SUPPLEMENT TO “UNIFORM CONVERGENCE OF
LOCAL FRECHET REGRESSION, WITH APPLICATIONS
TO LOCATING EXTREMA AND TIME WARPING FOR

METRIC SPACE VALUED TRAJECTORIES”:
DETAILS ON THEORETICAL RESULTS

BY YAQING CHEN AND HANS-GEORG MULLER

S.1. Proofs of the uniform convergence of local Fréchet regres-
sion with fixed targets as in Section 2.

PROOF OF THEOREM 1. For any € > 0, taking 85 = (2 + £/2, we first
show (2.6).

We note that under (K0) and (R0), as b — 0, it holds for [ = 0,1, 2 that
(S.1)

puo(t) = E|Kp(U = )(U =8)!| =¥ [fu(®K1i(t,) + bff (Krss1(t,8) + OG2)]

where Ky, ;(t,b0) = S{(x_t)/b:xeﬂ K(x)kzldz, for k,l € N, and the O terms are
all uniform across t € 7. These results are well known (Fan and Gijbels,
1996) and we therefore omit the proofs.

Let ¥y, = (mb)~Y?(—1logb)/2. Under (K0) and (RO0), it follows from (S.1)
and similar arguments as given in the proof of Theorem B of Silverman
(1978) that
(S.2)

sup |pos(t)] = O(1), sup|pf,(t)] = O(b), sup|pzs(t)] = O(1?),
teT teT teT

sup [ (t) — puo(t)] = Op(Uubh), 1= 0,1,2, sup |pf,, (1) = O(b) + Op(9,ub),
teT teT

where
piy(t) = E[Kp(U — 1)U — ],

)

and .
Pln(t) =m™ Y [Ky(U; — 1)|U; — ],

J]=

—_

noting that b5y, (-) and b_lﬁfm(') can all be viewed as kernel density esti-
mators with kernels K;(z) = K(z)z! and K (v) = K ()|x|, respectively, as
per Silverman (1978), and (S.2) implies sup,et |02, (t) — 02 (t)| = Op(Imb?).
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Applying Taylor expansion yields

sup [[67,(1)] 7" = [05(1)] | = Op(Umb™?),
teT
p2.m(t) P2b(t)‘ P1m(t) Plb(t)’ 1

sup | — - = = Op(¥;), and sup|—= - —= =0p(9,,b" 7).
e IEeR T R |Gz opn | Ot
Hence,
(S.3)
supm™ " |[D(Uj, t,b) — w(Uj, t,b)]
teT

J=1

< sup [po,m (t)| sup
teT teT

= Op(Opm).

+sup|py,, ()] sup
teT teT

P2m(t)  pa(t) ’
om(t)  ap(t)

ﬁl,m(t) _ Pl,b(t)’
Tat) o)

For any R > 0, define a sequence of events

(S.4) Brm = {iu;g m~ Y @ (Uj,t,0) — w(Uj, t,b)] < Rﬁm} .
€

J=1

Given any v > 1, set a,, = min{(mb?)52/14B2=2+0)] (mp2(— log b)—1)P2/[4(F2= D]}
for some 1 < o, set i = 7%2/2, with ro and £y as per (R3). For any £ € N,
considering m large enough such that log,(fa,,) > ¢,

(S.5)

P (am sup daq (D(t), Dm (£))7?? > 2£>
teT

<P@£mumm%m»>wﬁ+Pwmm

+ Y P ({2’“ < o sup d g (D(1), O (£))P2? < 2’f} A BR,m> .
Iy teT
2k <fam

Note that (S.3) implies limp_.o limsup,,_,,, P(B%,,) = 0. Regarding the
first term on the right hand side of (S.5), we next show that

~

(S.6) sup dat (U(t), Um (t)) = op(1).
teT
Given any t € T, dp(Dp(t), U (t)) = op(1) follows from similar arguments
as given in the proof of Lemma 2 in Section S.3 of the Supplementary Ma-
terial of Petersen and Miiller (2019). By Theorems 1.5.4, 1.5.7 and 1.3.6 of
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van der Vaart and Wellner (1996) and the total boundedness of 7T, it suffices
to show that for any € > 0, as § — 0,

lim sup P ( sup  |dam (T6(8), Um(8)) — dag (Do(t), U (8))] > 26) — 0.

m—00 s,teT, |s—t|<d

In conjunction with (R1) and the fact that |da(Pp(s), Um () —dam (Dp(t), Um(t))] <
A (Up(s), Up(t)) + dp(Um(8), Um(t)), it suffices to show that

(S.7) lim sup sup sup Eb(z, s) — zb(z,t)‘ —0, asd—0,
b—0  s,teT,|s—t|<d zeM

and that for any ¢ > 0,
(S.8)

lim sup P ( sup sup |Lin(z,s) — im(z,t)’ > e) —0, asd—0.

m—0a0 S,teT, |s—t|<d zeM
Noting that by (KO0) and (RO),

Elw(U,t,b)] =1 and E[w(U,t,b)(U —t)] =0,

(5.9)

Ly(z,t) = E[w(U,t,b)L(z,U)]|

) {w(U, t,b) <L(z,t) + (U - t)%f(%ﬂ)]

+E {w(U, t,b) <L(z, U)— L(z,t) — (U — t)aaf(z, t))]

— L(z,t) + E [w(U, t,b) <L(z, U) — L(z,t) — (U — t)%pz, t))] .

Defining a function ¢: M x T — R as

*L
(SlO) ¢(Z>t) = ﬁ(zat)a ZEM,tET,
it follows from (S.9), (K0), and (RO) that

~

1
sup |Ly(z,t) — L(z,t)| < =b*supE
zeM, teT 2 et

2
|w<U,t,b>|(Ub‘t)] sup (62, 1).

teT, ze M
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Note that sup;er E[|w(U, t,b)|(U — t)26=2] = O(1). Furthermore, using sim-
ilar arguments as given in the proof of Theorem 3 of Petersen and Miiller
(2019), we obtain

fupv (¢, 2")

fu(t)

where Fy and Fy |y are the marginal and conditional distribution of V, the
latter given U. In conjunction with (KO0), (R0), and the dominated conver-
gence theorem, (S.11) implies

(S.11) L(z,t) = Jd%w(z’,z)dFV|U(t,z') = Jd'%\/l(z',z) dFy (7)),

(S.12) bz, 1) =Jd3\4(z’,z) 02 [va(t,z/)

7 | )

whence by (R0) and the boundedness of M, we obtain sup,eay te7 |6(2,1)] <
0. Thus,

(5.13) sup [Ly(z.8) = L(z,0)] = (), asb—0.
zeM,teT

Moreover, by (S.11) and (RO),
(S.14)

sup sup |Ly(z,5) = Ly(z, 1)
S,teT, |s—t|<d zeM

< sup  sup|L(z,8)— L(z, )| +2 sup |Ly(z,t) — L(z,t)’
S,teT, |s—t|<d zeM 2zeM, teT

= 0(5) + O(b?),

whence (S.7) follows. For (S.8), let ¢: M — R be a function defined as

v() = sup m ! Y} [w(U D) (V. 2)] B w(U.t b)de,z)]‘ .
te i
Then
(S.15)

m
sup | Lo (2, s) — Em(z,t)‘ < 2diam(M)?supm ' Y. [@(U;, t,b) — w(Uj, ¢, )|
zeM teT j:1
+ sup |Ly(z,s) — Eb(z,t)’ + 2 sup ¥(2).
zeM zeM



Regarding (z), since

m~! 2 w(U;, t,0)d54(Vj, 2)] — E [w(U, t,b)d3,(V, 2)]

O (t)

bplb { _12{& (Ujb—t>d3\4(Vj,2’)}

~E {Kb(U —t) (Ub_t) di(V, z)} } ,

under (K0) and (RO), it follows from similar arguments as given in the proof
of Proposition 4 of Mack and Silverman (1982) with kernels K;(z) = K (z)a!,
for [ = 0,1, that ¥(z) = op(1), for any given z € M. Furthermore, noting
that

- pQéb(t) {m—l i [Ky(U; — t)d3(Vj, 2)] — E[Ky(U — t)d3(V, z)]}

1 p2,b(t) p1,6(t)
supm w(Uj, t,b) sup Po,m (t)| sup b ‘ + sup |p sup ,
teT ]lel ! < teT 1Pom ()] teT | 07(t) teT at m(®) et | o7 (t)
£)pas(t 1 p()]p1p(t)]
supE |w(U, t,b)| < Pos( 2)p2’b( ) sup —2 5 ,
teT teT gy (t) teT gy (t)

by (S.1) and (S.2),

supm ! Z lw(Uj,t,b)] = O(1) + Op(¥,n), supE |w(U,t,b)| = O(1),
teT j=1 teT

and hence for any z1, z0 € M,

|(21) — ¥ (22)| < 2diam(M)d (21, 22) (Supm ! Z lw(Uj,t,0)] + SupIE lw(U, t b)|>
eT

j=1
= dM(Zl,Zg) [0(1) + Op(ﬁm)] .

In conjunction with the total boundedness of M, sup,c ¥(2) = op(1) fol-
lows (using Theorems 1.5.4, 1.5.7, and 1.3.6 of van der Vaart and Wellner,
1996). This implies (S.8) in conjunction with (S.15), (S.3) and (S.14). Thus,
(S.6) follows.

We move on to the third term on the right hand side of (S.5). For k€ N,
define sets

(S.16) Diy = {z€ M : 28V Candm(z, 0y(1)P2/? < 28},
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We note that under (R3),

liminf inf inf [Eb(z,t) - ib(ﬁb(t),t)] > 2212,

m
m—0 teT 26Dy ;

Defining functions Ji(-) = f/m(~,t) — Ly(-,t) on M, applying Markov’s in-
equality, the third term on the right hand side of (S.5) can be bounded (from

above) by
(S.17)

D1 P {sup sup |Ji(2) — (%(t)| = 22°* Va,? A Brm

k¢ teT Zeleﬂg

2k<7~704n
< ) "2 WV B 1(Bryn)sup sup [Ji(2) — J(%(t))] |
) teT 2€Dy ¢
2k§7~]am

where I (FE) is the indicator function of an event E. For any z € M, defining

[@(Uj’ t,b) — w(Uj’ t,0)] d?\/l(vjﬁ z),

NgE

Jt(l)(z) =m!

<.
I
_

(S.18)
[w(U;,t,0)d3,(Vj, 2)| — E [w(U,t,b)d3(V. 2)],

I
3
L
NgE

J2(2)

<.
Il
_

we have J; = Jt(l) + Jt(Q).
For Jt(l), note that

TV (2) — T (@3¢ ‘ < 2diam(M)d (2, Dy (t 2 B(U;,t,b)—w(U;, 1,b)],

for all z € M and ¢ € 7. Hence, given 6 > 0, it holds on Bg , that

(S.19) sup sup ‘J(l) Jt(l)(ﬁb(t))’ < 2diam(M) R0, .
teT daq(z,0p(t)) <6

For Jt(z), given any z € M, t € T and § > 0, define functions g; .: TxM — R
by

gi2(s,2") = w(s,t,b) [d%,l(z’, 2) — di (7, (t)], seT,z eM,
and a function class

b8 = {gt,z : dM(Z,Db(t)) < (5, te T} .



For any t1,t3 € T and z; € Bs(tp(t;)) for [ = 1,2,

{gtlyzl (57 Z/) — Jta,29 (Sa Z/)’

< 2diam(M) (dam (21, 22) + dpa(Dp(t1), Db(t2))) 227}’_) lw(s,t,b)]

+ 2diam(M)d sup |w(s,t1,b) — w(s, t2,b)].
seT

By (S.7) and (R1),

lim sup sup dm(Dp(s), p(t)) = 0, asd — 0.
<SQO) b—0  s,teT,|s—t|<d ( () ())

For small |t; — ta| such that dy(Dp(t1), Up(t2)) < 72, by (R3), it holds that
as b — 0,

2ead i (D (1), Dy(t2))? < 2 sup Ly(z,t1) — Ly (2, t2)
ZE

< 2diam(M)? sup |w(s, t1,b) — w(s, ta,b)|.
seT

Noting that

sup |w(s, t1,b) — w(s, ta,b)| = |t1 — t2|O(b2)
seT

by (K0) and (R0), there exists a constant C' > 0 such that for small |¢; — ta],

}gtlyzl (Sv Z,) — Otg,zo (S> Z/)’ <C [dM (Zh Zg) + dT(tb t2)] Db,5(8)7

where d7: T x T — [0, +0) is a metric on T defined as
dr(t1,t2) = max {b’Q\tl — to, (b2t — tz\)l/ﬁ2} . ti,taeT,
with a function

Dys(s,2) = sup lw(s,t,b)| +6, seT.
teT

It is not difficult to verify that dy is indeed a metric.
An envelope function G s: T x M — R for the function class G s is

Gh5(s,2) = 2diam(M)ésup |w(s,t,b)], seT.
teT

Denoting the joint distribution of (U, V) by F, the £% norm || - | is given
by lglz = [E(g(U, V)?)]"/2, for any function g: 7 x M — R. The envelope
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function entails |Gps|z = O(6b~1), by (KO) and (RO). Furthermore, by
Theorem 2.7.11 of van der Vaart and Wellner (1996), for € > 0, the €|Gp | 7
bracketing number of the function class Gp s can be bounded as follows,

N[] (6HGb,6||]—'agb,67 H : H]:)

|Gyl 7
I ( QHDM‘FH boll 7, Goo | |f>
G
<N (6”75”}-, {(t,z) : z€ Bs(Dp(t)), t € T},deM>
2| Dy 5| 7
clGosl= ) <q@ﬂf A
<N|——===,T,dy | -supN | ——=——, Bs(tp(t)),dm | ,
<4’Db’§”f ) er \4|Duslr (1))

where druam((t1, 21), (t2, 22)) = dr(t1,t2) +da(21, 22), for any ¢1,t2 € T and
21, 22 € M. Therefore,
(S.21)

Ny (elGo sl 7, Gos: | - | 7) < Ci(eb?) =0 sup N (Caed, Bs(Di(t)), daa) ,

teT

where Cy,C1,Co > 0 are constants only depending on (o, noting that
|Gys5|7/|Dys|F ~ 9. In conjunction with (2.5), to be shown later, for b
sufficiently small, there exists a constant C3 > Cy such that Bgs(7(t)) <
Beys(v(t)), for any 6 > 0 and ¢t € 7. Choose 7 in (S.5) such that (R2) holds
for all r < C3n. Observing that

1
J sup4/1 + log N (C2€6, Beys(v(t)), dag)de

0 teT

Cs C2/Cs3

= J sup4/1 + log N (eC36, Beys(v(t)), daq)de
C2 Jo teT
Cs (*

<= | su og N (eC36, Boys(v €

< p /1 +log N (eC38, Beys(v(1)), dar)de,
C2 Jo teT

(S.21) implies for any § < 7,

1
f \/1 +log Ny (€| G 6l 7, G5, | - || 7)de
0

1 1
< f sup+/1 + log N (Coed, Bs(Dy(t)), dpg)de + f v/ —Colog(edb?) + log Cde
0 teT 0

—0 (I N Ll /—Tog(8b) —logede> -0 (\/W)
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with Z being the integral in (R2). By Theorem 2.14.2 of van der Vaart and
Wellner (1996),
(S.22)

E <Sup sup ’Jt@)(z) - Jt(2)(ﬁb(t))‘> =0 <5b_1«/—10g(5b)m_1/2>
teT daq (2, (1)) <5
-0 (52’“(mb2)’1/2 + 8(mb2) Y2/~ log b) .

Combining (S.19) and (S.22), it holds that

E (]I (Brm)Sup  sup |Ji(2) — Jt(%(t))l)

teT dag(2,0(1)) <6
< C(mb*)~1/? (52*” + 64/~ log b) ,

where C' > 0 is a constant depending on R and the entropy integral in (R2).
Note that on Dy, it holds that daq(z, Dp(t)) < (2%a;!)?P2. Hence, (S.17)
can be bounded by

C Z 2—2(k—1)a$n(mb2)—1/2 [(2%;11)2(2_1))/52 n (Qka;f)z/ﬁz\/Tgb]

k>t
2k <Aam

< 4Ca%52—2+v)/52 (me)—1/2 Z 9—2k(B2—2+v)/B2
k>0

+4Cax /P2 (mp?) 12 [~ log b | 27K DIB
k>¢

(S.23)

which converges to 0 as £ — o0, since B2,v > 1. Thus,

sup dag (5(t), Pm(1)) = Op (a2
teT
and (2.6) follows.

Next we establish (2.5). By (S.13) and (R1), dpm(v(t), 7(t)) = o(1),as b —
0, for any t € 7. By (2.4) and the compactness of T, the conditional Fréchet
mean trajectory v is dg-continuous at any t € 7 and hence uniformly das-
continuous on 7. In conjunction with (S.20), super dam(v(t), Up(t)) = o(1)
follows. Let g, ;: 7 — R be a function defined as ¢ ((s) = L(z, s)—L(v(t), s),
for s € T. For any 0 > 0, (S.9) and (S.12), in conjunction with (K0), (R0),
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and the boundedness of M,
sup  sup (T L)(z,) = (T — D)(w(), 1)
teT daq(z,v(t))<d
=sup  sup  [E[w(U.t,0) (¢24(U) — g:4(t) — (U = t)g.4(1))]]
teT daq(z,v(t))<d
< le supE
2 eT
= O(b*5),

teT daq(z,v(t))<d

2
|w<U7t,b>|(Ub‘t)]‘sup s [6(z, 1) — 6(u(0), 1)

with ¢(z,t) defined as per (S.10). Set g, = b=/(B1=1) Using similar argu-
ments as given in the proof of (2.6), there exists a constant C' > 0 such that
for small b,

b2 Qk —1 2/51

11(qbiu;dmww,m(t))ﬁl“>2’f) 2 g 7 = 4C Y, 2
€ k>0

which converges to 0 as ¢ — oo, and hence (2.5) follows.
Lastly, we note that for any v € (0,0.5), if b ~ m~™7, then

(mb?(—1logb)~ 1)~ V[2(F~1)] (log m)V/12(B2-1)]
(mb2)~1/12(83-1)] - m(0-5-N[(B2—1) 1= (B, —1)71]

— 0, asm — .

With b ~ m~(F1=D/2B1+453-6) it holds that b2/ (F1—1) ~ (mp?)~V2E-DI <
m~Y(Br+26,-3)  whence (2.7) follows, completing the proof. O

S.2. Proofs of the uniform convergence of local Fréchet regres-
sion with random targets as in Section 3.

PrROOF OF THEOREM 2. Given any fixed € > 0, define
G, = min {(me)’BQ/[‘l(BTHE/Z)], [mbz(— log b)*l]*BQ/[zl(ﬁTl)]} .
We show for the bias and stochastic parts respectively that

(5.24) sup sup d g (le (t),?wl,b(t)) =0 (b2/</31—1)> ,
w1EQ teT

(S.25)
~ ~ B2/2
limsup sup Po, (am sup d (le’b(t),le,m(t)) > C) — 0, asC — o0.

m—o0 w1 teT



11

Observing that

sup d g <Y(t),}~/(t)> < sup supduym <Yw1 (t),f/wl,b(t)> ,

teT w1EQ teT
lim sup P (sup dm (?(t),?(t)) > Cam2/52>
m—0o0 teT

~ ~ Ba/2
< limsup sup Po, <am sup d <Yw1,b(t),le7m(7§)) s C’) ,

m—0 wieldy teT

(3.8) follows, which implies (3.9) if b ~ m~(F1=1)/(2B1+482—6+2¢)
For (8.24), we note that for any given wy € Qy,and t € T, dpg(Yo, (1), Yoo, p(t)) =
o(1), as b — 0, by Theorem 1. We note that by (K0) and (U0),

(S.26) Su7[_)E92 [|U(T,t, b)|(T — t)2b72] =0(1), asn— .
te
Defining
0?M,,,
(S.27) b, (2,1) = = (2,1),

it holds following similar arguments as given in the proof of (S.12) that

2 t, 2
(S.28) Pun (2,1) = Jd%(zl’z)jt? [W

In conjunction with (U0) and the boundedness of M,

dFZw1 (Z/>.

sup Pu, (2, )] < 00,
(8:29) wlefll,teT,zeM| o (2, 0)]

whence we obtain
sup ’Mwl,b(z,t) — Mwl(z,t)’
w1€Q,teT

1
< =b?supEq
2 et w1, teT, zeM

. 2
’"U(T,t, b)| <71bt) ] sup ‘(stl (Z7t)‘
= O(b?).

This implies sup,,co, te7 dMm(Yey (t),f/wl,b(t)) = 0(1) under (Ul). Further-
more, by (S.26) and (S.28), there exists a constant C' > 0 such that for m
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large enough,

(S.30)

sup sup
w1€Q,teT dpg (Z,le (t))<o

‘ ~

(Mwhb - Mw1><zﬂ t) - (Mwhb - Mw1>(Yw1 (t)7 t)

1 T —1t\?
< 7b2 sSup EQ2 |U(T7t’ b)| (> © sup sup |¢w1 (Za t) - ¢w1 (le (t)vt)|
2 eT b

w%ee’?l dam(z,Yw, (1)<6

< CV?6.

Using similar arguments as given in the proof of (2.5), with ¢, = b=#1/(1=1)
there exists a constant C' > 0 such that for large m,

~ B1/2 _
1 ((sup sup (V0. Tors) ™ > 2,
w1€Nq teT

b2(2%q 71 2/,81

—2k(B1—1)/B
<C 2 92(k— 1 B 40;122 ' b
>

which converges to zero as £ — oo, whence (S.24) follows.
Next, we establish (S.25). Let n be the minimum integer not less than
logy (amdiam(M)P2/2 4+ 1), and for any R > 0, define sets

(S.31) BRom = {Supm Z [5(T;, t,b) — v(T}, t,b)| < Rq?m}.
teT ,] 1

For any ¢ € N, considering m large enough such that n > ¢,
(S.32)

~ ~ B2/2
sup Po, (am sup d < wib(t)s le’m(t)> > 2Z) < Po,(BRm)
w1 teT

~ B2/2
+ Z sup Pq, ({2’€ L'< ay, sup dag ( whb(t),le,m(tD < Qk} N BR7m> .
Z<k<nw1€91 teT

Under (KO0) and (UO0), it follows from similar arguments as given in the proof
of Theorem B of Silverman (1978) that there exists R > 0 with Pqo,(B%,,) =
0, for m large enough. Regarding the convergence of the second term on the
right hand side of (S.32), using similar arguments as given in the proof of
(2.6), it holds for

thl = Z ijt b d./\/l( w1js )]_]EQQ[ (T’tvb)d,/\/l( wlaz)]
j=1



13

that

E{sw  sw () = I (Fern®)
€T dpg(2,Ye0, b (1)) <0

-0 (52_“(mb2)_1/2 + 8(mb2) Y2/~ log b) ,

where the O term is uniform over wy € Q1, by (S.24), (U1) and Theorem 2.14.2
of van der Vaart and Wellner (1996). Under (K0) and (U0)—(U3), the second
term on the right hand side of (S.32) can be bounded by

c Z 272(k71)a7271(mb2>71/2 [(2%;11)2(175/2)/52 +(2ka,;1)2/52\/Tgb]

l<k<n
< ACQR P21 He/D/P (p?) =12y 9= 2B m1ke/2) B
k>¢

+ 4Ca37§ﬁ2_1)/52 (me)—l/Q V/—logh Z 9—2k(B2—1)/B2
k>¢

< 4C Z 9—2k(B2=1+€/2)/B2 | g Z 27219(,6’2—1)/,82’
k>¢ k>¢

which converges to zero as £ — o0, whence (S.25) follows. O
S.3. Proofs of results in Section 4.

PROOF OF COROLLARY 1. By (4.1), (4.2), and (D1),

~ ~

A(tmin) - A(tmin) < A(%\min) - A(tmin) + K(tmin) - K(tmin)
< 2sup [A(t) — A(t)] < 2C1 sup d g (O (1), (1))
teT teT

This implies |1§Amin — tmin| = op(1) in conjunction with (D2) and Theorem 1,
whence (4.3) follows under (D3). O

S.4. Proofs of results in Section 5. We first present two auxiliary
results (Lemmas S.1 and S.2), where Lemma S.1 is needed for the proof of
Lemma S.2, and Lemma 5.2 implies that the coefficient vector 6, is the
unique minimizer of €, given in (5.10) under certain constraints. This will
be used to derive the rate of convergence for the M-estimator ggm of the
coefficient vector in Theorem 3.

LEMMA S.1.  For any g,g9* € W such that dap(p(g(t)), u(g*(t))) =0, for
all t € T, where p satisfies (W1)-(W2), it holds that

g(t) =g*(t), forallteT.
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PROOF. Suppose there exists xg € (0, 7) such that g(xo) # g*(zo). With-
out loss of generality, we assume g(z9) < g*(z¢). Let tog = g(zo). We define
a sequence {t;};°; iteratively by

(S.33) te = g*(g (tp—r)), fork=1,2,...

Then it can be shown by induction that {t;};2; is a strictly increasing se-
quence, whence there exists t* € T such that ¢ 1T t* as k — oo, since
{te}izy = T = [0,7]. Due to the continuity of g and g*, taking k — oo
on both sides of (S.33) provides t* = g*(g~!(t*)). Let a* = g~1(t*), then
t* = g(z*) = g*(«*). Furthermore, for all k =1,2,...,

(S:34)  da (paltr), plti—1)) = dag (g™ (g (te=1))), (g9 (tr=1))) = 0,

since daq(p(g(t)), u(g*(t))) = 0, for all t € T. By (W2), there exists sg €
(to, t1) such that

(S.35) dm ((s0), p(to)) = da ((so), p(t1)) > 0.
Similarly, we can iteratively define another sequence sp = g*(g~'(sx_1)),
for k = 1,2,..., for which it also holds that s; 1 t* as & — oo and

d/\/l(:u(sk)v/i(skfl» =0, foral k =1,2,... By (8'34)7 dM(M(tO)au(t*)) =
A (p(ty), p(t*)) for all k = 1,2, ... Taking k — oo yields dq(pu(to), u(t*)) =
limg oo dpq(pe(ty), p(t*)) = 0, by (W1). Similarly, it can be verified that
dam(p(so), p(t*)) = 0, whence we obtain daq(u(so), p(to)) = 0, which con-
tradicts (S.35). O

LEMMA S.2. Suppose (W1)-(W3) hold. For any i,i' = 1,...,n, such
that © # 1', the coefficient vector Oy, corresponding to the pairwise warping
function g;; is the unique minimizer of the following constrained optimization
problem
(S.36)

min_ €,(0; hy, hi),

fcRp+1

subject to In(0) = Opy1 —T7 =0, I;(0) =01 — O + <0, k=1,2,...,p+1,

where €, is as per (5.10), 0 = (01,...,0p41)" € RPTL 0y = 0, and € €
(0,cC~1/(p + 1)) is a constant, with ¢ and C as per (W3).

PrOOF. Considering the fact that €,(6; hiy, h;) = 0, for all 0 € RP*+! and
that 6,,(0y,,; hi, he) = 0, since h; ' (0], A(t))) = hy ' (ha(h; (1)) = h; ' (2),
0y, is a constrained minimizer of the optimization problem in (S.36) in con-
junction with (W3); it suffices to show the uniqueness. Suppose 6, is a con-

strained minimizer of €),(-; his, h;). The Lagrangian function corresponding
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to (8.36) is Z.(0; hir, hs) = €u(0; hir, hy) + Ziié Cilr(0), where (p € R, and
Cr =0for k=1,...,p+ 1. By the Karush-Kuhn—Tucker condition (Karush,
1939; Kuhn and Tucker, 1951), there exist ¢ > 0, & = 0,1,...,p + 1,
such that V€, (0x; hir, hi) + i GVIR(0:) = 0 and (FI(6x) = 0 for
k= 1,...,p+ 1. By (W3), it holds that V%, (0;hy,h;) = 0, which, in
conjunction with (W2) and (W3), implies

dp (ki (07 A®]), u(hi (1)) =0,

almost everywhere on 7 and hence for all ¢t € 7 by (W1) and the continuity
of h; and h;. Applying Lemma S.1 yields

h [0 A(t)] = hi(t), forallteT,
and hence

0. A(t) = hi o by ' (t) = 6,, A(t), forallteT.

For any k = 0,1,...,p and ¢ € [tg, tk+1),

t—t t— g1
HIA(t) = (0*)k+17 - * k7+>
tgr1 — i te+1 — tk
t— 1t t—tge1
9T,,.A t)=0g, 17— — (Og, o7
9¢s ®) (g“)thkH—tk (65 tg11 — tk

If there exists ko € {0,1,...,p} such that (g, )ry # (0s)ky, then (0, )x #
(04)k, for all k = ko, ..., p+1, which is contradictory to (6, )p+1 = (0)pr1 =
7. Thus, 0, = 0 O

9iti
PROOF OF THEOREM 3. For any 4,7’ = 1,...,n such that 7 # 4/, a Taylor
expansion yields
Cgu(97 hi’7 h’l) - (gu(egi/i; hi’7 h’l)
1 %%,
= —(0—0,, ) —£
2( o1:) 00007

1 o%d: 1
- QJT [ 632# (Sahi_l(t))h4/(s>2

02 d2

. 2

(egm; hir, h;i) (0 — Ogm) +o (H9 — 99#1-”2)

] [(6—6,,)TAW®)]" dt +0 (|0 — b, 1?)
s=hi_,1(99Ti/iA(t))

1
> (02
2

as |6 — 0y, | — 0, where C'is as per (W3), and

. 2 2 _ 2
SirtlefT(ﬁ d,/0s%)(s,t) = SirtlefT2[(c9du/8s)(s,t)] >0
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by (W2). Noting that STA(t)A(t)Tdt is positive definite, there exist §yp > 0
such that for all 6 € B, (0,,.),

2 92
p A g _ 2
Jnf (s,t>] Nl — 8,

where A\, > 0 is the smallest eigenvalue of Sr A(t)A(t)"dt, and Bs(b,,)
is a ball of radius  centered at 6, . Furthermore, by Lemma 5.2 and the

compactness of the feasible region

={0eRP 0, — 0, 1 =6 k=1,....p+1, 0,1 =7} O

1
Cu(0; hiry hi) — €,(04,,,5 hiry hi) = 10_2

of the optimization problem in (S.36), it holds for any § > 0 that

inf (03 hir, hi) = G0y, hir, i) > 0.
emeé(egi/i)c “( ) 'u’( 9it; )
Observing that |6 — egi’iH2 < p7_2’ let
2 12
(s, t)AA

min? (

Cp = min {102 inf

s=teT 0s? )7t inf [%M(H;hi/,hi)—%M(Qgi,i;hi/,hi)]},

@Emeso (egi/i)c
where we note that Cy > 0 and
Cu(0; hir, hi) — Cu(0g,,.5 hir, hi) = Coll0 — 0, %, for all 6 € O.

By (5.7), 0 ., minimizes € | (6; Y, Y;) subject to the constraint 8 € O for

some & € (0, 00717/(19 + 1)), whence we obtain
(S.37)

89,1, — 0,0,
—1/2 ~ ~ ~_71/2
< CO / [(gﬂ(egi/i; hi’a hl) - %M(egi/i; hi’a hz) + %?7A(agllla }/;’7 ) %A ( Giti) Y; 7}/1)]

_ ~ A~ 1/2
<207 sup ‘cg? RAR AR
0O ’

Furthermore, noting that

’ (6; Y, Y, — 6u(0; hir, hi)

<f d24 (ﬁ(tm(au(t») = B (ulhy (), (g TOTADD)| e + A j (0TA(t) — )" at
B

T

< 2diamn(M) [ [dar (Fi), T 07 A0)) = due (V0. Yo (67 A0) e+ A
[ (F200. %)) + de (To(07 A1) Y007 At ] e + T,

< 2diam (M) f 3

T
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(S.37) can be bounded as
Hegi’i B egi’i H

Adi 1/2 R 1/2 ~ 1/2
<< W) {sude (%0 ¥i(0)  + supde (o (1), Yo (1)) }
0 teT teT

1/2
+ E / )\1/2
3C ’

whence (5.11) follows by Theorem 2, and hence (5.12) follows by observing
that

sup |Giri (t) — gii(t)| = sup (6, — 0g,,) T AW < [0g,,, = b4,
teT teT

since sup,ey |[Ag(t)| < 1, forall k =1,...,p+ 1. 0

PROOF OF COROLLARY 2. With b; ~ m (!¢ (A1 =1/@Brd45h=6+22) (5 43

follows from (3.8) in Theorem 2. We only need to show (5.14).
Given any fixed ¢ > 0 and &’ € (0,1), define v = ¢'82/[4(B2 — 1 + £/2)],
and

a4, = min {(mibg)ﬁz/[4(ﬁz—1+6/2)], [mib?(— log bi)—l]ﬁz/[‘l(ﬁz—l)]} '
We show that for the bias part,
(S.38)
sup sup supdum <Yw1 (t)7?w1,bi (t)> =0 ( sup b?/(61_1)> =0 (62/(6171)) ,

1<i<n w1 teT 1<i<n

and for the stochastic part,

(S.39)
. = _ ~ ~ B2/2
lim sup Z sup Po, | am,m; 7 sup dum (le’bi (t), Yo, m, (t)) >C)—0, asC — 0.

n— 00 ¢=1W1€QI teT
For each i =1,...,n, and t € T, define 17;(25) Q1 —> M as

Yi(t) (@) = Yoo, i (1)-
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Observing that

n a - «
n ) supdag (Yi(t),ffi(t)) < [ sup sup sup d (le (t),le,bi(t))] :

=1 teT 1<i<nw1€Qy teT
n ~ ~ a
limsup P [ n~ ! Z sup dpq (Y;(t), Yl(t)> > C sup (a,mm;w)_m/g2
n—00 i1 teT 1<isn

< limsup Z P (sup dm (2(75),12(75)) > C(amimi—V)Wﬁz)
i=1

n—o T teT

. < _ ~ ~ B2/2
< limsup Z sup Po, | am,m; ' supdy (le,bi (t), Yoo, s (t)> >C),
n—00 T wie teT
(5.14) follows if by ~ m, (1~ (=1 @AFH4R~6+29)
. ; .
For (S.38), we first show
sup  sup  dag(Yi, (1), Yo 5, (1)) = o(1).
1<is<n w1EQq,teT

By the Cauchy criterion for uniform convergence, it suffices to show
(S.40)

sup sup da (le (t)7?w17bi (t)) — sup dum (le (t),f/whbi, (t))‘ — 0,
w1€N, teT |1<i<n 1<i'<sn/
as n,n’ — . We note that by (K0), (U0), and (W4),
(S.41) sup sup Eq, Uv(T,t, b)) |(T — t)zbi_2] =0(1), asn— o,

1<i<n teT

whence in conjunction with (S.29) we obtain

sup  sup ‘Mwl,bi (z,t) — My, (z,t)‘
1<i<n wi1€Qq,teT
2eM

1

< - sup b? sup sup Eq,
21<isn  1<i<n teT

T—t)?
|U(T7tabi)|< b ) ] sup |¢w1(zat)|
% w1EN, teT
zEM

=0 (b(n)?),
where ¢, is defined as per (S.27). Hence,

‘ ~ ~ ‘

sup sup | My, b, (2,t) — Mwl’bi,(z, t)
1<i<n, 1<i/<n’ w1€Q1,teT
zeM

< sup  sup ’Mwl,bi(z,t) — Mwl(z,t)‘ + sup sup | My, p,(2,1) — My, (2,1)
1<i<n wieQq, teT 1<i/'<n/ w1€Q,teT
zeM zeM

=0 (b(n)Q) +0 (b(n’)z) ,
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as n,n’ — o0. Observing that

sup
w1€Q, teT

sup g (Yoo (8), T, (1)) = supd (mt),mbi,u))\

1<i<n 1<v<n’
v )]

~<R

< sup sup
w1EQ,teT 1<i<n, 1<i'<n’

< sup sup d./\/l (ywl,bi (t)v ?wl,bi/ (t)) )

w1EQ,teT 1<i<n, 1<i’'<n’

At (Yar (0, Vo (1)) = daa (Yoo 1)

(S.40) follows in conjunction with (U1).
Using similar arguments as given in the proof of (2.5), with ¢, = b;ﬁl/(ﬁl_l),
by (S.30), there exists a constant C' > 0 such that for large n,

~ B1/2
I < sup sup supd (le ), Yo b (t))

1<i<nwieQq teT

> 2f sup ql;l)
1<ig<n

~ B1/2
< sup I( sup supdum <le(t),Yw1’bi(t)>

1<i<n w1€Q teT

> 2f sup qb_il>

1<isn

~ 61/2 ¢
< sup I g, sup supdum (le(t),le,bi(t)> > 2

1<i<n w1€Nq teT
b2 2kqf1 2/p1
< sup C Z 1(2%_{’11))_2 = 4C Z 2—214:(51—1)/51’
Isisn (=, 2 D, k>¢

which converges to zero as £ — oo, whence (S.38) follows.
Furthermore, by (W4), replacing a,, with a,,,;m; " in the proof of (S.25)
yields

- _ ~ ~ B2/2
lim supz sup Po, (amimi 7 sup d (le,bi (), Yo, ,m, (t)) RS 2£>

n—0 ] wie teT

<40 Y 27128 g i G142

k>t n=0 o
+4C Z 9=2k(B2-1)/B2 |im sup i mi—27(52—1)/52
k>¢ [ |
<4C Z 9~ 2k(B2=14¢/2)/B2 |y qup pm ~ 2 (P2—1+2/2)/52
k>¢ n—w
+4C Z 9~ 2k(B2=1)/B2 i sup nm~ 2 (P2=D/B2
k>¢ =

which converges to zero as £ — o0, whence (S.39) follows. O
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PROOF OF COROLLARY 3. By (5.9) and Theorem 3,

Zgzz _z' )

sup |h;(t) — ’ Z sup [giri(t) — gii(t)] + SUP
teT =1 teT

By Theorem 2.7.5 of van der Vaart and Wellner (1996),

1 « 1 <
sup |— i (t hzlt =sup|— hy(t)—t
up - 35 giit) =i (0] = sup | 3 el
1 n
=su hi(t) — E(hy (£)| = Op (n~1/2).
up - 3 helt) ~ B <>>‘ P (n712)
Observing that
1 ¢ 1«
EZ up|gzz gzz Eg i g“
~ 1/2 ~ 1/2
< const. [sup dm (Y@(t),YZ(t)) Z sup d (Y (t),Yy (t)) + )\1/2] ,
teT ia—1 €T

it follows from Corollary 2 that

;! 75)’ =0 <)\1/2> +O0p (m—(l—f’)/[2(ﬁ1+262—3+a)]) L Op (n_1/2> .

ha(h (1)) - = suple—h ﬁ;1<t>>]
€

ORI ONIE

teT

teT teT

whence (5.15) follows. Furthermore, observing that

daa (Tiha(0), Yilhi(#))) < da (TiChi(8). Yi(ha(®))) + e (7 (ha(0) t))
< supda (Yi(t), Y-(t)> + C, sup hi_l(?Li(t)) —t’

teT teT
= supda (Ti(t), Yi(t)) () k')
teT teT

(5.16) also follows, which completes the proof. O
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S.5. Simulation studies. In this section, we compare the performance
of the proposed warping method for metric valued functional data for dif-
ferent choices of the penalty parameter A and the number of knots p. Here,
the time domain is 7 = [0, 1], and the metric space (M, dy ) considered is
the Wasserstein space of continuous probability measures on [0, 1] with finite
second moments endowed with the £2-Wasserstein distance as in Example 1.
With sample size n = 30, two cases were implemented with fixed trajectories
p in (5.2) as follows.

Case 1: p(t) = Beta(&,7:), where & = 1.1 + 10(t — 0.4), and v = 2.6 +
1.5sin(2nt — 7), for t € T.

Case 2: u(t) = N(&,~?) truncated on [0,1], where & = 0.1 + 0.8¢, and
v = 0.6 + 0.2sin(107t), for t € T. Specifically, the corresponding
distribution function is

Fyp(@) = 2@ =&)/w) = O(=6/7)
HOWE) = B0 =€) ) — (&)

where ® is the distribution function of a standard Gaussian distribu-
tion.

Ljo1)(2) + 1(1,400)(7), z € R,

We consider a family of perturbation/distortion functions {7, : a € Z\{0}},
where .7, (z) = x —|ar| ™! sin(anz), for x € R. The warping functions h; were
generated through the distortion functions .7,; specifically, h; = 7., 0 T4,
where a;; are independent and identically distributed for I = 1,2 and i =
1,...,n, such that

Play = —k) = P(aqg = k) = P(Va = k)/[2(1 = P(V2 = 0))],

for any k € N, with V5 ~ Poisson(2). We note that this generation mech-
anism ensures h; € W and E[h;(t)] = ¢, for any t € T. With p and h;, the
sample trajectories Y; were computed as per (5.2).

Set the number of discrete observations per trajectory m; = 30, for all
i=1,...,n. Wesampled T;; ~ Uniform(7) independently, for j = 1,...,m;,
and ¢ = 1,...,n. Given a measurable function g: R — R, a push-forward
measure g#z is defined as g#z(F) = z({z : g(x) € E}), for any distribu-
tion z € M and set £ < R. The observed distributions Z;; were generated
by adding perturbations to the trajectory evaluated at Tj;, Y (7j;), through
push-forward measures; specifically Z;; = 7, #(Y;i(T3;)), where u;; are inde-
pendent and identically distributed following Uniform{+4n, +57,..., 87},
and are also independent of the observed times T;;, j = 1,...,m;, and
1=1,...,n.

We applied the proposed pairwise warping method to the simulated data
with Epanechnikov kernel and bandwidths b; chosen by cross-validation in
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the presmoothing step as per (5.6), where the local Fréchet regression was
implemented using the R package frechet (Chen et al., 2020). We assessed
the results through mean integrated squared errors (MISEs) for the estimated

time-synchronized trajectories Yi(hi(+)) and the estimated warping functions
hi as per (5.6) and (5.9); specifically,

TMISE = ;2 L B (Vilha(0), (1)) at,

1 & ~ 2
WMISE = = (hi(t) - hi(t)) dt.
i=197T
£3 TMISE E3 WMISE
p=2 p=3 p=4 p=9 p=19 p =99
0.951 - -
0.904 -4
|| o - o =
0.854 o - %)
- == - e - =0 m
-
0.804 == o
o= =0— == 2
- )
2.251 .- - =
200+ - - =0~ -o- s
o 1.754 - = m
] --— -
31'50 o o= o= - - -
4N}
%) 0.16 - - - -
_‘
0.144 <
- %}
0.131 4 o= o= - --- - -0- m
- - - -
0.12 - - - g
3.0 - - - z
-
2.5 - -
- é
j - =
2.0 - --— - . %
1.54 ——
e e e I, I
0 01 1 10 0 01 1 10 0 01 1 10 0 01 1 10 0 01 1 10 0 01 1 10
A

Fig S.1: Summary of TMISE (red) and WMISE (blue) as per (S.42) out of
1000 Monte Carlo runs for Case 1 (top two rows) and Case 2 (bottom two
rows).

Since too many knots will result in shape distortion of the estimated warp-
ing function (Ramsay and Li, 1998), 1000 Monte Carlo runs were conducted
for p € {2,3,4,9,19,99}, and A € {0} U {10’ : I = —1,0,1}. Results in terms of
TMISE and WMISE for Case 1 and Case 2 are summarized in the boxplots in



23

Figure S.1, the top two rows show the results for Case 1 and the bottom two
rows for Case 2. For both cases, for any given value of the number of knots
p, the proposed estimators perform almost equally well in terms of TMISE
and WMISE with small values (no more than 1) of the penalty parameter A,
and the performance turns worse as A increases from 1 to 10. Furthermore,
across different choices of the number of knots p, the estimators achieve the
minimum estimation errors with small p € {2,3,4}. Thus, the simulations
indicate that the proposed method is not sensitive to the choice of p and A
when p and A are relatively small, which is in agreement with findings in the
literature (Ramsay and Li, 1998; Tang and Miiller, 2008).
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