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Abstract

The analysis of samples of random objects that do not lie in a vector space is gaining increasing attention
in statistics. An important class of such object data is univariate probability measures defined on the
real line. Adopting the Wasserstein metric, we develop a class of regression models for such data, where
random distributions serve as predictors and the responses are either also distributions or scalars. To
define this regression model, we utilize the geometry of tangent bundles of the space of random measures
endowed with the Wasserstein metric for mapping distributions to tangent spaces. The proposed
distribution-to-distribution regression model provides an extension of multivariate linear regression for
Euclidean data and function-to-function regression for Hilbert space valued data in functional data
analysis. In simulations, it performs better than an alternative transformation approach where one
maps distributions to a Hilbert space through the log quantile density transformation and then applies
traditional functional regression. We derive asymptotic rates of convergence for the estimator of the
regression operator and for predicted distributions and also study an extension to autoregressive models
for distribution-valued time series. The proposed methods are illustrated with data on human mortality
and distributional time series of house prices.
Keywords: Distribution regression; distributional time series; functional data analysis; parallel trans-
port; tangent bundles.

1 Introduction

Regression analysis is one of the foundational tools of statistics to quantify the relationship between

a response variable and predictors and there have been many extensions of simple models such as

the multiple linear regression model to more complex data scenarios. These include linear models for

function-to-function regression, where predictors and responses are both considered random elements
∗This research was supported by NSF grants DMS-1712862 and DMS-2014626 and NUS Startup grant R-155-000-217-

133. We wish to thank three anonymous referees, an Associate Editor, and the Editor for the helpful and constructive
comments which led to numerous improvements in the paper.
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in Hilbert space, with a variant where responses are scalars (??). Such linear functional regression

models and their properties have been well studied (?????) and reviewed (??).

Samples that include random objects, which are random elements in general metric spaces that by

default do not have a vector space structure, are increasingly common. Such data cannot be analyzed

with methods devised for Euclidean or functional data, which are usually viewed as random elements

of a Hilbert space (??). We focus here on the case where the random objects are random probability

measures on the real line that satisfy certain regularity conditions. Specifically, at this time there are

no in-depth studies with detailed statistical analysis of regression models that feature such random

measures as predictors, in contrast to the situation where vector predictors are coupled with random

distributions as responses (?).

Related work also includes a variety of methods that specifically target the case where Euclidean

predictors are paired with responses that reside on a finite-dimensional Riemannian manifold (??????).

Kernel and spline type methods have been proposed for the case where both predictors and responses

are elements of finite-dimensional Riemannian manifolds (???). However, these methods do not cover

spaces of probability measures under the Wasserstein metric, where the tangent spaces are subspaces

of infinite-dimensional Hilbert spaces. Additionally, no comprehensive investigation of the statistical

properties and asymptotic behavior of distribution-to-distribution regression models seems to exist. To

develop the proposed model, we utilize tangent bundles in the space of probability distributions with

the Wasserstein metric and parallel transport to obtain asymptotic results for regression operators and

predicted measures.

A recent approach to including random distributions as predictors in complex regression models is

to transform the densities of these distributions to unconstrained functions in the Hilbert space L2,

e.g., by the log quantile density (LQD) transformation (?) and then to employ functional regression

models where the transformed functions serve as predictors and the responses are either also the

transformed functions or scalars (???), whence established methods for functional regression become

applicable. However, the LQD transformation does not take into account the geometry of the space
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of probability distributions and therefore the corresponding transformation map is not isometric and

leads to deformations that change distances between pairs of objects. In contrast, the transformation

method we develop here is closely adapted to the underlying geometry, leads to an isometric map

and fully utilizes the geometric properties of the metric space of random measures equipped with the

Wasserstein distance. We also found in implementations and simulations that the proposed geometric

method that we refer to as Wasserstein regression works very well, especially when comparing it to a

regression approach that is based on the LQD transformation. Other alternatives have been considered

for regressing scalar responses on distribution-valued predictors (?????), but these are either Nadaraya–

Watson type estimators that suffer from a severe curse of dimensionality, or kernel-based methods that

rely on tuning parameters whose choice could be sensitive in real applications. ? approximate input

histograms by the closest weighted barycenters of a database of reference histograms with respect to

Wasserstein distance, which work when input histograms are not far from the references, aiming at

applications in image processing.

Our goal is to develop a regression model where the predictors and responses are both distributions

in W . A good starting point is linear regression in Euclidean spaces, where for a pair of random

elements (X, Y ) ∈ (Rp,R), E(Y | X) = ΓE(X) = EY + β>(X − EX). The regression function ΓE can

be characterized by the following two properties: First, it maps the expectation of X to the expectation

of Y ; second, conditioning on X, it transports the line segment between EX and X to that between

EY and E(Y | X). Specifically,

EY = ΓE(EX) and E[EY + t(Y − EY ) | X] = ΓE[EX + t(X − EX)], for all t ∈ [0, 1]. (1)

However, expectations and line segments are not well-defined for the space of distributions, since it

is not a vector space. In this paper, we develop a distribution-to-distribution regression model that is

analogous to traditional linear regression models for Euclidean and functional data, with the decisive

difference that both predictors and responses are univariate probability measures. An example which

we investigate later is to study the relationship of the age-at-death distributions of different countries
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in 2013 to the distributions 30 years before. We also discuss an extension of our approach to an

autoregressive model for distribution-valued time series. In our estimation procedures and theoretical

analysis we cover the commonly encountered but more complex situation where neither predictor nor

response distributions are directly observed and instead the available data consist of i.i.d. samples

that are generated by each of these distributions. After we submitted this paper, a preprint reporting

independently conducted but related work on autoregressive modeling of distributional time series was

posted by ?, where a simplified version of the distributional autoregressive model in (29) was studied.

The remainder of the paper is organized as follows. We first propose a distribution-to-distribution

regression model based on the tangent bundle of the Wasserstein space of probability distributions

in Section 2, with estimation and asymptotic theory in Section 3, and then describe an extension of

the model to an autoregressive model for time series of distributions in Section 4. Simulation studies

are illustrated in Section 5 to assess the finite-sample performance of the proposed estimators and a

competing approach. The wide applicability of the proposed methods is demonstrated with applications

to human mortality data and US house price data in Section 6.

2 Methodology

2.1 Tangent Bundle of the Wasserstein Space

Let D be R or a closed interval in R, and B(D) be the Borel σ-algebra on D. We focus on the

Wasserstein space W = W(D) of probability distributions on (D,B(D)) with finite second moments,

endowed with the L2-Wasserstein distance

dW (µ1, µ2) =
{∫ 1

0
[F−1

1 (p)− F−1
2 (p)]2dp

}1/2
, (2)

for µ1, µ2 ∈ W , where F−1
1 and F−1

2 denote the quantile functions of µ1 and µ2, respectively; specifically,

for any distribution µ = µ(F ) ∈ W with cumulative distribution function (cdf) F , we consider the
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quantile function F−1 to be the left continuous inverse of F , i.e.,

F−1(p) = inf{r ∈ D : F (r) ≥ p}, for p ∈ (0, 1). (3)

As demonstrated for example in ???, basic concepts of Riemannian manifolds can be generalized

to the Wasserstein space W . We assume in the following that µ∗ ∈ W is an atomless reference

probability measure, i.e., it possesses a continuous cdf F∗. For any µ ∈ W , the geodesic from µ∗ to µ,

γµ∗,µ : [0, 1]→W , is given by

γµ∗,µ(t) = [t(F−1 ◦ F∗ − id) + id]#µ∗, for t ∈ [0, 1], (4)

where for a measurable function h : D → D, h#µ∗ is a push-forward measure such that h#µ∗(A) =

µ∗({r ∈ D : h(r) ∈ A}) for any set A ∈ B(D). The tangent space at µ∗ is defined as

Tµ∗ = {t(F−1 ◦ F∗ − id) : µ = µ(F ) ∈ W , t > 0}L
2
µ∗ ,

where L2
µ∗ = L2

µ∗(D) is the Hilbert space of µ∗-square-integrable functions on D ⊂ R, with inner

product 〈·, ·〉µ∗ and norm ‖ · ‖µ∗ . The tangent space Tµ∗ is a subspace of L2
µ∗ equipped with the same

inner product and induced norm (Theorem 8.5.1, ?).

The exponential map Expµ∗ is then defined by the push-forward measures, which maps functions of

the form g = t(F−1 ◦F∗− id) ontoW , with F−1 being the quantile function of an arbitrary distribution

µ ∈ W ,

Expµ∗g = (g + id)#µ∗. (5)

While this exponential map is not a local homeomorphism (?), any µ ∈ W can be recovered by

Expµ∗(F−1 ◦ F∗ − id) in the sense that dW (Expµ∗(F−1 ◦ F∗ − id), µ) = 0, and the logarithmic map
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Logµ∗ : W → Tµ∗ , as the right inverse of the exponential map, is given by

Logµ∗µ = F−1 ◦ F∗ − id, for µ ∈ W . (6)

Furthermore, restricted to the log image, Expµ∗|Logµ∗ (W) is an isometric homeomorphism (e.g., Lemma

2.1, ?).

2.2 Distribution-to-Distribution Regression

Let (ν1, ν2) be a pair of random elements with a joint distribution F on W×W , assumed to be square

integrable in the sense that Ed2
W (µ, ν1) < ∞ and Ed2

W (µ, ν2) < ∞ for some (and thus for all) µ ∈ W .

Any element in W that minimizes Ed2
W (·, ν1) is called a Fréchet mean of ν1 (?). Since the Wasserstein

space W is a Hadamard space (?), such minimizers uniquely exist (?) and are given by

ν1⊕ = argmin
µ∈W

Ed2
W (µ, ν1) and ν2⊕ = argmin

µ∈W
Ed2

W (µ, ν2). (7)

It is well-known that for univariate distributions as we consider here, the quantile functions of the

Fréchet means are simply

F−1
1⊕ (·) = EF−1

1 (·) and F−1
2⊕ (·) = EF−1

2 (·),

where F−1
1⊕ , F

−1
2⊕ , F

−1
1 and F−1

2 are the quantile functions of ν1⊕, ν2⊕, ν1 and ν2, respectively.

As suggested by the multiple linear regression as per (1), we replace expectations and line segments,

which are not well-defined for the Wasserstein space, by Fréchet means and geodesics, respectively.

Hence, a regression operator ΓW : W →W for the Wasserstein space would be expected to satisfy:

dW (ν2⊕,ΓW(ν1⊕)) = 0 and dW (E⊕{γν2⊕,ν2(t)|ν1},ΓW{γν1⊕,ν1(t)}) = 0, for all t ∈ [0, 1], (8)

where the conditional Fréchet mean E⊕{γν2⊕,ν2(t) | ν1} := argminµ∈W E[d2
W (µ, γν2⊕,ν2(t)) | ν1].
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We assume that the Fréchet means ν1⊕ and ν2⊕ are atomless so that they can be used as the

reference probability measures as in Section 2.1. Note that Logν1⊕ν1⊕ = 0, ν1⊕-a.e., and Logν2⊕ν2⊕ =

0, ν2⊕-a.e., and that Expµ(0) = µ for any µ ∈ W . Furthermore, it follows from (4)–(6) and the

isometry property of Expν2⊕|Logν2⊕W
that γν1⊕,ν1(t) = Expν1⊕(tLogν1⊕ν1) and that E⊕{γν2⊕,ν2(t) | ν1} =

argminµ∈W E(‖Logν2⊕µ− tLogν2⊕ν2‖2
ν2⊕ | Logν1⊕ν1) = Expν2⊕ [E(tLogν2⊕ν2 | Logν1⊕ν1)]. Hence, (8) can

be rewritten as

‖Γ(0)‖ν2⊕ = 0 and ‖E(tLogν2⊕ν2 | Logν1⊕ν1)− Γ(tLogν1⊕ν1)‖ν2⊕ = 0, for all t ∈ [0, 1], (9)

where Γ: Tν1⊕ → Tν2⊕ , Γ = Logν2⊕ ◦ ΓW ◦Expν1⊕ , is a regression operator between tangent spaces Tν1⊕

and Tν2⊕ .

As discussed in Section 2.1, Tν1⊕ and Tν2⊕ are subspaces of L2
ν1⊕ and L2

ν2⊕ , respectively. Distribution-

to-distribution regression can then be viewed as function-to-function regression, which has been well-

studied in functional data analysis (see, e.g., ????). Specifically, we assume that the random pair of

distributions (ν1, ν2) satisfy the model

E(Logν2⊕ν2 | Logν1⊕ν1) = Γ(Logν1⊕ν1), (10)

where Γ: Tν1⊕ → Tν2⊕ is a linear operator defined as

Γg(t) = 〈β(·, t), g〉ν1⊕ , for t ∈ D and g ∈ Tν1⊕ . (11)

Here, β : D2 → R is a coefficient function (i.e., the kernel of Γ) lying in L2
ν1⊕×ν2⊕ , and ν1⊕ × ν2⊕ is a

product probability measure on the product measurable space (D2,B(D2)) generated by ν1⊕ and ν2⊕.

We note that our model satisfies (9). Furthermore, we assume

(A1) With probability 1, Γ(Logν1⊕ν1) + id is non-decreasing.

Assumption (A1) guarantees that Γ(Logν1⊕ν1) ∈ Logν2⊕W with probability 1. We demonstrate the
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feasibility of the proposed model in (10) by providing a framework in Section 5 to construct explicit

examples that satisfy the model requirements and (A1).

2.3 Covariance Structure, Regression Coefficient Function and Scalar Responses

Noting that E(Logν1⊕ν1) = 0, ν1⊕-a.e., and E(Logν2⊕ν2) = 0, ν2⊕-a.e., we denote the covariance oper-

ators of Logν1⊕ν1 and Logν2⊕ν2 by Cν1 = E(Logν1⊕ν1 ⊗ Logν1⊕ν1) and Cν2 = E(Logν2⊕ν2 ⊗ Logν2⊕ν2),

respectively, and the cross-covariance operator by Cν1ν2 = E(Logν2⊕ν2⊗Logν1⊕ν1). Since the two covari-

ance operators Cν1 and Cν2 are trace-class, they have eigendecompositions (Theorem 7.2.6, ?) as given

below, which can be viewed as an analog to multivariate principal component analysis (??), yielding a

corresponding decomposition for the cross-covariance operator Cν1ν2 ,

Cν1 =
∞∑
j=1

λjφj ⊗ φj, Cν2 =
∞∑
k=1

ςkψk ⊗ ψk, Cν1ν2 =
∞∑
k=1

∞∑
j=1

ξjkψk ⊗ φj. (12)

Here λj = E[〈Logν1⊕ν1, φj〉2ν1⊕ ] and ςk = E[〈Logν2⊕ν2, ψk〉2ν2⊕ ] are eigenvalues such that λ1 ≥ λ2 ≥

· · · ≥ 0 and ς1 ≥ ς2 ≥ · · · ≥ 0, {φj}∞j=1 and {ψk}∞k=1 are eigenfunctions that are orthonormal in Tν1⊕

and Tν2⊕ , respectively, and ξjk = E[〈Logν1⊕ν1, φj〉ν1⊕〈Logν2⊕ν2, ψk〉ν2⊕ ]. With probability 1, the log

transformations Logν1⊕ν1 and Logν2⊕ν2 admit the Karhunen–Loève expansions

Logν1⊕ν1 =
∞∑
j=1
〈Logν1⊕ν1, φj〉ν1⊕φj and Logν2⊕ν2 =

∞∑
k=1
〈Logν2⊕ν2, ψk〉ν2⊕ψk.

Then as in the classical functional regression (e.g., ???), the regression coefficient function β can

be expressed as

β =
∞∑
k=1

∞∑
j=1

bjkψk ⊗ φj, (13)

with bjk = λ−1
j ξjk. In order to guarantee that the right hand side of (13) converges in the sense that

lim
J,K→∞

∫
D

∫
D

 K∑
k=1

J∑
j=1

bjkφj(s)ψk(t)− β(s, t)
2

dν1⊕(s)dν2⊕(t) = 0,
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we assume (Lemma A.2, ?)

∞∑
k=1

∞∑
j=1

λ−2
j ξ2

jk <∞. (14)

To keep notations simple, we use the same notation g1⊗g2 for the operator and its kernel throughout

this paper. Namely, for g1 ∈ L2
µ1 and g2 ∈ L2

µ2 , g1 ⊗ g2 can represent either an operator on L2
µ2

such that (g1 ⊗ g2)(g) = 〈g2, g〉µ2g1 for g ∈ L2
µ2 or its kernel, i.e., a bivariate function such that

(g1 ⊗ g2)(s, t) = g1(t)g2(s) for all s, t ∈ D.

A variant of the proposed distribution-to-distribution regression in (10) is the pairing of distributions

as predictors with scalar responses. For a pair of random elements (ν1, Y ) with a joint distribution on

W × R, a distribution-to-scalar regression model is

E(Y | Logν1⊕ν1) = E(Y ) + 〈β1,Logν1⊕ν1〉ν1⊕ . (15)

Here, ν1⊕ is the Fréchet mean of ν1 and β1 : D → R is a regression coefficient function in L2
ν1⊕

which can be expressed as β1 = ∑∞
j=1 λ

−1
j 〈E(Y Logν1⊕ν1), φj〉ν1⊕φj, where λj and φj are the eigen-

values and eigenfunctions of the covariance operator Cν1 of Logν1⊕ν1 as in (12), and we assume that∑∞
j=1 λ

−2
j 〈E(Y Logν1⊕ν1), φj〉2ν1⊕ < ∞. This model can also be viewed as function-to-scalar regression,

which has been well studied in functional data analysis (?????).

3 Estimation

3.1 Distribution Estimation

While ? assume distributions are fully observed, in reality this is usually not the case, and this creates

an additional challenge for the implementation of the proposed distribution-to-distribution regression

model. Options to address this include estimating cdfs (e.g., ????), or estimating quantile functions

(e.g., ????) of the underlying distributions. Given an estimated quantile function F̂−1 (resp. cdf F̂ ),
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we convert it to a cdf (resp. a quantile function) by right (resp. left) continuous inversion,

F̂ (r) = sup{p ∈ [0, 1] : F̂−1(p) ≤ r}, for r ∈ R (16)

(resp. (3)). Alternatively, one can start with a density estimator to estimate densities (??) and then

compute the cdfs and quantile functions by integration and inversion.

Suppose {(ν1i, ν2i)}ni=1 are n independent realizations of (ν1, ν2). What we observe are collections of

independent measurements {Xil}
mν1i
l=1 and {Yil}

mν2i
l=1 , sampled from ν1i and ν2i, respectively, where mν1i

and mν2i are the sample sizes which may vary across distributions. Note that there are two independent

layers of randomness in the data: The first generates independent pairs of distributions (ν1i, ν2i); the

second generates independent observations according to each distribution, Xil ∼ ν1i and Yil ∼ ν2i.

For a distribution µ ∈ W , denote by µ̂ = µ(F̂ ) the distribution associated with some cdf estimate

F̂ , based on a sample of measurements drawn according to µ. Using ν̂1i and ν̂2i as surrogates of ν1i

and ν2i, the theoretical analysis of the estimation of the distribution-to-distribution regression operator

requires the following assumptions that quantify the discrepancy of the estimated and true probability

measures.

(A2) For any distribution µ ∈ W , with some nonnegative decreasing sequences τm = o(1) as m→∞,

the corresponding estimate µ̂ based on a sample of size m drawn according to µ satisfies

sup
µ∈W

E[d2
W (µ̂, µ)] = O(τm) and sup

µ∈W
E[d4

W (µ̂, µ)] = O(τ 2
m).

For example, for compactly supported distributions, the distribution estimator proposed by ? sat-

isfies (A2) with τm = m−1/2, while ? consider a subset Wac
R of W containing distributions that are

absolutely continuous with respect to Lebesgue measure on a compact domain D such that

sup
µ∈Wac

R

sup
r∈Dµ

max{fµ(r), 1/fµ(r), |f ′µ(r)|} ≤ R, (17)
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where fµ is the density function of a distribution µ ∈ Wac
R , Dµ is the support of distribution µ and R > 0

is constant, and then obtain the rates supµ∈Wac
R
Ed2

W (µ̂, µ) = O(m−2/3) and supµ∈Wac
R
E[d4

W (µ̂, µ)] =

O(m−4/3) in (A2) (Proposition 1, ?).

The following assumption on the numbers of measurements per distributionmν1i andmν2i facilitates

our analysis:

(A3) There exists a sequence m = m(n) such that min{mν1i ,mν2i : i = 1, . . . , n} ≥ m and m→∞ as

n→∞.

3.2 Regression Operator Estimation

We note that notations with “˜” refer to estimators based on fully observed distributions, while those

with “ ̂ ” refer to estimators for which the distributions, ν1i and ν2i, are not fully observed and only

samples of measurements drawn from the distributions are available.

Given independent realizations {(ν1i, ν2i)}ni=1 of (ν1, ν2), we first consider an oracle estimator for the

regression operator Γ, where we initially assume that {(ν1i, ν2i)}ni=1 are fully observed. First of all, the

empirical Fréchet means are well-defined and unique due to the fact that we work in Hadamard spaces.

Specifically, replacing the expectation in (7) by that with respect to the empirical measure based on

{(ν1i, ν2i)}ni=1 gives

ν̃1⊕ = arg min
µ∈W

n∑
i=1

d2
W (ν1i, µ) and ν̃2⊕ = arg min

µ∈W

∞∑
i=1

d2
W (ν2i, µ), (18)

where the corresponding quantile functions are the empirical means of quantile functions across the

sample,

F̃−1
1⊕ (·) = 1

n

n∑
i=1

F−1
1i (·) and F̃−1

2⊕ (·) = 1
n

n∑
i=1

F−1
2i (·), (19)

and the corresponding distribution functions are given by right continuous inverses of the quantile

functions as in (16). Then the log transforms Logν1⊕ν1i and Logν2⊕ν2i admit estimates Logν̃1⊕
ν1i and

Logν̃2⊕
ν2i. The covariance operators Cν1 and Cν2 can be estimated by C̃ν1 = n−1∑n

i=1 Logν̃1⊕
ν1i ⊗
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Logν̃1⊕
ν1i and C̃ν2 = n−1∑n

i=1 Logν̃2⊕
ν2i ⊗ Logν̃2⊕

ν2i. We denote the eigenvalues and eigenfunctions of

C̃ν1 and C̃ν2 by λ̃j and φ̃j, respectively by ς̃k and ψ̃k, where the eigenvalues are in non-ascending order.

The cross-covariance operator Cν1ν2 can be estimated by C̃ν1ν2 = n−1∑n
i=1 Logν̃2⊕

ν2i ⊗ Logν̃1⊕
ν1i.

Due to the compactness of Cν1 , its inverse is not bounded, leading to an ill-posed problem (e.g.,

??). Regularization is thus needed and can be achieved through truncation. Oracle estimators for the

regression coefficient function β and regression operator Γ are

β̃ =
K∑
k=1

J∑
j=1

b̃jkψ̃k ⊗ φ̃j and Γ̃g(t) = 〈g, β̃(·, t)〉ν̃1⊕
, for g ∈ Logν̃1⊕

W , t ∈ D, (20)

where b̃jk = λ̃−1
j ξ̃jk, with ξ̃jk = n−1∑n

i=1〈Logν̃1⊕
ν1i, φ̃j〉ν̃1⊕

〈Logν̃2⊕
ν2i, ψ̃k〉ν̃2⊕

, and J and K are the

truncation bounds, i.e., the numbers of included eigenfunctions.

Furthermore, we can construct an estimator based on the distribution estimation in Section 3.1

which will be applicable in practical situations, where typically ν1i and ν2i are observed in the form

of samples generated from ν1i and ν2i. Denote the estimated quantile functions by F̂−1
1i and F̂−1

2i ,

respectively. Then the quantile functions of the empirical Fréchet means ν̂1⊕ and ν̂2⊕ of ν̂1i and ν̂2i for

i = 1, . . . , n are given by

F̂−1
1⊕ (·) = 1

n

n∑
i=1

F̂−1
1i (·) and F̂−1

2⊕ (·) = 1
n

n∑
i=1

F̂−1
2i (·), (21)

and the corresponding distribution functions F̂1⊕ and F̂2⊕ can be obtained by right continuous in-

version as per (16). Replacing ν1i and ν2i by the corresponding estimates ν̂1i and ν̂2i, we can anal-

ogously obtain the estimates for the covariance operators, Ĉν1 = n−1∑n
i=1 Logν̂1⊕

ν̂1i ⊗ Logν̂1⊕
ν̂1i and

Ĉν2 = n−1∑n
i=1 Logν̂2⊕

ν̂2i ⊗ Logν̂2⊕
ν̂2i, as well as the estimate for the cross-covariance operator, Ĉν1ν2 =

n−1∑n
i=1 Logν̂2⊕

ν̂2i⊗Logν̂1⊕
ν̂1i. We denote the eigenvalues and eigenfunctions of Ĉν1 and Ĉν2 by λ̂j and

φ̂j, respectively by ς̂k and ψ̂k, where the eigenvalues are in non-ascending order. Data-based estimators
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of the regression coefficient function β and regression operator Γ in (11) are then

β̂ =
K∑
k=1

J∑
j=1

b̂jkψ̂k ⊗ φ̂j, and Γ̂g(t) = 〈g, β̂(·, t)〉ν̂1⊕
, for g ∈ Logν̂1⊕

W , t ∈ D, (22)

where b̂jk = λ̂−1
j ξ̂jk, and ξ̂jk = n−1∑n

i=1〈Logν̂1⊕
ν̂1i, φ̂j〉ν̂1⊕

〈Logν̂2⊕
ν̂2i, ψ̂k〉ν̂2⊕

.

Regarding the numbers of eigenfunctions included, J and K, we note that larger values of J and K

lead to smaller bias but larger variance and potential overfitting. We discuss the selection of J and K

further in Section S.4.1 in the Supplementary Material.

While this paper focuses on univariate distributions, we note that the proposed method in principle

can be extended to the multivariate setting, where however the optimal maps and hence the log maps

in general do not have closed-form expressions and the estimation is completely different from the

univariate setting. In addition, the required determination of the optimal transport maps is fraught

with numerical difficulties (?). This is in contrast to the univariate case, where optimal transports just

require the computation of quantile functions. Furthermore, the corresponding asymptotic analysis is

also different from the univariate setting; in particular, the expression of the parallel transport does

not hold in the multivariate case. See Section S.7 in the Supplementary Material for further discussion.

3.3 Parallel Transport

Note that the true regression operator, Γ: Tν1⊕ → Tν2⊕ , and its estimators, Γ̃ : Tν̃1⊕
→ Tν̃2⊕

and

Γ̂ : Tν̂1⊕
→ Tν̂2⊕

, are defined on different tangent spaces, which makes their comparison not so straight-

forward. For this, we employ parallel transport, which is a commonly used tool for data on manifolds

(???). For two probability distributions µ1, µ2 ∈ W , a parallel transport operator Pµ1,µ2 : L2
µ1 → L

2
µ2

can be defined between the entire Hilbert spaces L2
µ1 and L2

µ2 by

Pµ1,µ2g := g ◦ F−1
1 ◦ F2, for g ∈ L2

µ1 , (23)
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where F−1
1 and F2 are the quantile function of µ1 and cdf of µ2, respectively. Assuming that µ1 is

atomless, restricted to the tangent space Tµ1 , the parallel transport operator Pµ1,µ2|Tµ1
defines the

parallel transport from tangent space Tµ1 to Tµ2 .

Denote by Hµ1,µ2 the space of all Hilbert–Schmidt operators from Tµ1 to Tµ2 , for µ1, µ2 ∈ W .

With µ1, µ2, µ
′
1, µ

′
2 ∈ W where µ′1 and µ2 are atomless, we can define a parallel transport operator

P(µ1,µ2),(µ′1,µ′2) from Hµ1,µ2 to Hµ′1,µ
′
2
by

(P(µ1,µ2),(µ′1,µ′2)A)g = Pµ2,µ′2
(A(Pµ′1,µ1g)), for g ∈ Tµ′1 and A ∈ Hµ1,µ2 . (24)

Denoting the Hilbert–Schmidt norm on Hµ1,µ2 by ‖·‖Hµ1,µ2
, for µ1, µ2 ∈ W , properties of parallel trans-

port operators Pµ1,µ2 and P(µ1,µ2),(µ′1,µ′2) that are relevant for the theory are listed in Proposition S1 in

Section S.1.1 in the Supplementary Material. Given atomless distributions µ1, µ2, µ
′
1, µ

′
2 ∈ W , applying

Proposition S1 the discrepancy between operators A ∈ Hµ1,µ2 and A′ ∈ Hµ′1,µ
′
2
can be quantified in the

space Hµ1,µ2 by ‖P(µ′1,µ′2),(µ1,µ2)A′ −A‖Hµ1,µ2
.

3.4 Asymptotic Theory

Our goal for the theory is to evaluate the performance of the estimated regression operators, Γ̃ and Γ̂ as

per (20) and (22), respectively. According to the discussion in Section 3.3, if the true Fréchet means ν1⊕

and ν2⊕ and their estimators are atomless, the discrepancy between the estimated and true regression

operators can be gauged by ‖P(ν̃1⊕,ν̃2⊕),(ν1⊕,ν2⊕)Γ̃− Γ‖Hν1⊕,ν2⊕
and ‖P(ν̂1⊕,ν̂2⊕),(ν1⊕,ν2⊕)Γ̂− Γ‖Hν1⊕,ν2⊕

, for

Γ̃ and Γ̂, respectively. To guarantee the atomlessness of ν1⊕ and ν2⊕ and their estimators ν̃1⊕ and ν̃2⊕,

we assume

(A4) With probability equal to 1, the random distributions ν1 and ν2 are atomless.

Let C > 1 denote a constant. To derive the convergence rate of the estimators for the regression

operator, Γ̃ and Γ̂, we require the following conditions regarding the variability of ν1 and ν2, the spacing

of the eigenvalues λj and ςk, and the decay rates of the coefficients bjk. Conditions of this type are
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standard in traditional functional linear regression (e.g., ?).

(A5) E(‖Logν1⊕ν1‖4
ν1⊕) < ∞, and E(〈Logν1⊕ν1, φj〉4ν1⊕) ≤ Cλ2

j , for all j ≥ 1; E(‖Logν2⊕ν2‖4
ν2⊕) < ∞,

and E(〈Logν2⊕ν2, ψk〉4ν2⊕) ≤ Cς2
k , for all k ≥ 1.

(A6) For j ≥ 1, λj − λj+1 ≥ C−1j−θ−1, where θ ≥ 1 is a constant.

(A7) For k ≥ 1, ςk − ςk+1 ≥ C−1k−ϑ−1, where ϑ > 0 is a constant.

(A8) For j, k ≥ 1, |bjk| ≤ Cj−ρk−%, where ρ > θ + 1 and % > 1 are constants.

Note that (A8) implies (14). Furthermore, for J and K in (20) and (22), we assume

(A9) n−1J2θ+2 → 0, n−1K2ϑ+2 → 0, as n→∞.

Let F = F (C, θ, ϑ, ρ, %) denote the set of distributions F of (ν1, ν2) that satisfy (A1) and (A4)–

(A8). Defining the sequence

κ(n) = κ(n; θ, ϑ, ρ, %)

=


min

{
nmax{2ρ/(2ϑ+3),(4ρ−1)/(2ϑ+2%+2)}/(θ+2ρ), n1/(2ϑ+3)

}
, if %− ϑ ≤ 1,

min
{
nmax{2ρ/(2ϑ+3),(4ρ−1)/(2ϑ+2%+2)}/(θ+2ρ), (n/ log n)1/(2ϑ+3)

}
, if %− ϑ ∈ (1, 3/2],

min
{
nmax{2ρ/(2ϑ+3),(4ρ−1)/(2ϑ+2%+2)}/(θ+2ρ), n1/(2%)

}
, if %− ϑ > 3/2,

then when distributions ν1i and ν2i are fully observed, we obtain

Theorem 1. Assume (A1) and (A4)–(A9). If J ∼ n1/(θ+2ρ) and K ∼ κ(n), as n→∞, then

lim
M→∞

lim sup
n→∞

sup
F∈F

PF
(
‖P(ν̃1⊕,ν̃2⊕),(ν1⊕,ν2⊕)Γ̃− Γ‖2

Hν1⊕,ν2⊕
> Mα(n)

)
= 0, (25)

where

α(n) = max
{
n−(2ρ−1)/(θ+2ρ),κ(n)−(2%−1)

}
. (26)

We note that α(n) = n−(2ρ−1)/(θ+2ρ) in (26) if either of the following holds: % − ϑ ≤ 1 and 4ρ(ϑ −

% + 2) ≤ 2ϑ + 3 ≤ (2% − 1)(θ + 2ρ)/(2ρ − 1); or 1 < % − ϑ ≤ 3/2 and 4ρ(ϑ − % + 2) ≤ 2ϑ + 3 <
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(2%− 1)(θ + 2ρ)/(2ρ− 1); or %− ϑ > 3/2 and % ≥ max{ϑ+ 2− (2ϑ+ 3)/(4ρ), (θ + 2ρ)/(2θ + 2)}. In

this case, Γ̃ achieves the same rate as the minimax rate for function-to-scalar linear regression (?) and

function-to-function linear regression (following similar arguments as in the proof of Theorem 3 of ?).

Next, we consider the case where the distributions ν1i and ν2i are not fully observed. In addition, we

require an assumption regarding the number of measurements per distribution and a uniform Lipschitz

condition on the estimated cdfs to guarantee the atomlessness of the estimated Fréchet means ν̂1⊕ and

ν̂2⊕ and hence to justify the use of ‖P(ν̂1⊕,ν̂2⊕),(ν1⊕,ν2⊕)Γ̂ − Γ‖Hν1⊕,ν2⊕
as a measure of the estimation

error.

(A10) For τm in (A2), τm ≤ C min{n−1J−θ, n−1K−1}, for all n.

(A11) For any atomless distribution µ ∈ W , the corresponding estimate µ̂ based on a sample of mea-

surements drawn according to µ is also atomless.

For example, with J ∼ n1/(θ+2ρ) andK ∼ κ(n) as in Theorem 1, (A10) holds withm ∼ max{n3(θ+ρ)/(θ+2ρ), n3/2κ(n)3/2}

and m ∼ max{n4(θ+ρ)/(θ+2ρ), n2κ(n)2} for the estimators proposed by ? and ?, respectively. We note

that these two estimators also satisfy (A11). Then we find that the data-based estimator Γ̂ achieves

the same rate as the estimator Γ̃ based on fully observed distributions as shown in Theorem 1.

Theorem 2. If (A1)–(A11) hold and choosing J and K as in Theorem 1, then

lim
M→∞

lim sup
n→∞

sup
F∈F

PF
(
‖P(ν̂1⊕,ν̂2⊕),(ν1⊕,ν2⊕)Γ̂− Γ‖2

Hν1⊕,ν2⊕
> Mα(n)

)
= 0. (27)

We note that while the proposed method is based on function-to-function linear regression, the

asymptotic analysis is more involved. The proofs of Theorems 1 and 2 are based on the geometry of

the Wasserstein space, since we are not dealing with general functions in L2 space (with respect to

the Lebesgue measure) as in functional data analysis but rather the log maps. In particular, we do

not assume additive noise in the proposed model in (10). Furthermore, parallel transport maps are

employed to quantify the estimation discrepancy of the estimators of the regression operator, Γ, the

covariance and cross-covariance operators, Cν1 , Cν2 and Cν1ν2 , and the eigenfunctions, φj and ψk. All of
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these create additional complexities for the theoretical derivations. For Theorem 2, the distributions

ν1i and ν2i are not be fully observed and instead only data samples drawn from these distributions are

available. Hence, we need to deal with two layers of stochastic mechanisms: The first layer generates

random elements (ν1i, ν2i) taking values inW×W ; the second layer generates random samples according

to ν1i and ν2i. Specifically, we need to tackle the discrepancy between the estimated distributions based

on the observed data ν̂1i and ν̂2i and the actual underlying distributions ν1i and ν2i.

Theorems 1 and 2 entail the following corollaries on the prediction of ν2 based on ν1, where the

target is the conditional Fréchet mean of ν2 given ν1, i.e., E⊕(ν2|ν1) := argminµ′∈W E[d2
W (ν2, µ

′) | ν1] =

Expν2⊕ [E(Logν2⊕ν2 | Logν1⊕ν1)]. In the following, for any given µ ∈ W , the corresponding estimate

µ̂ is assumed to be based on a sample of mµ ≥ m observations drawn from µ, where m is the lower

bound of the number of observations per distribution as per (A3). We denote the prediction of ν2 based

on fully observed distributions by ν̃2(µ) := Expν̃2⊕
[Γ̃(Logν̃1⊕

µ)], and the prediction based on samples

generated from the distributions by ν̂2(µ̂) := Expν̂2⊕
[Γ̂(Logν̂1⊕

µ̂)], where Γ̃ and Γ̂ are as per (20) and

(22), respectively.

Corollary 1. Under the assumptions of Theorem 1,

lim
M→∞

lim sup
n→∞

sup
F∈F

PF
(
d2
W (ν̃2(µ),E⊕(ν2 | ν1 = µ)) > Mα(n)

)
= 0. (28)

Corollary 2. Under the assumptions of Theorem 2,

lim
M→∞

lim sup
n→∞

sup
F∈F

PF
(
d2
W (ν̂2(µ̂),E⊕(ν2 | ν1 = µ)) > Mα(n)

)
= 0.

For the proofs, see Section S.1.2 in the Supplementary Material. We further discuss the estimation

and theoretical analysis for the distribution-to-scalar regression model as per (15) in Section S.2 in the

Supplementary Material, where we show that the estimates of the regression coefficient function β1

achieve the same rate as the minimax rate for the function-to-scalar linear regression based on fully

observed predictor functions; see ?.
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4 Autoregressive Models for Distribution-Valued Time Series

Here we consider a distribution-valued time series {µi}i∈Z, each element taking values inW . We assume

that the random process {µi}i∈Z is stationary in the sense that

(1) µi are square integrable, i.e., Ed2
W (µ, µi) <∞ for some (and thus for all) µ ∈ W ;

(2) µi have a common Fréchet mean µ⊕ that is atomless, i.e, µ⊕ = argminµ∈W Ed2
W (µ, µi), for all

i ∈ Z;

(3) The autocovariance operators E(Logµ⊕µi+r ⊗ Logµ⊕µi) do not depend on i ∈ Z, which are hence

denoted by Cr, for all r ∈ Z.

For {µi}i∈Z, we assume a first order autoregressive model which is an extension of the distribution-to-

distribution regression model in (10)

Logµ⊕µi+1 = Γ(Logµ⊕µi) + εi+1, for i ∈ Z. (29)

Here, Γ: Tµ⊕ → Tµ⊕ is a linear operator defined as

Γg(t) = 〈β(·, t), g〉µ⊕ , for t ∈ D, and g ∈ Tµ⊕ , (30)

where β : D2 → R is the auto-regression coefficient kernel lying in L2
µ⊕×µ⊕ , and {εi}i∈Z are i.i.d. random

elements taking values in the tangent space Tµ⊕ such that E(εi) = 0 and E‖εi‖2
µ⊕ <∞. Similar models

have been previously studied in the seminal work of ?. To ensure the existence and uniqueness of such

a stationary process, we assume

(B1) There exists an integer q ≥ 1 such that ‖Γq‖L2
µ⊕
< 1.

Here, ‖ · ‖L2
µ⊕

denotes the sup norm for linear operators on L2
µ⊕ and we define Γq by induction, Γk(·) =

Γ[Γk−1(·)], for any integer k > 1. We note that under (B1), (29) has a unique stationary solution given
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by

Logµ⊕µi =
∞∑
r=0

Γr(εi−r), (31)

where Γ0(εi) := εi and the right hand side converges in mean square, limn→∞ E‖∑∞r=n Γr(εi−r)‖2
µ⊕

= 0, and also almost surely, i.e., limn→∞ ‖
∑∞
r=n Γr(εi−r)‖µ⊕ = 0 with probability 1 (Theorem 3.1, ?).

Furthermore, we assume

(B2) With probability 1, ∑∞r=0 Γr(ε−r) + id is non-decreasing.

Assumption (B2) guarantees that the right hand side of (31) lies in Logµ⊕W a.s. We further provide

a fully detailed example of a stationary process {µi}i∈Z that satisfies the autoregressive model as per

(29) in Section S.3 in the Supplementary Material.

As in Section 3, we have E(Logµ⊕µ1) = 0, µ⊕-almost surely. The operator C0 admits the eigende-

composition

C0 =
∞∑
j=1

λjφj ⊗ φj,

with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and orthonormal eigenfunctions {φj}∞j=1 in Tµ⊕ . With probability

1, the logarithmic transforms Logµ⊕µi admit the expansion

Logµ⊕µi =
∞∑
j=1
〈Logµ⊕µi, φj〉µ⊕φj, i ∈ Z,

and hence C1 = ∑∞
l=1

∑∞
j=1 ξjlφl⊗φj, where ξjl = E(〈Logµ⊕µ1, φj〉µ⊕〈Logµ⊕µ2, φl〉µ⊕). With bjl = λ−1

j ξjl,

the auto-regression coefficient function can then be expressed as

β =
∞∑
l=1

∞∑
j=1

bjlφl ⊗ φj.

For the estimation of the operator Γ in (30), first considering a fully observed sequence of length n,

µ1, µ2, . . . , µn, with the oracle estimator of the Fréchet mean µ̃⊕ defined analogously to (18), the autoco-

variance operators C0 and C1 can be estimated by their empirical counterparts C̃0 = n−1∑n
i=1 Logµ̃⊕µi⊗

Logµ̃⊕µi and C̃1 = (n− 1)−1∑n−1
i=1 Logµ̃⊕µi+1 ⊗ Logµ̃⊕µi. We denote the eigenvalues and eigenfunctions
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of C̃0 by λ̃j and φ̃j, respectively, where the eigenvalues λ̃j are in non-ascending order. Then oracle

estimators for the auto-regression coefficient function β and operator Γ in (30) are

β̃ =
J∑
l=1

J∑
j=1

b̃jlφ̃l ⊗ φ̃j, and Γ̃g(t) = 〈g, β̃(·, t)〉µ̃⊕ , for g ∈ Logµ̃⊕W , t ∈ D, (32)

where b̃jl = λ̃−1
j ξ̃jl, ξ̃jl = (n − 1)−1∑n−1

i=1 〈Logµ̃⊕µi, φ̃j〉µ̃⊕〈Logµ̃⊕µi+1, φ̃l〉µ̃⊕ , and J is the truncation

bound.

As discussed for the independent case in Section 3.2, a realistic estimator β̂ for β based on the

distribution estimation discussed in Section 3.1 can be obtained by replacing µi and µ⊕ with the

corresponding estimates µ̂i and µ̂⊕, the latter analogous to (21). Specifically, estimates for the autoco-

variance operators with corresponding decompositions are given by Ĉ0 = n−1∑n
i=1 Logµ̂⊕µ̂i ⊗ Logµ̂⊕µ̂i

and Ĉ1 = (n− 1)−1∑n−1
i=1 Logµ̂⊕µ̂i+1 ⊗ Logµ̂⊕µ̂i. We denote the eigenvalues and eigenfunctions of Ĉ0 by

λ̂j and φ̂j, respectively, where the eigenvalues λ̂j are in non-ascending order. With b̂jl = λ̂−1
j ξ̂jl and

ξ̂jl = (n − 1)−1∑n−1
i=1 〈Logµ̂⊕µ̂i, φ̂j〉µ̂⊕〈Logµ̂⊕µ̂i+1, φ̂l〉µ̂⊕ , data-based estimators for the auto-regression

coefficient function β and operator Γ in (30) are then given by

β̂ =
J∑
l=1

J∑
j=1

b̂jlφ̂l ⊗ φ̂j, and Γ̂g(t) = 〈g, β̂(·, t)〉µ̂⊕ , for g ∈ Logµ̂⊕W , t ∈ D. (33)

We first focus on the case where the distributions are fully observed. To derive the convergence rate

of the estimator Γ̃ in (32), we require the following assumptions analogous to the independent case in

Section 3. Let C > 1 be a constant.

(B3) With probability 1, the distributions µi are all atomless.

(B4) E(‖Logµ⊕µi‖4
µ⊕) <∞, and E(〈Logµ⊕µi, φj〉4µ⊕) ≤ Cλ2

j , for all j ≥ 1.

(B5) For j ≥ 1, λj − λj+1 ≥ C−1j−θ−1, where θ ≥ 1/2 is a constant.

(B6) For j, l ≥ 1, |bjl| ≤ Cj−ρl−%, where ρ > θ + 1 and % > 1 are constants.

(B7) n−1J2θ+2 → 0, as n→∞.

Let G = G (C, θ, ρ, %) denote the set of distributions G of the process {µi} that satisfy (B1)–(B6).
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Then we obtain

Theorem 3. Assume (B1)–(B7). If J ∼ min{n1/(2θ+2ρ+2 max{2−%, 0}), n1/(2θ+2 max{%, 2})}, then

lim
M→∞

lim sup
n→∞

sup
G∈G

PG
(
‖P(µ̃⊕,µ̃⊕),(µ⊕,µ⊕)Γ̃− Γ‖2

Hµ⊕,µ⊕
> Mζ(n)

)
= 0,

where

ζ(n) = max
{
n−(2ρ−1)/(2θ+2ρ+2 max{2−%, 0}), n−(2%−1)/(2θ+2 max{%, 2})

}
. (34)

The convergence rate obtained for the estimator Γ̃ in Theorem 3 is slower than the rate obtained

for the independent case as per Theorem 1. This is due to the serial dependence among µi and with

the special choice of J as above is manifested by the fact that α(n) as per (26) with θ = ϑ is always

smaller than ζ(n) as per (34).

Furthermore, regarding the estimator Γ̂ in (33) where only samples drawn from the distributions µi

are available, we in addition make the following assumption of the numbers of measurements observed

per distribution.

(B8) There exists a sequence m = m(n) such that for the number of measurements per distribution

mµi , min{mµi : i = 1, 2, . . . , n} ≥ m and m→∞ as n→∞.

(B9) τm ≤ Cn−1, for all n, where τm is as per (A2).

For example, if distributions µi are estimated via the methods used by ? and ?, in order to ensure

(B9), it suffices to take m ∼ n2 and m ∼ n3/2, respectively. Then we show that the estimator Γ̂ in (33)

converges with the same rate as Γ̃, as shown in Theorem 3.

Theorem 4. If (A2), (A11) and (B1)–(B9) hold and choosing J as in Theorem 3, then

lim
M→∞

lim sup
n→∞

sup
G∈G

PG
(
‖P(µ̂⊕,µ̂⊕),(µ⊕,µ⊕)Γ̂− Γ‖2

Hµ⊕,µ⊕
> Mζ(n)

)
= 0.

As for the independent case, Theorems 3 and 4 entail the following asymptotic results for the one-

on-one prediction of µn+1 given µn, where the target is the conditional Fréchet mean of µn+1 given µn
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by E⊕(µn+1 | µn) := argminµ′ E[d2
W (µn+1, µ

′) | µn] = Expµ⊕ [E(Logµ⊕µn+1 | Logµ⊕µn)]. For any given

µ ∈ W , the corresponding estimate µ̂ is assumed to be based on a sample of mµ ≥ m observations

drawn from µ, where m is the lower bound of the number of observations per distribution as per (B8).

The prediction of µn+1 based on fully observed distributions is given by Expµ̃⊕ [Γ̃(Logµ̃⊕µ)] and the

prediction based on samples generated from the distributions by Expµ̂⊕ [Γ̂(Logµ̂⊕µ̂)], where Γ̃ and Γ̂ are

as per (32) and (33), respectively. Then these predictions achieve the same rate as the estimates of the

regression operators in Theorems 3 and 4.

Corollary 3. Under the assumptions of Theorem 3,

lim
M→∞

lim sup
n→∞

sup
G∈G

PG
(
d2
W (Expµ̃⊕ [Γ̃(Logµ̃⊕µ)],E⊕(ν2 | ν1 = µ)) > Mζ(n)

)
= 0.

Corollary 4. Under the assumptions of Theorem 4,

lim
M→∞

lim sup
n→∞

sup
G∈G

PG
(
d2
W (Expµ̂⊕ [Γ̂(Logµ̂⊕µ̂)],E⊕(µn+1 | µn = µ)) > Mζ(n)

)
= 0.

Proofs and auxiliary lemmas for this section are in Section S.1.3 in the Supplementary Material.

5 Simulations

In practice, the fit of the logarithmic response may not fall in the logarithmic space with base point

ν̂2⊕, i.e.,

Γ̂(Logν̂1⊕
ν̂1i) /∈ Logν̂2⊕

W , (35)

with Γ̂ given in (22). This problem was already recognized by ?. If (35) happens, we employ a bound-

ary projection method described in Section S.4.2 in the Supplementary Material. We compared the

performance of the proposed method implemented with boundary projection (referred to as projection

method) with two other approaches. The first of these is to employ an alternative to the proposed
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boundary projection for those situations where the event (35) takes place, which was proposed by ? in

the context of principal component analysis (PCA). This alternative to handle the problem extends the

domains of the distributions. We use this method by fitting the proposed distribution-to-distribution

regression model with distributions on an extended domain when the event (35) happens, and then nor-

malize the fitted distributions by restricting them back to the original domain. We refer to this as the

domain-extension method in the following. The second alternative approach is the log quantile density

(LQD) method (?), where we apply function-to-function linear regression to the LQD transformations

of distributions and map the fitted responses back to the Wasserstein space W through the inverse

LQD transformation (?). Specifically, we use the R package fdadensity (?) for implementations of

the LQD transformations. To generate data for simulations, we provide the following framework to

construct explicit examples, which also demonstrates the feasibility of the proposed model in (10).

Framework for Explicit Construction. For D = [0, 1], we consider Fréchet mean distributions

ν1⊕, ν2⊕ ∈ W with bounded density functions, i.e., sups∈D f1⊕(s) < ∞ and supt∈D f2⊕(t) < ∞. We

consider a set of orthonormal functions {ϕj}∞j=1 in the Lebesgue-square-integrable function space on

[0, 1], L2([0, 1]), such that the ϕj are continuously differentiable with bounded derivatives, and ϕj(0) =

ϕj(1), for all j ∈ N+. In particular, ϕj can be taken as

ϕj(r) =
√

2 sin(2πjr), for r ∈ [0, 1], and j ∈ N+. (36)

Suppose Logν1⊕ν1 admits the expansion Logν1⊕ν1 = ∑∞
j=1 χjϕj ◦ F1⊕, where χj are uncorrelated

random variables with zero mean such that ∑∞j=1 χ
2
j < ∞ almost surely. We define the regression

operator Γ as Γg = ∑∞
k=1

∑∞
j=1 b

∗
jk〈g, ϕj ◦ F1⊕〉ν1⊕ϕk ◦ F2⊕, for g ∈ Tν1⊕ , with b∗jk ∈ R such that∑∞

j=1
∑∞
k=1 b

∗
jk

2 <∞. Hence, Γ(Logν1⊕ν1) = ∑∞
k=1

∑∞
j=1 b

∗
jkχjϕk ◦ F2⊕. To guarantee ∑∞j=1 χjϕj ◦ F1⊕ ∈
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Logν1⊕W and ∑∞k=1
∑∞
j=1 b

∗
jkχjϕk ◦ F2⊕ ∈ Logν2⊕W , it suffices to require



∞∑
j=1

χjϕ
′
j(F1⊕(s))f1⊕(s) + 1 ≥ 0, for all s ∈ D,

∞∑
k=1

∞∑
j=1

b∗jkχjϕ
′
k(F2⊕(t))f2⊕(t) + 1 ≥ 0, for all t ∈ D,

∞∑
j=1

χj(ϕj ◦ F1⊕)′ and
∞∑
k=1

∞∑
j=1

b∗jkχj(ϕk ◦ F2⊕)′ uniformly converge,

a.s. (37)

Requirement (37) is satisfied, e.g., when |χj| ≤ υ1j/(supr∈[0,1] |ϕ′j(r)| sups∈D f1⊕(s)∑∞j′=1 υ1j′) and

|b∗jkχj| ≤ υ1jυ2k/(supr∈[0,1] |ϕ′k(r)| supt∈D f2⊕(t)∑∞j′=1 υ1j′
∑∞
k′=1 υ2k′), a.s., where {υ1j}∞j=1 and {υ2k}∞k=1

are two non-negative sequences such that ∑∞j=1 υ1j < ∞ and ∑∞
k=1 υ2k < ∞, examples including

{a−j}∞j=1 and {j−a}∞j=1, for any given a > 1.

With Γ(Logν1⊕ν1) and ν2⊕, the distributional response ν2 can be generated by adding distortions to

Expν2⊕(Γ(Logν1⊕ν1)) through push-forward maps, i.e., ν2 = g#Expν2⊕(Γ(Logν1⊕ν1)), where g : D → D

is a random distortion function independent of ν1, such that g is non-decreasing almost surely, and

that E[g(t)] = t almost everywhere on D. This is a valid method to provide random distortions for

distributions (?) in the sense that the conditional Fréchet mean of ν2 is on target, i.e., E⊕(ν2|ν1) :=

argminµ∈W E[d2
W (ν2, µ) | ν1] = Expν2⊕(Γ(Logν1⊕ν1)). Furthermore, the pair (ν1, ν2) generated in this

way satisfies our model in (10). An example (?) of the random distortion function is g = gA, where

A is a random variable such that P(A ≤ r) = P(A ≥ −r) for any r ∈ R and P(A = 0) = 0, and ga is

defined as

ga(r) =


r − |a|−1 sin(ar), if a 6= 0,

r, if a = 0,
for r ∈ D. (38)

Specifically, for our simulation studies, with D = [0, 1], we consider two cases with different choices

of the Fréchet means ν1⊕ and ν2⊕:

Case 1. ν1⊕ = TND(0.5, 0.22), and ν2⊕ = TND(0.75, 0.32), where TND(µ, σ2) denotes the Gaussian

distribution N(µ, σ2) truncated on D.

Case 2. ν1⊕ = Beta(6, 2), and ν2⊕ = Beta(2, 4).
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Taking J∗ = K∗ = 20, for j, k ∈ N+, we set b∗jk = 2−kκ−1
k R−1

2⊕κjR1⊕ if j ≤ J∗ and k ≤ K∗, and

set b∗jk = 0 otherwise, where κl = supr∈[0,1] |ϕ′l(r)| = 2
√

2πl, for l ∈ N+, R1⊕ = sups∈D f1⊕(s) and

R2⊕ = supt∈D f2⊕(t). Taking υ1j = 2−j, data were generated as follows:

Step 1: Generate χij ∼ Unif(−υ1j(κjR1⊕
∑∞
l=1 υ1l)−1, υ1j(κjR1⊕

∑∞
l=1 υ1l)−1) independently for i =

1, . . . , n and j = 1, . . . , J∗, whence Logν1⊕ν1i = ∑J∗

j=1 χijϕj ◦ F1⊕, with the basis functions ϕj

as per (36), Γ(Logν1⊕ν1i) = ∑K∗

k=1
∑J∗

j=1 b
∗
jkχijϕk ◦ F2⊕, and ν1i = Expν1⊕(∑J∗

j=1 χijϕj ◦ F1⊕).

Step 2: Generate ν2i by adding distortion to Γ(Logν1⊕ν1i): Sample Ai iid∼ Unif{±π,±2π,±3π}; let

ν2i = gAi#Expν2⊕ [Γ(Logν1⊕ν1i)], with function ga defined as per (38).

Step 3: Draw an i.i.d. sample of size m from each of the distributions {ν1i}ni=1 and {ν2i}ni=1.

Four scenarios were considered with n ∈ {20, 200} and m ∈ {50, 500} for each case. We simulated

500 runs for each (n,m) pair. For the domain-extension method, the distribution domain is expanded

from [0, 1] to [−0.5, 1.5] and [−1, 2]. To compare the three methods, we computed the out-of-sample

average Wasserstein discrepancy (AWD) based on observations for 200 new predictors {ν1i}n+200
i=n+1, for

each Monte Carlo run. Denoting the fitted response distributions by ν\2i, the out-of-sample AWD is

given by

AWD(n,m) = 1
200

n+200∑
i=n+1

dW (E⊕(ν2i|ν1i), ν\2i), (39)

with E⊕(ν2i|ν1i) being the conditional Fréchet mean of ν2i given ν1i as defined above (38).

We found that the domain-extension method often failed to force the fit Γ̂(Logν̂1⊕
ν̂1i) to fall in the

log space Logν̂2⊕
W . In particular, this failure occurred in around 15–25% of the Monte Carlo runs

where (35) happened when n = 20; therefore we do not report the results for this method. The results

of the LQD method and the proposed Wasserstein regression method with boundary projection (WR)

are summarized in the boxplots of Figure 1.

The proposed method outperforms the LQD method in all the scenarios considered. In fact, the log

maps are isometries between the Wasserstein space and the log image spaces. This provides support

for the proposed approach. In contrast, the LQD transformation is not an isometry and the ensuing
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Figure 1: Boxplots of the out-of-sample AWDs as per (39) for the four simulation setups with
(n,m) ∈ {20, 200}×{50, 500}, where “LQD” denotes the LQD method and “WR” denotes the proposed
Wasserstein regression method. The numbers in brackets “[ ]” below the boxplots for WR indicate for
how many runs event (35) happened and boundary projection became necessary.

distortions likely contribute to its inferior behavior. In particular, in Case 2 where the Fréchet mean

distributions are beta distributions and the density functions are not bounded away from zero on D,

the LQD method suffers from bias issues. When the number of distributions n increases, (35) is seen

to happen less frequently and boundary projection is seldom needed when the sample size is large

(n = 200).

Additional simulations illustrating the asymptotic result in Theorem 1, regarding the robustness of

the proposed distribution-to-distribution regression method and comparing the proposed distribution-

to-scalar regression method with a Gaussian process regression approach (?) can be found in Section S.5

in the Supplementary Material.
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6 Applications

6.1 Mortality Data

There has been continuing interest in the nature of human longevity and the analysis of mortality

data across countries and calendar years has provided some of the key data to study it (e.g., ????).

Of particular interest is how patterns of mortality of specific populations evolve over calendar time.

Going beyond summary statistics such as life expectancy, viewing the entire age-at-death distributions

as data objects is expected to lead to deeper insights into the secular evolution of human longevity

and its dynamics. The Human Mortality Database (http://www.mortality.org) provides yearly life

tables for 38 countries or areas, which yield histograms for the distributions of age-at-death. Smooth

densities can then be obtained by applying local linear regression (?). We obtained these densities on

the domain [0, 100] (years of age).

In a first analysis, we focused on the n = 32 countries or areas for which data are available for

the years 1983 and 2013. We applied the proposed distribution-to-distribution regression model with

mortality distributions for an earlier year (1983) as the predictor and a later year (2013) as the response

to compare the temporal evolution of age-at-death distributions among different countries. We show

the leave-one-out prediction results together with the observed distributional predictors and responses

for females in Figure 2 for Japan, Ukraine, Italy and the USA, which showcase different patterns

of mortality change between 1983 and 2013. In addition to the graphical comparisons, Wasserstein

discrepancies (WD) between the observed and leave-one-out predicted distributions are also listed. For

all four countries, the observed and predicted distributions for 2013 are seen to be shifted to the right

from the corresponding distributions in 1983, indicating increased longevity.

The top row of Figure 2 shows a comparison between the model anticipation and the actual observed

distributions in 2013 in terms of density functions. Specifically, for Japan and the USA, the rightward

mortality shift is seen to be more expressed than suggested by the leave-one-out prediction, indicating

that longevity extension is more than anticipated, while the mortality distribution for Ukraine seems

27

http://www.mortality.org


Italy (WD = 0.34) Japan (WD = 1.11) Ukraine (WD = 3.59) USA (WD = 1.05)
D

ensity
Log M

aps

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.00

0.01

0.02

0.03

0.04

0.05

−10

0

10

Age (years)

Predictor (1983) Response (2013) CV prediction

Figure 2: Age-at-death distributions of females in Italy, Japan, Ukraine, and the USA for 1983 and 2013,
and the leave-one-out cross validation prediction based on the proposed distribution-to-distribution
regression model, where the predictors are the distributions for 1983 and the responses are the distri-
butions 30 years later. Top row: Observed densities for 1983 and 2013 and the leave-one-out predicted
densities Expν̂2⊕

(Γ̂(Logν̂1⊕
ν̂1i)) for 2013; Bottom row: Log-mapped predictors and responses, Logν̂1⊕

ν̂1i

and Logν̂2⊕
ν̂2i, and leave-one-out prediction for log responses Γ̂(Logν̂1⊕

ν̂1i), where the estimated regres-
sion operator Γ̂ is defined in (22) and no boundary projection is needed for these four countries. The
Wasserstein discrepancies (WDs) between the observed distributions and the corresponding leave-one-
out prediction are indicated for each country.

to shift to the right at a slower pace than the model prediction would suggest, leading to a relatively

large WD with a value of 3.59 between the observed and predicted response. In contrast, the regression

fit for Italy almost perfectly matches the observed distribution in 2013.

The log maps shown in the bottom row of Figure 2 indicate the shifts of the distributions relative

to the Fréchet mean across countries for the corresponding year. For Japan, the log maps for the

observed predictors and responses and also the model prediction are all positive across the age domain,

indicating that the distributions for Japan shift to the right from the Fréchet mean across countries,

and Japanese females live longer compared to the average across countries at all the ages, while the

magnitude of these log maps vary between 1983 and 2013 and also between observed and predicted

distributions for 2013. The observed mortality distribution for 2013 has a bigger rightward shift relative
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to the Fréchet mean distribution for older females and minors and a smaller one for younger adults than

the model prediction. In contrast, Ukraine has a leftward shift from the Fréchet mean for females of all

ages, and for 2013 the shift exceeds the model anticipation. For Italy, the log transformed predictor is

negative before 15 and positive after, whence the predicted log response becomes positive throughout

and also expands in size, meaning the relative standing of Italy in terms of longevity is anticipated to

be improved in 2013 by the model prediction. The predicted distribution of Italy in 2013 is shifted to

the right from the Fréchet mean for all ages, and such rightward shift is more expressed in the actual

distribution in 2013. For the USA, the predicted log-mapped response for 2013 is entirely negative and

consequently the mortality distribution moved to the left of the Fréchet mean, i.e., its relative standing

in terms of longevity is anticipated to become worse, while the actual observation is a mixture of a

rightward shift for more than 88 years of age and a leftward shift for the other ages.

We also illustrated the proposed autoregressive model for distribution-valued time series with the

mortality data for Sweden, and the results are summarized in Section S.6 in the Supplementary Material.

6.2 House Price Data

A question of continuing interest to economists is how house prices change over time (e.g., ??). We

fitted the temporal evolution of house price distributions via the autoregressive distribution time series

model described in Section 4, where we downloaded house price data from http://www.zillow.com.

These data included bimonthly median house prices after inflation adjustment for m = 306 cities in the

US from June 1996 to August 2015, for which the distribution of median house prices across the cities

was constructed for every second month. The autoregressive model was trained on data up to April

2007 and predictions were computed for the remaining period, where we successively predicted the

distribution of each month based on the prediction two months prior, i.e., by running the distribution

time series model as estimated from the training period.

Figure 3 shows the fitting and prediction results for training and prediction periods, where selected

months are ordered in time, while a five-number summary of the fitting and prediction WDs is given
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in Table 1. The house price densities are found to be mostly uni-modal, and the peak shifts gradually

to the right over time. Within the training period, the fitted densities are initially very close to the

observed densities and then gradually are situated to the left of the observed densities, which means

that the house price evolution overall accelerates during this period. For the prediction period, the

predicted densities almost coincide with the observed distributions in 2007, fall behind the actual

distribution in 2008, and then continue shifting to the right of the observed distributions. We find that

the discrepancy between the predicted and observed house price distributions increases from 2007 to

2012 and then decreases afterwards. These findings are in line with the overheating of the housing

market before 2006, the crash in 2007–2008, and the lingering effects of the financial crisis, followed by

a recovery after 2012.
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Figure 3: Observed and fitted (top row) / predicted (bottom row) densities of the house price distri-
butions. Training period: August 1996 to April 2007. Prediction period: June 2007 to August 2015.
Five representative months are depicted for each of the training and prediction periods in time order,
where the Wasserstein discrepancies (WDs) are also listed.
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Table 1: Five-number summary of the Wasserstein discrepancies in training and prediction periods.

Min Q0.25 Median Q0.75 Max
Training 0.0020 0.0035 0.0047 0.0066 0.017

Prediction 0.0040 0.016 0.042 0.054 0.068
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