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ABSTRACT

In commonly used functional regression models, the regression of a scalar or func-

tional response on the functional predictor is assumed to be linear. This means the

response is a linear function of the functional principal component scores of the predic-

tor process. We relax the linearity assumption and propose to replace it by an additive

structure. This leads to a more widely applicable and much more flexible framework

for functional regression models. The proposed functional additive regression models

are suitable for both scalar and functional responses. The regularization needed for

effective estimation of the regression parameter function is implemented through a pro-

jection on the eigenbasis of the covariance operator of the functional components in the

model. The utilization of functional principal components in an additive rather than

linear way leads to substantial broadening of the scope of functional regression models

and emerges as a natural approach, as the uncorrelatedness of the functional principal

components is shown to lead to a straightforward implementation of the functional ad-

ditive model, just based on a sequence of one-dimensional smoothing steps and without

need for backfitting. This facilitates the theoretical analysis, and we establish asymp-

totic consistency of the estimates of the components of the functional additive model.

The empirical performance of the proposed modeling framework and estimation meth-

ods is illustrated through simulation studies and in applications to gene expression

time course data.

KEY WORDS: Asymptotics, Additive Model, Functional Data Analysis, Functional

Regression, Linear Model, Principal Components, Smoothing, Stochastic Processes.



1. INTRODUCTION

A characterizing feature of functional regression models is that either predictor or

response or both are functions, where the functional components are typically assumed

to be realizations of a stochastic process. The functional linear model is the commonly

adopted functional regression model. It has been introduced in its most general form,

where both predictor and response are functions, by Ramsay and Dalzell (1991). The

case of a functional predictor and scalar response has been the focus of most research

to date on the functional linear model, as well as somewhat artificial situations where

the functional data are assumed to be observed without noise and on a very dense

and regular grid. For this case, Cardot et al. (2003) provided consistency results and

introduced a testing procedure. Theory for the case of fixed design and functional

response was developed in Cuevas et al. (2002). For a summary of some of these

developments, we refer to Ramsay and Silverman (2005).

Several extensions of the basic linear functional regression models have been pro-

posed, often motivated by established analogous extensions of the classical multivariate

regression models towards more general regression models. These include generalized

functional linear models (James, 2002; Escabias et al., 2004; Cardot and Sarda, 2005;

Müller and Stadtmüller, 2005), modifications of functional regression for longitudinal,

i.e., sparse, irregular and noisy data (Yao et al., 2005b), varying-coefficient functional

models (Malfait and Ramsay, 2003; Fan and Zhang, 2000; Fan et al., 2003), wavelet-

based functional models (Morris et al., 2003) and multiple-index models (James and

Silverman, 2005). Recent asymptotic studies of estimation in functional linear regres-

sion models with scalar response and fully observed predictor trajectories include Cai

and Hall (2006) and Hall and Horowitz (2007).

It is well known that the estimation of the regression parameter function is an

inverse problem and therefore requires regularization. Two main approaches have
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emerged for the implementation of the regularization step. The first approach is pro-

jection onto a finite number of elements of a functional basis, which can be either fixed

in advance such as the wavelet or Fourier basis, or may be chosen data-adaptively such

as the eigenbasis of the auto-covariance operator of the predictor processes X. If the

eigenbasis is used, conveying the advantage of the most parsimonious representation,

this approach is based on an initial functional principal component analysis (see, e.g.,

Rice and Silverman, 1991). No matter which basis is chosen, effective regularization

is then obtained by suitably truncating the number of included basis functions. The

second approach to regularization is based on penalized likelihood or penalized least

squares, and has been implemented for example via splines or ridge regression (Hall

and Horowitz, 2007). In this paper we adopt the first approach and express functional

regression models in terms of the functional principal components of the predictor,

and if applicable, also of the response processes. Since the stochastic part of square

integrable stochastic processes can always be equivalently represented by the count-

able sequence of their functional principal component scores and eigenfunctions, all

functional regression models have such a representation, irrespective of their struc-

ture. In the previously studied functional linear regression models, the regression of

the scalar or functional response on the functional predictors is a linear function of

the predictor functional principal component scores, and estimation, inference, asymp-

totics and extensions of these basic functional linear models are studied within this

linear framework.

The purpose of this paper is an analysis of an alternative additive functional re-

gression model. Additive models are attractive as they provide effective dimension

and great flexibility in modeling (Hastie and Tibshirani, 1990). While extensions of

linear models to single and multiple index models are in place for functional regres-

sion, the extension to additive models has proven elusive and this is due to a major
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challenge: A direct extension, analogous to multivariate data analysis, faces the diffi-

culty that the equivalent to individual predictors in vector regression is the continuum

of function values over the entire time domain. Therefore, the predictor set is not

countable, and an additive model in these predictors would require uncountably many

additive components. We overcome this difficulty by taking as predictors the countable

set of functional principal component scores, which can be truncated at an increasing

sequence of finitely many predictors, while representing the entire predictor function

adequately.

For the case of a scalar response, the combination of functional principal compo-

nent scores with an additive model, emphasizing applied modeling with readily avail-

able software tools, has been demonstrated in concurrent work with applied emphasis

(Foutz and Jank, 2008; Liu and Müller, 2008; Sood et al., 2008). As we show, a key to

both analysis and implementation of this combination is the uncorrelatedness of the

functional predictor scores. The usual implementation of additive models, which must

take into account dependencies between predictors, requires backfitting or similarly

complex schemes. Because the functional predictor scores are uncorrelated, the addi-

tive fitting step can be greatly simplified and requires no more than one-dimensional

smoothing steps, separately applied to each predictor score. This has important con-

sequences: Very fast and simple implementation, and simplification which makes it

possible to study asymptotic properties of the resulting model, especially in the Gaus-

sian case. The combination of functional principal component score predictors and

additive models therefore emerges as a particularly natural and flexible data-adaptive

nonparametric framework for functional regression models. We refer to this approach

as the Functional Additive Model (FAM).

The paper is organized as follows: Section 2 contains background from functional

linear regression. The proposed Functional Additive Models are introduced in Section
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3, and issues of fitting these models are the theme of Section 4. Asymptotic consistency

properties are presented in Section 5, while Section 6 is devoted to a report on simula-

tion results, followed by a description of an application to regression for gene expression

time courses in the Drosophila life cycle in Section 7 and concluding remarks in Section

8. Details and assumptions can be found in a separate Appendix, and auxiliary results

and proofs in a Supplement.

2. FUNCTIONAL LINEAR MODELS AND

EIGENREPRESENTATIONS

We consider regression models where the predictor is a smooth square integrable ran-

dom function X(·) defined on a domain S, and the response is either a scalar or a ran-

dom function Y (·) on domain T , with mean functions EX(s) = µX(s) and EY (t) =

µY (t) and covariance functions cov(X(s1), X(s2)) = GX(s1, s2), cov(Y (t1), Y (t2)) =

GY (t1, t2), s, s1, s2 ∈ S and t, t1, t2 ∈ T , respectively. We denote centered predictor

processes by Xc(s) = X(s)−µX(s). The established linear functional regression models

with scalar resp. functional response are (Ramsay and Silverman, 2005)

E(Y |X) = µY +

∫

S

β(s)Xc(s) ds, (1)

E{Y (t)|X} = µY (t) +

∫

S

β(s, t)Xc(s) ds, (2)

where the regression parameter functions β are assumed to be smooth and square

integrable. To estimate these functions and thus identify the functional linear model,

basis representations such as the eigendecomposition of the functional components

in models (1) and (2) are a convenient way to implement the necessary regularization

(Yao et al., 2005b). Taking advantage of the equivalence between process and countable

sequence of functional principal component (FPC) scores, we represent predictor and

response processes X and Y in terms of these scores. An implementation of these
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representations is available through the PACE package which can be found under

“programs” at http://www.stat.ucdavis.edu/∼mueller/.

In our sampling model we assume as in Yao et al. (2003) that the functional trajec-

tories are not completely observed but rather are measured on a grid and measurements

are contaminated with measurement error. This is a more realistic scenario than the

common assumption in functional data analysis that entire trajectories are observed.

For our theoretical analysis we assume that the grid of measurements is dense. Em-

pirically, as evidenced by simulations and in applications, the proposed methods also

work well for the case of sparse and irregularly observed longitudinal data. Denote

by Uij (respectively, Vil) the noisy observations made of the random trajectories Xi

(respectively, Yi) at times sij (resp., til), where (Xi, Yi), i = 1, . . . , n, corresponds to

an i.i.d. sample of processes (X, Y ) (the scalar response case is always included in

these considerations). The available observations are contaminated with measurement

errors ǫij (respectively, εil), 1 ≤ j ≤ ni, 1 ≤ l ≤ mi, 1 ≤ i ≤ n, where ni and mi

are the numbers of observations from Xi and Yi. The errors are assumed to be i.i.d.,

with zero means Eǫij = 0, and constant variance E(ǫ2ij) = σ2
X , respectively, Eεil = 0,

E(ε2
il) = σ2

Y , and independent of the FPC scores ξik =
∫

(Xi(s)−µX(s))φk(s) ds, respec-

tively, ζim =
∫

(Yi(t)−µY (t))ψm(t) dt, where φk, ψm are the eigenfunctions of processes

X and Y , defined in the Appendix. We note that the FPC scores satisfy Eξik = 0,

E(ξikξik′) = 0 for k 6= k′ and E(ξ2
ik) = λk, respectively, Eζim = 0, E(ζimζim′) = 0 for

m 6= m′ and E(ζ2
im) = ρm.

Invoking the population least squares property of conditional expectation, and using

the fact that the predictors are uncorrelated, leads to an extension of the representation

β1 = cov(X, Y )/var(X) of the slope parameter in the simple linear regression model

E(Y |X) = β0+β1X to the functional case. By solving a “functional population normal
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equation” (He et al., 2000, 2003), one obtains for scalar resp. functional responses

β(s) =
∞∑

k=1

E(ξkY )

E(ξ2
k)

φk(s), β(s, t) =
∞∑

k=1

∞∑

m=1

E(ξkζm)

E(ξ2
k)

φk(s)ψm(t). (3)

Plugging (3) into (1), (2) and observing (23) then leads to

E(Y |X) = µY +

∞∑

k=1

bkξk, with bk =
E(ξkY )

E(ξ2
k)

, (4)

E(ζm|X) =

∫
E(Y (t) − µY (t)|X)ψm(t) dt =

∞∑

k=1

bkmξk, with bkm =
E(ξkζm)

E(ξ2
k)

, (5)

for scalar responses Y , respectively, for each FPC score ζm of the response process.

In practice, when fitting a functional regression model and estimating the regression

parameter function β, one needs to regularize by truncating these expansions at a finite

number of components K and M .

3. FUNCTIONAL ADDITIVE MODELING

Suppose for the moment that the true FPC scores ξik for predictor processes are known.

Then the functional linear models (1) and (2) are reduced to a standard linear model

with infinitely many of these FPC scores as predictors, as demonstrated in eq. (4) and

(5). Moreover, the linear structure in the predictor scores and the uncorrelatedness of

the FPC scores then imply that

E(Y − µY |ξk) = bkξk, E(ζm|ξk) = bkmξk (6)

for scalar, respectively, functional response models. Accordingly, the best predictor

is the linear predictor, and the regressions on predictor scores are lines through the

origin.

This observation provides a key motivation for the extension of the functional linear

model to the functional additive model (FAM). It seems natural to generalize the

well-known extension of (generalized) linear to (generalized) additive models (Hastie

6



and Tibshirani, 1990) to the functional case by replacing the linear terms bkξk resp.

bkmξk in (6) and (4), (5) by more general relationships. We thus generalize the linear

relationship with ξk to arbitrary functional relations fk(ξk), where functions fk(·),
k = 1, 2, . . ., respectively, functions fkm(·), k,m = 1, 2, . . ., are assumed to be smooth;

beyond smoothness, nothing more is needed. This substitution transforms functional

linear models (1), (2) to functional additive models with the underlying FPC scores ξk

as predictors,

E(Y |X) = µY +
∞∑

k=1

fk(ξk), (7)

E(Y (t)|X) = µY (t) +

∞∑

k=1

∞∑

m=1

fkm(ξk)ψm(t), (8)

for scalar and functional response cases, respectively. To ensure identifiability, we

require furthermore that

Efk(ξk) = 0, k = 1, 2, . . . , resp., Efkm(ξk) = 0, k = 1, 2, . . . , m = 1, 2, . . . . (9)

In this model, the linear relationship between the response Y and the predictor

FPC scores ξk is replaced by an additive relation, which gives rise to a far more flexi-

ble and essentially nonparametric model, while avoiding the curse of dimension, which

for infinite-dimensional functional data is unsurmountable, if no structure is imposed.

Beyond additivity, a second key assumption we make from now on is that the predictor

FPC scores ξk are independent. Since these scores are always uncorrelated, this as-

sumption is for example satisfied for the case where predictor processes are Gaussian.

Then the basic functional additive model assumptions (7), (8) imply

E(Y − µY |ξk) = E{E(Y − µY |X)|ξk} = E{
∞∑

j=1

fj(ξj)|ξk} = fk(ξk), (10)

and for the functional response case analogously

E(ζm|ξk) = E{E(ζm|X)|ξk} = E{
∞∑

j=1

fjm(ξj)|ξk} = fkm(ξk). (11)
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The relations fk(ξk) = E(Y − µY |ξk), fkm(ξk) = E(ζm|ξk), for all k,m = 1, 2, . . . ,

are a straightforward generalization of the decomposition of functional linear regres-

sion into simple linear regressions against the predictor FPC scores as in (6). They are

key for surprisingly simple implementations of the functional additive model. While

complex iterative procedures are required to fit a regular additive model (backfitting

and variants, see, e.g., Hastie and Tibshirani, 1990; Mammen and Park, 2005), rep-

resentations (10), (11) motivate a straightforward estimation scheme to recover the

component functions fk, respectively fkm, by a series of one-dimensional smoothing

steps. This not only leads to fast and easily diagnosable procedures for the underlying

infinite-dimensional data, but also facilitates asymptotic analysis. The high degree

of flexibility and the simplicity of model fitting makes FAM an especially attractive

alternative to the special case of the standard functional linear models (1), (2).

4. FITTING OF FUNCTIONAL ADDITIVE MODELS

We begin with an overview of the estimation procedures. In a first step, smooth

estimates of the mean and covariance functions for the predictor processes are obtained

by scatterplot smoothing. This is followed by a functional principal component (FPC)

analysis, which yields estimates φ̂k for the eigenfunctions, λ̂k for the eigenvalues, and ξ̂ik

for the FPC scores of individual predictor trajectories; some additional details are given

in the Appendix. The estimation steps are implemented with the Principal Analysis

by Conditional Expectation (PACE) approach, also regarding the choice of the number

of included eigenfunctions K through pseudo-AIC (Yao et al., 2005a), available in the

PACE package. This was shown to work for densely sampled trajectories and in the

Gaussian case in addition to the case of sparse and irregular measurements; it also has

been demonstrated to be fairly robust against violations of the Gaussian assumption.

Once these preliminary estimates are in hand, it is straightforward to obtain esti-

mates f̂k, f̂km of the smooth component functions fk, respectively, fkm. We implement
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all smoothing steps with local polynomial fitting; other smoothing techniques can be

used equally well. For the case of scalar responses, we estimate the functions fk by

fitting a local linear regression to the data {ξ̂ik, Yi}i=1,...,n, where ξ̂ik is obtained by (26):

Minimizing

n∑

i=1

K1(
ξ̂ik − x

hk

){Yi − β0 − β1(x− ξ̂ik)}2 (12)

with respect to β0 and β1, leads to f̂k(x) = β̂0(x) − Ȳ , where hk is the bandwidth

used for this smoothing step, and K1 is a symmetric probability density that serves as

kernel function. For the functional response case, the functions fmk are analogously

estimated by passing a local linear smoother through the data {ξ̂ik, ζ̂im}i=1,...,n that are

obtained by (26), i.e., minimizing

n∑

i=1

K1(
ξ̂ik − x

hmk
){ζ̂im − β0 − β1(x− ξ̂ik)}2 (13)

with respect to β0 and β1, leading to f̂mk(x) = β̂0(x), where hmk is the bandwidth.

Then the fitted version of the functional additive model (7) with scalar response is

Ê(Y |X) = Ȳ +

K∑

k=1

f̂k(ξk). (14)

To quantify the strength of the regression relationship, we use a global measure

similar to the coefficient of determination R2 in standard linear regression (Draper and

Smith, 1998), with population and sample versions

R2 = 1 −
∑n

i=1{Yi − E(Yi|Xi)}2

∑
i=1(Yi − µY )2

, R̂2 = 1 −
∑n

i=1{Yi − Ê(Yi|Xi)}2

∑
i=1(Yi − Ȳ )2

, (15)

where E(Yi|Xi) and Ê(Yi|Xi) for the ith subject are as in (7) and (14).

Analogously, the fitted FAM for functional responses, based on (8), is

Ê{Y (t)|X} = µ̂Y (t) +

M∑

m=1

K∑

k=1

f̂mk(ξk)ψ̂m(t), t ∈ T , (16)
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and the strength of the regression for this case can be measured by

R2 = 1 −
∑n

i=1

∫
T
[Yi(t) −E{Yi(t)|Xi}]2 dt∑n

i=1

∫
T {Yi(t) − µY (t)}2 dt

,

R̂2 = 1 −
∑n

i=1

∑mi

l=2[Vil − Ê{Yi(til)|Xi}]2(til − ti,l−1)∑n
i=1

∑mi

l=2{Vil − µY (til)}2(til − ti,l−1)
, (17)

for population and sample versions, where E{Yi(t)|Xi} and Ê(Yi(t)|Xi) for the ith

subject are as in (8) and (16), and we assume a dense grid of measurements til for each

subject.

5. THEORETICAL RESULTS

Establishing relevant asymptotic results requires studying the relationship between the

true and the estimated FPC scores ξik and ξ̂ik, ζim and ζ̂im, k = 1, . . . , K,m = 1, . . . ,M ,

since the estimates of the FAM component functions fk, respectively, fkm need to

be based on the estimated scores. Starting with known convergence results for the

estimated population components such as mean function, eigenfunction and eigenvalue

estimates in model (24) or (25) (see Yao et al., 2005a; Hall and Hosseini-Nasab, 2006),

a key step in the mathematical analysis is to establish exact upper bounds of |ξ̂ik − ξik|
and |ζ̂im − ζim|, where such bounds are i.i.d. in terms of i or do not depend on i,

i = 1, . . . , n (see Supplement for details). The convergence properties of the estimated

additive model components fk in (7) or fmk in (8) will follow from those upper bounds,

as these estimates are obtained by applying a nonparametric smoothing method to

{ξ̂ik, Yi} or {ξ̂ik, ζ̂im} for i = 1, . . . , n.

Asymptotic results are obtained for n → ∞, and also the number of included

components K,M needs to satisfy K = K(n) → ∞, M = M(n) → ∞, for a gen-

uinely functional (infinite-dimensional) approach. The results concern consistency of

estimates (12), (13) and of predicted responses (14), (16), obtained for new predictor

processes. Details about the regularity assumptions can be found in the Appendix.
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Theorem 1 Under assumptions (A1.1)-(A5), (C1.1), (C1.2), (C2.1) and (C2.3) (see

Appendix), in the scalar response case, for all k ≥ 1 for which λj, j ≤ k are eigenvalues

of multiplicity 1,

f̂k(x) − fk(x)
p−→ 0, (18)

for estimates (12). Under the additional assumptions (B1.1)-(B4) and (C2.2), in the

functional response case, for all k,m for which λj, j ≤ k and ρl, l ≤ m are eigenvalues

of multiplicity 1,

f̂km(x) − fkm(x)
p−→ 0, (19)

for estimates (13).

Additional results on the rates of convergence of θ̃k(x) = |f̂k(x)− fk(x)| and ϑ̃mk(x) =

|f̂mk(x)− fmk(x)| can be found in the Supplement, eq. (41). Next, we consider consis-

tency of the predictions obtained by applying FAM.

Theorem 2 Under (A1.1)-(A4), (A6), (A7), (C1.1), (C1.2), (C2.1) and (C2.3), for

the scalar response case,

Ê(Y |X) − E(Y |X)
p−→ 0, (20)

where Ê(Y |X) = Ȳ +
∑K

k=1 f̂k(ξk) as in (12). Under the additional assumptions (B1.1)-

(B4), (B5), (B6) and (C2.2), it holds for the functional response case that for all t ∈ T ,

Ê{Y (t)|X} − E{Y (t)|X} p−→ 0, (21)

where Ê{Y (t)|X} = µ̂Y (t) +
∑K

k=1

∑M
m=1 f̂mk(ξk)ψ̂m(t), with f̂mk(ξk) as in (13).

Again, additional results on the rates of convergence of θ∗n = |Ê(Y |X)−E(Y |X)| and

ϑ∗n = |Ê(Y (t)|X) − E(Y (t)|X)| are in eq. (42) of the Supplement.
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6. SIMULATION STUDIES

Simulation studies were conducted to illustrate the empirical performance of the Func-

tional Additive Models (FAM) (7) with scalar and also (8) with functional response.

For both cases, we generated 200 simulation runs, each consisting of a sample of n = 100

predictor trajectories Xi, with mean function µX(s) = s + sin (s), 0 ≤ s ≤ 10, and a

covariance function derived from two eigenfunctions, φ1(s) = − cos (πs/10)/
√

5, and

φ2(s) = sin (πs/10)/
√

5, 0 ≤ s ≤ 10. The corresponding eigenvalues were chosen as

λ1 = 4, λ2 = 1 and λk = 0, k ≥ 3, the measurement errors in (24) as ǫij
i.i.d.∼ N(0, 0.52).

We consider two different underlying distributions of the predictor FPC scores: (i)

ξik ∼ N (0, λk), (ii) ξik =
√
λk(Zik − 4)/2, where Zik

i.i.d.∼ Gamma(4, 1), which is a

right skewed distribution, k = 1, 2.

As for the design of number and spacing of the measurement locations at which

predictor trajectories were sampled, we considered both dense and also sparse designs,

in order to check the robustness of our methods against violations of the dense design

assumption. For the dense case, each predictor trajectory was sampled at locations that

were uniformly distributed over the domain [0, 10], where the number of measurements

was chosen separately and randomly for each predictor trajectory, by selecting a number

from {30, . . . , 40} with equal probability. For the more challenging sparse case, the

number of measurements was chosen from {3, . . . , 6} with equal probability. For each

simulation run, we generated 100 new predictor trajectories X∗
i with measurements

U∗
ij , taken at the same time points Uij as for the 100 observed predictor trajectories,

and 100 associated response variables, respectively, response functions Y ∗
i .

For the scalar response case, we generated responses Yi =
∑2

k=1 fk(ξik) + εi, where

fk are the true component functions that relate the FPC scores ξik of the predictor

trajectories Xi to the responses Yi, with errors εi
i.i.d.∼ N(0, 0.1), so that µY = 0 and

σ2
Y = 0.1. We compared the performance of fitting FAM (7) and the functional linear
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regression model (1) under two situations: (a) the true functions fk(x) = x2 − λk for

k = 1, 2 were nonlinear; and (b) the true functions f1(x) = 2x and f2(x) = x/2 were

linear. As we demonstrated in (6), the functions fk become lines through the origin for

the case of the functional linear regression model. The representation (6) immediately

suggests the estimates f̂k(x) =
∑n

i=1(Yi − Ȳ )(ξ̂ik − ¯̂
ξ·k)λ̂

−1
k x, where Ȳi =

∑n
i=1 Yi/n,

¯̂
ξ·k =

∑n
i=1 ξ̂ik/n, λ̂k is the estimate of the kth eigenvalue of the predictor process X,

and the ξ̂ik are obtained by the PACE method (26).

For both scalar and functional response cases, FAM was implemented as described

in Section 4, including choice of the number of model components for the predictor pro-

cesses by AIC, and local polynomial smoothing applied to estimate the functions fk,

with one-point-leave-out cross-validation for automatic choice of the smoothing band-

widths. The functional linear model was fitted as described above, and we compared

the quality of the prediction of responses for the new subjects.

For the functional response case, we also compared the predictive performance of

FAM with that of functional linear regression. For the latter, we estimated the (in

this case linear) component functions fkm by f̂km(x) =
∑n

i=1(ζ̂im − ζ̄·m)(ξ̂ik − ¯̂
ξ·k)λ̂

−1
k x.

The simulation settings were the same as those for the scalar response case, and in

addition functional response trajectories were generated as Yi(t) = µY (t) + ζi1ψ1(t),

where µY (t) = t+sin (t), ψ1(t) = − cos (πt/10)/
√

5, and ζi1 were the only non-zero FPC

scores for the responses, 0 ≤ t ≤ 10. To generate the scores ζi1, as before we considered

nonlinear and linear scenarios for the component functions fkm, k = 1, 2, m = 1: (a)

the true functions fk1(x) = x2 − λk were nonlinear, k = 1, 2, i.e., ζi1 =
∑2

k=1(ξ
2
ik − λk);

and (b) the true functions f11(x) = 2x, f21(x) = x/2 were linear, i.e., ζi1 = 2ξi1 + ξi2/2.

The measurement errors εil in (25) were generated i.i.d. from N (0, 0.1). The designs for

sampling the response trajectories were chosen in the same way as those for sampling

the predictor trajectories, with both sparse and dense cases included.
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To evaluate the prediction of new responses from future subjects, we generated 100

new predictor and response trajectories X∗
i and Y ∗

i , respectively, with measurements

U∗
ij and V ∗

il taken at the same time points as Uij and Vil, respectively. The quality of

the responses was measured in terms of the relative prediction errors (RPE),

RPEi =
(Y ∗

i − Ŷ ∗
i )2

Y ∗2
i

, RPEi,f =

∫
S(Y ∗

i (t) − Ŷ ∗
i (t))2dt∫

S
Y ∗2

i (t)dt
, (22)

for scalar and functional response cases, respectively.

The results for the relative prediction errors when the predictor FPC scores are

normal are shown in Table 1 and suggest that FAM leads to similar prediction errors

in the sparse and somewhat larger prediction errors in the dense case, as compared to

the functional linear approach when the true functions fk or fkm are linear, while FAM

improves upon functional linear regression when the underlying component functions

are nonlinear. This holds equally for scalar and functional responses.

Similar results emerge for the case of right skewed distributions (Table 2). Again

the median losses when using FAM for the case of an underlying linear model are

small in the sparse case, while they are now more noticeable in the dense case. The

improvements obtained when using FAM for the nonlinear case for both dense and

sparse designs are found to persist for the situation with skewed distributions. We

note that the performance of FAM appears to be less stable as compared to the linear

model in the tails of the error distribution, as evidenced by occasional relatively large

values in the 75th percentiles of relative prediction errors. Our conclusion is that, in

situations where the signal is not too weak, the losses when using FAM in the linear

case are relatively small, while FAM performs better than the linear model in situations

when the underlying regression relationship is nonlinear.

7. APPLICATION TO GENE EXPRESSION TIME COURSE DATA

We apply our methods to gene expression profile data where both predictors and re-

sponses are functional. Arbeitman et al. (2002) obtained developmental gene expres-
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sion profiles over the entire lifespan of Drosophila, and we apply functional regression

to study the relation of the expression profiles for different developmental periods.

The genes in the biologically identified group of n = 21 “transiently expressed zygotic

genes” show early peaks in expression during the embryonal phase and are active in the

cellularization phase of the embryo. For this well-defined gene group we study how the

expression in the pupa or metamorphosis phase depends on that in the embryo phase.

The data consist of 31 measurements during the embryo phase, i.e., the predictor pro-

cess, and 18 measurements during the pupa phase, i.e., the response process. For one

of the genes, data were only available for the embryo phase, and the data for this

gene therefore were only used to carry out the FPC analysis for predictor processes.

The linearly interpolated gene expression trajectories for both predictor and response

processes, as well as their mean functions, are shown in Figure 1, confirming an early

peak in the predictor trajectories and displaying quite a bit of variation between genes.

The AIC method selected three components for predictor processes and four for

response processes. The corresponding eigenfunctions are displayed in Figure 2; see

legend for fraction of variation explained by the corresponding eigenvalues. Of interest

are the pairwise scatterplots of all pairings of response FPC scores ζ̂i1, ζ̂i2, ζ̂i3, ζ̂i4 versus

the predictor FPC scores ξ̂i1, ξ̂i2, ξ̂i3, as shown in Figure 3. Judging from these scat-

terplots, there exist clear relationships between response and predictor scores; while

several of these appear close to linear, for others a linear fit is not good, pointing to the

presence of nonlinear relationships. To interpret these relations, one needs to take the

shape of both predictor and response eigenfunctions into account. For example, the

negative relationship between ζ̂i1 and ξ̂i1 implies that sharper initial peaks and lower

late embryonal gene expression is coupled with an overall lower pupa phase expression,

in the sense that the contribution of the first eigenfunction in the response is reduced.

Interpretation of FAM can be aided by a “principal response plot”, displayed in
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Figure 4, where one varies one predictor FPC score, while keeping the others fixed at

level 0. This can be visualized by looking at a set of predictor functions moving in a

certain direction “away” from the mean function of the predictor process, where the

direction depends on the chosen eigenfunction; each of these predictor functions, when

plugged into FAM, then generates a corresponding response function. The set of these

response functions is then jointly visualized with the set of predictor functions in a way

that the corresponding predictor/response pairs can be easily identified. This device

can be employed for each predictor score. Since these act independently from each

other on the response, displaying a series of such plots for all relevant predictor scores

then provides a graphical representation of FAM.

The left panels of Figure 4 indicate that shifts in the levels on the right-hand side

of the peak of the predictor curves are associated with broad shifts up or down in

responses, the middle panels that the size of peak expression in predictors is associated

with amplitude shifts in the right half of response curves, and the left panels, that

combined time and amplitude shifts of predictor peaks are associated with strong

amplitude shifts in responses in a nonlinear way. The principal response plots thus

characterize the response changes induced by the modes of variation of the predictors.

For proper interpretation, it is helpful to note that the actual sample variation of the

predictor scores in the direction of each eigenfunction, as depicted in the top panels

of Figure 4, depends on the size of the respective eigenvalue, which corresponds to

the variance of the FPC scores. This variation accordingly is much smaller for the

second or third eigenfunction, as compared to the first eigenfunction, and therefore the

system’s response function changes, as depicted in the lower panels, will be realized on

increasingly smaller scales for real functional data, as the order of the eigenfunction

increases.

The increased bias when fitting functional linear regression to these data is evident
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in the observed leave-one-subject-out relative prediction errors, i.e., the cross-validated

observed version of (22), denoted by RPE(−i),f ; mean and percentiles are listed in

Table 3. Median and mean of the errors are larger for the functional linear model in

comparison with FAM. This finding is in line with the increase in functional R2 (17)

that is obtained for FAM as compared to the functional linear regression model.

8. CONCLUDING REMARKS

The Functional Additive Model (FAM) strikes a fine balance between greatly enhancing

flexibility, as compared to the functional linear model, and preventing the curse of

dimension incurred by a fully nonparametric approach, due to its sensible structural

constraints. This is analogous to the situation in ordinary multiple regression, where

additive models do not suffer from the curse of dimension in the way unstructured

nonparametric models do. As a reviewer has pointed out, one could also imagine

other additive regression models geared towards specific regression relations, where the

predictors correspond to suitably chosen functionals of the predictor processes other

than the functional principal component scores.

As we have demonstrated, specific advantages of using functional principal compo-

nent scores in an additive regression model are that (1) such a model is a strict general-

ization of the functional linear model, which emerges as a special case; (2) asymptotic

consistency results can still be derived under truly nonparametric (smoothness) as-

sumptions for all component functions, including mean and covariance functions; (3)

implementing the resulting additive model requires not more than applying simple

smoothing steps. The necessary smoothing parameters for the component functions

can be easily selected in a data-adaptive way. FAM does not impose a largely in-

creased computational burden over the established functional linear regression model,

and therefore the added flexibility comes at low additional computational cost. Judg-

ing from our simulations, the loss in efficiency against the functional linear regression
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model when the underlying functional regression is truly linear is quite limited. On

the other hand, the increased flexibility of FAM can lead to substantial gains.

APPENDIX

A.1 Eigenrepresentations and Estimating Functional Principal Component Scores

The eigenfunctions φk, k = 1, 2, . . . , for the representation of predictor processes X

are the solutions of the equations (AGX
f)(s) = λf(s) on the space of square inte-

grable functions f ∈ L2(S) under constraints, where the auto-covariance operator

(AGX
f)(t) =

∫
f(s)GX(s, t) ds is a compact linear integral operator of Hilbert-Schmidt

type (Ash and Gardner, 1975). The constraints correspond to orthonormality of the

eigenfunctions, i.e.,
∫
φj(s)φk(s) ds = δjk, where δjk = 1 if j = k and = 0 if j 6= k. The

eigenfunctions φj are ordered according to the size of the corresponding eigenvalues,

λ1 ≥ λ2 ≥ . . .. Analogously, eigenfunctions and eigenvalues of the response process

Y are denoted by ψm and ρm. We assume that all functions {µX , φj}, {µY , ψk} are

smooth (twice continuously differentiable).

One then has well-known representations GX(s1, s2) =
∑

k λkφk(s1)φk(s2) and

GY (t1, t2) =
∑

m ρmψm(t1)ψm(t2) of the covariance functions of X and Y , as well as

the Karhunen-Loève expansions for processes X and Y ,

X(s) = µX(s) +

∞∑

j=1

ξjφj(s), Y (t) = µY (t) +

∞∑

k=1

ζkψk(t). (23)

Since {φk, k = 1, 2, . . .} and {ψm, m = 1, 2, . . .} form orthonormal bases of the re-

spective space of square integrable functions, it follows that the regression parameter

functions can also be represented in this basis, i.e., there exist coefficients βk, βkm such

that β(s) =
∑∞

k=1 βkφk(t), resp., β(s, t) =
∑∞

k=1

∑∞
m=1 βkmφk(s)ψm(t).

According to (23), we may represent the measurements for predictor trajectories in

(1) and both predictor and response trajectories in (2) as

Uij = Xi(sij) + ǫij = µX(sij) +

∞∑

k=1

ξikφk(sij) + ǫij , sij ∈ S, 1 ≤ i ≤ n, 1 ≤ j ≤ ni,(24)
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Vil = Yi(til) + εil = µY (til) +
∞∑

m=1

ζimψk(til) + εil, sil ∈ T , 1 ≤ i ≤ n, 1 ≤ l ≤ mi. (25)

More specifically, writing U i = (Ui1, . . . , Uini
)T , µXi

= (µX(si1), . . . , µX(sini
))T , and

φik = (φk(si1), . . . , φk(sini
))T , the best linear prediction for ξik is λkφ

T
ikΣ

−1
Ui

(U i −µXi
),

where the (j, l) entry of the ni × ni matrix ΣUi
is (ΣUi

)j, l = GX(sij , sil) + σ2
Xδjl, with

δjl = 1, if j = l, and δjl = 0, if j 6= l. Then the estimates for the scores ξik are obtained

by substituting estimates for µXi
, λk and φik, ΣXi

(see Supplement), obtained from

the entire data ensemble, leading to

ξ̂ik = λ̂kφ̂
T

ikΣ̂
−1

Ui
(U i − µ̂Xi

), (26)

where the (j, l) element of Σ̂Ui
is (Σ̂Ui

)j, l = ĜX(sij , sil) + σ̂2
Y (sij)δjl. We note that it

follows from results in Müller (2005) that as designs become dense, these best linear

(PACE) estimates ξ̂ik, ζ̂im (26) converge to those obtained by the more traditional

integration-based estimates

ξ̂I
ik =

ni∑

j=2

(Uij − µ̂X(tij))φ̂k(sij)(sij − si,j−1), ζ̂
I
im =

ni∑

j=2

(Vij − µ̂Y (tij))ψ̂k(tij)(tij − ti,j−1),(27)

which are motivated by the definition of the FPC scores as inner products, ξik =
∫
{Xi(s) − µX(s)}φk(s)ds, ζim =

∫
{Yi(t) − µY (t)}ψm(t)dt. Therefore, the PACE esti-

mates and the estimates based on integral approximations can be considered equivalent

in the dense design case that we consider here.

A.2 Estimation Procedures

To obtain the FPC scores for predictor and response processes (in case of a func-

tional response), we adopt the PACE (Principal Analysis by Conditional Expectation)

methodology (Yao et al., 2005a). Estimating the predictor mean function µX by local

linear scatterplot smoothers, one minimizes

n∑

i=1

ni∑

j=1

K1(
sij − s

bX
){Uij − βX

0 − βX
1 (s− sij)}2 (28)
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with respect to βX
0 , βX

1 , to obtain µ̂X(s) = β̂X
0 (s). The kernel K1 is assumed to

be a smooth symmetric density function and bX is a bandwidth. Estimating the co-

variance function GX(s1, s2) of predictor processes X, define GX
i (sij1, sij2) = (Uij1 −

µ̂X(sij1))(Uij2 − µ̂X(sij2)), and the local linear surface smoother through minimizing

n∑

i=1

∑

1≤j1 6=j2≤ni

K2(
sij1 − s1

hX

,
sij2 − s2

hX

){GX
i (sij1, sij2) − f(βX , (s1, s2), (sij1, sij2))}2, (29)

where f(βX , (s1, s2), (sij1, sij2)) = βX
0 + βX

11(s1 − sjl1) + βX
12(s2 − sij2), with respect

to βX = (βX
0 , β

X
11, β

X
12)

T , yielding ĜX(s1, s2) = β̂X
0 (s1, s2). Here, the kernel K2 is a

two-dimensional smooth density with zero mean and finite covariances and hX is a

bandwidth. An essential feature is the omission of the diagonal elements j1 = j2 which

are contaminated with the measurement errors.

For the estimation of the variance of the measurement error σ2
X , we fit a local

quadratic component orthogonal to the diagonal of GX , and a local linear component

in the direction of the diagonal. Denote the diagonal of the resulting surface estimate

by G̃X(s), and a local linear smoother focusing on diagonal values {GX(s, s) + σ2
X} by

V̂X(s), using bandwidth h∗X . Let a0 = inf{s : s ∈ S}, b0 = sup{s : s ∈ S}, |S| = b0−a0,

S1 = [a0 + |S|/4, b0 − |S|/4]. The estimate of σ2
X is

σ̂2
X = 2

∫

S1

{V̂X(s) − G̃X(s)} ds/|S|, (30)

if σ̂2
X > 0, and σ̂2

X = 0 otherwise. Estimates of eigenvalues/eigenfunctions {λk, φk}k≥1

are obtained as numerical solutions {λ̂k, φ̂k}k≥1 of suitably discretized eigenequations,

∫

S

ĜX(s1, s2)φ̂k(s2)ds2 = λ̂kφ̂k(s1), (31)

with orthonormal constraints on {φ̂k}k≥1. These estimates are unique up to a sign

change, and a projection on the space of positive definite covariance surfaces is ob-

tained by simply omitting components with non-positive eigenvalues in the final rep-

resentation. Analogous procedures are applied to response processes Y .
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A.3 Assumptions

We compile the necessary assumptions for establishing theoretical properties. Recall

bX = bX(n), hX = hX(n), h∗X = h∗X(n), bY = bY (n), hY = hY (n), h∗Y = h∗Y (n) are the

bandwidths for estimating µ̂X and µ̂Y in (28), ĜX and ĜY in (29), and V̂X and V̂Y in

(30). As the number of subjects n→ ∞, we require:

(A1.1) bX → 0, h∗X → 0, nb4X → ∞, nh∗X
4 → ∞, nb6X <∞, and nh∗X

6 <∞.

(A1.2) hX → 0, nh6
X → ∞, and nh8

X <∞.

For FAM with functional responses, analogous requirements are

(B1.1) bY → 0, h∗Y → 0, nb4Y → ∞, nh∗Y
4 → ∞, nb6Y <∞, and nh∗Y

6 <∞.

(B1.2) hY → 0, nh6
Y → ∞, and nh8

Y <∞.

The time points {sij}i=1,...,n;j=1,...,ni
here are considered deterministic. Write the sorted

time points across all subjects as a0 ≤ s(1) ≤ . . . ≤ s(Nn) ≤ b0, and ∆X = max{s(k) −
s(k−1) : k = 1, . . . , N + 1}, where Nn =

∑n
i=1 ni, S = [a0, b0], s(0) = a0, and s(N+1) =

b0. For the ith subject, suppose that the time points sij have been ordered non-

decreasingly. Let ∆iX = max{sij − si,j−1 : j = 1, . . . , ni + 1}, ∆∗
X = max{∆iX : i =

1, . . . , n}, where si0 = a0 and si,ni+1 = b0, and n̄x = n−1
∑n

i=1 ni. To obtain uniform

consistency, we require both the pooled data across all subjects and also the data from

each subject to be dense in the time domain S. Assume that

(A2.1) ∆X = O(min{n−1/2b−1
X , n−1/2h∗X

−1, n−1/4h−1
X }).

(A2.2) n̄x → ∞, max{ni : i = 1, . . . , n} ≤ Cn̄x for some C > 0, and ∆∗
X = O(1/n̄x).

For the FAM with response process Y and observations {til, Vil}, l = 1, . . . , mi, i =

1, . . . , n, we analogously define the quantities ∆Y , ∆iY , ∆∗
Y , m̄y and assume that

(B2.1) ∆Y = O(min{n−1/2b−1
Y , n−1/2h∗Y

−1, n−1/4h−1
Y }).

(B2.2) m̄y → ∞, max{mi : i = 1, . . . , n} ≤ Cm̄y for some C > 0, and ∆∗
Y = O(1/m̄y).
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Denote by Ui(s)
i.i.d.∼ U(s) the distributions that generate Uij for the ith subject at

s = sij . Analogously, let Vi(t)
i.i.d.∼ V (t) denote the distributions that yield Vil for the

ith subject at til. Assume that the fourth moments of U(s) and V (t) are uniformly

bounded for all s ∈ S and t ∈ T , respectively; i.e.,

(A3) sups∈S E[U4(s)] <∞.

(B3) supt∈T E[V 4(t)] <∞.

Denoting the Fourier transforms of kernels K1 and K2 by κ1(t) =
∫
e−iutK1(u)du and

κ2(t, s) =
∫
e−(iut+ivs)K2(u, v)du dv, we require

(C1.1) κ1(t) is absolutely integrable, i.e.,
∫
|κ1(t)|dt <∞, andK1 is Lipschitz continuous

on its compact support.

(C1.2) κ2(t, s) is absolutely integrable; i.e.,
∫ ∫

|κ2(t, s)|dtds <∞.

In the sequel, let gu1(u; s), gu2(u1, u2; s1, s2), gv1(v; t) and gv2(v1, v2; t1, t2) denote the

density functions of U(s), (U(s1), U(s2)), V (t), and (V (t1), V (t2)), respectively, and pk

and qm the densities of ξk and ζm. It is assumed that these density functions satisfy

the following regularity conditions:

(C2.1) (d2/ds2)gu1(u; s) exists and is uniformly continuous on ℜ× S;

(d2/(dsℓ1
1 ds

ℓ2
2 ))gu2(u1, u2; s1, s2) exists and is uniformly continuous on ℜ2×S2, for

ℓ1 + ℓ2 = 2, 0 ≤ ℓ1, ℓ2 ≤ 2.

(C2.2) (d2/dt2)gv1(v; t) exists and is uniformly continuous on ℜ× T ;

(d2/(dtℓ11 dt
ℓ2
2 ))gv2(v1, v2; t1, t2) exists and is uniformly continuous on ℜ2 ×T 2, for

ℓ1 + ℓ2 = 2, 0 ≤ ℓ1, ℓ2 ≤ 2.

(C2.3) The second derivative p(2)(x) exists and is continuous on ℜ.

Let ‖f‖∞ = supx∈A |f(t)| for an arbitrary function f with support A, and ‖g‖ =
√∫

A g
2(t)dt for any g ∈ L2(A). The following assumptions are needed for Theorem 1.
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(A4) E(‖X ′‖2
∞) <∞, E(‖X ′2‖2

∞) = o(n̄x) and E(ξ4
k) <∞ for any fixed k.

(B4) E(‖Y ′‖2
∞) <∞, E(‖Y ′2‖2

∞) = o(m̄y) and E(ζ4
m) <∞ for any fixed m.

(A5) nh4
Xh

2
k → 0, nb2Xh

2
k → 0 and n̄xh

2
k → 0.

For brevity, denote “
∑K

k=1” by “
∑

k”, “
∑M

m=1” by “
∑

m”, “
∑K

k=1

∑M
m=1” by “

∑
k,m”,

“maxk=1,...,K” by “maxk” and “maxm=1,...,M” by “maxm” in the following assumptions

(A6) and (B5), which are needed for Theorem 2 and are assumed to hold for all fixed

ξk, K ≤ K0,

(A6)
∑

k pk(ξk)h
−1
k = o{min(n1/2bX , n̄

1/2
x )},maxk ‖φkφ

′
k‖∞ = O(n̄x),

∑
k pk(ξk)π

x
kh

−1
k =

o(n1/2h2
X),

∑
k E(ξ4

k) <∞.

(B5) For any fixed ξk, t ∈ T , K ≤ K0, M ≤M0,
∑

k,m pk(ξk)|ψm(t)|h−1
mk = o{min(n1/2bX , n̄

1/2
x )}, maxk ‖φkφ

′
k‖∞ = O(n̄x),

∑
k,m pk(ξk)|ψm(t)| = o{min(n1/2bY , m̄

1/2
y )}, maxm ‖ψmψ

′
m‖∞ = O(m̄y),

∑
k,m pk(ξk)π

x
k |ψm(t)|h−1

mk = o(n1/2h2
X),

∑
k,m pk(ξk)π

y
m|ψm(t)| = o(n1/2h2

Y ),
∑

k,m π
y
m|fmk(ξk)| = o(n1/2h2

Y ),
∑

mE(ζ4
m) <∞.

To guarantee the consistency of predictions, we also require that for fixed ξk and t ∈ T ,

(A7)
∑K

k=1[|f ′′
k (ξk)|h2

k + n−1/2{var(Y |ξk)}1/2p
−1/2
k (ξk)h

−1/2
k ] → 0.

(B6)
∑K

k=1

∑M
m=1[|f ′′

mk(ξk)ψm(t)|h2
mk+n−1/2{var(ζm|ξk)}1/2p

−1/2
k (ξk)|ψm(t)|h−1/2

mk ] → 0.
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Table 1: Simulation results for the comparison of predictions obtained by the Func-

tional Additive Model (FAM) and functional linear regression (LIN), for models with

scalar response (see (7) for the FAM version, (1) for the linear version) and with func-

tional response ((8) for the FAM version, (2) for the linear version), for both dense and

sparse designs. The true component functions are linear (LF) and nonlinear (NLF),

and the true FPC scores of the predictor process are generated from normal distribu-

tions, as described in Section 6. Simulations were based on 400 Monte Carlo runs with

n = 100 predictors and responses per sample. Shown in the table are the Monte Carlo

estimates of the 25th, 50th and 75th percentiles of the relative prediction error, RPE

(22).

Design Response Model True 25th 50th 75th True 25th 50th 75th

FAM .0683 .2983 1.820 .0075 .0431 .3024

Scalar
LIN

NLF
.6458 1.068 1.870

LF
.0102 .0335 .1362

Dense
FAM .0025 .0086 .0279 .0005 .0012 .0031

Functional
LIN

NLF
.0109 .0363 .0705

LF
.0004 .0009 .0019

FAM .1124 .4437 2.884 .0176 .1066 .7149

Scalar
LIN

NLF
.6614 1.071 1.822

LF
.0270 .1133 .5378

Sparse
FAM .0066 .0156 .0432 .0023 .0042 .0090

Functional
LIN

NLF
.0138 .0389 .0737

LF
.0023 .0044 .0094
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Table 2: Simulation results obtained for the same settings as those in Table 1, except

that the true FPC scores of the predictor process are generated from right skewed

distributions related to Gamma(4,1), as described in Section 6.

Design Response Model True 25th 50th 75th True 25th 50th 75th

FAM .0163 .0885 1.035 .0014 .0066 .0410

Scalar
LIN

NLF
.0396 .1827 3.383

LF
.0008 .0030 .0135

Dense
FAM .0028 .0101 .0375 .0005 .0013 .0034

Functional
LIN

NLF
.0126 .0417 .0819

LF
.0003 .0005 .0010

FAM .0448 .2775 3.558 .0291 .1511 1.031

Scalar
LIN

NLF
.1867 .7179 3.642

LF
.0305 .1423 .9316

Sparse
FAM .0072 .0146 .0485 .0023 .0041 .0090

Functional
LIN

NLF
.0156 .0422 .0803

LF
.0021 .0042 .0091

Table 3: Functional R2 (17), 25th, 50th and 75th percentiles and mean of the cross-

validated observed relative prediction errors, RPE(−i),f (22), comparing FAM and func-

tional linear regression models for zygotic data.

25th 50th 75th Mean R2

FAM .0506 .0776 .1662 .1301 0.19

LIN .0479 .0891 .1727 .1374 0.16
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Figure 1: Observed (thin curves) gene expression levels and smoothed estimates of

the mean functions (thick curves) for embryo phase (left) and pupa phase (right), for

zygotic data.

29



0 5 10 15 20

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time(hours)

Eigenfunctions of X

120 140 160 180 200
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time(hours)

Eigenfunctions of Y

Figure 2: Left: Estimates of the first 3 eigenfunctions for predictor trajectories from

the embryo phase (predictor process), K = 3 components selected by AIC, accounting

for 80.69% (first component, solid), 13.65% (second component, dashed) and 2.71%

(third component, dash-dot) of the total variation. Right: Estimates of the first 4

eigenfunctions of the pupa (metamorphosis) phase (response process), M = 4 compo-

nents selected by AIC, accounting for 80.47% (first component, solid), 8.89% (second

component, dashed), 4.2% (third component, dash-dot) and 1.55% (fourth component,

dotted) of the total variation.
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Figure 3: Scatterplots (dots), local polynomial (solid) and linear (dashed) estimates for

the regressions of estimated FPC scores of the pupa phase (responses, y-axis) versus

those for the embryo phase (predictors, x-axis). The FPC scores of the embryo phase
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data.
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Figure 4: Top panels: Predictor trajectories µ̂X(s) + αφ̂k(s), for α = 0 (solid), α =

1 (dashed) and α = −1 (+++) for k = 1 (left panels), k = 2 (middle panels) and

k = 3 (right panels). Bottom panels: Corresponding response trajectories µ̂Y (t) +
∑M

m=1

{
f̂km(α) +

∑
ℓ 6=k f̂ℓm(0)

}
ψ̂m(t), for zygotic data.
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Supplement for “Functional Additive Models”

1. NOTATIONS AND AUXILIARY RESULTS

Covariance operators are denoted by GX , ĜX , generated by kernels GX , ĜX ; i.e.,

GX(f) =
∫
T
GX(s, t)f(s)ds, ĜX(f) =

∫
T
ĜX(s, t)f(s)ds for any f ∈ L2(T ). Define

DX =
∫
T 2{ĜX(s, t) −GX(s, t)}2dsdt, δx

k = min1≤j≤k(λj − λj+1),

K0 = inf{j ≥ 1 : λj − λj+1 ≤ 2DX} − 1, πx
k = 1/λk + 1/δx

k .
(32)

Let K = K(n) denote the numbers of leading eigenfunctions included to approximate

X as sample size n varies; i.e., X̂i(s) = µ̂X(s)+
∑K

k=1 ξ̂ikφ̂k(s). Analogously, define the

quantities GY , ĜY , DY , δy
m πy

m, M0 and M for the process Y , for the case of functional

responses. The following lemma gives the weak uniform convergence rates for the

estimators of the FPCs, setting the stage for the subsequent developments. The proof

is in Section 2.

Lemma 1 Under (A1.1)-(A3), (C1.1), (C1.2) and (C2.1),

sup
t∈S

|µ̂X(s) − µX(s)| = Op(
1√
nbX

), sup
s1,s2∈S

|ĜX(s1, s2) −GX(s1, s2)| = Op(
1√
nh2

X

),(33)

and as a consequence, σ̂2
X − σ2

X = Op(n
−1/2h−2

X + n−1/2h∗X
−1). Considering eigenvalues

λk of multiplicity one, φ̂k can be chosen such that

P ( sup
1≤k≤K0

|λ̂k − λk| ≤ DX) = 1, sup
s∈S

|φ̂k(s) − φk(s)| = Op(
πx

k√
nh2

X

), k = 1, . . . , K0,(34)

where DX , πx
k and K0 are defined in (32).

Analogously, under (B1.1)-(B3), (C1.1), (C1.2) and (C2.2),

sup
t∈T

|µ̂Y (t) − µY (t)| = Op(
1√
nbY

), sup
t1,t2∈T

|ĜY (t1, t2) −GY (t1, t2)| = Op(
1√
nh2

Y

), (35)

and as a consequence, σ̂2
Y − σ2

Y = Op(n
−1/2h−2

Y + n−1/2h∗Y
−1). Considering eigenvalues

ρm of multiplicity one, ψ̂m can be chosen such that

P ( sup
1≤m≤M0

|ρ̂m − ρm| ≤ DY ) = 1, sup
t∈T

|ψ̂m(t) − ψm(t)| = Op(
πy

k√
nh2

Y

), m = 1, . . . ,M0,(36)

1



where DY , πy
k and M0 are defined analogously to (32) for process Y .

Recall that ‖f‖∞ = supx∈A |f(t)| for an arbitrary function f with support A, and

‖g‖ =
√∫

A
g2(t)dt for any g ∈ L2(A) and define

θ
(1)
ik = c1‖Xi‖ + c2‖XiX

′
i‖∞∆∗

X + c3, Z
(1)
k = sups∈S |φ̂k(s) − φk(s)|,

θ
(2)
ik = 1 + ‖φkφ

′
k‖∞∆∗

X , Z
(2)
k = sups∈S |µ̂X(s) − µX(s)|,

θ
(3)
ik = c4‖Xi‖∞ + c5‖X ′

i‖∞ + c6, Z
(3)
k = ‖φ′

k‖∞∆∗
X ,

θ
(4)
ik = |∑ni

j=2 ǫijφk(sij)(sij − si,j−1)|, Z
(4)
k ≡ 1,

θ
(5)
ik =

∑ni

j=2 |ǫij |(sij − si,j−1), Z
(5)
k ≡ Z

(1)
k ,

(37)

for some positive constants a1, . . . , c6 that do not depend on i or k. Similarly, define

corresponding quantities for the process Y as follows,

ϑ
(1)
im = d1‖Yi‖ + d2‖YiY

′
i ‖∞∆∗

Y + d3, Q
(1)
m = supt∈T |ψ̂m(t) − ψm(t)|,

ϑ
(2)
im = 1 + ‖ψmψ

′
m‖∞∆∗

Y , Q
(2)
m = supt∈T |µ̂Y (t) − µY (t)|,

ϑ
(3)
im = d4‖Yi‖∞ + d5‖Y ′

i ‖∞ + d6, Q
(3)
m = ‖ψ′

m‖∞∆∗
Y ,

ϑ
(4)
im = |∑mi

l=2 εilψm(til)(til − ti,l−1)|, Q
(4)
m ≡ 1,

ϑ
(5)
im =

∑mi

l=2 |εil|(til − ti,l−1), Q
(5)
m ≡ Q

(1)
m ,

(38)

for some positive constants d1, . . . , d6 that do not depend on i or m. We note that

the subscripts are mainly for notational convenience and do not necessarily reflect

dependence on these indices. Note that in (37), θ
(1)
ik , θ

(3)
ik , θ

(5)
ik in fact do not depend

on k and θ
(2)
ik does not depend on i, while Z

(3)
k is deterministic and Z

(4)
k is a constant.

More importantly, we emphasize that θ
(ℓ)
ik are i.i.d. over i (ℓ = 1, 3, 4, 5) or free of i

(ℓ = 2), and that the Z
(ℓ)
k do not depend on i.

The next lemma is critical for the subsequent developments, providing exact upper

bounds for the estimation errors |ξ̂I
ik − ξik| and |ζ̂I

im − ζim|, for the FPC estimates ξ̂I
ik,

ζ̂I
im (27).

2



Lemma 2 For θ
(ℓ)
ik , Z

(ℓ)
k , ϑ

(ℓ)
im and Q

(ℓ)
m as defined in (37) and (38),

|ξ̂I
ik − ξik| ≤

5∑

ℓ=1

θ
(ℓ)
ik Z

(ℓ)
k , |ζ̂I

im − ζim| ≤
5∑

ℓ=1

ϑ
(ℓ)
imQ

(ℓ)
m . (39)

The proof is in Section 2. In the sequel we suppress the superscript I in the FPC

estimates ξ̂I
ik and ζ̂I

im.

Recall that the sequences of bandwidths hk and hmk are employed to obtain the

estimates f̂k and f̂mk for the regression functions fk and fmk, and that the density of

ξk is denoted by pk. Define

θk(x) = pk(x){
πx

k√
nh2

X

+
1√
nbX

+
√

∆∗
X},

ϑmk(x) = pk(x){
πy

m√
nh2

Y

+
1√
nbY

+
√

∆∗
Y }. (40)

The weak convergence rates θ̃k and ϑ̃mk of the regression function estimators f̂k(x)

and f̂mk(x) (see Theorem 1) are as follows,

θ̃k(x) =
θk(x)

hk
+

1

2
|f ′′

k (x)|h2
k +

√
var(Y |x)‖K1‖2

pk(x)nhk
, (41)

ϑ̃mk(x) =
θk(x)

hmk
+ ϑmk(x) +

1

2
|f ′′

mk(x)|h2
mk +

√
var(ζm|x)‖K1‖2

pk(x)nhmk
.

Considering the predictions Ê(Y |X) for the scalar response case and Ê{Y (t)|X}
for the functional response case, the numbers of eigenfunctions K and M used for

approximating the infinite dimensional processes X and Y generally tend to infinity

as the sample size n increases. We require K ≤ K0 and M ≤ M0 in (A6). Since it

follows from (35) that K0 → ∞, as long as all eigenvalues λj are of multiplicity 1, and

analogously for M0, this is not a strong restriction. Denote the set of positive integers

by N and Nk = {1, . . . , k}. Convergence rates θ∗n and ϑ∗n for the predictions (20) and

3



(21) are as follows,

θ∗n =

K∑

k=1

{θk(ξk)

hk
+

1

2
|f ′′

k (ξk)|h2
k +

√
var(Y |ξk)‖K1‖2

pk(ξk)nhk
} +

∣∣ ∑

k≥K+1

fk(ξk)
∣∣, (42)

ϑ∗n =

K∑

k=1

M∑

m=1

{(θk(ξk)

hmk
+ ϑmk(ξk))|ψm(t)| + 1

2
|f ′′

mk(ξk)|ψm(t)|h2
mk +

√
var(ζm|ξk)‖K1‖2

pk(ξk)nhk
|ψm(t)|

+
πy

m|fmk(ξk)|√
nh2

Y

} +
∣∣ ∑

(k,m)∈N 2\NK×NM

fmk(ξk)ψm(t)
∣∣,

where θk and ϑk are defined in (40) and we note that ϑ∗n depends on t.

2. PROOFS

Proof of Lemma 1. It is sufficient to show (33) and (34). The weak convergence results

(33) for µ̂X and ĜX(s1, s2) have been derived in Lemma 2 of Yao and Lee (2006).

Theorem 1 of Hall and Hosseini-Nasab (2006) implies the first equation of (34) for the

estimated eigenvalues λ̂k. Assuming λk > 0 without loss of generality, we have

|λ̂kφ̂k(s) − λkφk(s)| = |
∫

S

ĜX(t, s)φ̂k(t)dt−
∫

S

GX(t, s)φk(t)dt|

≤
∫

S

|ĜX(t, s) −GX(t, s)| · |φ̂k(t)|dt+
∫

S

|GX(t, s)| · |φ̂k(t) − φk(t)|dt

≤
√∫

S

(ĜX(t, s) −GX(t, s))2dt+

√∫

S

G2
X(t, s)dt‖φ̂k − φk‖,

and |λ̂kφ̂k(s)/λk − φk(s)| = Op{DX(1/λk + 1/δx
k)} uniformly in s ∈ S for 1 ≤ k ≤ K0,

where K0 is defined in (32). The second equation of (34) follows immediately. �

Proof of Lemma 2. Let

η̂ik =

ni∑

j=2

{Xi(sij) − µ̂(sij)}φ̂k(sij)(sij − si,j−1),

η̃ik =

ni∑

j=2

{Xi(sij) − µ(sij)}φk(sij)(sij − si,j−1),

τ̂ik =

ni∑

j=2

ǫijφ̂k(sij)(sij − si,j−1), τ̃ik =

ni∑

j=2

ǫijφk(sij)(sij − si,j−1).

4



Noting ξ̂ik = η̂ik + τ̂ik, one finds

|ξ̂ik − ξik| ≤ {|η̂ik − η̃ik| + |η̃ik − ξik| + |τ̂ik|}. (43)

Without loss of generality, assume ‖φk‖∞ ≥ 1, ‖φ′
k‖∞ ≥ 1, ‖Xi‖∞ ≥ 1 and ‖X ′

i‖∞ ≥ 1.

For θ
(ℓ)
ik and Z

(ℓ)
k (37), ℓ = 1, . . . , 5, the first term on the r.h.s. of (43) is bounded by

{
ni∑

j=2

[|Xi(sij) − µ̂(sij)| · |φ̂k(sij) − φk(sij)| + |µ̂(sij) − µ(sij)| · |φk(sij)|](sij − si,j−1)}

≤ {
ni∑

j=1

[|Xi(sij)| + |µ(sij)| + 1]2(sij − si,j−1)}1/2{
ni∑

j=2

[φ̂k(sij) − φk(sij)]
2(sij − si,j−1)}1/2

+{
ni∑

j=1

[µ̂(sij) − µ(sij)]
2(sij − si,j−1)}1/2{

ni∑

j=2

φ2
k(sij)(sij − si,j−1)}1/2

≤ θ
(1)
ik Z

(1)
k + θ

(2)
ik Z

(2)
k .

The second term on the r.h.s. of (43) has the upper bound

|η̃ij − ξik| ≤ ‖(Xi + µ)′φk + (Xi + µ)φ′
k‖∞∆∗

X ≤ θ
(3)
ik Z

(3)
k .

From the above, the third term on the r.h.s. of (43) is bounded by (θ
(4)
ik Z

(4)
k + θ

(5)
ik Z

(5)
k ).

�

Proof of Theorem 1. For simplicity, denote “
∑n

i=1” by “
∑

i”, wi = K1{(x−ξik)/hk}/(nhk),

ŵi = K1{(x − ξ̂ik)/hk}/(nhk), and write θk = θk(x). From (12), the local linear esti-

mator f̂k(x) of the regression function fk(x) can be explicitly written as

f̂k(t) =

∑
i ŵiYi∑
i ŵi

−
∑

i ŵi(ξ̂ik − x)∑
i ŵi

f̂ ′
k(x), (44)

where

f̂ ′
k(x) =

∑
i ŵi(ξ̂ik − x)Yi − {∑i ŵi(ξ̂ik − x)

∑
i ŵiYi}/

∑
i ŵi∑

i ŵi(ξ̂ik − x)2 − {∑i ŵi(ξ̂ik − x)}2/
∑

i ŵi

. (45)

Let f̃k(x) be a hypothetical estimator, obtained by substituting the true values wi and

ξik for ŵi, ξ̂ik in (44) and (45). To evaluate |f̂k(x) − f̃k(x)|, one has to quantify the

5



orders of the differences

D1 =
∑

i

(ŵi − wi), D2 =
∑

i

(ŵi − wi)Yi,

D3 =
∑

i

(ŵiξ̂ik − wiξik), D4 =
∑

i

(ŵiξ̂
2
ik − wiξ

2
ik).

Considering D1, without loss of generality, assume the compact support ofK1 is [−1, 1].

Since K1 is Lipschitz continuous on its support,

D1 ≤
c

nh2
k

∑

i

|ξ̂ik − ξik|{I(|x− ξik| ≤ hk) + I(|x− ξ̂ik| ≤ hk)}, (46)

for some c > 0, where I(·) is an indicator function. Lemma 2 implies for the first term

on the r.h.s. of (46)

1

nh2
k

∑

i

|ξ̂ik − ξik|I(|x− ξik| ≤ hk) ≤
5∑

ℓ=1

Z
(ℓ)
k

1

nh2
k

∑

i

θ
(ℓ)
ik I(|x− ξik| ≤ hk).

Applying the central limit theorem for a random number of summands (Billingsley,

1995, page 380), observing
∑

i I(|x− ξik| ≤ hk)/(nhk)
p→ 2pk(x), one finds

1

nhk

∑

i

θ
(ℓ)
ik I(|x− ξik| ≤ hk)

p−→ 2pk(x)E(θ
(ℓ)
ik ), (47)

provided that E(θ
(ℓ)
ik ) <∞ for ℓ = 1, . . . , 5. Note that Eθ

(1)
ik <∞, Eθ

(3)
ik <∞ by (A4),

Eθ
(4)
ik ≤ 2σX

√
∆∗

X and Eθ
(5)
ik ≤ |S|σX by the Cauchy-Schwarz inequality. Then

Z
(1)
k

1

nh2
k

∑

i

θ
(1)
ik I(|x− ξik| ≤ hk) = Op{

πx
k√

nh2
Xhk

pk(x)},

Z
(2)
k

1

nh2
k

∑

i

θ
(2)
ik I(|x− ξik| ≤ hk) = Op{

1√
nbXhk

pk(x)},

Z
(3)
k

1

nh2
k

∑

i

θ
(3)
ik I(|x− ξik| ≤ hk) = Op{

‖φk‖∞∆∗
X

hk
pk(x)},

Z
(4)
k

1

nh2
k

∑

i

θ
(4)
ik I(|x− ξik| ≤ hk) = Op{

√
∆∗

X

hk
pk(x)},

Z
(5)
k

1

nh2
k

∑

i

θ
(5)
ik I(|x− ξik| ≤ hk) = Op{

πx
k√

nh2
Xhk

pk(x)}. (48)
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We now obtain (nh2
k)

−1
∑

i |ξ̂ik − ξik|I(|x − ξik| ≤ hk) = Op(θkh
−1
k ). The asymptotic

rate of the second term can be derived analogously, observing

1

nhk

∑

i

I(|x−ξ̂ik| ≤ hk) ≤
1

nhk

∑

i

{I(|x−ξik| ≤ 2hk)+I(

5∑

ℓ=1

θ
(ℓ)
ik Z

(ℓ)
k > hk)} p−→ 4pk(x),

leading to (nh2
k)

−1
∑

i |ξ̂ik − ξik|I(|x− ξ̂ik| ≤ hk) = Op(θkh
−1
k ). Then D1 = Op(θkh

−1
k )

follows.

Analogously, one shows D2 = Op(θkh
−1
k ), applying the Cauchy-Schwarz inequality

for θ
(ℓ)
ik , ℓ = 1, 3, and observing the independence between Yi and θ

(ℓ)
ik for ℓ = 2, 4, 5,

given the moment condition (A4). For D3, observe

D3 =
∑

i

{(ŵi − wi)ξik + (ŵi − wi)(ξ̂ik − ξik) + wi(ξ̂ik − ξik)} ≡ D31 +D32 +D33.

Then D31 = Op(θkh
−1
k ), analogously to D1. It is easy to see that D32 = op(D31).

Since D33 ≤ c
∑5

ℓ=1 Z
(ℓ)
k (nhk)

−1
∑

i θ
(ℓ)
ik I(|x − ξik| ≤ hk) for some c > 0, one also has

D33 = op(D31). This results in D3 = Op(θkh
−1
k ). Observing |ξ̂2

ik − ξ2
ik| ≤ |ξ̂ik − ξik| ·

|ξik| + (ξ̂ik − ξik)
2, one can show D4 = Op(θkh

−1
k ), using similar arguments as for D3,

and Eξ4
ik < ∞ from (A4). Combining the results for Dℓ, ℓ = 1, . . . , 4, and applying

Slutsky’s Theorem leads to |f̂k(x) − f̃k(x)| = Op(θkh
−1
k ). Using (A5), and applying

standard asymptotic results for the hypothetical local linear smoother f̃k(x) completes

the proof of (18).

To derive (19), additionally one only needs to consider
∑

i(ŵiζ̂im−wiζim) =
∑

i({ŵi−
wi)ζim + (ŵi − wi)(ζ̂im − ζim) + wi(ζ̂im − ζim)}, where the third term yields an extra

term of order Op(ϑmk) by observing

|
∑

i

wi(ζ̂im − ζim)| ≤
5∑

ℓ=1

Q(ℓ)
m

∑

i

wiϑ
(ℓ)
im ≤ 1

nhmk

5∑

ℓ=1

Q(ℓ)
m

∑

i

ϑ
(ℓ)
imI(|x− ξik| ≤ hmk)

Similar arguments as above complete this derivation. �

Proof of Theorem 2. Using (A7), the derivation of θ∗n in (42) is straightforward,
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following the above arguments. To obtain (21), note that

Ê{Y (t)|X} − E{Y (t)|X}

≤
K∑

k=1

M∑

m=1

|f̂mk(ξk)ψ̂m(t) − fmk(ξk)ψm(t)| + |
∑

k≥K+1

∑

m≥M+1

fmk(ξk)ψm(t)|

≤
K∑

k=1

M∑

m=1

[|f̂mk(ξk) − fmk(ξk)|{|ψm(t)| + |ψ̂m(t) − ψm(t)|} + |fmk(ξk)| · |ψ̂m(t) − ψm(t)|]

+|
∑

(k,m)∈N 2\NK×NM

fmk(ξk)ψm(t)|.

This implies the convergence rate ϑ∗n in (42).
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