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ABSTRACT

Nonparametric methodology for longitudinal data analysis is becoming increasingly popular. The

analysis of multivariate longitudinal data, where data on several time courses are recorded per

subject, has received considerably less attention, in spite of its importance for practical data anal-

ysis. In particular, there is a need for measures and estimates to capture dependency between

the components of vector-valued longitudinal data. We propose and analyze a simple and effec-

tive nonparametric method to quantify the covariation of components of multivariate longitudinal

observations, which are viewed as realizations of a random process. This includes the notion of

a correlation between derivatives and time-shifted versions. The concept of dynamical correlation

is based on a scalar product obtained from pairs of standardized smoothed curves. The proposed

method can be utilized when observation times are irregular and not matching between subjects

or between responses within subject. For higher-dimensional data, one may construct a dynamical

correlation matrix which then serves as a starting point for standard multivariate analysis tech-

niques such as principal components. Our methods are illustrated via simulations as well as with

data on five acute phase blood proteins measured longitudinally from a study of hemodialysis pa-

tients.

KEY WORDS: Acute phase proteins; Curve data; Dependency; Random effects model; Smooth-

ing; Stochastic process.
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1. INTRODUCTION

Longitudinal data modeling is essential to describe both trend and variation for biological

processes, such as growth curves, effects over time of medical intervention on physiological charac-

teristics, monitoring human exposure to carcinogens, etc. Methods and approaches are described

in texts such as Jones (1993), Hand and Crowder (1996), Verbeke and Molenberghs (2000), and

Diggle et al., (2002).

A promising approach for functional data analysis is to treat longitudinal pathways as realiza-

tions of a smooth stochastic process (Ramsay and Silverman, 1997). This concept proved useful

for describing the effects of certain treatments on a response curve (Church 1966), and naturally

progressed to the modeling of a collection of random curves (Rice and Silverman, 1991), and semi-

parametric and nonparametric models for the effects of time-dependent covariates on longitudinal

observations (Martinussen and Scheike, 1999 and 2000).

In this paper, we describe an approach for capturing the correlation structure between mul-

tivariate longitudinal responses, leading to the notion of dynamical correlation to describe the

correlation amongst multivariate longitudinal curves. A classical approach to describe the corre-

lation between subsets of elements of random vectors is canonical correlation (Hotelling, 1936).

Canonical correlation has been extended to the case of multivariate time series (Brillinger, 1975),

under the assumption of stationarity, and extension of canonical correlation to functional data has

been proposed in Leurgans, Moyeed, and Silverman (1993), where the need for regularization was

pointed out. Moreover, functional canonical correlation requires restrictive assumptions in order

to be well defined, as it corresponds to an inverse problem (He, Müller, and Wang, 2003). For

these reasons, simple and efficient alternative measures to describe the dependency of multivariate

functional data are needed (Service, Rice, and Chavez 1998).

Dynamical factor analysis has been discussed in the psychological literature to investigate intra-

individual variation and lagged relationships for multivariate longitudinal data (Molenaar, 1985).

However, these methods require restrictive designs and are applied to a single individual only; ex-

tensions to samples of subjects have not been established. Methods based on the notion of causality

between the components of multivariate stochastic processes have been discussed by Boudjellaba,

Dufour, and Roy (1992) and Sy, Taylor, and Cumberland (1997). Like the approaches by Mole-

naar (1985) and Brillinger (1975), the method of Boudjellaba et al., (1992) is for multivariate time

series and does not generalize to multiple subject longitudinal data; Sy et al., (1997) rely on fairly

restrictive assumptions on the nature of the correlations and subsequent determination of causal-

ity. A spline-based method for modeling bivariate longitudinal data, including investigation of the

correlation between responses, has been presented by Wang, Guo, and Brown (2000).

It is the purpose of this article to define simple, efficient, non-parametric correlation measures

for multivariate longitudinal data, which include derivatives and lags. These measures are first

obtained at the subject level, and consistent estimates for population dynamical correlations are
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then easily obtained by averaging over the subjects in the sample.

An advantage of the proposed dynamical correlation over functional canonical correlation is its

explicit representation given by (5), whereas functional canonical correlation is implicitly defined

by (12) via the solution of a maximization problem, and therefore does not have a comparably

simple interpretation as an average of individual correlations. Section 5.2 below is devoted to a

more detailed comparison of the practical performance of dynamic and functional canonical corre-

lation. An additional benefit of dynamical correlation is its stability. As we show below, even if

a pre-smoothing step is included, dynamical correlation is quite insensitive to the choice of band-

width for this step, while the estimation of functional canonical correlation critically depends on

regularization, as it corresponds to an ill-defined inverse problem (Leurgans et al., 1993). Also, as

shown below, these regularized correlation estimates easily break down and then are not useful,

while dynamic correlation generally is found to lead to reliable results. Related time-averaged cor-

relation measures between two regression functions were discussed by Heckman and Zamar (2000).

A limitation of the proposed dynamical correlation, especially in the application to longitudinal

studies, is that the number of repeated measurements per subject cannot be too small, and that

the times of measurements need to fill out the domain of the random trajectories for which the

correlation measure is desired.

The data used to demonstrate the methods in this paper come from a nephrological study

(Kaysen et al., 2000). Thirty-five hemodialysis patients were followed for up to 230 days, with

measurements of five acute phase blood proteins taken longitudinally. Observed repeated measure-

ments for two serum proteins, albumin and C reactive protein, for a randomly selected subject,

are shown in Figure 1. The graphs are suggestive of a negative relationship over time for these

two acute phase proteins. While such simple graphical representations are useful, it is important

to have quantitative summary measures of correlation taking the entire variation over time into

account.

The paper is organized as follows. The underlying model and basic definition of dynamical

correlation between two components of random multivariate longitudinal curves are discussed in

Section 2. In Section 3, we describe how to estimate the dynamical correlation between two sets

of longitudinal data obtained for a sample of independent subjects. In Section 4.1, we provide

extensions of dynamical correlation to derivatives of curves and time-shifted curves. In Section 4.2,

we discuss a two-stage bootstrap procedure for obtaining a non-parametric interval estimate for the

correlation measure when smoothing of the original data is required. We report results of simula-

tion studies in Section 5, including a sensitivity analysis of the correlation estimate under a range

of bandwidth choices, and a comparison of the performance of functional canonical correlation and

dynamical correlation. The application of the proposed methods to the blood protein data is the

topic of Section 6. Concluding remarks can be found in Section 7. Finally, additional details and

proofs are provided in the Appendix.



3

2. DEFINING DYNAMICAL CORRELATION

In this section, we define dynamical correlation and discuss some basic properties. The setting

is as follows: For a randomly selected subject (experimental unit), we observe p random functions

or curves, f1, ...fp, p ≥ 2, where fk ∈ L2(dw), the space of square integrable functions with

E{∫ f2
k (t)w(t)dt} < ∞ for 1 ≤ k ≤ p, with respect to a measure dw = w dt, where dt is Lebesgue

measure and w is a nonnegative weight function with
∫

w(t)dt = 1 and
∫

w2(t)dt < ∞ (see Ash

and Gardner, 1975). Usually, w will be chosen to have compact support.

A simple and convenient choice for the weight function w is an indicator function, w(t) =
1

b−aI[a,b], for a < b. Other choices may relate to a varying degree of uncertainty with which the

functions are observed over time, to a non-constant variance function of the underlying stochastic

process, or to inhomogeneities in the design, i.e., the timing of the longitudinal measurements.

The notions of inner products and angles between functions that we will use are extensions from

the familiar multivariate concepts to Hilbert space (Conway, 1985; Ramsay and Silverman, 1997).

Using the notation 〈f, g〉 =
∫

f(t)g(t)w(t)dt in L2(dw), our approach is based on the “functional

inner products”

Mk = 〈fk, 1〉, Mk,l = 〈fk, fl〉, 1 ≤ k, l ≤ p. (1)

The basic assumptions ensure that the moments EMk, EM2
k , and EMk,l are all well-defined.

Any given L2 function can be represented uniquely in L2 through the following random effects

model, without any restriction, and it will be convenient to define dynamical correlation within

the framework of this representation. In particular the k-th functional component always can be

represented as

fk(t) = µk(t) + µ0,k +
∞∑

r=0

εr,kηr(t) = µk(t) + (µ0,k + ε0,k) +
∞∑

r=1

εr,kηr(t), 1 ≤ k ≤ p. (2)

Here, µk is a fixed mean function with µk ∈ L2(dw) and 〈µk, 1〉 = 0, and (µ0,k +ε0,k) is an intercept

term, the ”static random part” of the model, which includes a constant term µ0,k, and a random

variable ε0,k, neither of which depend on time, with E(ε0,k) = 0 and var(ε0,k) = σ2
0,k < ∞, where

η0(t) ≡ 1. Lastly,
∞∑

r=1
εr,kηr(t) is the ”dynamic random part” of the model, where the random

variables εr,k, r ≥ 1, satisfy Eεr,k = 0 for all r, E(ε2
r,k) = σ2

r,k < ∞, 0 <
∞∑

r=0
σ2

r,k < ∞, and

ε0,k is uncorrelated with εr,k, r ≥ 1. The functions ηr, r = 0, 1, ..., are assumed to form an

orthonormal basis of L2(dw), i.e., 〈ηi, ηj〉 = 0 for i 6= j and 〈ηi, ηj〉 = 1 for all i = j. The functions

µk, ηr, 1 ≤ k ≤ p, 0 ≤ r < ∞, are furthermore assumed to be smooth, say twice continuously

differentiable. We also assume that all random variables εr,j , 0 ≤ r < ∞, 1 ≤ k ≤ p have a joint

distribution.
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As we will demonstrate below, the dependence between the functional components fk and fl is

essentially captured by the quantity Sk,l =
∞∑

r=1
εr,kεr,l. We note that in model (2), for 1 ≤ k ≤ p,

E(fk(t)) = µk(t) + µ0,k, E(〈fk, 1〉) = µ0,k, and

Mk = (µ0,k + ε0,k) +
∞∑

r=1

εr,k〈ηr, 1〉 = µ0,k + ε0,k, (3)

since 〈ηr, η0〉 = 0 for r ≥ 1. This implies that the centered version,

fk(t)−Mk = µk(t) +
∞∑

r=1
εr,kηr(t), of fk does not anymore involve the intercept term.

Defining standardized curves

f∗k (t) =
fk(t)−Mk − µk(t)

(
∫

(fk(t)−Mk − µk(t))2w(t)dt)1/2
, (4)

we then obtain the representation

f∗k (t) =
∞∑

r=1

εr,kηr(t)/(
∞∑

r=1

ε2
r,k)

1/2.

Since 〈ηr, 1〉 = 0, this implies 〈f∗k , 1〉 = 0, and the fact that 〈ηi, ηj〉 = 0, i 6= j, and 〈ηi, ηi〉 = 1

implies 〈f∗k , f∗k 〉 = 1. In this sense, f∗k (t) is a standardized version of fk. We note that this

standardization applies to each single realization of fk. If µk ≡ const., i.e., the mean function is a

constant, which is a reasonable approximation for many applications, then 〈µk, 1〉 = 0 implies that

µk ≡ 0. In this case the standardization simplifies to

f∗k (t) =
fk(t)−Mk

(
∫

(fk(t)−Mk)2w(t)dt)1/2
.

The proposed dynamical correlation between fk and fl is now defined as the expected cosine of

the angle between the standardized versions f∗k and f∗l ,

ρk,l = E〈f∗k , f∗l 〉 = E
〈f∗k , f∗l 〉

{〈f∗k , f∗k 〉〈f∗l , f∗l 〉}1/2
. (5)

As shown in the Appendix, dynamical correlation can be represented as follows:

Theorem 1.

ρk,l = E{
∞∑

r=1

εr,kεr,l/[(
∞∑

r=1

ε2
r,k)

1/2(
∞∑

r=1

ε2
r,l)

1/2]}. (6)

We find that ρk,l captures the dependency between fk and fl through a standardized form of

Sk,l =
∞∑

r=1
εr,kεr,l, namely ρk,l = E

Sk,l

[Sk,kSl,l]1/2 . If we denote the angle in L2(dw) between the dynamic

random parts (
∑

εr,kηr,
∑

εr,lηr) by ζk,l, then ρk,l = E(cos ζk,l). Hence, the dynamical correlation

between random curves fk and fl can be directly linked to the cosine of an angle between functions

in the Hilbert space L2. It immediately follows from (6) that −1 ≤ ρk,l ≤ 1 by the Cauchy-Schwarz

inequality.

We may interpret dynamical correlation as a measure of average concordant or discordant

behavior of pairs of random trajectories, in the sense that if both trajectories tend to be mostly
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on the same side of their time-average (a constant), then dynamical correlation is positive; if the

opposite occurs, then negative. For example, if we deal with pairs of random trajectories fk, fl, for

which we may assume Mk = Ml = 0 and
∫

f2
k =

∫
f2

l = 1 so that f∗k = fk, f∗l = fl, then ρk,l = 1

if fk = fl and ρk,l = −1 if fk = −fl. As a special case, consider fk(t) =
√

2sin(2π(t− Yk)), fl(t) =
√

2sin(2π(t − Yl)), t ∈ [0, 1], where Yk, Yl are random variables that determine the corresponding

random trajectories. A simple calculation shows ρk,l = E(cos[2π(Yk − Yl)]), and if, for example,

(Yk − Yl) ∼ Uniform[−1
2 , 1

2 ], then the time shift between the two sine curves relative to each other

is uniform, and indeed ρk,l = 0 for this case. If instead (Yk − Yl) ∼ Uniform[−1
4 , 1

4 ], then the

shift between the sine curves is limited and in this case we find ρk,l = 2
π . Further examples can be

constructed along these lines.

We conclude this section with two remarks. First, defining dynamical correlation with the ex-

pectation as the ”outside” operator, in contrast to the usual definition of correlation, leads to a

stable, simple and computationally fast procedure for estimation that is easy to implement and

helps avoid the calculation of an inverse which may lead to an ill-posed problem such as in func-

tional canonical correlation. Second, definition (5) is independent of representation (2), and there

is no need to actually identify the functions ηr, r ≥ 0, which merely serve as components of the

underlying modeling framework.

3. DYNAMICAL CORRELATION ESTIMATION

To estimate the dynamical correlation, ρk,l (5), we assume one has multivariate longitudi-

nal data collected for a sample of n subjects. For the i-th subject, one observes random curves

fi,1(t), fi,2(t), ..., fi,p(t) on [0, Ti]. We then define the estimated k-th standardized curve for the i-th

subject (1 ≤ k ≤ p, 1 ≤ i ≤ n) by

f̂∗i,k(t) =
f̆i,k(t)− M̆i,k

(
∫

(f̆i,k(t)− M̆i,k)2w(t)dt)1/2
, (7)

where f̆i,k(t) = fi,k(t)− (1/n)
∑

fi,k(t) and M̆i,k = 〈f̆i,k, 1〉 . Since f̆i,k(t)− M̆i,k = fi,k(t)−Mi,k −
(1/n)

∑
(fi,k(t) − Mi,k) and E(fi,k(t) − Mi,k) = µk(t), (7) provides a plausible estimate for (4).

Here, M̆i,k and
∫

(f̆i,k − M̆i,k)2w(t)dt are evaluated by numerical integration.

We then obtain an estimate for the i-th individual’s dynamical correlation for components k

and l,

ρ̂k,l,i = 〈f̂∗i,k, f̂∗i,l〉 (8)

and an estimate of the overall dynamical correlation by averaging the individual dynamical corre-

lations over subjects:

ρ̂k,l =
1
n

n∑

i=1

ρ̂i,k,l =
1
n

n∑

i=1

〈f̂∗i,k, f̂∗i,l〉. (9)
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An added benefit of this approach is that one obtains a measure of dynamical correlation at the

individual level. Note that we may estimate µk(t) by µ̂k(t) = 1
n

n∑
i=1

(fi,k(t)−Mi,k).

In some applications, such as gait analysis (Olshen et al., 1989), one observes entire trajectories

fi,k, while in other cases, such as the application to longitudinal dynamical relationships between

acute phase proteins that we explore below, the data are only available in the form of discrete

measurements. We then include a pre-smoothing step; the effect of pre-smoothing is explored in

the simulations reported in Section 5. If a pre-smoothing step is included, we denote the resulting

quantities by a superscript, so that fi,k, f̂
∗
i,k, ρ̂k,l,i, ρ̂k,l become fS

i,k, f̂
∗,S
i,k , ρ̂S

k,l,i, ρ̂
S
k,l.

Our main result refers to the asymptotic distribution of dynamical correlation ρ̂S
k,l :

Theorem 2. Under regularity conditions (see Appendix), if 0 < |ρk,l| < 1, and if µk(t), for

all k, is constant or known, then

n1/2(ρ̂S
k,l − ρk,l) −→ N(0, δ2

k,l)

in distribution, as n −→∞, where δ2
k,l = var(〈f∗k , f∗l 〉). If µk(t) is neither constant nor known, then

n1/2|ρ̂S
k,l − ρk,l| = Op(1).

The proof is in the Appendix. We may estimate the variance of ρ̂k,l simply by the empirical vari-

ance of {ρ̂k,l,i, i = 1, ..., n}, possibly including extra variance due to smoothing. This may be used

to calculate large sample confidence intervals and tests of, for example, Ho : ρ = 0. Alternatively,

one may construct bootstrap confidence intervals, obtaining bootstrap samples by resampling with

replacement from {ρ̂k,l,i, i = 1, ..., n} (Efron and Tibshirani, 1993). The construction of bootstrap

confidence intervals is discussed in Section 4.2. Such resampling will be reasonable if ρk,l is not too

extreme, i.e., close to 1 in absolute value. If ρk,l is extreme, one strategy might be to employ the

Fisher transformation (Fisher, 1921), z = (1/2)[ln(1 + r) − ln(1 − r)], to the {ρ̂k,l,i, i = 1, ..., n},
where r here is the estimated dynamical correlation (see also Efron, 1998).

In the assumptions of Theorem 2, the number of repeated measurements is required to be large

compared to the number of subjects from which dynamical correlation is calculated. This is needed

to accommodate a sufficiently fast rate of convergence for the smoothing step. This in itself of

course does not mean that dynamical correlation will not work if this assumption is not satisfied.

In fact, the small sample simulation reported near the end of Section 5.1 shows that the results can

be quite good for moderate numbers of repeated measurements as we encounter them in the data

example in Section 6. However, caution is indicated when the number of repeated measurements

is truly small. Additional comments on this point can be found toward the end of the Discussion

section.

Observe that case weights can be easily incorporated in the estimation of ρk,l. For exam-

ple, one may use a weighted average in lieu of the sample mean when estimating ρk,l, where the

weights might reflect the number of measurements available for patient i. Then, greater weight
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would be given to those subjects for whom one has more repeated measurements when calculating

the dynamical correlation estimate. Another comment is that in the estimation of ρk,l, there is no

need to specify the limit of the sum or define the exact form of the orthonormal basis in
∑

εr,kηr(t).

4. EXTENSIONS INCLUDING DERIVATIVES, LAGS,

AND INTERVAL ESTIMATION AFTER SMOOTHING

4.1 Incorporating derivatives and lag

We can extend the concepts introduced in section 2 to incorporate derivatives of curves as well

as a lag term. Specifically, for derivative orders ν, ν1 and ν2, and lag term τ , we can more generally

define the quantities in (1) as Mk = 〈f (ν)
k , 1〉 and Mk,l = 〈f (ν1)

k , f
(ν2)
l,τ 〉, where f

(ν2)
l,τ = f

(ν2)
l (t − τ).

In the case of lag τ 6= 0, some caution needs to be exercised near the ends of the data, in order to

ensure that both f
(ν1)
k (t) and f

(ν2)
l (t− τ) are well-defined. For example, a suitable weight function

for lag τ would be wτ (t) = 1
(b−a−|τ |)I[max(a,a+τ),min(b+τ,b)](t). To choose a common weight function

for all possible values of τ , one would choose the maximally occurring τ value.

The steps to obtain a standardized curve, as outlined in Sections 2 and 3, are then repeated with

fi,k replaced by f
(ν)
i,k . The curves f

(ν)
i,k would typically be obtained by a nonparametric derivative

estimate, obtained by one of various derivative estimation methods, for example using the kernel

method (Müller, Stadtmüller, and Schmidt, 1987) or local polynomial fitting (Fan and Gijbels,

1996). The dynamical correlation between two random curves (or derivatives) incorporating lag τ

is then defined as

ρk,l,ν1,ν2,τ = E{〈f (ν1)∗
k , f

(ν2)∗
l,τ 〉}, (10)

where M
(ν)
l,τ = 〈f̂ (ν)

l,τ , 1〉, and

f̂
(ν)∗
l,τ (t) = {f (ν)

l,τ (t)−M
(ν)
l,τ − µ

(ν)
l,τ (t)}/{∫ (f (ν)

k (t)−M
(ν)
l,τ − µ

(ν)
l,τ (t))2w(t)dt}1/2.

We estimate the dynamical correlation between two standardized random curves or derivatives

with lag τ analogously as before, by first defining the dynamical correlation for the i-th individual,

ρ̂k,l,i,ν1,ν2,τ = 〈f (ν1)∗
i,k , f

(ν2)∗
i,l,τ 〉, and then obtaining the estimate

ρ̂k,l,ν1,ν2,τ =
1
n

n∑

i=1

ρ̂k,l,i,ν1,ν2,τ . (11)

A quantity of interest is the lag τ at which the absolute value of the correlation ρk,l,ν1,ν2,τ is maxi-

mized, i.e., τk,l,ν1,ν2 = argmaxτ |ρk,l,ν1,ν2,τ |. A natural estimate for this is τ̂k,l,ν1,ν2 = argmaxτ |ρ̂k,l,ν1,ν2,τ |.
We may estimate the variance of ρ̂k,l,ν1,ν2,τ in the same manner as for ρ̂k,l, described in Section 3.

4.2 Interval estimation after smoothing

If no smoothing of the longitudinal data is necessary (e.g., as with fully observed random

trajectories), then the standard bootstrap percentile interval method, implemented via sampling
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from replacement from the ρ̂i,k,l, provides interval estimates for the dynamical correlation measure.

If an additional pre-smoothing step is necessary to handle data that are collected at discrete time

points, then an appropriate interval estimate will reflect the additional uncertainty of the smoothing

step. For this purpose we propose a two-stage bootstrap approach:

In a first smoothing step, one obtains continuous random trajectories. As will be shown in

Section 5.1, the estimation of dynamical correlation is robust to the smoothing bandwidth selection.

At the time points of the originally collected measurements, obtain residuals by subtracting the

smoothed from the original responses. In a second step, obtain a random sample of individuals

of size n, by sampling with replacement from all individuals. Then, for each individual from this

sample, sample with replacement from the residuals obtained in the first smoothing step. If the

same individual is sampled more than once, obtain a new random sample of residuals, for each

appearance of that individual in the sample. Then ”recreate the original data” by adding the

resampled residuals to the original smoothed curves. We repeat this step a total of B times. We

recommend B = 500 as a reasonable size for the number of bootstrap samples constructed in this

way.

One then smooths the recreated data, using the same bandwidth choice as in the first smoothing

step; this choice worked well in our applications. The resulting smooth curves reflect the additional

uncertainty from the initial smoothing step, due to the additional resampling from residuals. Fi-

nally, one obtains an overall dynamic correlation estimate, following the specifications above, for

each bootstrap sample. Ordering these across the B samples, one may obtain a 100(1 − α)%

two-stage bootstrap percentile interval. Alternatively, a studentized bootstrap interval can be gen-

erated.

4.3 Additional extensions

Other applications of dynamical correlation are dynamical principal components and dynamical

factor analysis. Upon having obtained the dynamical correlation matrix R = (ρ̂k,l,ν1,ν2,τ )1≤k,l≤p, by

applying (11) to all pairs of components (k, l), we then apply the corresponding classical multivariate

techniques (principal components analysis, factor analysis) to this correlation matrix.

In addition to the dynamical correlation discussed above, model (2) also contains the no-

tion of a static correlation, which would be represented by the correlation of the ε0,k. Here,

γk,l = corr(ε0,k, ε0,l) = E[(ε0,k−1)(ε0,l−1)]

[var(ε0,k)var(ε0,l)]1/2 can be estimated by γ̂k,l = { 1
n

n∑
i=1

(Mi,k − Mk)(Mi,l −
M l)}/{v̂ar(Mi,k)v̂ar(Mi,l)}1/2, as according to (3), E(Mi,k) = µ0,k, and corr(Mi,k,Mi,l) = γk,l.

5. SIMULATION STUDY

We performed two sets of simulations. In the first set, our goal was to determine the sensitivity

of the correlation estimate when using different bandwidths for implementation of a pre-smoothing
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step to longitudinal data. In the second set, our focus was on the comparison between a form of

functional canonical correlation and dynamical correlation.

5.1 Smoothing Parameter Selection Sensitivity Analysis

For n = 50 subjects, we generated two sets of N = 100 equidistant points tj on the grid [0, 1],

for each of a set of 100 simulations. The responses Yik(tj) were generated as follows:

1. Yik(tj) = fi,k(tj) + eikj ,

where fi,k(tj) is the kth random function or curve for the ith subject, and eikj is the within-

subject error term, with i = 1, 2, ..., 50, j = 1, 2, ..., 100, and k = 1, 2.

2. Following (2), we define the random function fi,k(tj) as:

fi,k(tj) = µk(tj) + (µ0,k + ε0,k) +
∞∑

r=1
εr,kηr(tj) = 1 +

2∑
r=0

εr,kηr(tj),

where, without loss of generality for the purposes of the simulation, we set µk(tj) ≡ 0,

µ0,k = 1, and assume that only the random components {ε0,k, ε1,k, ε2,k} are of significance.

3. The three orthonormal functions on [0, 1] that we employ to represent the functions fi,k are

η0(t) ≡ 1, η1(t) = 2
√

3(t− 1/2), η2(t) = 6
√

5(t− 1/2)2 − (1/2)
√

5}.

4. The εr,k were generated as follows:




ε0,1

ε1,1

ε2,1

ε0,2

ε1,2

ε2,2




∼ N







0

0

0

0

0

0




,




σ2
01 0 0 σ01,02 0 0

0 σ2
11 0 0 σ11,12 0

0 0 σ2
21 0 0 σ21,22

σ01,02 0 0 σ2
02 0 0

0 σ11,12 0 0 σ2
12 0

0 0 σ21,22 0 0 σ2
22







,

where ε0,k, ε1,k, ε2,k are the random terms for the k-th component function. The εr,k are

uncorrelated for different r. We choose σ2
01 = 1, σ2

11 = 1/2, σ2
21 = 1/3, σ2

02 = 1/2, σ2
12 = 1/3,

σ2
22 = 1/4. The covariance terms were chosen as σ01,02 = 1/3, σ11,12 = 1/4, σ21,22 = 1/6.

5. The within-subject errors were assumed to be distributed as eikj ∼ N(0, σ2
0), where we set

σ2
0 = 1/4, and assume that the eikj are all uncorrelated.

After generating the Yik(tj) once, we used local linear smoothing (see Appendix A.1 for more

details) to obtain smooth trajectories. In order to determine the sensitivity of the resulting dy-

namical correlation estimate to bandwidth choice, we generated the smoothed curves over a grid

of seventeen equidistant bandwidths h: {.010, .035, .060, ..., .410}. We then obtained dynamical

correlation estimates for each bandwidth choice with a uniform weight function, using (9). The
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results averaged over 100 simulation runs are in Table 1, noting that the target correlation ρtarget

was chosen as 0.5.

Table 1. Results of Sensitivity Analysis Simulation

Using Different Bandwidths

h .010 .035 .060 .085 .110 .135 .160 .185 .210 .235 .260 .285 .310 .335 .360 .385 .410

corr .392 .461 .478 .485 .489 .491 .492 .493 .493 .493 .493 .492 .491 .490 .488 .487 .485

sd .067 .081 .085 .087 .089 .090 .090 .091 .091 .091 .091 .091 .091 .091 .091 .092 .092

Here, corr represents the Monte Carlo mean of ρ̂, while sd represents the Monte Carlo standard

deviation of ρ̂, over all 100 simulations.

The correlation estimates are seen to be robust over a wide range of reasonable bandwidths.

The small downward bias of the estimates is likely due to the discrete nature of the measurements.

Fortunately, the bias of the estimate is very small, only .007 for bandwidths .185 through .260 and

not more than .012 for bandwidths .110 through .360. The only poor results are for the very small

bandwidths, particularly for the lowest bandwidth of .010.

We also ran a similar simulation, except using a smaller number of repeated measurements per

individual, i.e., 15, instead of 100. This may better reflect the number of repeated measurements

people see in a longitudinal data set, and indeed represents the average number of repeated measures

per patient in the protein application discussed in Section 6. Also, like this application, we limited

the number of individuals in the simulation to 35. The results of this smaller sample simulation

were almost identical to the larger one, except that the downward bias is more pronounced, though

still small, at .024, versus .007 for the 50 individual, 100 repeated measures case. The bandwidth

robustness remains, with any bandwidth choice away from the extremes showing very little increase

in bias.

5.2 Functional Canonical Correlation vs. Dynamical Correlation

The goal of this simulation is to evaluate dynamical correlation versus functional canonical

correlation (Leurgans et al., 1993) on the basis of each method’s ability to handle an increasingly

large number of repeated measurements per subject or observation unit. Before describing the

simulation, we should point out that the interpretations of dynamical correlation and functional

canonical correlation are not the same. Using the example of two curves, dynamical correlation

is attempting to describe the expected cosine of the angle in the function vector space between

the random components of the two curves, whereas functional canonical correlation is attempting

to describe the maximum correlation between linear projections of these curves, that are based

on canonical weight functions. Both correlation methods can be used to describe multivariate

relationships between curves and, hence, a comparison of their performance in practice is useful.
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Formally, the (first) coefficient of functional canonical correlation ρC
k,l between random functions

fk, fl can be defined as follows, referring to He et al., (2003) for further details and theoretical

background. Let

ρC
k,l = sup

gk,gl∈L2(dw)

cov(〈gk, fk〉, 〈gl, fl〉) (12)

where the canonical weight functions gk and gl are subject to

var(〈gk, fk〉) = 1, and var(〈gl, fl〉) = 1.

As estimating functional canonical correlation corresponds to an ill-posed inverse problem, one

needs to implement some kind of regularization. As it turns out, this need for regularization is the

crux of this method.

We use here a simple version of regularized functional canonical correlation for our comparisons.

The setup of this simulation is the same as the initial larger sample simulation in Section 5.1. Given

the previous results, for the smoothing steps we use a bandwidth of 0.21, which lies in the middle of

the range of the originally considered bandwidth choices. We ran 250 simulations, generating two

sets of repeated measurements for each of 50 patients, with target dynamical correlation ρtarget =

0.50. The dynamical correlation method is implemented with a smoothing step as described above.

The mean dynamical correlations when assuming 100, 1000 or 5000 repeated measurements were

as follows: ρ̂100 = 0.494, ρ̂1000 = 0.500, ρ̂5000 = 0.500. Obviously, dynamical correlation is quite

insensitive to the original number of repeated measurements, even when the number becomes large.

As the definition of functional canonical correlation clearly differs from that for dynamical

correlation, we cannot expect the first canonical correlation to be 0.5. What is of main interest is to

see how many repeated measurements the method can handle before breaking down. We evaluated

canonical correlation in two ways: (1) Applying multivariate canonical correlation directly to the

vector of repeated measurements; (2) Implementing a regularized version by incorporating an initial

smoothing step as described above. This latter method is discussed and evaluated under the rubric

”smoothing and subsequent subsampling” (Method 1, FCA-LP) in He et al., (2004), where various

implementations of functional canonical correlation are compared. This method is described there

as a simple and successful regularization procedure.

With both implementations (1) and (2), functional canonical correlation was found to break

down for fairly small numbers of repeated measurements. For even just 30 repeated measurements,

the unregularized canonical correlation results were 1.0 for the first 11 (of 30) canonical correlations.

For 49 repeated measurements, each and every canonical correlation was 1.0. It was even more

surprising that the same was found for the functional canonical correlations that had been obtained

through regularization by smoothing.

Canonical correlation may behave well for up to several repeated measurements, possibly up

to twenty, which is the number of repeated measurements that were used in the Leurgans et al.,

(1993) paper. However, we replicated the smaller sample simulation as described at the end of
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section 5.1, and we found the first 4 (of 15) canonical correlations all were at least 0.9. This is

difficult to interpret, and shows the signs of breakdown even with as few as 15 repeated measures.

Our results strongly suggest that canonical correlation cannot be depended upon when the number

of repeated measurements is in the medium to large range. This problem is clearly avoided by the

dynamical correlation measure.

6. APPLICATION TO LONGITUDINAL PROTEIN DATA

The longitudinal acute phase protein measurements mentioned in section 1 consist of measure-

ments for 35 subjects with varying designs, each with between 12 and 18 repeated measurements

for the multivariate set of five proteins. Two of the proteins, albumin (alb) and transferrin (trf),

fall in the class of negative acute phase proteins (NAPP’s). The other three proteins, C-reactive

protein (crp), α-aminoglobulin (aag), and ceruloplasmin (cer), belong to the class of positive acute

phase proteins, or simply, acute phase proteins (APP’s). Increased values of these latter proteins

are indicators of infections and the APPs are generally thought to move in the opposite direction

of the NAPP’s. We note that there exists more between-subject variability than within-subject

variability among the responses for these patients.

A central biomedical question of this study (Kaysen et al., 2000) was to determine in what way

the acute phase blood proteins are correlated longitudinally, specifically to establish whether APP’s

are negatively correlated over time with NAPP’s, and to analyze the nature of the correlation. We

show how these questions can be addressed with the proposed dynamical correlation, including its

extension to derivatives and lag effects.

The pre-smoothing step to obtain continuous protein level trajectories was implemented as

follows: Assume fk is defined on [0, Ti] and that for subject i, measurements xi,k(ti,j) are recorded

at times ti,j , with j = 1, ..., ni, 1 ≤ k ≤ p, and 0 ≤ ti,j ≤ Ti. We set fk(t) = m̂(t), where m̂(t)

is the value of a specified non-parametric smoother at argument t. We apply the smoother to

the scatterplot (ti,j , xi,k(ti,j)), with the smoothed values computed on a dense grid of points. To

perform the smoothing, we chose local linear regression (e.g., Fan and Gijbels, 1996) with kernel

function (1 − x2)21[−1,1]. For the basic approach, also see Appendix A.1. For this specific data

analysis, we used a monotonically increasing design-adaptive bandwidth,

ht =





a : t < u

a + {(t− u)/(v − u)}(c− a) : u ≤ t ≤ v

c : t > v

,

where, for the standardized protein curves, u = 25 days and v = 165 days; u and v were cho-

sen taking available data and the resulting sufficient smoothness of the curves across the span of

the follow-up period for the subjects into account. This adaptive bandwidth choice reflects the

nonequidistant designs in which, roughly, weekly repeated measurements in the first six weeks of



13

Table 2. Estimated Dynamical Correlation Matrix

for Longitudinal Protein Data

alb crp aag cer trf

alb 1.000 -0.298* (.004) -0.326* (.036) -0.166 (.276) 0.247 (.060)

crp 1.000 0.549* (0) 0.387* (.024) -0.215 (.072)

aag 1.000 0.686* (0) -0.096 (.616)

cer 1.000 0.107 (.256)

trf 1.000
* = 95% two-stage bootstrap CI does not contain 0.

Bootstrap p-values in parentheses.

observation were subsequently followed by monthly measurements. In general, we should note the

lack of sensitivity in the resulting correlation estimate based on bandwidth choice, except toward

the extremes, as demonstrated in the simulation study in Section 5. Though not shown in the

results here, such lack of sensitivity of bandwidth selection was also demonstrated for the data in

this example.

The standardized versions of the protein curves are shown in Figure 2 for the same randomly

selected subject as in Figure 1. There is some appearance of a positive relationship over time

between alb and trf, as well as between crp and aag, with a negative correlation between these

two sets. It appears that cer is not consistently correlated with any other protein over time. One

would like to ascertain whether the longitudinal protein relationships seen here for one individual

are consistent across subjects.

Using the methods of Section 3, we calculated the dynamical correlation matrix shown in Table

2. We used weighted averages such that individual dynamical correlations between proteins were

assigned weights of Ni,k/
n∑

i=1
Ni,k for the overall dynamical correlation values, where Ni,k is the

number of original observed repeated measurements of protein k for patient i.

The estimated dynamical correlations support the hypothesis that the negative acute phase

proteins (NAPP’s), alb and trf, are negatively correlated over time with the positive acute phase

proteins (APP’s), crp, aag, and cer. Significance was assessed based on 95% two-stage bootstrap

percentile confidence intervals, as described in Section 4.2. Associated bootstrap p-values, based

on the empirical bootstrap distribution of the correlation estimates, are also provided in Table 2.

The largest observed dynamical correlation occurs between aag and cer, two slow-moving positive

acute phase proteins, at 0.686.

Using the dynamical correlation matrix of Table 2, we performed a corresponding dynamical

principal components analysis to see which linear combinations of the proteins would best explain

the longitudinal variability in the data. The first dynamical principal component accounted for 80%

of this variability, with loadings given in Table 3. The principal component accounting for most of
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Table 3. Loadings of First Dynamical Principal Component;

Based on Estimated Dynamical Correlation Matrix

alb crp aag cer trf

1st PC 0.501 -0.481 -0.516 -0.375 0.333

Table 4. Estimated Static Correlation Matrix

for Longitudinal Protein Data

alb crp aag cer trf

alb 1.000 -0.214 -0.173 -0.259* -0.337*

crp 1.000 0.597* 0.448* -0.164

aag 1.000 0.433* 0.002

cer 1.000 0.121

trf 1.000
* = 95% bootstrap CI does not contain 0

the longitudinal variability of the proteins thus seems to be simply a linear contrast between the

NAPP’s and APP’s, verifying the a priori hypothesis of the medical investigator.

In order to identify ”typical” subjects exemplifying the correlation structure, we search for

protein curves which are most aligned with the direction of the vector of loadings for the first

dynamical principal component. This is possible since the proposed methodology allows for the

construction of dynamical correlation matrices and corresponding principal components (PC’s) for

individuals. We simply locate the individual(s) whose loadings enclose the smallest angle with

the loadings of Table 3. It may also be of interest when analyzing multivariate functional data

to identify outlying subjects, i.e., individual(s) with the largest such angle(s). The standardized

curves for the two subjects whose loadings gave rise to the smallest angles are presented in Figure 3.

The strong negative dynamical correlation between the APP’s and NAPP’s is nicely demonstrated

in these two subjects.

We also compared the dynamical correlation results to the ”static correlation” discussed in

section 4.3. This is equivalent to a cross-sectional analysis and is based on the correlations between

the intercept terms in (2), i.e., Mk and Ml, for two proteins of interest, k and l, 1 ≤ k, l ≤ p. The

results from this approach, listed in Table 4, turned out to be similar to the longitudinal dynamical

correlation approach, except for correlations related to trf. For example, for biological reasons, trf

and alb, both negative acute phase proteins, would be expected to be positively correlated, a result

seen in the dynamical correlation approach. However, trf and alb were seen to be significantly

negatively correlated with this static cross-sectional approach. This indicates a preference for

dynamical correlations.

Another analysis focused on the dynamical relationship between curves, derivatives, and time-
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Table 5. Maximum Dynamical Correlation Results for alb and crp for

Derivatives of Orders 0 (alb0, crp0) and 1 (alb1, crp1)

and Lags (in days; alb leading crp), Ranging between -30 and 30 Days

lag (days) corr at lag corr for no lag

alb0 crp0 -12 -0.348 -0.298

alb1 crp1 -10 -0.368 -0.300

shifted versions for alb and crp. These results are presented in Table 5, including the amount

of lag for which the highest correlation was achieved, the value of the corresponding dynamical

correlation, and the correlation at lag 0, for both functions and first derivatives. The results for

the first derivative closely mimic those for the functions themselves. Inclusion of a lag increases

correlation somewhat but not by much as compared to the correlation for no lag. The correlation

as a function of lag is shown in Figure 4, for alb and crp. It appears that changes in alb are

anticipated by changes in crp, a relationship that is biologically plausible, but the converse is not

true. Though not shown here, a similar relationship exists for lags of the first derivatives between

alb and crp.

A final analysis concerned the performance of functional canonical correlation in this real data

setting. We use the same regularization procedure as described in Section 5.2 and the same esti-

mated curves as created for the dynamical correlation analysis. We looked at 15 equidistant points

from each estimated curve, which reflected the average number of repeated measurements per pa-

tient, and found that 5 (of 15) canonical correlations were 0.94 and above. This result renders

this approach rather uninterpretable, and in concordance with the findings from the simulations

in Section 5.2, indicates problems with using functional canonical correlation when the number of

repeated measurements is in the medium to large range.

7. DISCUSSION

We have introduced a model for multivariate longitudinal data that allows for the definition

of a simple measure of correlation between various longitudinal components. The corresponding

estimates of dynamical correlation have reasonable asymptotic properties and allow for establish-

ing dynamical correlation at the individual level. Usual multivariate techniques such as principal

components analysis can be applied once a dynamical correlation matrix has been obtained. In

addition, we can also determine whether the dynamical correlation is maximized at certain lags

between the component curves. Such information will lead to a better understanding of the rela-

tionships between the components of multivariate longitudinal data.

There exist many possible extensions of this research. For example, the proposed dynamic

correlation measures similarity between functions, quantifying how they move together through
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time. However, one may have responses that follow differing patterns of correlation depending on

which interval of follow-up one is investigating. An example might be the consideration of the

correlation between two functions before and after introduction of some stimuli or treatment. This

can be handled with a more flexible weight function. For example, one could include a local window

type weight function w(t, z, h) = (1/2h) I[z−h,z+h](t), where h is a specified bandwidth centered at

the moving target z.

Another extension would be to investigate our correlation measure as a function of a covariate

or covariate function. Morris et al., (2001) have explored this, developing a functional data analytic

correlation measure to determine the dependency between carcinogen-induced DNA adduct levels

in two parts of the colon as a function of the relative cell position within the crypt. Our method

could as well be extended to reflect the effect of a discrete or continuous covariate on the dynamical

correlation. For example, we could consider determining the correlation of the blood proteins as

a function of gender; we would then generate the curves and subsequent correlations in the two

groups separately.

Although we establish an asymptotic normality result for the estimated dynamical correlation,

in the proof, we do require the number of repeated measurements to increase to ∞. Though a

very large number of repeated measurements is typically not observed in longitudinal data sets,

the performance of dynamic correlation has been shown to be rather good in cases of a smaller

number of repeated measurements, both in an application with an average of 15 repeated measures

per individual, and in simulations. Because curves need to be estimated before implementing this

method, we do recommend using caution when the number of repeated measurement is small, say

below 10, and generally recommend against its use when the number of repeated measurements is

as small as 3 or 4.

Finally, though we have demonstrated that the correlation estimate is not sensitive to band-

width choice, an automatic bandwidth selection procedure is desirable. One possibility is a leave-

one-individual-out cross-validation approach that is based upon the integral defined by (10). This

is an area of future research. Our simulations and application to longitudinal protein data clearly

demonstrate the usefulness and potential of the dynamic correlation method. Among its main at-

tractions are easy interpretability, simplicity, stability, robustness, and reasonably fast computation.

APPENDIX

A.1. Local linear smoothing.

For a scatterplot (Xj , Yj), j = 1, . . . ,M, and a point x in the domain of the Xi, we define local

linear smoothers targeting the regression function E(Y |X = x) as follows: Given a nonnegative
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kernel function K and a sequence of bandwidths h, minimize the weighted sum of squares

M∑

j=1

K

(
x−Xj

h

)
[Yj − {β0 + β1(x−Xj)}]2

with respect to β0, β1, obtaining β̂0, β̂1. The estimated regression function at x is Ê(Y |X = x) = β̂0.

In our application we set Xj = tj , Yj = Yik(tj) and M = N .

A.2. Proof of Theorem 1.

Note that according to (a) orthonormality of the ηr (r = 0, 1, ...), (b)
∫

w(t)dt = 1, and (c)
∫

µk(t)w(t)dt = 0, we have
∫

(fk(t)− µk(t)−Mk)(fl(t)−Ml − µl(t))w(t)dt =
∫

(
∞∑

r=1
εr,kηr(t))(

∞∑
r=1

εr,lηr(t))w(t)dt =
∫ ∞∑

r=1
εr,kεr,lw(t)dt =

∞∑
r=1

εr,kεr,l.

Analogously,
∫

(fk(s)− µk(t)−Mk)2w(s)ds =
∞∑

r=1
ε2
r,k, and (6) follows.

A.3. Regularity conditions for Theorem 2.

The smooth curve estimates f̂S
k,i are obtained in a pre-smoothing step from the observed discrete

data. We make here a few simplifying assumptions. First of all, we assume that at least N

measurements are available for each curve which is to be smoothed, secondly we assume that data

for all curves are sampled according to the model Yikj = fi,k(xikj) + eikj , i = 1, . . . , n, k =

1, . . . , p, j = 1, . . . , N , where the errors eikj are i.i.d. and satisfy var(eikj) = σ2
e , E(eikj) = 0.

Additional assumptions are as follows: The sampling points xikj follow a design density gikj

(see (2.4) in Müller and Stadtmüller, 1987, from here on referred to as MS). This family of design

densities is equi-continuous and uniformly bounded away from 0 for all i, k, j. All design densities

have the same compact support. Furthermore, the errors satisfy Assumption B of MS, with uniform

bound on E(|eikj |s) in i, k, j for a given s > 2. The smoother that is used may be written as

f̂S
i,k(t) =

∑
Wj(t)Yikj , i.e., it is a linear smoother. The weight functions Wj(t) employed by this

smoother satisfy conditions (5.3)-(5.6) of MS, uniformly in i, k, j.

We note that these assumptions are satisfied for kernel smoothers with smooth (Lipschitz-

continuous) non-negative kernels or local linear smoothers with smooth weight functions and suit-

able choices of bandwidths h. For twice differentiable functions, setting k = 2 and ζ = 0 in

Theorem 5.1 in MS, these conditions amount to lim inf Nh2 > 0, lim inf ( Nh
log N )1/2N−2/(s−η) > 0 for

an η satisfying 0 < η < 2.

We also assume that the smoother, when using bandwidth h, satisfies

E(f̂S(t)− f(t)) = h2f (2)(t)C(1 + o(1)),

for a constant C > 0, where the o-term is uniform over equi-continuous families of functions f (2).

Additional conditions specific to the situation at hand are
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(C1) All functions fi,k are twice continuously differentiable, with equi-continuous second deriva-

tives, and

sup
i,k,t

|f (2)
i,k (t)| = Op(1).

(C2) The minimum number of sampled observations per curve N increases with sample size n in

such a way that

N →∞, n(log N/N)4/5 → 0.

(C3) It holds that

n(
log N

Nh
)1/2 → 0,

√
nh2 → 0.

A.4. Proof of Theorem 2.

Following step by step the proof of Lemma 5.2 in MS, one finds that (C2) is sufficient to apply

the exponential inequality to invoke the Borel-Cantelli lemma, and (C1) implies uniform bounds

for the bias terms. Setting ξN = ( log N
Nh )1/2 + h2, we obtain from this lemma that

sup
i,k,t

|f̂S
i,k(t)− fi,k(t)| = Op(ξN ),

and therefore also

sup
t
| 1
n

n∑

i=1

f̂S
i,k(t)−

1
n

n∑

i=1

fi,k(t)| = Op(ξN ).

This in turn implies

sup
k,l,i

|ρ̂S
k,l,i − ρ̂k,l,i| = Op(ξn),

and therefore

|ρ̂S
k,l − ρ̂k,l| = Op(ξn).

Then (C3) implies that

|ρ̂S
k,l − ρ̂k,l| = op(

1√
n

).

This means that the dynamical correlation estimator based on pre-smoothed functions and the

estimator obtained from full processes have the same asymptotic distribution.

Next, we show
√

n(ρ̂k,l − ρk,l) −→ N(0, δ2
k,l), in distribution, as n →∞, for 0 < |ρk,l| < 1, and

that var(ρ̂k,l) = δ2
k,l is finite and bounded between 0 and 1.

Let f̃∗i,k and f̃∗i,l be the standardized curves for responses k and l, respectively, for patient i

when µk and µl are known or unknown but constant. Then, ρ̃k,l = 1
n

n∑
i=1

∫
f̃∗i,k(t)f̃

∗
i,l(t)w(t)dt is the

average of n iid random variables, so that Eρ̃k,l = ρk,l. Under the assumption that δk,l is finite, the

central limit theorem provides the desired result.

Since ρ̃k,l,i =
∫

f̃∗i,k(t)f̃
∗
i,l(t)w(t)dt =

∞∑
r=1

εi,r,kεi,r,l/[
∞∑

r=1
ε2
i,r,k

∞∑
r=1

ε2
i,r,l]

1/2, based on (6), this implies

δ2
k,l = Eρ̃2

k,l−(Eρ̃k,l)2 = E{(

∞∑
r=1

εr,kεr,l

[
∞∑

r=1
ε2
r,k

∞∑
r=1

ε2
r,l]

1/2

)2}−(E{

∞∑
r=1

εr,kεr,l

[
∞∑

r=1
ε2
r,k

∞∑
r=1

ε2
r,l]

1/2

})2. (A.1)
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The second term on the r.h.s. of (A.1) is simply ρ2
k,l and hence is bounded between 0 and 1, while

the first term, by Cauchy-Schwarz, is also bounded between 0 and 1. As long as ρk,l is not equal to

0, -1, or 1, then δ2
k,l is bounded, positive, and not equal to 0. A degenerate result occurs when ρk,l

is equal to 0, -1, or 1, since then δ2
k,l ≡ 0. Therefore, we require 0 < |ρk,l| < 1 for the asymptotic

normality result. In the case when µk and µl are neither constant nor known, we obtain the weaker

result that ρ̂k,l = ρk,l + Op(n−1/2).
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FIGURE CAPTIONS

Figure 1. Observed repeated measurements for albumin (alb) and C-reactive protein (crp) for

a randomly selected subject. There is evidence for a negative correlation over time between alb

and crp.

Figure 2. Smoothed standardized protein curves for the five proteins (albumin (alb); C-reactive

protein (crp); α-aminoglobulin (aag); ceruloplasmin (crp); transferrin (trf)) for the same subject

shown in Figure 1. The smoothed curves were created using local linear regression as described in

the text.

Figure 3. Smoothed standardized proteins for two subjects whose correlation structure is most

closely aligned with the first principal component of the estimated dynamical correlation matrix.

Figure 4. Dynamical correlation between alb and crp as a function of lag term. Dynamical

correlations were calculated over a grid of lags, in days. When the lag term is negative (e.g., -x

days), this implies crp is leading alb by x days, while alb is leading crp by x days when the lag

term is positive.
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