The Wasserstein metric, Wasserstein-Fréchet mean, simulation results and additional proofs

Alexander Petersen and Hans-Georg Müller

S.1. The Wasserstein Metric. The equivalence of the metrics

\[d_Q(f,g)^2 = \int_0^1 (F^{-1}(t) - G^{-1}(t))^2 \, dt \quad \text{and} \quad d_W(f,g)^2 = \inf_{X \sim f, Y \sim g} E(X - Y)^2 \]

is well known. It can be easily seen by applying a covariance identity due to [28]. If \(X \sim F, Y \sim G \) and \((X,Y) \sim H \), then this identity states that

\[\text{Cov}(X,Y) = \iint \{H(u,v) - F(u)G(v)\} \, du \, dv. \]

Expanding the expectation \(E(X - Y)^2 \), one finds that the distance is obtained by maximizing \(E(XY) \), or, equivalently, by maximizing \(\text{Cov}(X,Y) \). For a random variable \(U \) that is uniformly distributed on \([0,1]\), take \(X^* = F^{-1}(U) \) and \(Y^* = G^{-1}(U) \). Then \(X^* \sim F, Y^* \sim G \) and the distribution function of \((X^*,Y^*)\) is given by \(H^*(u,v) = \min(F(u),G(v)) \). Clearly, for any joint distribution of \(X \sim F \) and \(Y \sim G \), we have \(H \leq H^* \). By Hoeffding’s inequality, this means \(\text{Cov}(X,Y) \leq \text{Cov}(X^*,Y^*) \). Thus,

\[d_W(f,g)^2 = E[(X^* - Y^*)^2] = E[(F^{-1}(U) - G^{-1}(U))^2] \]

\[= \int_0^1 (F^{-1}(t) - G^{-1}(t))^2 \, dt. \]
Let Q be the quantile process corresponding to the density process $f \sim \tilde{F}$ and set $Q_\oplus(t) = E(Q(t))$. For $q_\oplus = Q'_\oplus$ and $F_\oplus = Q^{-1}_\oplus$, the Wasserstein-Fréchet mean is

$$f_\oplus(x) = \frac{1}{q_\oplus(F_\oplus(x))}.$$

Its estimation can thus be reduced to estimating the function q_\oplus. Due to the restrictions on the space \mathcal{F} (see assumption (A1)), we can pass differentiation inside the expectation so that $E(Q'(t)) = q_\oplus(t)$. This suggests averaging the quantile densities of the sample to obtain an estimator for q_\oplus.

Starting with either the densities, f_i, or their estimates, \tilde{f}_i, $i = 1, \ldots, n$, we therefore use the corresponding quantile densities (q_i or \tilde{q}_i) to estimate q_\oplus by

$$\tilde{q}_\oplus(t) = \frac{1}{n} \sum_{i=1}^{n} q_i(t), \quad \text{respectively,} \quad \hat{q}_\oplus(t) = \frac{1}{n} \sum_{i=1}^{n} \tilde{q}_i(t).$$

Computing the corresponding distribution functions, we thus estimate the Wasserstein-Fréchet mean by

$$\tilde{f}_\oplus(x) = \frac{1}{\tilde{q}_\oplus(\tilde{F}_\oplus(x))}, \quad \text{respectively,} \quad \hat{f}_\oplus(x) = \frac{1}{\hat{q}_\oplus(\hat{F}_\oplus(x))}.$$

As Theorem 2 requires a rate of convergence γ_n for the Wasserstein-Fréchet mean estimator based on fully observed densities, the following result shows that we make take $\gamma_n = n^{-1/2}$ in the case of fully observed densities.

Proposition 3. Under assumption (A1), the estimator \tilde{f}_\oplus of f_\oplus for the Wasserstein-Fréchet mean satisfies

$$d_W(f_\oplus, \tilde{f}_\oplus) = O_p(n^{-1/2}).$$

Proof. By Thm 3.9 in [9], $d_2(q_\oplus, \tilde{q}_\oplus) = O_p(n^{-1/2})$. As $|Q_\oplus(t) - \tilde{Q}_\oplus(t)| \leq d_2(q_\oplus, \tilde{q}_\oplus)$, we also have

$$d_W(f_\oplus, \tilde{f}_\oplus) = d_2(Q_\oplus, \tilde{Q}_\oplus) = O_p(n^{-1/2}).$$

\square
S.2. Simulation Results for the Wasserstein Metric. Figure 7 shows the distribution of fraction of variance explained values in terms of the distance d_W for all simulation settings, similar to Figure 2 in the main text which shows the results for the ordinary L^2 distance. The use of the Wasserstein distance more clearly demonstrates the weakness of ordinary FPCA. The Hilbert sphere method performs relatively better in the context of metric d_W than the L^2 metric, but is still outperformed by the transformation method using the log quantile density transformation, ψ_Q.

Fig 7: Boxplots of fraction of variance explained for 200 simulations, using the Wasserstein metric, d_W. The first row corresponds to fully observed densities and the second corresponds to estimated densities. The columns correspond to settings 1, 2 and 3 from left to right (see Table 1). The methods are denoted by ‘FPCA’ for ordinary FPCA on the densities, ‘LQD’ for the transformation approach with ψ_Q and ‘HS’ for the Hilbert sphere method.
S.3. Listing of All Assumptions. The following is a systematic compilation of all assumptions, subsets of which are used for various results and some of which have been stated in the main text. Recall that d_2 and d_∞ denote the L^2 and uniform metrics, respectively, and $\|\cdot\|_2$ and $\|\cdot\|_\infty$ denote the corresponding norms.

(A1) For all $f \in \mathcal{F}$, f is continuously differentiable. Moreover, there is a constant $M > 1$ such that, for all $f \in \mathcal{F}$, $\|f\|_\infty$, $\|1/f\|_\infty$ and $\|f'\|_\infty$ are all bounded above by M.

(D1) For a sequence $b_N = o(1)$, the density estimator \hat{f}, based on an i.i.d. sample of size N, satisfies $\hat{f} \geq 0$, $\int_{0}^{1} \hat{f}(x) \, dx = 1$ and

$$\sup_{f \in \mathcal{F}} E(d_2(f, \hat{f})^2) = O(b_N^2).$$

(D2) For a sequence $a_N = o(1)$ and some $R > 0$, the density estimator \hat{f}, based on an i.i.d. sample of size N, satisfies

$$\sup_{f \in \mathcal{F}} P(d_\infty(f, \hat{f}) > Ra_N) \to 0.$$

(S1) Let \hat{f} be a density estimator that satisfies (D2), and suppose densities $f_i \in \mathcal{F}$ are estimated by \hat{f}_i from i.i.d. samples of size $N_i = N_i(n)$, $i = 1, \ldots, n$, respectively. There exists a sequence of lower bounds $m(n) \leq \min_{1 \leq i \leq n} N_i$ such that $m(n) \to \infty$ as $n \to \infty$ and

$$n \sup_{f \in \mathcal{F}} P(d_\infty(f, \hat{f}) > Ra_m) \to 0$$

where, for generic $f \in \mathcal{F}$, \hat{f} is the estimated density from a sample of size $N(n) \geq m(n)$.

(K1) The kernel κ is of bounded variation and is symmetric about 0.

(K2) The kernel κ satisfies $\int_{0}^{1} \kappa(u) \, du > 0$, and $\int_{\mathbb{R}} |u|\kappa(u) \, du$, $\int_{\mathbb{R}} \kappa^2(u) \, du$ and $\int_{\mathbb{R}} |u|\kappa^2(u) \, du$ are finite.

(T0) Let $f, g \in \mathcal{G}$ with f differentiable and $\|f'\|_\infty < \infty$. Set

$$D_0 \geq \max \left(\|f\|_\infty, \|1/f\|_\infty, \|g\|_\infty, \|1/g\|_\infty, \|f'\|_\infty \right).$$

There exists C_0 depending only on D_0 such that

$$d_2(\psi(f), \psi(g)) \leq C_0 d_2(f, g), \quad d_\infty(\psi(f), \psi(g)) \leq C_0 d_\infty(f, g).$$

(T1) Let $f \in \mathcal{G}$ be differentiable with $\|f'\|_\infty < \infty$ and let D_1 be a constant bounded below by $\max (\|f\|_\infty, \|1/f\|_\infty, \|f'\|_\infty)$. Then $\psi(f)$ is differentiable and there exists $C_1 > 0$ depending only on D_1 such that $\|\psi(f)\|_\infty \leq C_1$ and $\|\psi(f)'\|_\infty \leq C_1$.
(T2) Let \(d \) be the selected metric in density space, \(Y \) be continuous and \(X \) be differentiable on \(T \) with \(\| X' \|_\infty < \infty \). There exist constants \(C_2 = C_2(\| X \|_\infty, \| X' \|_\infty) > 0 \) and \(C_3 = C_3(d_\infty(X,Y)) > 0 \) such that
\[
d(\psi^{-1}(X), \psi^{-1}(Y)) \leq C_2 C_3 d_2(X,Y)
\]
and, as functions, \(C_2 \) and \(C_3 \) are increasing in their respective arguments.

(T3) For a given metric \(d \) on the space of densities and \(f_1,K = f_1(\cdot,K,\psi) \) (see (4.5)), \(V_\infty - V_K \to 0 \) and \(E(d(f,f_1,K)^4) = O(1) \) as \(K \to \infty \).

S.4. Additional Proofs.

Lemma 1. Let \(A \) be a closed and bounded interval of length \(|A| \) and assume \(X : A \to \mathbb{R} \) is continuous with Lipschitz constant \(L \). Then
\[
\| X \|_\infty \leq 2 \max \left(|A|^{-1/2} \| X \|_2, \ L^{1/3} \| X \|_2^{2/3} \right).
\]

Proof of Lemma 1. Let \(t^* \) satisfy \(|X(t^*)| = \| X \|_\infty \) and define \(I = [t^* - \| X \|_\infty/(2L), t^* + \| X \|_\infty/(2L)] \cap A \). Then, for \(t \in I \), \(|X(t)| \geq \| X \|_\infty/2 \).
If \(I = A \),
\[
\| X \|_2^2 = \int_A X^2(s) \, ds \geq \frac{|A|}{4} \| X \|_\infty^2,
\]
so \(\| X \|_\infty \leq 2|A|^{-1/2} \| X \|_2 \). If \(I \neq A \), suppose without loss of generality that \(t^* + \| X \|_\infty/(2L) \in A \). Then
\[
\| X \|_2^2 \geq \int_{t^*}^{t^* + \| X \|_\infty/(2L)} X^2(s) \, ds \geq \frac{\| X \|_\infty^2}{4} \cdot \frac{\| X \|_\infty}{2L} = \frac{\| X \|_\infty^3}{8L},
\]
so \(\| X \|_\infty \leq 2L^{1/3} \| X \|_2^{2/3} \). \(\square \)

Lemma 2. Let \(X \) be a stochastic process on a closed interval \(T \subset \mathbb{R} \) such that \(\| X \|_\infty < C \) and \(\| X' \|_\infty < C \) almost surely. Let \(\nu \) and \(H \) be the mean and covariance functions associated with \(X \), and \(\rho_k \) and \(\tau_k \), \(k \geq 1 \), be the eigenfunctions and eigenvalues of the integral operator with kernel \(H \). Then
\[
\| \nu \|_\infty < C, \ \| H \|_\infty < 4C^2 \text{ and } \| \rho_k \|_\infty < 4C^2 |T|^{1/2} \tau_k^{-1} \text{ for all } k \geq 1.
\]
Additionally, \(\| \nu' \|_\infty < C \) and \(\| \rho'_k \|_\infty < 4C^2 |T|^{1/2} \tau_k^{-1} \) for all \(k \geq 1 \).

Proof. Since the bounds on \(X \) and \(X' \) are deterministic, \(\| \nu \|_\infty \) and \(\| H \|_\infty \) are both bounded by the given constants. The bound on \(\| \rho_k \|_\infty \) follows since \(\rho_k(t) = \tau_k^{-1} \int_T H(s,t) \rho_k(s) \, ds \) and \(\| \rho_k \|_2 = 1 \). Dominated convergence implies that \(\nu' \) exists and is bounded by \(C \), and also implies the bound.
of $4C^2$ for the partial derivatives of H, which then leads to the bounds on ρ'_k for all k.

\begin{lemma}
Under assumptions (A1) and (T1), with $\hat{\nu}, \tilde{\nu}, \hat{H}, \tilde{H}$ as in (4.2) and (4.3),
\begin{equation}
\begin{aligned}
d_2(\nu, \hat{\nu}) &= O_p(n^{-1/2}), &\quad d_2(H, \hat{H}) &= O_p(n^{-1/2}), \\
d_\infty(\nu, \hat{\nu}) &= O_p\left(\left(\frac{\log n}{n}\right)^{1/2}\right), &\quad d_\infty(H, \hat{H}) &= O_p\left(\left(\frac{\log n}{n}\right)^{1/2}\right).
\end{aligned}
\end{equation}
\end{lemma}

Under the additional assumptions (D1), (D2) and (S1), we have
\begin{equation}
\begin{aligned}
d_2(\nu, \hat{\nu}) &= O_p(n^{-1/2} + b_m), &\quad d_2(H, \hat{H}) &= O_p(n^{-1/2} + b_m), \\
d_\infty(\nu, \hat{\nu}) &= O_p\left(\left(\frac{\log n}{n}\right)^{1/2} + a_m\right), &\quad d_\infty(H, \hat{H}) &= O_p\left(\left(\frac{\log n}{n}\right)^{1/2} + a_m\right).
\end{aligned}
\end{equation}

\begin{proof}
Assumptions (A1) and (T1) imply $E\|X\|_2^2 < \infty$, so the first line in (S.1) follows from Theorems 3.9 and 4.2 in [9]. The second line in (S.1) follows from Corollaries 2.3(b) and 3.5(b) in [33]. We will show the argument for the mean estimate in (S.2), and the covariance follows similarly.

Let M be as given in assumption (A1) and set $D_1 = 2M$. Define
\[E_n = \bigcap_{i=1}^{n} \{ d_\infty(f_i, \hat{f}_i) \leq D_1^{-1} \} . \]
Then $P(E_n) \to 0$ by assumptions (D2) and (S1). Take C_1 as given in (T1) for D_1 as defined above. Also by (S1), there is $R > 0$ such that
\[P(\{ d_\infty(\hat{\nu}, \nu) > Ra_m \} \cap E_n) \leq n \max_{1 \leq i \leq n} P(d_\infty(f_i, \hat{f}_i) > C_1^{-1}Ra_m) \to 0 \]
as $n \to \infty$, so $d_\infty(\hat{\nu}, \nu) = O_p(a_m)$. Thus, by the triangle inequality, $d_\infty(\nu, \hat{\nu}) = O_p\left(\left(\frac{\log n}{n}\right)^{1/2} + a_m\right)$.
\end{proof}
Next, letting \(\hat{X}_i = \psi(\hat{f}_i) \),

\[
P \left(\{d_2(\hat{\nu}, \hat{\nu}) > R \} \cap E_n \right) \leq P \left(\sum_{i=1}^{n} d_2(X_i, \hat{X}_i) > Rn \right) \cap E_n \\
\leq P \left(\sum_{i=1}^{n} d_2(f_i, \hat{f}_i) > C_1^{-1}Rn \right) \\
\leq C_1 R^{-1} n^{-1} \sum_{i=1}^{n} \sqrt{\mathbb{E} (d_2(f_i, \hat{f}_i)^2)} = R^{-1} O(b_m),
\]

which shows that \(d_2(\hat{\nu}, \hat{\nu}) = O_p(b_m) \), so the result holds by the triangle inequality. \(\square \)

Corollary 1. Under assumption (A1) and (T1), letting \(A_k = \|\rho_k\|_\infty \), with \(\delta_k \) as in (5.1),

\[
|\tau_k - \hat{\tau}_k| = O_p(n^{-1/2}), \\
\quad d_2(\rho_k, \hat{\rho}_k) = \delta_k^{-1} O_p(n^{-1/2}), \quad \text{and} \\
\quad d_\infty(\rho_k, \hat{\rho}_k) = \delta_k^{-1} O_p \left(\frac{(\log n)^{1/2} + \delta_k^{-1} + A_k}{n^{1/2}} \right),
\]

(S.3)

where all \(O_p \) terms are uniform over \(k \). If the additional assumptions (D1), (D2) and (S1) hold,

\[
|\tau_k - \hat{\tau}_k| = O_p(n^{-1/2} + b_m), \\
\quad d_2(\rho_k, \hat{\rho}_k) = \delta_k^{-1} O_p(n^{-1/2} + b_m), \quad \text{and} \\
\quad d_\infty(\rho_k, \hat{\rho}_k) = \hat{\tau}_k^{-1} O_p \left(\frac{(\log n)^{1/2} + \delta_k^{-1} + A_k}{n^{1/2}} + a_m + b_m[\delta_k^{-1} + A_k] \right),
\]

(S.4)

where again all \(O_p \) terms are uniform over \(k \).

Proof. First, observe that (A1) and (T1) together imply that \(X \) satisfies the assumptions of Lemma 2. The first two lines of both (S.3) and (S.4) follow by applying Lemmas 4.2 and 4.3 of [9] with the rates given in Lemma 3, above. For the uniform metric on the eigenfunctions, we follow the argument given in the proof of Lemma 1 in [36] to find that

\[
d_\infty(\tau_k \rho_k, \hat{\tau}_k \hat{\rho}_k) \leq |T|^{1/2} \left[d_\infty(H, \hat{H}) + \|H\|_\infty d_2(\rho_k, \hat{\rho}_k) \right] = O_p \left(\frac{(\log n)^{1/2} + \delta_k^{-1}}{n^{1/2}} \right),
\]
It follows that
\[|\rho_k(s) - \tilde{\rho}_k(s)| \leq \tilde{\tau}_k^{-1} (|\tau_k \rho_k(s) - \tilde{\tau}_k \rho_k(s)| + |\rho_k(s)| |\tau_k - \tilde{\tau}_k|) \]
\[= \tilde{\tau}_k^{-1} O_p \left(\frac{(\log n)^{1/2} + \delta_k^{-1} + A_k}{n^{1/2}} \right). \]

Since this last expression is independent of \(s \), this proves the third line of (S.3). The third line of (S.4) is proven in a similar manner.

Lemma 4. Assume (A1), (T1) and (T2) hold. Let \(A_k = \|\rho_k\|_\infty, M \) as in (A1), \(\delta_k \) as in (5.1), and \(C_1 \) as in (T1) with \(D_1 = M \). Let \(K^*(n) \to \infty \) be any sequence which satisfies \(\tau_{K^*} n^{1/2} \to \infty \) and
\[\sum_{k=1}^{K^*} \left[(\log n)^{1/2} + \delta_k^{-1} + A_k + \tau_{K^*} \delta_k^{-1} A_k \right] = O(\tau_{K^*} n^{1/2}). \]

Let \(C_2 \) be as in (T2), \(X_{i,K} = \nu + \sum_{k=1}^{K^*} \eta_{ik} \rho_k, \bar{X}_{i,K} = \tilde{\nu} + \sum_{k=1}^{K^*} \tilde{\eta}_{ik} \tilde{\rho}_k \), and set
\[S_{K^*} = \max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} C_2(\|X_{i,K}\|_\infty, \|X'_{i,K}\|_\infty). \]

Then
\[\max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} d(f_i(\cdot, K, \psi), \tilde{f}_i(\cdot, K, \psi)) = O_p \left(\frac{S_{K^*} \sum_{k=1}^{K^*} \delta_k^{-1}}{n^{1/2}} \right). \]

Proof. First, observe that \(f_i(\cdot, K, \psi) = \psi^{-1}(X_{i,K}) \) and \(\tilde{f}_i(\cdot, K, \psi) = \psi^{-1}(\bar{X}_{i,K}) \).

Recall that \(|\eta_{ik}| \leq 2C_1|T|^{1/2} \) for all \(i \) and \(k \) (see (4.13)). Then, by (A1) and Corollary 1,
\[|\eta_{ik} - \tilde{\eta}_{ik}| \leq d_2(X_{i,K}, \nu) d_2(\rho_k, \tilde{\rho}_k) + d_2(\nu, \tilde{\nu}) = \delta_k^{-1} O_p(n^{-1/2}), \]
where the \(O_p \) term is uniform over \(i \) and \(k \). Next, using Lemma 3 and Corollary 1, along with the requirement that \(\tau_{K^*} n^{1/2} \to \infty \), for \(K \leq K^* \)
\[d_\infty(X_{i,K}, \bar{X}_{i,K}) \leq d_\infty(\nu, \tilde{\nu}) + \sum_{k=1}^{K} d_\infty(\eta_{ik} \rho_k, \tilde{\eta}_{ik} \tilde{\rho}_k) \]
\[\leq d_\infty(\nu, \tilde{\nu}) + \sum_{k=1}^{K} |\eta_{ik}| d_\infty(\rho_k, \tilde{\rho}_k) + \sum_{k=1}^{K} \|\rho_k\|_\infty |\eta_{ik} - \tilde{\eta}_{ik}| \]
\[= O_p \left(\frac{\sum_{k=1}^{K} [(\log n)^{1/2} + \delta_k^{-1} + A_k + \tau_{K^*} \delta_k^{-1} A_k]}{\tau_{K^*} n^{1/2}} \right). \]
Since the O_p term does not depend on i or K, by the first assumption in the statement of the Lemma, we have
\[
\max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} d_\infty(X_{i,K}, \tilde{X}_{i,K}) = O_p(1).
\]

For $C_{3,K,i} = C_3(d_\infty(X_{i,K}, \tilde{X}_{i,K}))$ as in (T2),
\[
\max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} C_{3,K,i} = O_p(1),
\]
whence
\[
d_2(X_{i,K}, \tilde{X}_{i,K}) \leq d_2(\nu, \tilde{\nu}) + \sum_{k=1}^K d_2(\eta_{ik}\bar{\rho}_k, \tilde{\eta}_{ik}\tilde{\rho}_k)
\]
\[
\leq d_2(\nu, \tilde{\nu}) + \sum_{k=1}^K |\eta_{ik}d_2(\rho_k, \tilde{\rho}_k) + \sum_{k=1}^K |\eta_{ik} - \tilde{\eta}_{ik}|
\]
\[
= O_p\left(n^{-1/2} \sum_{k=1}^K \delta_k^{-1}\right).
\]

Again, this O_p term does not depend on i or K, so
\[
\max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} d_2(X_{i,K}, \tilde{X}_{i,K}) = O_p\left(n^{-1/2} \sum_{k=1}^{K^*} \delta_k^{-1}\right),
\]
leading to
\[
\max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} d(f_i(\cdot, K, \psi), \tilde{f}_i(\cdot, K, \psi)) \leq S_{K^*} \max_{1 \leq K \leq K^*} \max_{1 \leq i \leq n} C_{3,K,i} d_2(X_{i,K}, \tilde{X}_{i,K})
\]
\[
= O_p\left(S_{K^*} \sum_{k=1}^{K^*} \delta_k^{-1} \frac{1}{n^{1/2}}\right).
\]
\[\Box\]