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ABSTRACT
The analysis of samples of random objects that do not lie in a vector space is gaining increasing attention in
statistics. An important class of such object data is univariate probability measures defined on the real line.
Adopting the Wasserstein metric, we develop a class of regression models for such data, where random
distributions serve as predictors and the responses are either also distributions or scalars. To define this
regression model, we use the geometry of tangent bundles of the space of random measures endowed
with the Wasserstein metric for mapping distributions to tangent spaces. The proposed distribution-to-
distribution regression model provides an extension of multivariate linear regression for Euclidean data and
function-to-function regression for Hilbert space-valued data in functional data analysis. In simulations, it
performs better than an alternative transformation approach where one maps distributions to a Hilbert
space through the log quantile density transformation and then applies traditional functional regression.
We derive asymptotic rates of convergence for the estimator of the regression operator and for predicted
distributions and also study an extension to autoregressive models for distribution-valued time series. The
proposed methods are illustrated with data on human mortality and distributional time series of house
prices.
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1. Introduction

Regression analysis is one of the foundational tools of statistics
to quantify the relationship between a response variable and pre-
dictors and there have been many extensions of simple models
such as the multiple linear regression model to more complex
data scenarios. These include linear models for function-to-
function regression, where predictors and responses are both
considered random elements in a Hilbert space, with a vari-
ant where responses are scalars (Grenander 1950; Ramsay and
Dalzell 1991). Such linear functional regression models and
their properties have been well studied (Cardot, Ferraty, and
Sarda 1999; Cardot et al. 2003; Yao, Müller, and Wang 2005; Cai
and Hall 2006; Hall and Horowitz 2007) and reviewed (Morris
2015; Wang, Chiou, and Müller 2016).

Samples that include random objects, which are random
elements in general metric spaces that by default do not have
a vector space structure, are increasingly common. Such data
cannot be analyzed with methods devised for Euclidean or
functional data, which are usually viewed as random elements of
a Hilbert space (Marron and Alonso 2014; Huckemann 2015).
We focus here on the case where the random objects are random
probability measures on the real line that satisfy certain regu-
larity conditions. Specifically, at this time there are no in-depth
studies with detailed statistical analysis of regression models
that feature such random measures as predictors, in contrast to
the situation where vector predictors are coupled with random
distributions as responses (Petersen and Müller 2019a).
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Related work also includes a variety of methods that specif-
ically target the case where Euclidean predictors are paired
with responses that reside on a finite-dimensional Riemannian
manifold (Davis et al. 2007; Shi et al. 2009; Hinkle et al. 2012;
Yuan et al. 2012; Cornea et al. 2017; Lin et al. 2017). Ker-
nel and spline-type methods have been proposed for the case
where both predictors and responses are elements of finite-
dimensional Riemannian manifolds (Steinke and Hein 2009;
Steinke, Hein, and Schölkopf 2010; Banerjee et al. 2016). How-
ever, these methods do not cover spaces of probability measures
under the Wasserstein metric, where the tangent spaces are
subspaces of infinite-dimensional Hilbert spaces. Additionally,
no comprehensive investigation of the statistical properties and
asymptotic behavior of distribution-to-distribution regression
models seems to exist. To develop the proposed model, we use
tangent bundles in the space of probability distributions with the
Wasserstein metric and parallel transport to obtain asymptotic
results for regression operators and predicted measures.

A recent approach to including random distributions as
predictors in complex regression models is to transform the
densities of these distributions to unconstrained functions in the
Hilbert spaceL2, for example, by the log quantile density (LQD)
transformation (Petersen and Müller 2016) and then to employ
functional regression models where the transformed functions
serve as predictors and the responses are either also the trans-
formed functions or scalars (Chen et al. 2019; Kokoszka et al.
2019; Petersen, Chen, and Müller 2019a), whence established
methods for functional regression become applicable. However,

© 2021 American Statistical Association
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the LQD transformation does not take into account the geom-
etry of the space of probability distributions and therefore the
corresponding transformation map is not isometric and leads to
deformations that change distances between pairs of objects. In
contrast, the transformation method we develop here is closely
adapted to the underlying geometry, leads to an isometric map
and fully utilizes the geometric properties of the metric space
of random measures equipped with the Wasserstein distance.
We also found in implementations and simulations that the
proposed geometric method that we refer to as Wasserstein
regression works very well, especially when comparing it to a
regression approach that is based on the LQD transformation.
Other alternatives have been considered for regressing scalar
responses on distribution-valued predictors (Póczos et al. 2013;
Oliva et al. 2014; Szabó et al. 2016; Bachoc et al. 2017; Thi
Thien Trang et al. 2019), but these are either Nadaraya–Watson
type estimators that suffer from a severe curse of dimensionality,
or kernel-based methods that rely on tuning parameters whose
choice could be sensitive in real applications. Bonneel, Peyré,
and Cuturi (2016) approximated input histograms by the closest
weighted barycenters of a database of reference histograms with
respect to Wasserstein distance, which work when input his-
tograms are not far from the references, aiming at applications
in image processing.

Our goal is to develop a regression model where the pre-
dictors and responses are both distributions. A good starting
point is linear regression in Euclidean spaces, where for a pair of
random elements (X, Y) ∈ (Rp,R),E(Y | X) = �E(X) = EY+
β�(X−EX). The regression function �E can be characterized by
the following two properties: First, it maps the expectation of X
to the expectation of Y ; second, conditioning on X, it transports
the line segment between EX and X to that between EY and
E(Y | X). Specifically,

EY = �E(EX) and
E[EY + t(Y − EY) | X] = �E[EX + t(X − EX)], (1)

for all t ∈ [0, 1].
However, expectations and line segments are not well-

defined for the space of distributions, since it is not a vector
space. In this article, we develop a distribution-to-distribution
regression model that is analogous to traditional linear regres-
sion models for Euclidean and functional data, with the decisive
difference that both predictors and responses are univariate
probability measures. An example which we investigate later
is to study the relationship of the age-at-death distributions
of different countries in 2013 to the distributions 30 years
before. We also discuss an extension of our approach to an
autoregressive model for distribution-valued time series. In our
estimation procedures and theoretical analysis we cover the
commonly encountered but more complex situation where nei-
ther predictor nor response distributions are directly observed
and instead the available data consist of iid samples that are
generated by each of these distributions. After we submitted
this article, a preprint reporting independently conducted but
related work on autoregressive modeling of distributional time
series was posted by Zhang, Kokoszka, and Petersen (2021),
where a simplified version of the distributional autoregressive
model in Equation (29) was studied.

The remainder of the article is organized as follows. We first
propose a distribution-to-distribution regression model based
on the tangent bundle of the Wasserstein space of probability
distributions in Section 2, with estimation and asymptotic the-
ory in Section 3, and then describe an extension of the model
to an autoregressive model for time series of distributions in
Section 4. Simulation studies are illustrated in Section 5 to assess
the finite-sample performance of the proposed estimators and
a competing approach. The wide applicability of the proposed
methods is demonstrated with applications to human mortality
data and U.S. house price data in Section 6.

2. Methodology

2.1. Tangent Bundle of the Wasserstein Space

Let D be R or a closed interval in R, and B(D) be the Borel σ -
algebra on D. We focus on the Wasserstein space W = W(D)

of probability distributions on (D, B(D)) with finite second
moments, endowed with the L2-Wasserstein distance

dW(μ1, μ2) =
{∫ 1

0
[F−1

1 (p) − F−1
2 (p)]2dp

}1/2
, (2)

for μ1, μ2 ∈ W , where F−1
1 and F−1

2 denote the quantile func-
tions of μ1 and μ2, respectively; specifically, for any distribution
μ = μ(F) ∈ W with cumulative distribution function (cdf) F,
we consider the quantile function F−1 to be the left continuous
inverse of F, that is,

F−1(p) = inf{r ∈ D : F(r) ≥ p}, for p ∈ (0, 1). (3)

As demonstrated for example in Ambrosio, Gigli, and Savaré
(2008), Bigot et al. (2017), and Zemel and Panaretos (2019),
basic concepts of Riemannian manifolds can be generalized
to the Wasserstein space W . We assume in the following that
μ∗ ∈ W is an atomless reference probability measure, that is,
it possesses a continuous cdf F∗. For any μ ∈ W , the geodesic
from μ∗ to μ, γμ∗,μ : [0, 1]→W , is given by

γμ∗,μ(t) = [t(F−1 ◦ F∗ − id) + id]#μ∗, for t ∈ [0, 1], (4)

where for a measurable function h : D→D, h#μ∗ is a push-
forward measure such that h#μ∗(A) = μ∗({r ∈ D : h(r) ∈ A})
for any set A ∈ B(D). The tangent space at μ∗ is defined as

Tμ∗ = {t(F−1 ◦ F∗ − id) : μ = μ(F) ∈ W , t > 0}L
2
μ∗ ,

where L2
μ∗ = L2

μ∗(D) is the Hilbert space of μ∗-square-
integrable functions on D ⊂ R, with inner product 〈·, ·〉μ∗
and norm ‖ · ‖μ∗ . The tangent space Tμ∗ is a subspace of
L2

μ∗ equipped with the same inner product and induced norm
(Theorem 8.5.1, Ambrosio, Gigli, and Savaré 2008).

The exponential map expμ∗ is then defined by the push-
forward measures, which maps functions of the form g =
t(F−1 ◦ F∗ − id) onto W , with F−1 being the quantile function
of an arbitrary distribution μ ∈ W ,

expμ∗g = (g + id)#μ∗. (5)

While this exponential map is not a local homeomorphism
(Ambrosio, Gigli, and Savaré 2004), any μ ∈ W can be recov-
ered by expμ∗(F−1 ◦ F∗ − id) in the sense that dW(expμ∗(F−1 ◦
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F∗ − id), μ) = 0, and the logarithmic map logμ∗ : W→Tμ∗ , as
the right inverse of the exponential map, is given by

logμ∗μ = F−1 ◦ F∗ − id, for μ ∈ W . (6)

Furthermore, restricted to the log image, expμ∗ |logμ∗ (W) is an
isometric homeomorphism (e.g., Lemma 2.1, Bigot et al. 2017).

2.2. Distribution-to-Distribution Regression

Let (ν1, ν2) be a pair of random elements with a joint distri-
bution F on W × W , assumed to be square integrable in the
sense that Ed2

W(μ, ν1) < ∞ and Ed2
W(μ, ν2) < ∞ for some

(and thus for all) μ ∈ W . Any element in W that minimizes
Ed2

W(·, ν1) is called a Fréchet mean of ν1 (Fréchet 1948). Since
the Wasserstein spaceW is a Hadamard space (Kloeckner 2010),
such minimizers uniquely exist (Sturm 2003) and are given by

ν1⊕ = argminμ∈WEd2
W(μ, ν1) and

(7)
ν2⊕ = argminμ∈WEd2

W(μ, ν2).

It is well known that for univariate distributions as we consider
here, the quantile functions of the Fréchet means are simply

F−1
1⊕(·) = EF−1

1 (·) and F−1
2⊕(·) = EF−1

2 (·),

where F−1
1⊕ , F−1

2⊕ , F−1
1 and F−1

2 are the quantile functions of
ν1⊕, ν2⊕, ν1 and ν2, respectively.

As suggested by the multiple linear regression as per Equa-
tion (1), we replace expectations and line segments, which
are not well-defined for the Wasserstein space, by Fréchet
means and geodesics, respectively. Hence, a regression operator
�W : W→W for the Wasserstein space would be expected to
satisfy

dW(ν2⊕, �W(ν1⊕)) = 0 and (8)
dW(E⊕{γν2⊕,ν2(t)|ν1}, �W{γν1⊕,ν1(t)}) = 0, for all t ∈ [0, 1],

where the conditional Fréchet mean E⊕{γν2⊕,ν2(t) | ν1} :=
argminμ∈WE[d2

W(μ, γν2⊕,ν2(t)) | ν1].
We assume that the Fréchet means ν1⊕ and ν2⊕ are atom-

less so that they can be used as the reference probability
measures as in Section 2.1. Note that logν1⊕ν1⊕ = 0, ν1⊕-
a.e., and logν2⊕ν2⊕ = 0, ν2⊕-a.e., and that expμ(0) =
μ for any μ ∈ W . Furthermore, it follows from Equa-
tions (4)–(6) and the isometry property of expν2⊕|logν2⊕W
that γν1⊕,ν1(t) = expν1⊕(tlogν1⊕ν1) and that E⊕{γν2⊕,ν2(t) |
ν1} = argminμ∈WE(‖logν2⊕μ − tlogν2⊕ν2‖2

ν2⊕ | logν1⊕ν1) =
expν2⊕[E(tlogν2⊕ν2 | logν1⊕ν1)]. Hence, (8) can be rewritten as

‖�(0)‖ν2⊕ = 0 and
‖E(tlogν2⊕ν2 | logν1⊕ν1) − �(tlogν1⊕ν1)‖ν2⊕ = 0, (9)

for all t ∈ [0, 1],
where � : Tν1⊕→Tν2⊕ , � = logν2⊕ ◦�W ◦expν1⊕ , is a regression
operator between tangent spaces Tν1⊕ and Tν2⊕ .

As discussed in Section 2.1, Tν1⊕ and Tν2⊕ are subspaces of
L2

ν1⊕ andL2
ν2⊕ , respectively. Distribution-to-distribution regres-

sion can then be viewed as function-to-function regression,
which has been well-studied in functional data analysis (see, e.g.,

Ferraty and Vieu 2003; Yao, Müller, and Wang 2005; He et al.
2010; Wang, Chiou, and Müller 2016). Specifically, we assume
that the random pair of distributions (ν1, ν2) satisfies the model

E(logν2⊕ν2 | logν1⊕ν1) = �(logν1⊕ν1), (10)

where � : Tν1⊕→Tν2⊕ is a linear operator defined as

�g(t) = 〈β(·, t), g〉ν1⊕ , for t ∈ D and g ∈ Tν1⊕ . (11)

Here, β : D2→R is a coefficient function (i.e., the kernel of �)
lying in L2

ν1⊕×ν2⊕ , and ν1⊕ × ν2⊕ is a product probability mea-
sure on the product measurable space (D2, B(D2)) generated
by ν1⊕ and ν2⊕. We note that our model satisfies Equation (9).
Furthermore, we assume

(A1) With probability 1, �(logν1⊕ν1) + id is non-decreasing.

Assumption (A1) guarantees that �(logν1⊕ν1) ∈ logν2⊕W with
probability 1. We demonstrate the feasibility of the proposed
model in Equation (10) by providing a framework in Section 5 to
construct explicit examples that satisfy the model requirements
and (A1).

2.3. Covariance Structure, Regression Coefficient Function
and Scalar Responses

Noting that E(logν1⊕ν1) = 0, ν1⊕-a.e., and E(logν2⊕ν2) =
0, ν2⊕-a.e., we denote the covariance operators of logν1⊕ν1
and logν2⊕ν2 by Cν1 = E(logν1⊕ν1 ⊗ logν1⊕ν1) and Cν2 =
E(logν2⊕ν2 ⊗ logν2⊕ν2), respectively, and the cross-covariance
operator by Cν1ν2 = E(logν2⊕ν2 ⊗ logν1⊕ν1). Since the two
covariance operators Cν1 and Cν2 are trace-class, they have
eigendecompositions (Theorem 7.2.6, Hsing and Eubank 2015)
as given below, which can be viewed as an analog to mul-
tivariate principal component analysis (Dauxois, Pousse, and
Romain 1982; Castro, Lawton, and Sylvestre 1986), yielding a
corresponding decomposition for the cross-covariance operator
Cν1ν2 ,

Cν1 =
∞∑

j=1
λjφj ⊗ φj,

Cν2 =
∞∑

k=1
ςkψk ⊗ ψk, (12)

Cν1ν2 =
∞∑

k=1

∞∑
j=1

ξjkψk ⊗ φj.

Here λj = E[〈logν1⊕ν1, φj〉2
ν1⊕] and ςk = E[〈logν2⊕ν2, ψk〉2

ν2⊕]
are eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ 0 and ς1 ≥
ς2 ≥ · · · ≥ 0, {φj}∞j=1 and {ψk}∞k=1 are eigenfunctions that
are orthonormal in Tν1⊕ and Tν2⊕ , respectively, and ξjk =
E[〈logν1⊕ν1, φj〉ν1⊕〈logν2⊕ν2, ψk〉ν2⊕]. With probability 1, the
log transformations logν1⊕ν1 and logν2⊕ν2 admit the Karhunen–
Loève expansions

logν1⊕ν1 =
∞∑

j=1
〈logν1⊕ν1, φj〉ν1⊕φj and

logν2⊕ν2 =
∞∑

k=1
〈logν2⊕ν2, ψk〉ν2⊕ψk.
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Then as in the classical functional regression (e.g., Bosq 1991;
Cardot, Ferraty, and Sarda 1999; Yao, Müller, and Wang 2005),
the regression coefficient function β can be expressed as follows:

β =
∞∑

k=1

∞∑
j=1

bjkψk ⊗ φj, (13)

with bjk = λ−1
j ξjk. In order to guarantee that the right-hand side

of Equation (13) converges in the sense that

limJ,K→∞
∫

D
∫

D

⎡
⎣ K∑

k=1

J∑
j=1

bjkφj(s)ψk(t) − β(s, t)

⎤
⎦2

dν1⊕(s)dν2⊕(t) = 0,

we assume (Lemma A.2, Yao, Müller, and Wang 2005)
∞∑

k=1

∞∑
j=1

λ−2
j ξ 2

jk < ∞. (14)

To keep notations simple, we use the same notation g1⊗g2 for
the operator and its kernel throughout this article. Namely, for
g1 ∈ L2

μ1 and g2 ∈ L2
μ2 , g1 ⊗ g2 can represent either an operator

on L2
μ2 such that (g1 ⊗ g2)(g) = 〈g2, g〉μ2 g1 for g ∈ L2

μ2 or its
kernel, that is, a bivariate function such that (g1 ⊗ g2)(s, t) =
g1(t)g2(s) for all s, t ∈ D.

A variant of the proposed distribution-to-distribution
regression in Equation (10) is the pairing of distributions as
predictors with scalar responses. For a pair of random elements
(ν1, Y) with a joint distribution on W × R, a distribution-to-
scalar regression model is

E(Y | logν1⊕ν1) = E(Y) + 〈β1, logν1⊕ν1〉ν1⊕ . (15)

Here, ν1⊕ is the Fréchet mean of ν1 and β1 : D→R is a regres-
sion coefficient function in L2

ν1⊕ which can be expressed as
β1 = ∑∞

j=1 λ−1
j 〈E(Ylogν1⊕ν1), φj〉ν1⊕φj, where λj and φj are

the eigenvalues and eigenfunctions of the covariance opera-
tor Cν1 of logν1⊕ν1 as in Equation (12), and we assume that∑∞

j=1 λ−2
j 〈E(Ylogν1⊕ν1), φj〉2

ν1⊕ < ∞. This model can also be
viewed as function-to-scalar regression, which has been well
studied in functional data analysis (Cardot, Ferraty, and Sarda
1999; Cardot et al. 2003; Cai and Hall 2006; Hall and Horowitz
2007; Yuan and Cai 2010).

3. Estimation

3.1. Distribution Estimation

While Bigot et al. (2017) assumed distributions are fully
observed, in reality this is usually not the case, and this creates
an additional challenge for the implementation of the pro-
posed distribution-to-distribution regression model. Options to
address this include estimating cdfs (e.g., Aggarwal 1955; Read
1972; Falk 1983; Leblanc 2012), or estimating quantile functions
(e.g., Parzen 1979; Falk 1984; Yang 1985; Cheng and Parzen
1997) of the underlying distributions. Given an estimated quan-
tile function F̂−1 (resp. cdf F̂), we convert it to a cdf (resp. a
quantile function) by right (resp. left) continuous inversion,

F̂(r) = sup{p ∈ [0, 1] : F̂−1(p) ≤ r}, for r ∈ R (16)

(resp. Equation (3)). Alternatively, one can start with a den-
sity estimator to estimate densities (Panaretos and Zemel 2016;
Petersen and Müller 2016) and then compute the cdfs and
quantile functions by integration and inversion.

Suppose {(ν1i, ν2i)}n
i=1 are n independent realizations of

(ν1, ν2). What we observe are collections of independent mea-
surements {Xil}mν1i

l=1 and {Yil}mν2i
l=1 , sampled from ν1i and ν2i,

respectively, where mν1i and mν2i are the sample sizes which may
vary across distributions. Note that there are two independent
layers of randomness in the data: The first generates indepen-
dent pairs of distributions (ν1i, ν2i); the second generates inde-
pendent observations according to each distribution, Xil ∼ ν1i
and Yil ∼ ν2i.

For a distribution μ ∈ W , denote by μ̂ = μ(̂F) the
distribution associated with some cdf estimate F̂, based on
a sample of measurements drawn according to μ. Using ν̂1i
and ν̂2i as surrogates of ν1i and ν2i, the theoretical analysis
of the estimation of the distribution-to-distribution regression
operator requires the following assumptions that quantify the
discrepancy of the estimated and true probability measures.

(A2) For any distribution μ ∈ W , with some nonnegative
decreasing sequences τm = o(1) as m→∞, the corre-
sponding estimate μ̂ based on a sample of size m drawn
according to μ satisfies

sup
μ∈W

E[d2
W(μ̂, μ)] = O(τm) and

sup
μ∈W

E[d4
W(μ̂, μ)] = O(τ 2

m).

For example, for compactly supported distributions, the dis-
tribution estimator proposed by Panaretos and Zemel (2016)
satisfies (A2) with τm = m−1/2, while Petersen and Müller
(2016) considered a subset Wac

R of W containing distributions
that are absolutely continuous with respect to Lebesgue measure
on a compact domain D such that

sup
μ∈Wac

R

sup
r∈Dμ

max{fμ(r), 1/fμ(r), |f ′
μ(r)|} ≤ R, (17)

where fμ is the density function of a distribution μ ∈ Wac
R , Dμ

is the support of distribution μ and R > 0 is a constant, and
then obtain the rates supμ∈Wac

R
Ed2

W(μ̂, μ) = O(m−2/3) and
supμ∈Wac

R
E[d4

W(μ̂, μ)] = O(m−4/3) in (A2) (prop. 1, Petersen
and Müller 2019b).

The following assumption on the numbers of measurements
per distribution mν1i and mν2i facilitates our analysis:

(A3) There exists a sequence m = m(n) such that
min{mν1i , mν2i : i = 1, . . . , n} ≥ m and m→∞ as n→∞.

3.2. Regression Operator Estimation

We note that notations with “̃ ” refer to estimators based on fully
observed distributions, while those with “̂ ” refer to estimators
for which the distributions, ν1i and ν2i, are not fully observed
and only samples of measurements drawn from the distributions
are available.
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Given independent realizations {(ν1i, ν2i)}n
i=1 of (ν1, ν2), we

first consider an oracle estimator for the regression operator �,
where we initially assume that {(ν1i, ν2i)}n

i=1 are fully observed.
First of all, the empirical Fréchet means are well-defined and
unique due to the fact that we work in Hadamard spaces. Specif-
ically, replacing the expectation in Equation (7) by that with
respect to the empirical measure based on {(ν1i, ν2i)}n

i=1 gives

ν̃1⊕ = arg min
μ∈W

n∑
i=1

d2
W(ν1i, μ) and

(18)
ν̃2⊕ = arg min

μ∈W

n∑
i=1

d2
W(ν2i, μ),

where the corresponding quantile functions are the empirical
means of quantile functions across the sample,

F̃−1
1⊕(·) = 1

n

n∑
i=1

F−1
1i (·) and

(19)
F̃−1

2⊕(·) = 1
n

n∑
i=1

F−1
2i (·),

and the corresponding distribution functions are given by right
continuous inverses of the quantile functions as in Equation
(16). Then the log transforms logν1⊕ν1i and logν2⊕ν2i admit
estimates log̃ν1⊕ν1i and log̃ν2⊕ν2i. The covariance operators Cν1

and Cν2 can be estimated by C̃ν1 = n−1 ∑n
i=1 log̃ν1⊕ν1i ⊗

log̃ν1⊕ν1i and C̃ν2 = n−1 ∑n
i=1 log̃ν2⊕ν2i ⊗ log̃ν2⊕ν2i. We denote

the eigenvalues and eigenfunctions of C̃ν1 and C̃ν2 by λ̃j and φ̃j,
respectively, by ς̃k and ψ̃k, where the eigenvalues are in non-
ascending order. The cross-covariance operator Cν1ν2 can be
estimated by C̃ν1ν2 = n−1 ∑n

i=1 log̃ν2⊕ν2i ⊗ log̃ν1⊕ν1i.
Due to the compactness of Cν1 , its inverse is not bounded,

leading to an ill-posed problem (e.g., He, Müller, and Wang
2003; Wang, Chiou, and Müller 2016). Regularization is thus
needed and can be achieved through truncation. Oracle esti-
mators for the regression coefficient function β and regression
operator � are

β̃ =
K∑

k=1

J∑
j=1

b̃jkψ̃k ⊗ φ̃j and

(20)
�̃g(t) = 〈g, β̃(·, t)〉̃ν1⊕ , for g ∈ log̃ν1⊕W , t ∈ D,

where b̃jk = λ̃−1
j ξ̃jk, with ξ̃jk = n−1 ∑n

i=1〈log̃ν1⊕ν1i, φ̃j〉̃ν1⊕
〈log̃ν2⊕ν2i, ψ̃k〉̃ν2⊕ , and J and K are the truncation bounds, that
is, the numbers of included eigenfunctions.

Furthermore, we can construct an estimator based on the
distribution estimation in Section 3.1 which will be applicable
in practical situations, where typically ν1i and ν2i are observed
in the form of samples generated from ν1i and ν2i. Denote the
estimated quantile functions by F̂−1

1i and F̂−1
2i , respectively. Then

the quantile functions of the empirical Fréchet means ν̂1⊕ and
ν̂2⊕ of ν̂1i and ν̂2i for i = 1, . . . , n are given by

F̂−1
1⊕(·) = 1

n

n∑
i=1

F̂−1
1i (·) and F̂−1

2⊕(·) = 1
n

n∑
i=1

F̂−1
2i (·), (21)

and the corresponding distribution functions F̂1⊕ and F̂2⊕
can be obtained by right continuous inversion as per (16).
Replacing ν1i and ν2i by the corresponding estimates ν̂1i and
ν̂2i, we can analogously obtain the estimates for the covari-
ance operators, Ĉν1 = n−1 ∑n

i=1 loĝν1⊕ ν̂1i ⊗ loĝν1⊕ ν̂1i and
Ĉν2 = n−1 ∑n

i=1 loĝν2⊕ ν̂2i ⊗ loĝν2⊕ ν̂2i, as well as the estimate
for the cross-covariance operator, Ĉν1ν2 = n−1 ∑n

i=1 loĝν2⊕ ν̂2i⊗
loĝν1⊕ ν̂1i. We denote the eigenvalues and eigenfunctions of Ĉν1

and Ĉν2 by λ̂j and φ̂j, respectively by ς̂k and ψ̂k, where the
eigenvalues are in non-ascending order. Data-based estimators
of the regression coefficient function β and regression operator
� in Equation (11) are then

β̂ =
K∑

k=1

J∑
j=1

b̂jkψ̂k ⊗ φ̂j, and (22)

�̂g(t) = 〈g, β̂(·, t)〉̂ν1⊕ , for g ∈ loĝν1⊕W , t ∈ D,

where b̂jk = λ̂−1
j ξ̂jk, and ξ̂jk = n−1 ∑n

i=1〈loĝν1⊕ ν̂1i, φ̂j〉̂ν1⊕
〈loĝν2⊕ ν̂2i, ψ̂k〉̂ν2⊕ .

Regarding the numbers of eigenfunctions included, J and
K, we note that larger values of J and K lead to smaller bias
but larger variance and potential overfitting. We discuss the
selection of J and K further in Section S.4.1 in the supplementary
material.

While this article focuses on univariate distributions, we note
that the proposed method in principle can be extended to the
multivariate setting, where however the optimal maps and hence
the log maps in general do not have closed-form expressions
and the estimation is completely different from the univariate
setting. In addition, the required determination of the optimal
transport maps is fraught with numerical difficulties (Cuturi
2013). This is in contrast to the univariate case, where optimal
transports just require the computation of quantile functions.
Furthermore, the corresponding asymptotic analysis is also dif-
ferent from the univariate setting; in particular, the expres-
sion of the parallel transport does not hold in the multivariate
case. See Section S.7 in the supplementary material for further
discussion.

3.3. Parallel Transport

Note that the true regression operator, � : Tν1⊕→Tν2⊕ , and its
estimators, �̃ : Tν̃1⊕→Tν̃2⊕ and �̂ : Tν̂1⊕→Tν̂2⊕ , are defined on
different tangent spaces, which makes their comparison not so
straightforward. For this, we employ parallel transport, which
is a commonly used tool for data on manifolds (Yuan et al.
2012; Lin and Yao 2019; Petersen and Müller 2019b). For two
probability distributions μ1, μ2 ∈ W , a parallel transport
operator Pμ1,μ2 : L2

μ1→L2
μ2 can be defined between the entire

Hilbert spaces L2
μ1 and L2

μ2 by

Pμ1,μ2 g := g ◦ F−1
1 ◦ F2, for g ∈ L2

μ1 , (23)

where F−1
1 and F2 are the quantile function of μ1 and cdf of

μ2, respectively. Assuming that μ1 is atomless, restricted to the
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tangent space Tμ1 , the parallel transport operator Pμ1,μ2 |Tμ1
defines the parallel transport from tangent space Tμ1 to Tμ2 .

Denote by Hμ1,μ2 the space of all Hilbert–Schmidt operators
from Tμ1 to Tμ2 , for μ1, μ2 ∈ W . With μ1, μ2, μ′

1, μ′
2 ∈ W

where μ′
1 and μ2 are atomless, we can define a parallel transport

operator P(μ1,μ2),(μ′
1,μ′

2)
from Hμ1,μ2 to Hμ′

1,μ′
2

by

(P(μ1,μ2),(μ′
1,μ′

2)
A)g = Pμ2,μ′

2
(A(Pμ′

1,μ1 g)),
(24)

for g ∈ Tμ′
1

and A ∈ Hμ1,μ2 .

Denoting the Hilbert–Schmidt norm on Hμ1,μ2 by ‖·‖Hμ1,μ2
,

for μ1, μ2 ∈ W , properties of parallel transport operators Pμ1,μ2
and P(μ1,μ2),(μ′

1,μ′
2)

that are relevant for the theory are listed in
Proposition S1 in Section S.1.1 in the supplementary material.
Given atomless distributions μ1, μ2, μ′

1, μ′
2 ∈ W , applying

Proposition S1, the discrepancy between operators A ∈ Hμ1,μ2
and A′ ∈ Hμ′

1,μ′
2

can be quantified in the space Hμ1,μ2 by
‖P(μ′

1,μ′
2),(μ1,μ2)A′ − A‖Hμ1,μ2

.

3.4. Asymptotic Theory

Our goal for the theory is to evaluate the performance
of the estimates �̃ and �̂ of the regression operator as
per (20) and (22) respectively. According to the discus-
sion in Section 3.3, if the true Fréchet means ν1⊕ and
ν2⊕ and their estimators are atomless, then the discrep-
ancy between the estimated and true regression opera-
tors can be gauged by ‖P(̃ν1⊕ ,̃ν2⊕),(ν1⊕,ν2⊕)�̃ − �‖Hν1⊕ ,ν2⊕ and
‖P(̂ν1⊕ ,̂ν2⊕),(ν1⊕,ν2⊕)�̂ − �‖Hν1⊕ ,ν2⊕ , for �̃ and �̂, respectively. To
guarantee the atomlessness of ν1⊕ and ν2⊕ and their estimators
ν̃1⊕ and ν̃2⊕, we assume

(A4) With probability equal to 1, the random distributions ν1
and ν2 are atomless.

Let C > 1 denote a constant. To derive the convergence rate
of the estimators �̃ and �̂ of the regression operator, we require
the following conditions regarding the variability of ν1 and ν2,
the spacing of the eigenvalues λj and ςk, and the decay rates
of the coefficients bjk. Conditions of this type are standard in
traditional functional linear regression (e.g., Hall and Horowitz
2007).

(A5) E(‖logν1⊕ν1‖4
ν1⊕) < ∞, and E(〈logν1⊕ν1, φj〉4

ν1⊕) ≤
Cλ2

j , for all j ≥ 1; E(‖logν2⊕ν2‖4
ν2⊕) < ∞, and

E(〈logν2⊕ν2, ψk〉4
ν2⊕) ≤ Cς2

k , for all k ≥ 1.
(A6) For j ≥ 1, λj − λj+1 ≥ C−1j−θ−1, where θ ≥ 1 is a

constant.
(A7) For k ≥ 1, ςk − ςk+1 ≥ C−1k−ϑ−1, where ϑ > 0 is a

constant.
(A8) For j, k ≥ 1, |bjk| ≤ Cj−ρk−�, where ρ > θ + 1 and � > 1

are constants.

Note that Assumption (A8) implies Equation (14). Furthermore,
for J and K in Equations (20) and (22), we assume

(A9) n−1J2θ+2→0, n−1K2ϑ+2→0, as n→∞.

Let F = F (C, θ , ϑ , ρ, �) denote the set of distributionsF of
(ν1, ν2) that satisfy (A1) and (A4)–(A8). Defining the sequence

�(n) = �(n; θ , ϑ , ρ, �)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
{

nmax{2ρ/(2ϑ+3),(4ρ−1)/(2ϑ+2�+2)}/(θ+2ρ),
n1/(2ϑ+3)

}
, if � − ϑ ≤ 1,

min
{

nmax{2ρ/(2ϑ+3),(4ρ−1)/(2ϑ+2�+2)}/(θ+2ρ),
(n/ log n)1/(2ϑ+3)

}
, if � − ϑ ∈ (1, 3/2],

min
{

nmax{2ρ/(2ϑ+3),(4ρ−1)/(2ϑ+2�+2)}/(θ+2ρ),
n1/(2�)

}
, if � − ϑ > 3/2,

then when distributions ν1i and ν2i are fully observed, we obtain

Theorem 1. Assume (A1) and (A4)–(A9). If J ∼ n1/(θ+2ρ) and
K ∼ �(n), as n→∞, then

lim
M→∞ lim sup

n→∞
sup
F∈F

PF
(
‖P(̃ν1⊕ ,̃ν2⊕),(ν1⊕,ν2⊕)�̃ − �‖2

Hν1⊕ ,ν2⊕

> Mα(n)
)

= 0,
(25)

where

α(n) = max
{

n−(2ρ−1)/(θ+2ρ), �(n)−(2�−1)
}

. (26)

We note that α(n) = n−(2ρ−1)/(θ+2ρ) in Equation (26) if
either of the following holds: � − ϑ ≤ 1 and 4ρ(ϑ − � + 2) ≤
2ϑ + 3 ≤ (2� − 1)(θ + 2ρ)/(2ρ − 1); or 1 < � − ϑ ≤ 3/2 and
4ρ(ϑ−�+2) ≤ 2ϑ+3 < (2�−1)(θ+2ρ)/(2ρ−1); or �−ϑ >

3/2 and � ≥ max{ϑ + 2 − (2ϑ + 3)/(4ρ), (θ + 2ρ)/(2θ + 2)}.
In this case, �̃ achieves the same rate as the minimax rate for
function-to-scalar linear regression (Hall and Horowitz 2007)
and function-to-function linear regression (following similar
arguments as in the proof of Theorem 3 of Imaizumi and Kato
2018).

Next, we consider the case where the distributions ν1i
and ν2i are not fully observed. In addition, we require an
assumption regarding the number of measurements per dis-
tribution and a uniform Lipschitz condition on the esti-
mated cdfs to guarantee the atomlessness of the estimated
Fréchet means ν̂1⊕ and ν̂2⊕ and hence to justify the use of
‖P(̂ν1⊕ ,̂ν2⊕),(ν1⊕,ν2⊕)�̂ − �‖Hν1⊕ ,ν2⊕ as a measure of the estima-
tion error.

(A10) For τm in (A2), τm ≤ C min{n−1J−θ , n−1K−1}, for all n.
(A11) For any atomless distribution μ ∈ W , the corresponding

estimate μ̂ based on a sample of measurements drawn
according to μ is also atomless.

For example, with J ∼ n1/(θ+2ρ) and K ∼ �(n) as in Theo-
rem 1, (A10) holds with m ∼ max{n3(θ+ρ)/(θ+2ρ), n3/2�(n)3/2}
and m ∼ max{n4(θ+ρ)/(θ+2ρ), n2�(n)2} for the estimators
proposed by Petersen and Müller (2016) and Panaretos and
Zemel (2016), respectively. We note that these two estimators
also satisfy (A11). Then we find that the data-based estimator �̂

achieves the same rate as the estimator �̃ based on fully observed
distributions as shown in Theorem 1.
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Theorem 2. If (A1)–(A11) hold and choosing J and K as in
Theorem 1, then

lim
M→∞ lim sup

n→∞
sup
F∈F

PF
(
‖P(̂ν1⊕ ,̂ν2⊕),(ν1⊕,ν2⊕)�̂ − �‖2

Hν1⊕ ,ν2⊕

> Mα(n)
)

= 0.
(27)

We note that while the proposed method is based on
function-to-function linear regression, the asymptotic analysis
is more involved. The proofs of Theorems 1 and 2 are based on
the geometry of the Wasserstein space, since we are not dealing
with general functions inL2 space (with respect to the Lebesgue
measure) as in functional data analysis but rather the log maps.
In particular, we do not assume additive noise in the proposed
model in Equation (10). Furthermore, parallel transport maps
are employed to quantify the estimation discrepancy of the esti-
mators of the regression operator �, the covariance and cross-
covariance operators, Cν1 , Cν2 and Cν1ν2 , and the eigenfunctions,
φj and ψk. All of these create additional complexities for the
theoretical derivations. For Theorem 2, the distributions ν1i and
ν2i are not be fully observed and instead only data samples
drawn from these distributions are available. Hence, we need to
deal with two layers of stochastic mechanisms: The first layer
generates random elements (ν1i, ν2i) taking values in W × W ;
the second layer generates random samples according to ν1i and
ν2i. Specifically, we need to tackle the discrepancy between the
estimated distributions based on the observed data ν̂1i and ν̂2i
and the actual underlying distributions ν1i and ν2i.

Theorems 1 and 2 entail the following corollaries on the
prediction of ν2 based on ν1, where the target is the con-
ditional Fréchet mean of ν2 given ν1, that is, E⊕(ν2|ν1) :=
argminμ′∈WE[d2

W(ν2, μ′) | ν1] = expν2⊕[E(logν2⊕ν2 |
logν1⊕ν1)]. In the following, for any given μ ∈ W , the cor-
responding estimate μ̂ is assumed to be based on a sample of
mμ ≥ m observations drawn from μ, where m is the lower
bound of the number of observations per distribution as per
(A3). We denote the prediction of ν2 based on fully observed dis-
tributions by ν̃2(μ) := exp̃ν2⊕[�̃(log̃ν1⊕μ)], and the prediction
based on samples generated from the distributions by ν̂2(μ̂) :=
exp̂ν2⊕[�̂(loĝν1⊕μ̂)], where �̃ and �̂ are as per Equations (20)
and (22), respectively.

Corollary 1. Under the assumptions of Theorem 1,

lim
M→∞ lim sup

n→∞
sup
F∈F

PF
(

d2
W (̃ν2(μ),E⊕(ν2 | ν1 = μ))

> Mα(n)
)

= 0.
(28)

Corollary 2. Under the assumptions of Theorem 2,

lim
M→∞ lim sup

n→∞
sup
F∈F

PF
(

d2
W (̂ν2(μ̂),E⊕(ν2 | ν1 = μ))

> Mα(n)
)

= 0.

For the proofs, see Section S.1.2 in the supplementary mate-
rial. We further discuss the estimation and theoretical analysis
for the distribution-to-scalar regression model as per Equation
(15) in Section S.2 in the supplementary material, where we
show that the estimates of the regression coefficient function

β1 achieve the same rate as the minimax rate for the function-
to-scalar linear regression based on fully observed predictor
functions; see Hall and Horowitz (2007).

4. Autoregressive Models for Distribution-Valued
Time Series

Here, we consider a distribution-valued time series {μi}i∈Z, each
element taking values inW . We assume that the random process
{μi}i∈Z is stationary in the sense that

1. μi are square integrable, that is, Ed2
W(μ, μi) < ∞ for some

(and thus for all) μ ∈ W ;
2. μi have a common Fréchet mean μ⊕ that is atomless, that is,

μ⊕ = argminμ∈WEd2
W(μ, μi), for all i ∈ Z;

3. The autocovariance operators E(logμ⊕μi+r ⊗ logμ⊕μi) do
not depend on i ∈ Z, which are hence denoted by Cr , for all
r ∈ Z.

For {μi}i∈Z, we assume the first-order autoregressive model
which is an extension of the distribution-to-distribution regres-
sion model in Equation (10)

logμ⊕μi+1 = �(logμ⊕μi) + εi+1, for i ∈ Z. (29)

Here, � : Tμ⊕→Tμ⊕ is a linear operator defined as

�g(t) = 〈β(·, t), g〉μ⊕ , for t ∈ D, and g ∈ Tμ⊕ , (30)

where β : D2→R is the auto-regression coefficient kernel lying
in L2

μ⊕×μ⊕ , and {εi}i∈Z are iid random elements taking values
in the tangent space Tμ⊕ such that E(εi) = 0 and E‖εi‖2

μ⊕ <

∞. Similar models have been previously studied in the seminal
work of Bosq (2000). To ensure the existence and uniqueness of
such a stationary process, we assume

(B1) There exists an integer q ≥ 1 such that ‖�q‖L2
μ⊕

< 1.

Here, ‖·‖L2
μ⊕

denotes the sup norm for linear operators onL2
μ⊕

and we define �q by induction, �k(·) = �[�k−1(·)], for any
integer k > 1. We note that under (B1), Equation (29) has a
unique stationary solution given by

logμ⊕μi =
∞∑

r=0
�r(εi−r), (31)

where �0(εi) := εi and the right-hand side converges in mean
square, limn→∞ E‖∑∞

r=n �r(εi−r)‖2
μ⊕ = 0, and also almost

surely, that is, limn→∞ ‖∑∞
r=n �r(εi−r)‖μ⊕ = 0 with proba-

bility 1 (Theorem 3.1, Bosq 2000). Furthermore, we assume

(B2) With probability 1,
∑∞

r=0 �r(ε−r) + id is non-decreasing.

Assumption (B2) guarantees that the right-hand side of Equa-
tion (31) lies in logμ⊕W a.s. We further provide a fully detailed
example of a stationary process {μi}i∈Z that satisfies the autore-
gressive model as per Equation (29) in Section S.3 in the supple-
mentary material.

As in Section 3, we have E(logμ⊕μ1) = 0, μ⊕-almost surely.
The operator C0 admits the eigendecomposition

C0 =
∞∑

j=1
λjφj ⊗ φj,
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with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and orthonormal eigen-
functions {φj}∞j=1 in Tμ⊕ . With probability 1, the logarithmic
transforms logμ⊕μi admit the expansion

logμ⊕μi =
∞∑

j=1
〈logμ⊕μi, φj〉μ⊕φj, i ∈ Z,

and hence C1 = ∑∞
l=1

∑∞
j=1 ξjlφl ⊗ φj, where ξjl =

E(〈logμ⊕μ1, φj〉μ⊕〈logμ⊕μ2, φl〉μ⊕). With bjl = λ−1
j ξjl, the

auto-regression coefficient function can then be expressed as
follows:

β =
∞∑

l=1

∞∑
j=1

bjlφl ⊗ φj.

For the estimation of the operator � in Equation (30),
first considering a fully observed sequence of length n,
μ1, μ2, . . . , μn, with the oracle estimator of the Fréchet mean
μ̃⊕ defined analogously to Equation (18), the autocovariance
operators C0 and C1 can be estimated by their empirical coun-
terparts C̃0 = n−1 ∑n

i=1 logμ̃⊕μi ⊗ logμ̃⊕μi and C̃1 = (n −
1)−1 ∑n−1

i=1 logμ̃⊕μi+1 ⊗ logμ̃⊕μi. We denote the eigenvalues
and eigenfunctions of C̃0 by λ̃j and φ̃j, respectively, where the
eigenvalues λ̃j are in nonascending order. Then oracle estima-
tors for the auto-regression coefficient function β and operator
� in Equation (30) are

β̃ =
J∑

l=1

J∑
j=1

b̃jlφ̃l ⊗ φ̃j, and (32)

�̃g(t) = 〈g, β̃(·, t)〉μ̃⊕ , for g ∈ logμ̃⊕W , t ∈ D,

where b̃jl = λ̃−1
j ξ̃jl, ξ̃jl = (n − 1)−1 ∑n−1

i=1 〈logμ̃⊕μi, φ̃j〉μ̃⊕
〈logμ̃⊕μi+1, φ̃l〉μ̃⊕ , and J is the truncation bound.

As discussed for the independent case in Section 3.2, a
realistic estimator β̂ for β based on the distribution estimation
discussed in Section 3.1 can be obtained by replacing μi and
μ⊕ with the corresponding estimates μ̂i and μ̂⊕, the latter
analogous to Equation (21). Specifically, estimates for the auto-
covariance operators with corresponding decompositions are
given by Ĉ0 = n−1 ∑n

i=1 logμ̂⊕μ̂i ⊗ logμ̂⊕μ̂i and Ĉ1 = (n −
1)−1 ∑n−1

i=1 logμ̂⊕μ̂i+1 ⊗ logμ̂⊕μ̂i. We denote the eigenvalues
and eigenfunctions of Ĉ0 by λ̂j and φ̂j, respectively, where the
eigenvalues λ̂j are in non-ascending order. With b̂jl = λ̂−1

j ξ̂jl and
ξ̂jl = (n − 1)−1 ∑n−1

i=1 〈logμ̂⊕μ̂i, φ̂j〉μ̂⊕〈logμ̂⊕μ̂i+1, φ̂l〉μ̂⊕ , data-
based estimators for the auto-regression coefficient function β

and operator � in (30) are then given by

β̂ =
J∑

l=1

J∑
j=1

b̂jlφ̂l ⊗ φ̂j, and (33)

�̂g(t) = 〈g, β̂(·, t)〉μ̂⊕ , for g ∈ logμ̂⊕W , t ∈ D.

We first focus on the case where the distributions are fully
observed. To derive the convergence rate of the estimator �̃

in (32), we require the following assumptions analogous to the
independent case in Section 3. Let C > 1 be a constant.

(B3) With probability 1, the distributions μi are all atomless.
(B4) E(‖logμ⊕μi‖4

μ⊕) < ∞, and E(〈logμ⊕μi, φj〉4
μ⊕) ≤ Cλ2

j ,
for all j ≥ 1.

(B5) For j ≥ 1, λj − λj+1 ≥ C−1j−θ−1, where θ ≥ 1/2 is a
constant.

(B6) For j, l ≥ 1, |bjl| ≤ Cj−ρ l−�, where ρ > θ + 1 and � > 1
are constants.

(B7) n−1J2θ+2→0, as n→∞.

Let G = G (C, θ , ρ, �) denote the set of distributions G of the
process {μi} that satisfy (B1)–(B6). Then we obtain

Theorem 3. Assume (B1)–(B7). If
J ∼ min{n1/(2θ+2ρ+2 max{2−�, 0}), n1/(2θ+2 max{�, 2})}, then

lim
M→∞ lim sup

n→∞
sup
G∈G

PG
(
‖P(μ̃⊕,μ̃⊕),(μ⊕,μ⊕)�̃ − �‖2

Hμ⊕ ,μ⊕

> Mζ(n)
)

= 0,

where

ζ(n) = max
{

n−(2ρ−1)/(2θ+2ρ+2 max{2−�, 0}),

(34)
n−(2�−1)/(2θ+2 max{�, 2})

}
.

The convergence rate obtained for the estimator �̃ in Theo-
rem 3 is slower than the rate obtained for the independent case
as per Theorem 1. This is due to the serial dependence among
μi and with the special choice of J as above is manifested by the
fact that α(n) as per Equation (26) with θ = ϑ is always smaller
than ζ(n) as per Equation (34).

Furthermore, regarding the estimator �̂ in Equation (33)
where only samples drawn from the distributions μi are avail-
able, we in addition make the following assumption of the
numbers of measurements observed per distribution.

(B8) There exists a sequence m = m(n) such that for the
number of measurements per distribution mμi , min{mμi :
i = 1, 2, . . . , n} ≥ m and m→∞ as n→∞.

(B9) τm ≤ Cn−1, for all n, where τm is as per (A2).

For example, if distributions μi are estimated via the methods
used by Panaretos and Zemel (2016) and Petersen and Müller
(2016), in order to ensure (B9), it suffices to take m ∼ n2

and m ∼ n3/2, respectively. Then we show that the estimator
�̂ in (33) converges with the same rate as �̃, as shown in
Theorem 3.

Theorem 4. If (A2), (A11), and (B1)–(B9) hold and choosing J
as in Theorem 3, then

lim
M→∞ lim sup

n→∞
sup
G∈G

PG
(
‖P(μ̂⊕,μ̂⊕),(μ⊕,μ⊕)�̂ − �‖2

Hμ⊕ ,μ⊕

> Mζ(n)
)

= 0.

As for the independent case, Theorems 3 and 4 entail
the following asymptotic results for the one-on-one predic-
tion of μn+1 given μn, where the target is the conditional
Fréchet mean of μn+1 given μn by E⊕(μn+1 | μn) :=
argminμ′∈WE[d2

W(μn+1, μ′) | μn] = expμ⊕[E(logμ⊕μn+1 |
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logμ⊕μn)]. For any given μ ∈ W , the corresponding esti-
mate μ̂ is assumed to be based on a sample of mμ ≥ m
observations drawn from μ, where m is the lower bound of
the number of observations per distribution as per (B8). The
prediction of μn+1 based on fully observed distributions is given
by expμ̃⊕[�̃(logμ̃⊕μ)] and the prediction based on samples
generated from the distributions by expμ̂⊕[�̂(logμ̂⊕μ̂)], where
�̃ and �̂ are as per (32) and (33), respectively. Then these pre-
dictions achieve the same rate as the estimates of the regression
operators in Theorems 3 and 4.

Corollary 3. Under the assumptions of Theorem 3,

lim
M→∞ lim sup

n→∞
sup
G∈G

PG
(

d2
W(expμ̃⊕[�̃(logμ̃⊕μ)],

E⊕(ν2 | ν1 = μ)) > Mζ(n)
)

= 0.

Corollary 4. Under the assumptions of Theorem 4,

lim
M→∞ lim sup

n→∞
sup
G∈G

PG
(

d2
W(expμ̂⊕[�̂(logμ̂⊕μ̂)],

E⊕(μn+1 | μn = μ)) > Mζ(n)
)

= 0.

Proofs and auxiliary lemmas for this section are in Sec-
tion S.1.3 in the Supplementary Material.

5. Simulations

In practice, the fit of the logarithmic response may not fall in the
logarithmic space with base point ν̂2⊕, that is,

�̂(loĝν1⊕ ν̂1i) /∈ loĝν2⊕W , (35)

with �̂ given in (22). This problem was already recognized by
Bigot et al. (2017). If event (35) happens, we employ a boundary
projection method described in Section S.4.2 in the Supplemen-
tary Material. We compared the performance of the proposed
method implemented with boundary projection (referred to
as projection method) with two other approaches. The first of
these is to employ an alternative to the proposed boundary
projection for those situations where the event (35) takes place,
which was proposed by Cazelles et al. (2018) in the context of
principal component analysis (PCA). This alternative to handle
the problem extends the domains of the distributions. We use
this method by fitting the proposed distribution-to-distribution
regression model with distributions on an extended domain
when the event (35) happens, and then normalize the fitted
distributions by restricting them back to the original domain.
We refer to this as the domain-extension method in the fol-
lowing. The second alternative approach is the log quantile
density (LQD) method (Petersen and Müller 2016), where we
apply function-to-function linear regression to the LQD trans-
formations of distributions and map the fitted responses back
to the Wasserstein space W through the inverse LQD transfor-
mation (Chen et al. 2019). Specifically, we use the R package
fdadensity (Petersen, Hadjipantelis, and Müller 2019b) for
implementations of the LQD transformations. To generate data
for simulations, we provide the following framework to con-
struct explicit examples, which also demonstrates the feasibility
of the proposed model in (10).

5.1. Framework for Explicit Construction

For D = [0, 1], we consider Fréchet mean distributions
ν1⊕, ν2⊕ ∈ W with bounded density functions, that is,
sups∈D f1⊕(s) < ∞ and supt∈D f2⊕(t) < ∞. We consider a
set of orthonormal functions {ϕj}∞j=1 in the Lebesgue-square-
integrable function space on [0, 1], L2([0, 1]), such that the ϕj
are continuously differentiable with bounded derivatives, and
ϕj(0) = ϕj(1) = 0, for all j ∈ N+. In particular, ϕj can be taken
as

ϕj(r) = √
2 sin(2π jr), for r ∈ [0, 1], and j ∈ N+. (36)

Suppose logν1⊕ν1 admits the expansion logν1⊕ν1 =∑∞
j=1 χjϕj ◦ F1⊕, where χj are uncorrelated random

variables with zero mean such that
∑∞

j=1 χ2
j < ∞

almost surely. We define the regression operator � as
�g = ∑∞

k=1
∑∞

j=1 b∗
jk〈g, ϕj ◦ F1⊕〉ν1⊕ϕk ◦ F2⊕, for g ∈ Tν1⊕ ,

with b∗
jk ∈ R such that

∑∞
j=1

∑∞
k=1 b∗

jk
2 < ∞. Hence,

�(logν1⊕ν1) = ∑∞
k=1

∑∞
j=1 b∗

jkχjϕk ◦ F2⊕. To guarantee∑∞
j=1 χjϕj ◦ F1⊕ ∈ logν1⊕W and

∑∞
k=1

∑∞
j=1 b∗

jkχjϕk ◦ F2⊕ ∈
logν2⊕W , it suffices to require

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
j=1

χjϕ
′
j(F1⊕(s))f1⊕(s) + 1 ≥ 0,

for all s ∈ D,
∞∑

k=1

∞∑
j=1

b∗
jkχjϕ

′
k(F2⊕(t))f2⊕(t) + 1 ≥ 0,

for all t ∈ D,
∞∑

j=1
χj(ϕj ◦ F1⊕)′ and

∞∑
k=1

∞∑
j=1

b∗
jkχj(ϕk ◦ F2⊕)′

uniformly converge.

a.s. (37)

Requirement (37) is satisfied, for example, when |χj| ≤
υ1j/(supr∈[0,1] |ϕ′

j(r)| sups∈D f1⊕(s)
∑∞

j′=1 υ1j′) and |b∗
jkχj| ≤

υ1jυ2k/(supr∈[0,1] |ϕ′
k(r)| supt∈D f2⊕(t)

∑∞
j′=1 υ1j′

∑∞
k′=1 υ2k′),

a.s., where {υ1j}∞j=1 and {υ2k}∞k=1 are two nonnegative sequences
such that

∑∞
j=1 υ1j < ∞ and

∑∞
k=1 υ2k < ∞, examples

including {a−j}∞j=1 and {j−a}∞j=1, for any given a > 1.
With �(logν1⊕ν1) and ν2⊕, the distributional

response ν2 can be generated by adding distortions to
expν2⊕(�(logν1⊕ν1)) through push-forward maps, that is,
ν2 = g#expν2⊕(�(logν1⊕ν1)), where g : D→D is a random
distortion function independent of ν1, such that g is non-
decreasing almost surely, and that E[g(t)] = t almost
everywhere on D. This is a valid method to provide random
distortions for distributions (Panaretos and Zemel 2016)
in the sense that the conditional Fréchet mean of ν2 is on
target, that is, E⊕(ν2|ν1) := argminμ∈WE[d2

W(ν2, μ) | ν1]
= expν2⊕(�(logν1⊕ν1)). Furthermore, the pair (ν1, ν2)
generated in this way satisfies our model in Equation (10). An
example (Petersen and Müller 2019a) of the random distortion
function is g = gA, where A is a random variable such that
P(A ≤ r) = P(A ≥ −r) for any r ∈ R and P(A = 0) = 0, and
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ga is defined as

ga(r) =
{

r − |a|−1 sin(ar), if a �= 0,
r, if a = 0, for r ∈ D. (38)

Specifically, for our simulation studies, with D = [0, 1], we
consider two cases with different choices of the Fréchet means
ν1⊕ and ν2⊕:

Case 1. ν1⊕ = TND(0.5, 0.22), and ν2⊕ = TND(0.75, 0.32),
where TND(μ, σ 2) denotes the Gaussian distribution N(μ, σ 2)
truncated on D.

Case 2. ν1⊕ = Beta(6, 2), and ν2⊕ = Beta(2, 4).

Taking J∗ = K∗ = 20, for j, k ∈ N+, we set b∗
jk =

2−kκ−1
k R−1

2⊕κjR1⊕ if j ≤ J∗ and k ≤ K∗, and set b∗
jk = 0

otherwise, where κl = supr∈[0,1] |ϕ′
l (r)| = 2

√
2π l, for l ∈ N+,

R1⊕ = sups∈D f1⊕(s) and R2⊕ = supt∈D f2⊕(t). Taking υ1j =
2−j, data were generated as follows:

1. Generate χij ∼ Unif(−υ1j(κjR1⊕
∑∞

l=1 υ1l)
−1, υ1j(κjR1⊕∑∞

l=1 υ1l)
−1) independently for i = 1, . . . , n and j =

1, . . . , J∗, whence logν1⊕ν1i = ∑J∗
j=1 χijϕj ◦ F1⊕, with

the basis functions ϕj as per (36), �(logν1⊕ν1i) =∑K∗
k=1

∑J∗
j=1 b∗

jkχijϕk ◦ F2⊕, and ν1i = expν1⊕(
∑J∗

j=1 χijϕj ◦
F1⊕).

2. Generate ν2i by adding distortion to �(logν1⊕ν1i):

Sample Ai
iid∼ Unif{±π , ±2π , ±3π}; let ν2i =

gAi #expν2⊕[�(logν1⊕ν1i)], with function ga defined as per
Equation (38).

3. Draw an iid sample of size m from each of the distributions
{ν1i}n

i=1 and {ν2i}n
i=1.

Four scenarios were considered with n ∈ {20, 200} and
m ∈ {50, 500} for each case. We simulated 500 runs for each
(n, m) pair. For the domain-extension method, the distribution
domain is expanded from [0, 1] to [−0.5, 1.5] and [−1, 2]. To
compare the three methods, we computed the out-of-sample
average Wasserstein discrepancy (AWD) based on observations
for 200 new predictors {ν1i}n+200

i=n+1, for each Monte Carlo run.
Denoting the fitted response distributions by ν

�
2i, the out-of-

sample AWD is given by

AWD(n, m) = 1
200

n+200∑
i=n+1

dW(E⊕(ν2i|ν1i), ν�
2i), (39)

withE⊕(ν2i|ν1i) being the conditional Fréchet mean of ν2i given
ν1i as defined in Equation (38).

We found that the domain-extension method often failed
to force the fit �̂(loĝν1⊕ ν̂1i) to fall in the log space loĝν2⊕W .
In particular, this failure occurred in around 15%–25% of the
Monte Carlo runs where Equation (35) happened when n =
20; therefore, we do not report the results for this method.
The results of the LQD method and the proposed Wasserstein
regression method with boundary projection (WR) are summa-
rized in the boxplots of Figure 1.

The proposed method outperforms the LQD method in all
the scenarios considered. In fact, the log maps are isometries
between the Wasserstein space and the log image spaces. This
provides support for the proposed approach. In contrast, the
LQD transformation is not an isometry and the ensuing dis-
tortions likely contribute to its inferior behavior. In particular,
in Case 2 where the Fréchet mean distributions are beta distri-
butions and the density functions are not bounded away from
zero on D, the LQD method suffers from bias issues. When the
number of distributions n increases, event (35) is seen to happen

Figure 1. Boxplots of the out-of-sample AWDs as per (39) for the four simulation setups with (n, m) ∈ {20, 200} × {50, 500}, where “LQD” denotes the LQD method and
“WR” denotes the proposed Wasserstein regression method. The numbers in brackets “[ ]” below the boxplots for WR indicate for how many runs event (35) happened and
boundary projection became necessary.
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less frequently and boundary projection is seldom needed when
the sample size is large (n = 200).

Additional simulations illustrating the asymptotic result
in Theorem 1, regarding the robustness of the proposed
distribution-to-distribution regression method and comparing
the proposed distribution-to-scalar regression method with a
Gaussian process regression approach (Bachoc et al. 2017) can
be found in Section S.5 in the Supplementary Material.

6. Applications

6.1. Mortality Data

There has been continuing interest in the nature of human
longevity and the analysis of mortality data across countries
and calendar years has provided some of the key data to study
it (e.g., Chiou and Müller 2009; Ouellette and Bourbeau 2011;
Hyndman, Booth, and Yasmeen 2013; Shang and Hyndman
2017). Of particular interest is how patterns of mortality of
specific populations evolve over calendar time. Going beyond
summary statistics such as life expectancy, viewing the entire
age-at-death distributions as data objects is expected to lead to
deeper insights into the secular evolution of human longevity
and its dynamics. The Human Mortality Database (http://www.
mortality.org) provides yearly life tables for 38 countries, which
yield histograms for the distributions of age-at-death. Smooth
densities can then be obtained by applying local linear regres-
sion (Fan and Gijbels 1996). We obtained these densities on the
domain [0, 100] (years of age).

In a first analysis, we focused on the n = 32 countries
for which data are available for the years 1983 and 2013.
We applied the proposed distribution-to-distribution regression

model with mortality distributions for an earlier year (1983)
as the predictor and a later year (2013) as the response to
compare the temporal evolution of age-at-death distributions
among different countries. We show the leave-one-out predic-
tion results together with the observed distributional predic-
tors and responses for females in Figure 2 for Japan, Ukraine,
Italy, and the United States, which showcase different patterns
of mortality change between 1983 and 2013. In addition to
the graphical comparisons, Wasserstein discrepancies (WD)
between the observed and leave-one-out predicted distributions
are also listed. For all four countries, the observed and predicted
distributions for 2013 are seen to be shifted to the right from
the corresponding distributions in 1983, indicating increased
longevity.

The top row of Figure 2 shows a comparison between the
model anticipation and the actual observed distributions in
2013 in terms of density functions. Specifically, for Japan and the
USA, the rightward mortality shift is seen to be more expressed
than suggested by the leave-one-out prediction, indicating that
longevity extension is more than anticipated, while the mor-
tality distribution for Ukraine seems to shift to the right at a
slower pace than the model prediction would suggest, leading
to a relatively large WD with a value of 3.59 between the
observed and predicted response. In contrast, the regression
fit for Italy almost perfectly matches the observed distribution
in 2013.

The log maps shown in the bottom row of Figure 2 indi-
cate the shifts of the distributions relative to the Fréchet mean
across countries for the corresponding year. For Japan, the log
maps for the observed predictors and responses and also the
model prediction are all positive across the age domain, indi-
cating that the distributions for Japan shift to the right from

Figure 2. Age-at-death distributions of females in Italy, Japan, Ukraine, and the USA for 1983 and 2013, and the leave-one-out cross validation prediction based on the
proposed distribution-to-distribution regression model, where the predictors are the distributions for 1983 and the responses are the distributions 30 years later. Top row:
Observed densities for 1983 and 2013 and the leave-one-out predicted densities exp̂ν2⊕ (�̂(loĝν1⊕ ν̂1i)) for 2013; Bottom row: log-mapped predictors and responses,
loĝν1⊕ ν̂1i and loĝν2⊕ ν̂2i , and leave-one-out prediction for log responses �̂(loĝν1⊕ ν̂1i), where the estimated regression operator �̂ is defined in (22) and no boundary
projection is needed for these four countries. The Wasserstein discrepancies (WDs) between the observed distributions and the corresponding leave-one-out prediction
are indicated for each country.

http://www.mortality.org
http://www.mortality.org
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the Fréchet mean across countries, and Japanese females live
longer compared to the average across countries at all the ages,
while the magnitude of these log maps vary between 1983 and
2013 and also between observed and predicted distributions for
2013. The observed mortality distribution for 2013 has a bigger
rightward shift relative to the Fréchet mean distribution for
older females and minors and a smaller one for younger adults
than the model prediction. In contrast, Ukraine has a leftward
shift from the Fréchet mean for females of all ages, and for
2013 the shift exceeds the model anticipation. For Italy, the log
transformed predictor is negative before 15 and positive after,
whence the predicted log response becomes positive throughout
and also expands in size, meaning the relative standing of Italy
in terms of longevity is anticipated to be improved in 2013 by the
model prediction. The predicted distribution of Italy in 2013 is
shifted to the right from the Fréchet mean for all ages, and such
rightward shift is more expressed in the actual distribution in
2013. For the United States, the predicted log-mapped response
for 2013 is entirely negative and consequently the mortality
distribution moved to the left of the Fréchet mean, that is, its
relative standing in terms of longevity is anticipated to become
worse, while the actual observation is a mixture of a rightward
shift for more than 88 years of age and a leftward shift for the
other ages.

We also illustrated the proposed autoregressive model for
distribution-valued time series with the mortality data for Swe-
den, and the results are summarized in Section S.6 in the sup-
plementary material.

6.2. House Price Data

A question of continuing interest to economists is how house
prices change over time (e.g., Oikarinen et al. 2018; Bogin,
Doerner, and Larson 2019). We fitted the temporal evolution
of house price distributions via the autoregressive distribution
time series model described in Section 4, where we down-
loaded house price data from http://www.zillow.com. These data

included bimonthly median house prices after inflation adjust-
ment for m = 306 cities in the United States from June 1996
to August 2015, for which the distribution of median house
prices across the cities was constructed for every second month.
The autoregressive model was trained on data up to April 2007
and predictions were computed for the remaining period, where
we successively predicted the distribution of each month based
on the prediction two months prior, that is, by running the
distribution time series model as estimated from the training
period.

Figure 3 shows the fitting and prediction results for training
and prediction periods, where selected months are ordered in
time, while a five-number summary of the fitting and prediction
WDs is given in Table 1. The house price densities are found to
be mostly uni-modal, and the peak shifts gradually to the right
over time. Within the training period, the fitted densities are
initially very close to the observed densities and then gradually
are situated to the left of the observed densities, which means
that the house price evolution overall accelerates during this
period. For the prediction period, the predicted densities almost
coincide with the observed distributions in 2007, fall behind
the actual distribution in 2008, and then continue shifting
to the right of the observed distributions. We find that the
discrepancy between the predicted and observed house price
distributions increases from 2007 to 2012 and then decreases
afterwards. These findings are in line with the overheating of
the housing market before 2006, the crash in 2007–2008, and
the lingering effects of the financial crisis, followed by a recovery
after 2012.

Table 1. Five-number summary of the Wasserstein discrepancies in training and
prediction periods.

Min Q0.25 Median Q0.75 Max

Training 0.0020 0.0035 0.0047 0.0066 0.017
Prediction 0.0040 0.016 0.042 0.054 0.068

Figure 3. Observed and fitted (top row) / predicted (bottom row) densities of the house price distributions. Training period: August 1996 to April 2007. Prediction period:
June 2007 to August 2015. Five representative months are depicted for each of the training and prediction periods in time order, where the Wasserstein discrepancies
(WDs) are also listed.

http://www.zillow.com
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explicit construction for the distributional AR model, details on the numer-
ical implementation, additional simulation results, an additional example
on applying the distributional AR model to mortality data and a discussion
of the extension to the case of multivariate distributions.
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