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Abstract

We develop regression diagnostics for functional regression models which relate a func-

tional response to predictor variables that can be multivariate vectors or random functions.

For this purpose, we define a residual process by subtracting the predicted from the observed

response functions. This residual process is expanded into functional principal components,

and the corresponding functional principal component scores are used as natural proxies for

the residuals in functional regression models. For the case of a univariate covariate, we pro-

pose a randomization test based on these scores to examine if the residual process depends

on the covariate. If this is the case, it indicates lack of fit of the model. Graphical methods

based on the functional principal component scores of observed and fitted functions can be

used to complement more formal tests. The methods are illustrated with data from a recent

study of Drosophila fruit flies regarding life-cycle gene expression trajectories as well as func-

tional data from a dose-response experiment for Mediterranean fruit flies (Ceratitis capitata).

Keywords: Cook’s distance; Eigenvalue weighting, Functional data analysis; Gene expression

profile; Goodness-of-fit; Hat matrix; Principal component; Randomization test; Residuals.

∗Corresponding author



1 Introduction

Methodology of regression analysis for functional data, where either predictors or responses can

be viewed as random functions, is receiving increasing attention. Functional data are generated

when the value of a variable is repeatedly recorded on a dense grid of time points for a sample

of subjects. Each string of repeated measurements may then be represented as a function, where

one usually assumes that the underlying trajectories are smooth. Functional data are becoming

more common due to rapid advancements in modern technology and increasingly complex research

questions which involve the dynamics of time-dependent processes. The earliest statistical study

of linear functional regression appears to be by Ramsay and Dalzell (1991), while the idea of

regression for stochastic processes dates back at least to Grenander (1950). Reviews of various

regression models for functional data concerning different combinations of functions and vectors

as response and predictor variables are provided in the monograph by Ramsay and Silverman

(2005), as well as in several articles (e.g., Chiou, Müller and Wang 2004; Müller 2005). Recent

relevant works on functional regression include Faraway (1997), Cuevas, Febrero and Fraiman

(2002), Cardot et al. (2003) and Ferraty and Vieu (2004), and articles on the related generalized

functional linear model include James (2002), Escabias, Aguilera and Valderrama (2004), Cardot

and Sarda (2005) and Müller and Stadtmüller (2005), among others.

Classical regression diagnostics are based on residuals (Anscombe and Tukey 1963) and have

an important place in applied statistics for the task of checking model assumptions that underlie

statistical analysis. Such techniques have been largely limited to classical linear and nonlinear

regression models, where response and predictor variables are scalars or vectors. A primary appli-

cation of diagnostics has traditionally been bias detection, besides checking for homoscedasticity

and distributional assumptions. It is certainly of interest to extend and develop basic regression

diagnostics for functional regression analysis, in particular regression models with functional re-

sponses. This paper provides some ideas for such an extension. Models that specifically address

functional responses include the above-mentioned functional linear regression model of Ram-

say and Dalzell (1991), where both response and predictor variables are random functions, the
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functional response model (Chiou, Müller and Wang 2003a,b), and the functional dose-response

model (Chiou, Müller and Wang 2004), where in the latter models the predictors are assumed to

be scalars or vectors.

An ubiquitous approach in regression diagnostics is to ascertain whether the residuals depend

in any way on the fitted responses, i.e., the values predicted by the assumed model for given

predictor levels. The most commonly used residual plot, the scatterplot of residuals versus fitted

values, serves this purpose. Any deviations from a random scattering of the residuals, which are

supposed to lie in a “band” around the abscissa, are taken to indicate deviations caused by lack

of fit. The most serious deviation is typically model bias. Such bias usually invalidates statistical

inference drawn from fitting the model and often reveals itself in trends visible in the residual plot.

When such bias is detected, a next step is to find an improved model that provides a satisfactory

fit to the data.

We address here the question of how to extend this diagnostic principle to the case of a regres-

sion model with functional responses. The main idea is to replace the customary residuals that

are used for one-dimensional responses with residual processes. Residual processes are obtained

analogously to classical residuals by subtracting the fitted response function from the observed

response function for each subject or experimental unit. Of interest is whether these residual pro-

cesses depend in any way on predicted values. If such dependence is detected, this points to bias

and accordingly lack of fit of the underlying functional regression model. The lack of fit could be

due to misspecified parametric or structural components. While fully parametric models are not

often used in typical functional regression applications, such models are common in longitudinal

data analysis, which can also be brought under the umbrella of functional regression (compare

Müller 2005 for a review of recent developments in this direction).

A typical example for structural constraints built into functional regression models is the

linear functional regression model (Ramsay and Dalzell 1991), which is inherently nonparametric

(i.e., it has no parametric components) but is based on structural linear assumptions about the

relationship of the response function with the predictor function. These assumptions reduce the

dimensionality of the regression problem and allow the representation of this model with basis
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function expansions that for example can be conveniently implemented with functional principal

components. Functions are represented with an infinite number of functional principal components

that are usually ordered according to the size of their corresponding eigenvalues, and in statistical

applications will be truncated at a finite number of components. It is then of interest to ascertain

whether such structural model assumptions and the associated “smaller” model are satisfied for

a functional regression model, or whether a less structured and therefore “larger” model must be

used.

The general form of the functional regression model with functional response that we consider

can be described as

Y (t) = f(t, η(Z)) + Q(t), (1)

where Y (t) is the random response function defined on domain t ∈ T where T is a closed interval,

f(t, η(Z)) is a function of t and η(Z) where Z is a covariate (possibly multivariate or functional),

and η(·) is a function mapping Z to R, for example a single index for the case of a covariate vector

Z. Furthermore, Q is an error process. We consider model (1) to be normalized in such a way

that the overall mean function is on target, i.e.,

E[f(t, η(Z))] = EY (t) = µY (t), EQ(t) = 0, t ∈ T .

We include the case where the predictor variable is a function Z(s), s ∈ S, for a closed interval

S. For example, in the functional linear model the conditional mean function is of the form

E(Y (t)|Z) = f(t, η(Z)) = µY (t) +
∫
S

β(s, t)(Z(s)− µZ(s)) ds, (2)

where µZ(s) = EZ(s) and the bivariate regression parameter function β(s, t) is either parametri-

cally specified or (more commonly) assumed to be just smooth and square integrable.

Functional regression models (1) incorporate the influence of the predictors Z through the func-

tion f(t, η(Z)), which can assume various forms. An example is the additive model f(t, η(Z)) =

g(µY (t)+η(Z)), where g(·) is a known link function and µY (t) stands for an overall mean response

function. Another useful choice is a multiplicative effects model, as implemented in the functional
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response models described in Chiou et al. (2003b, 2004). In these models, one assumes a multi-

plicative form f(t, η(Z)) = µY (t)η(Z) with the constraint Eη(Z) = 1, i.e., an overall mean time

trend µY (t) is multiplied with a covariate-dependent smooth effect. This approach was shown to

provide parsimonious descriptions for functional dose-response data.

The remainder of the paper is organized as follows. The role played by residual processes in

diagnostics is described in Section 2. Section 3 presents functional residual plots in the context

of an application to life-cycle gene expression trajectories for Drosophila fruit flies. A random-

ization test for goodness-of-fit diagnostics is described in Section 4. Section 5 presents additional

details of the proposed diagnostic procedures in connection with an application to functional

response models for data obtained from a dose-response experiment that was carried out with

Mediterranean fruit flies (Ceratitis capitita). Discussion and concluding remarks are in Section 6.

2 Diagnostics via functional principal component analysis of resid-

ual processes

When fitting model (1) to data, the fitted model Ŷ (t) and residual process R(t) are given by

Ŷ (t) = f(t, η̂(Z)), R(t) = Y (t)− Ŷ (t), (3)

where η̂ is an estimate of a single index, i.e., the effect that Z has in the assumed model. This

estimate is specific to the particular model considered. If the model fits reasonably well, we expect

µR(t) = ER(t) ≈ 0, t ∈ T ,

and more importantly, that R(t) does not depend on the predictor Z, i.e.,

E(R(t)|Z) ≈ 0, t ∈ T .

Goodness-of-fit diagnostics and tests for residuals naturally focus on checks for these desirable

properties of residual processes.
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2.1 Functional principal component analysis

Generally, under mild assumptions, observed square integrable processes X defined on sup-

port [0, T ] with mean EX(t) = µX(t) allow the covariance expansion Γ(s, t) = E[{X(s) −

µX(s)}{X(t) − µX(t)}] =
∑

k λkρk(s)ρk(t), for s, t ∈ [0, T ], where λk and ρk, k = 1, 2, . . ., are

eigenvalue-eigenfunction pairs. This leads to the Karhunen-Loève expansion of X in L2([0, T ]),

X(t) = µX(t) +
∞∑

k=1

Akρk(t). (4)

Here, the random variables Ak are the functional principal component (FPC) scores, defined as

Ak =
∫

(X(t) − µX(t))ρk(t) dt. They satisfy E(Ak) = 0 and cov(Ak, Al) = δklλk, for all k and l,

with the Kronecker symbol δkl = 1 if k = l, and δkl = 0 otherwise. The associated eigenvalues

λk = var(Ak), assuming that λ1 ≥ λ2 ≥ . . ., with
∑

λk < ∞. The eigenfunctions ρk(t) are

orthonormal in L2([0, T ]) and are assumed to be smooth (twice continuously differentiable).

Given a sample of observed random trajectories Xi, i = 1, . . . , n, of processes X, estimates

µ̂X of the mean function of X can be obtained by cross-sectional averaging over all observed

trajectories, and estimates Γ̂ of the covariance function Γ by smoothing the cross-products (Xi(s)−

µ̂X(s))(Xi(t)− µ̂X(t)), i = 1, . . . , n, followed by spectral decomposition of the resulting discrete

covariance matrix. These steps lead to eigenfunction estimates ρ̂k and eigenvalue estimates λ̂k,

implementing for example the method described in Chiou, Müller and Wang (2003); compare also

Rice and Silverman (1991). Once mean and eigenfunction estimates have been determined, FPC

score estimates are obtained as

Ãik =
∫ T

0
(Xi(t)− µ̂X(t)) ρ̂k(t) dt, (5)

via numerical integration, or alternatively, by a conditioning step (these two approaches are

compared in Yao, Müller and Wang 2005a and Müller 2005).

Alternative eigenvalue estimates may also be obtained from the empirical variances of the esti-

mated FPC scores Ãik, i = 1, . . . , n. In situations where the observed functions are contaminated

with measurement errors or where one wishes to ensure non-negative definiteness of the covari-

ance matrices, modifications using shrinkage estimates of functional principal component scores
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and projections on positive definite covariance surfaces (by omitting components with negative

estimated eigenvalues) have been described in Yao et al. (2003, 2005a). In the applications of

this study, the shrinkage estimators of functional principal component scores are used, where the

optimal shrinkage factor is obtained by minimizing cross-validated squared prediction errors.

In the Karhunen-Loève expansion of X (4), the orthonormal set of eigenfunctions ρk plays

the role of basis functions in L2([0, T ]). Other basis functions in L2([0, T ]) can also be used

instead to span the process. Among all expansions of X with K basis functions, however, the

truncated Karhunen-Loève expansion maximizes the percentage of total variance explained by

the K components, which is
∑K

k=1 λk/
∑∞

k=1 λk, and therefore the eigenbasis is often preferable.

We note that the eigenfunctions form just one convenient basis among many possible bases, and

although they are estimated, are fixed functions that are solely determined by the covariance

structure of processes X. A consequence is that we do not need to worry about dependency of the

eigenfunctions of the processes that we consider on the predictor variable Z. To make the present

approach feasible, it is on the contrary important that eigenfunctions are chosen irrespective of

the covariates Z, so that any dependency on Z is entirely carried by the FPC scores Ak which

are the random components; see Chiou et al. (2003a). In this setting, the sequence of FPC scores

A1, A2, . . . and processes X are equivalent, so that any regression relation of X with a variable Z

can then be expressed in terms of regression relations of the Aj with Z.

We focus here on practical aspects, and it is a common practical experience that for functional

data the first K eigenfunctions ρk, k = 1, . . . ,K, effectively span the processes for values of K that

are small to moderate. As more and more curves are sampled, the value of included components

K typically will increase. In asymptotic theory, one assumes typically that K = Kn increases with

sample size n (Yao et al. 2005a, Hall and Hosseini-Nasab 2006), while in practical applications

this is reflected by the fact that K is chosen from the data, in dependence on sample size and

sample characteristics. However, it will always be a finite choice that is made for a given data

set. The situation is similar to the bandwidth choice in nonparametric curve estimation where a

bandwidth has to converge to zero asymptotically but in practical situations a fixed value will be

chosen.
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Choices K = Kn then lead to the fitted model of a truncated Karhunen-Loève expansion for

individual i, using the first K random components,

X̂K
i (t) = µ̂X(t) +

K∑
k=1

Ãikρ̂k(t) , (6)

where µ̂X(t) and Ãik are as in (5). Since the functional linear regression we consider (at least

in theory) can be decomposed into uncorrelated simple linear regressions, as explained at the

end of section 3.1, the exact choice of K will not impact the diagnostics for each component.

Therefore, we do not need to worry about the total number of components when interpreting the

goodness-of-fit for the components that are included, one at a time.

To determine the number of unknown components K from the data one has several options.

These include use of the scree graph or the cumulative percentage of total variance (CPV), as

in conventional multivariate principal components analysis, the pseudo-AIC criterion (Yao et al.

2005a), and minimizing cross-validation prediction errors. The cumulative percentage of total

variance explained by the first M functional principal components is

CPV(M) =
M∑

k=1

λk/
∞∑

k=1

λk, M = 1, 2, . . . (7)

With a predetermined threshold value, 90% say, the number of components is chosen such that K

is chosen as the minimal value M satisfying CPV(M) ≥ 90%. Let X̃i = (Xi(ti1), . . . , Xi(timi))
T

be the observed trajectories for process Xi, where mi is the number of observations for individual

i. The number of components determined by the pseudo-AIC criterion is chosen by minimizing

AIC(M) with respect to M ,

AIC(M) =
n∑

i=1

{
1

2σ̂2
X

(X̃i − X̃M
i )T (X̃i − X̃M

i ) +
mi

2
log(2π) +

mi

2
log(2σ̂2

X)
}

+ K , (8)

where X̃M
i = (X̂M

i (ti1), . . . , X̂M
i (timi)), and σ̂2

X is the estimated measurement error variance (see

Yao et al. 2005a for details). Another automatic selection criterion is obtained by minimizing the

cross-validation prediction errors CV(M) with respect to M ,

CV(M) =
n∑

i=1

mi∑
j=1

(X̃i(tij)− X̂M
(i)(tij))

2dt, (9)
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where X̂M
(i)(tij) is the fitted function for Xi by leaving out the ith observed trajectory, using M

components for model fits.

Functional principal component analysis (FPCA) can be applied to various processes which

play a role in functional regression. These include the response functions Y (t), the residual

processes R(t), the fitted processes Ŷ (t) = f(t, η̂(Z)) and predictor processes Z(t) (in the case of

functional predictors). Accordingly, we denote the estimated FPC scores obtained from FPCA

for each of these processes by AY for processes Y , AR for processes R, AF for processes Ŷ and

AZ for processes Z. The number of included components K to be determined for each process

separately will be denoted by KY ,KR,KF and KZ , respectively. In this study, these numbers of

components are chosen according to the CPV criterion (7).

2.2 Diagnostics via residual processes

The residual process R(t) = Y (t) − Ŷ (t) plays a role analogous to that of the ordinary residual

in classical regression models. Diagnostics based on nonparametric smoothing using residuals for

testing the fit of various parametric and nonparametric models have been investigated by many

authors. A review is provided in the monograph of Hart (1997). A basic goodness-of-fit check

consists of determining whether the residual process R(t) depends on the covariate Z. Writing

R(t, Z) to denote dependence on the covariate Z, we look for graphical and formal evidence

regarding the null hypothesis

H0 : E(R(t) | Z = z) = 0 for all z, (10)

indicating that R does not depend on Z. As residual processes are infinite-dimensional, dimension

reduction is necessary to derive suitable graphical diagnostics and test statistics, and is most easily

implemented by considering only the first KR components of the residual process as in (6).

We propose to use the functional principal component (FPC) scores AR (5) as proxies for

residual processes. The mean of a residual process is expected to be zero approximately and

the eigenfunctions serve as a set of orthonormal basis functions that span the residual process.

Notably, any residual process in L2 with continuous covariance can be spanned by all of the
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eigenfunctions and dependency on covariate is then entirely expressed in terms of its FPC scores.

Therefore, it is assumed that the eigenfunctions ρRk of residual processes are independent of

covariates Z, and any dependencies in the residual processes on covariates will lead to dependencies

in at least some of the ARk on predictors Z, or alternatively, on fitted processes Ŷ (t), which can

also be represented by their FPC scores. This means there will be some indices k for which

E(Ak | Z) depends on Z, resp., E(Ak | Ŷ (t)) depends on Ŷ (t). This is explored in more detail in

the next section.

3 Residual plots for functional linear regression models, with

application to gene expression profile data

The case where the covariate Z is a function as in the functional linear model (2) is considered

here. If this model is assumed to be the true underlying model, one would estimate the regression

parameter function β(s, t) by β̂(s, t) to obtain the fitted response function

Ŷ (t) = µ̂Y (t) +
∫
S

β̂(s, t)(Z(s)− µ̂Z(s)) ds (11)

for predictor function Z. With eigenfunctions ρY k and ρZj for processes Y and Z, and correspond-

ing (true) FPC scores BY k for processes Y and BZj for processes Z, the regression parameter

function can be represented as

β(s, t) =
∞∑

k=1

∞∑
j=1

E(BZjBY k)
E(B2

Zj)
ρZj(s)ρY k(t), (12)

(see He, Müller and Wang 2000) with corresponding estimates

β̂(s, t) =
KY∑
k=1

KZ∑
j=1

Ê(BZjBY k)

Ê(B2
Zj)

ρ̂Zj(s)ρ̂Y k(t). (13)

Details regarding the calculation of β̂(s, t) and the fitted response function can be found in Yao,

Müller and Wang (2005b).
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3.1 Functional residual plots and functional predictor-response plots of FPC scores

A popular plot for multivariate predictors is to plot residuals versus fitted values. To check

goodness of fit in the functional case, we plot the estimated residual FPC scores ARik obtained

for the residual processes against the estimated FPC scores AF ij of the fitted processes. The

proposed functional residual plots consist of all pairwise plots of residual FPC scores versus fitted

FPC scores, i.e., all pairwise plots ARik versus AF ij , 1 ≤ k ≤ KR, 1 ≤ j ≤ KF , 1 ≤ i ≤ n, with a

total of KRKF plots. Each of these scatterplots contains n points. These functional residual plots

are a natural extension of the classical residual plots and play a similar role; that is, highlighting

whether there is any pattern or dependency of the residual FPC scores ARik on the fitted FPC

scores AF ij , corresponding to goodness-of-fit checking. Each of the plots is examined in the same

way as a classical residual plot. None of the point clouds among these plots should show a trend

and ideally all point clouds should lie in a band around the abscissa, similar to classical plots of

residuals versus fitted values.

Additional plots of interest can be obtained by plotting FPC scores AY ik of the response

trajectories against FPC scores AZil of the predictor trajectories. If the linear model assumption

is correct, a simple calculation shows that (11) and (12) imply that

E(AY k | AZj) =
KZ∑
j=1

E(BZjBY k)
E(B2

Zj)
AZj .

Since the FPC scores corresponding to different components are uncorrelated theoretically, the

above conditional expectation implies simple linear regressions without intercept (see also Yao

et al. 2005b). This means that at a minimum, these functional predictor-response plots of FPC

scores (AZj , AY k) should show linear trends if the functional linear regression model is correct.

3.2 Application to gene expression profile data

We illustrate functional residual plots through an application to the analysis of Drosophila life-

cycle gene expression profile data. Time course microarray gene expression experiments are be-

coming increasingly common, as the assessment of changes of gene expression over time is essential
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for analyzing temporal gene regulation and the molecular organization of time-dynamic processes

such as growth or aging of organisms. We use a subset of the data generated in the Drosophila life

cycle gene expression experiment described by Arbeitman et al. (2002) to illustrate the proposed

diagnostic methods for functional regression. This subset consists of genes that were identified to

be related to eye development in Drosophila. For each of the 30 eye-related genes, the experiment

provided (among other data) a pair of trajectories of adult and embryonic gene expression. The

experimental units correspond here to individual genes. The eye-specific genes were identified by

hierarchical clustering by Arbeitman et al. (2002), and the gene expression trajectory measure-

ments consist of 31 normalized measurements of gene expression level at the embryonal stage and

of eight measurements at the adult stage, measured at a grid of non-equidistant times. We treat

the measurement times as equidistant, which corresponds to a simple time warping transforma-

tion. For issues regarding the dynamics of regulatory processes such as time-warping for these

data, we refer to Liu and Müller (2003).

We conducted a functional regression analysis for these data. The gene expression profiles at

the adult stage are taken as the response functions Y and those at the embryo stage are treated

as the predictor functions Z in this regression analysis. We adopt the functional linear regression

model (2) as the null model, where the fitted versions of (11) and (13) were obtained with the

method described in Yao et al. (2005b). The number of components chosen for predictor and

response functions based on the CPV criterion was KY = 2 (CPV(1) = 86.2%, CPV(2) = 99.1%),

KZ = 3 (CPV(2) = 92.5%, CPV(3) = 97.3%), respectively, and KF = 2 (CPV(1) = 96.6%,

CPV(2) = 98.7%) KR = 2 (CPV(1) = 81.0%, CPV(2) = 98.4%) for fitted functions and residual

processes.

Figure 1 illustrates the relationship between the response and predictor FPC scores in the

resulting six scatterplots of AY k vs AZj for k = 1, 2 and j = 1, 2, 3. These pairwise scatterplots

indicate linear relationships with the exception of the scatterplot plotting the first FPC scores

against each other (lower left panel), where a quadratic component is discernible. The functional

residual plots using the first two leading FPC scores from both residual processes and fitted

functions, i.e., plotting ARk vs AF j for j, k = 1, 2 are shown in Figure 2. In these plots, again an
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indication of dependency of the residual FPC scores on the fitted FPC scores is found for the first

FPC scores ARi1 vs AF i1 (lower left panel), with a roughly quadratic structure, and to a lesser

degree also for the plot of the second FPC scores ARi2 vs AF i2, while none of the other plots

show a clear trend. Overall, this residual analysis points to some areas of concern regarding the

goodness-of-fit of the functional linear model for these data.

3.3 Functional leverage and functional Cook’s distance

Under the functional linear regression model, all relationships between FPC scores for response

and predictor processes must correspond to simple linear regressions through the origin. Therefore,

all diagnostic tools that are known to be useful for simple linear regression can be applied to the

functional case as well. Besides the basic diagnostic plots, this includes the concepts of hat matrix

and leverage points, among other diagnostics, such as Cook’s distance. The question then arises

how to combine quantitative diagnostic devices such as a hat matrix over the various pairwise

simple regressions that correspond to the pairwise regression plots as described above, in order

to arrive at one overall summary diagnostic. For each FPC of the response process, we propose

to sum the numerical values obtained for each simple linear regression over the various predictor

FPCs. Then an overall diagnostic can be formed by taking a weighted average over the aggregated

values that are obtained in this first step.

In order to define a hat matrix for functional regression, with the goal to determine predictor

functions that exercise high leverage analogous to leverage points in ordinary regression, we pro-

ceed as follows. First, compute the n×n hat matrices Hkj for the simple linear regressions of AY ik

versus AZij , without intercept, which are given by Hkj = Xj(XT
j Xj)−1XT

j , where the design ma-

trices Xj in this case do not depend on k and are n×1 vectors Xj = (AZ1j , . . . , AZnj)T . Defining

Hk =
∑KZ

j=1 Hkj , the vector of fitted curves Ỹ(t) = (Ŷ1(t)−µ̂Y (t), . . . , Ŷn(t)−µ̂Y (t))T and the vec-

tors of underlying and of fitted FPC scores for processes Y , AY k = (AY 1k, . . . , AY nk)T , ÂY l =

(ÂY 1l, . . . , ÂY nl)T , a simple calculation shows

Ỹ(t) =
KY∑
k=1

HkAY kρY k(t), (14)
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which provides the linear mapping from Y to Ŷ , as befits a hat matrix.

At this point, one has various options. One option is to plot the elements of the matrix on the

r.h.s. of (14) as a function of t, since this hat matrix is a function of t. This may be of interest

to detect leverage for some parts of the domain of the response curves, as would be evidenced by

large diagonal elements of the hat matrix curves for the corresponding times t. Another option is

to seek a combined hat matrix. Such a matrix is not uniquely defined, and there are several ways

to reduce the above hat matrix functions to a single hat matrix. By multiplying (14) on both

sides with ρY k and integrating over t, we find for the relation of fitted FPC scores for response

processes to the underlying FPC scores,

ÂY k = HkAY k.

An overall hat matrix H may be obtained by targeting the weighted average
∑

k ωkÂY k, where

ωk = ÂY kvar(AY k)/
∑

l var(AY l), suggesting

H =
∑KY

k=1 λY kHk∑KY
k=1 λY k

= Hk, (15)

as here Hk does not depend on k. In general, for eigenvalue weighting, unknown quantitites

such as λY k will be replaced by their estimates in practical implementation. Eigenvalue weighted

statistics have been suggested before in the context of defining a global value for the coefficient

of determination R2 for functional regression in Yao et al. (2005b).

An example where eigenvalue weighting leads to a simple non-time dependent diagnostic is a

functional version of Cook’s distance (Cook 1977). The functional Cook’s distance for the i-th

predictor can be defined similarly to (15) as

Di =

∑KY
k=1 λY k

∑KZ
j=1 Dikj∑KY

k=1 λY k

, (16)

where

Dikj = (β̂kj − β̂kj(i))
T (XT

j Xj)(β̂kj − β̂kj(i))
/ 1

n− 1

n∑
i=1

(AY ik −AZij β̂kj)2,

where β̂kj is the fitted regression slope coefficient of the simple linear regression without intercept

fitted to the scatterplot AY ik versus AZij . The coefficients β̂kj(i) are obtained analogously when

leaving out the data for the i-th subject.
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We show the diagonal elements of the functional hat matrix (15) that indicate leverage of

individual predictor genes on the left panel and the functional Cook’s distances for the predictor

genes on the right panel of Figure 3. Notably, a few predictor gene expressions have high leverage,

while there is one gene expression profile with a particular large Cook’s distance. This indicates

that the corresponding gene has large influence on the fitted functional regression, and may

warrant further analysis.

4 A simple test statistic for functional goodness-of-fit

Functional residual plots provide a graphical tool for visual inspection of the residual process. In

addition, it is desirable to have quantitative statistics for the assessment of functional goodness-of-

fit, specifically, to assess whether the residual process depends on vector or functional covariates

as in (10). We discuss here some heuristic extensions of statistics that are related to classical lack-

of-fit testing in linear regression models and may prove useful for the functional case. Rather than

deriving asymptotic distributions, we consider a randomization procedure to obtain inference.

Using the functional principal component (FPC) scores as proxies for residual processes, and

assuming as before that only the first KR components matter, the null hypothesis (10) of goodness-

of-fit (6) is that for each residual FPC score ARk we must have

H
(1)
0 : E(ARk | Z) = 0, k = 1, . . . ,KR, (17)

and this must hold for each component of a multivariate predictor Z and for each of the first

KZ relevant FPC scores AZj of the predictor processes for the case of a functional predictor.

Hypothesis H
(1)
0 can then be rewritten as

H
(1)′

0 : E(ARk | AZj) = E(ARk) = 0, for k = 1, . . . ,KR, j = 1, . . . ,KZ .

We provide details for the case of a univariate predictor Z. The case of a functional predictor

can be dealt with by adding up the test statistics obtained for the various uncorrelated univariate

predictor FPC scores as described at the end of the previous section for hat matrix and Cook’s

distance.
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The null hypothesis H
(1)
0 (17) implies that the variances of the conditional expectation vanish,

H
(2)
0 : var(E(ARk | Z)) = 0, for k = 1, . . . ,K. (18)

On the other hand, var(E(ARk | Z)) = 0, k = 1, . . . ,KR implies that E(ARk | Z) ≡ const and

therefore E(ARk | Z) = E(ARk) = 0. Therefore, null hypotheses H
(1)
0 and H

(2)
0 are equivalent.

We propose to construct a heuristic statistic to test H
(2)
0 as follows. The starting point is

sample data {(Zi, ARik), i = 1, . . . , n} for a fixed k. For a suitable L > 1, we define L bins based

on the values of the Zi, by assembling neighboring Zi’s into the same bin, such that each bin

contains approximately the same number of observations. The sizes of the bins are assumed small

enough so that within each bin the conditional mean and variance of the ARik are approximately

constant. Let I` be the set of indices {i} for which Zi fall into the `th bin, and denote the ARik

that fall into the `th bin by AR
(`)
ik , i.e., AR

(`)
ik ∈ {ARik, i ∈ I`}. Let m` =

n∑
i=1

I(i ∈ I`), the number

of data falling into the `th bin.

To test the hypothesis H
(2)
0 in (18), we define statistics Tk for k = 1, . . . ,KR, such that

Tk =
1

L− 1

L∑
`=1

(bk` − b̄k)2, (19)

where bk` = m`
−1

∑
i∈I`

AR
(`)
ik and b̄k =

∑L
`=1 bk`/L. Here, the bin means bk` target E(ARk | Z(`))

for Z in the `th bin and b̄k target the overall mean E(ARk). Therefore Tk may be interpreted

as an empirical estimate of var(E(Ak | Z)). This type of test statistic is closely related to the

so-called “lack-of-fit sum of squares” (Draper and Smith 1998, compare Green 1971). We note

that under the null hypothesis, one expects E(ARk | Z(`)) = 0; the centering of the test statistic

in (19) may help to improve power (Hall and Wilson 1991). It remains to define an overall test

statistic combining the above statistics defined for each of the components k = 1, . . . ,KR, and this

is done through another application of eigenvalue-weighting, obtaining the overall test statistic

T0 =
KR∑
k=1

λRkTk

/ KR∑
k=1

λRk. (20)

The empirical version T̂0 is obtained by replacing λRk with λ̂Rk.
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The null distribution of the test statistic T̂0 can be approximated by randomizing the binning

scheme; in each randomized version, bins are composed of a matching number of randomly selected

ARik for which the test statistics is computed, ignoring the neighborhood relation of the associated

Zi. This is done many times so as to obtain a null distribution of the test statistic under the

situation of no association. The empirical p-value for the observed test statistics can then be

easily calculated from this null distribution. More specifically, we obtain an approximation to

the null distribution by repeatedly dividing {ARik} into L bins via random selection for each of

m = 1, . . . ,M random samples, leading to the value T
(m)∗
0 of the test statistic at each iteration.

The empirical p-value for the resulting randomization test is

p̃ =
1
M

M∑
m=1

I{T (m)∗
0 ≥ T̂0} ,

where I stands for the indicator function.

5 Diagnostics for functional dose-response models

In a second illustration, we apply both the proposed functional residual plots and the randomiza-

tion tests to data from a functional dose-response experiment. In this experiment the responses

are random trajectories of daily egg-laying recorded for Mediterranean fruit flies (medflies) and

the predictors are scalars (Carey et al. 2002). Daily egg-laying was recorded for a sample of 874

female medflies in response to one of ten dietary doses. Each dose was provided to about 100

medflies each and the daily egg counts were recorded throughout the life of each fly. Thus the

predictor Z is dietary intake and the functional response is the individual daily egg-laying profile,

treated as a random trajectory. Since the predictor is univariate, we have η(Z) = Z in the basic

model (1).

We consider three functional models for these data. In the first model the mean egg-laying

function µY (t) is assumed to be always the same, irrespective of dose, i.e., within the framework

of (1) we assume

(M1) No covariate effects model: f(t, η(Z)) = µY (t), where µY (·) is a smooth function. In this
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model, the covariate Z has no effect.

(M2) Functional smooth surface model: f(t, Z) = µ(t, Z), where µ(·, ·) is a 2-dimensional function

of t and Z.

(M3) Functional multiplicative effects model: f(t, η(Z)) = µY (t) θ(Z), where µY (·) is a smooth

function of time as in (M1) and θ(·) is a nonparametric smooth function of the covariate

function η(Z), which has a multiplicative modulating effect such that Eθ(Z) = 1.

Model (M1) is the simplest and also most restrictive model, while (M2) is the most flexible.

Model (M3), like model (M2), allows for a nonparametric impact of the covariate on the response

function, but in a more restricted manner. For further details regarding these models and issues

of estimation specific to these models, we refer to Chiou et al. (2003b, 2004). We use the above

models to illustrate both the proposed graphical method and the test for functional goodness-of-fit

that was proposed in the previous section.

Notably for model (M1), the FPC scores AY k of the response processes are the same as the

residual FPC scores ARk, since the conditional expectation of the process is assumed not to

depend on the covariate. As a goodness-of-fit check, we therefore directly assess the dependency

of the response function on the covariate, the dose level Z, by plotting the first three FPC scores

AY i1, AY i2, AY i3, i = 1, . . . , n, against the dose levels Zi, as shown in Figure 4, where KY = 3

for the number of components chosen by CPV criterion (CPV(2) = 83.4%, CPV(3) = 92.2%).

One finds that the first FPC scores AY i1 exhibit an obvious increasing trend with increasing dose

level, indicating dependency of the response function on the covariate. This reveals model (M1) as

overly simplistic. Functional residual plots for Models (M2) and (M3) are displayed in Figures 5

(KR = 2 with CPV(1) = 95.7% and CPV(2) = 99.7%) and 6 (KR = 1 with CPV(1) = 99.9%),

respectively, where ARik are plotted against AF ik. No obvious pattern for the dependency of the

residual FPC scores on the fitted FPC scores can be discerned for either of these two models.

The proposed test can be used to further investigate these findings. We choose L = 10, i.e.,

each dietary dose level forms one bin, and KY = 3 for the number of random components. The

approximate null distributions for the test statistics T0 (20) are displayed in Figure 7, with the
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corresponding values of the test statistic and the p-values. The p-value of the test for Model

(M1) is very small, indicating lack of fit for this simple model, and corroborating the graphical

evidence. In contrast, the p-value of the test for Model (M2) is quite large, indicating no problems

with lack of fit for this very flexible model. Similarly, the test does not provide evidence for lack

of fit for Model (M3) with its multiplicative structure for the covariate effect on the overall mean

function. Among the models considered, this diagnostic analysis therefore points to model (M3)

as the overall best model, since it is simpler than model (M2), due to the structural constraint

that is imposed by the multiplicative structure.

6 Discussion and concluding remarks

Residual processes are a useful tool for functional regression diagnostics. We reduce the high

dimensionality of residual processes to a manageable level by reducing them to their first few

functional principal component scores. These FPC scores can then be entered into functional

residual plots that are similarly interpreted as classical residual plots. For example, one may

check for dependency of the functional principal component scores of residual processes on fitted

values or the scores of fitted processes. By forming eigenvalue-weighted averages one can combine

various one-dimensional diagnostics such as hat matrix or Cook’s distance to obtain functional

versions.

A randomization test of model goodness-of-fit based on residual processes compares the vari-

ance of the means of residual functional principal scores in small bins that are constructed by

ordering the data according to the predictor variable with the variance that would be obtained by

a random ordering of the data. The resulting p-values provide an indication of the dependency

of the functional residuals on the predictor. While we developed this test for the case of a one-

dimensional predictor, it can be extended to functional and higher-order predictors by invoking

a single index assumption so that the relevant predictor would be η(Z), where η is a suitable

single index. Alternatively, predictor processes can be represented by their functional principal

component scores and the test statistics for each of those can be combined to an overall test
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statistics by simply adding the component statistics to an overall statistic.

If lack-of-fit is discovered, one may consider various extensions of a model. For example, in the

case of model (M1), one could consider extensions that include a certain number S of additional

functional components,

Y (t)− Ŷ (t) =
S∑

k=1

ηk(Z)ρY k(t),

where the residual processes on the l.h.s. would be regressed on the predictor variable Z or the

components of a functional predictor, similarly to the modeling of response processes in Chiou et

al. (2003a). This is likely to lead to improved fits, at the expense of more complex models.

Table 1 summarizes the results of such a procedure for the medfly dose-response data. It is not

surprising that the p-values for Models (M2) and (M3), when considering additional random com-

ponents, move from large to very large, as already without additional components these models

do not suffer from a lack of fit. In contrast, for Model (M1), which only contains an overall mean

component, the p-value increases markedly from very small to large by adding just one random

component to the model. We conclude that the proposed diagnostics are a useful addition to the

toolkit of functional regression.
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Figure 1: Plotting functional principal component scores of response processes versus those of

predictor processes, choosing KY = KZ = 3 components, for the Drosophila gene expression

profile data.
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Figure 2: Functional residual plots of functional principal component scores of residual versus

fitted processes for the Drosophila gene expression profile data.
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Figure 3: Functional leverages obtained as diagonal elements of functional hat matrix H (15) (left

panel) and functional Cook’s distances (16) of the predictor trajectories for the Drosophila gene

expression profile data.
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(medfly dose-response data).
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Figure 5: Functional residual plots for Model (M2) (medfly dose-response data).
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Figure 6: Functional residual plots for Model (M3) (medfly dose-response data).
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Figure 7: Approximate null distributions of the test statistics T0 for models (M1)-(M3) (medfly

dose-response data).

Table 1: Summary of p-values obtained for models (M1)-(M3) as S additional functional
components are added to the respective model, for S = 0, 1, 2, 3, for the medfly dose-response
data.

Model S = 0 S = 1 S = 2 S = 3

(M1) 0.000 0.874 0.980 0.991

(M2) 0.979 1.000 1.000 1.000

(M3) 0.561 0.816 0.881 0.900
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