimated functional derivative coefficients (γ̂Xi,1, γ̂Xi,2) (7), in the

directions of the first (x-axis) and second (y-axis) eigenfunction, evaluated at the predictor

curves Xi (dots), as well as at the mean curve µ (circle) (right panel).
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Figure 3: Estimated derivative generating functions ĝ∗i (t) (15) for all subjects Xi (black) and

for the mean function (red) of the Berkeley growth data, based on the first three eigenfunc-

tions.
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Figure 4: Predictor trajectories (top panels) and corresponding derivative generating func-

tions ĝ∗i (t) (15) (bottom panels) which have the largest (dashed) and smallest (dotted) abso-

lute values of derivative coefficients γ̂xj (7) in the directions of the first (j = 1, left), second

(j = 2, middle) and third (j = 3, right) eigenfunctions, as well as the mean functions (solid).
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Figure 5: Top: Predictor trajectories X(t; αj) = µ̂(t) + αjψ̂j(t) with αj = −2 (dashed), 0

(solid), +2 (dotted), where j = 1, 2, 3 from left to right. Bottom: Corresponding derivative

generating functions (15).
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