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Abstract

Early childhood is a period marked by rapid brain growth accompanied by cognitive
and motor development. However, it remains unclear how early developmental skills
relate to neuroanatomical growth across time with no growth quantile trajectories of
typical brain development currently available to place and compare individual neu-
roanatomical development. Even though longitudinal neuroimaging data have become
more common, they are often sparse, making dynamic analyses at subject level a chal-
lenging task. Using the Principal Analysis through Conditional Expectation (PACE)
approach geared towards sparse longitudinal data, we investigate the evolution of gray
matter, white matter and cerebrospinal fluid volumes in a cohort of 446 children be-
tween the ages of 1 and 120 months. For each child, we calculate their dynamic
age-varying association between the growing brain and scores that assess cognitive
functioning, applying the functional varying coefficient model. Using local Fréchet re-
gression, we construct age-varying growth percentiles to reveal the evolution of brain
development across the population. To further demonstrate its utility, we apply PACE
to predict individual trajectories of brain development.
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1 Introduction

Infancy and early childhood are periods of rapid physical growth, skill and brain development.

Throughout the first year of life, the brain grows from 25% to 75% of adult volume during

healthy development, and reaches 95% of its peak size by age six (Giedd and Rapoport,

2010). This increase in brain volume reflects underlying macro- and micro-structure tissue

maturation, including increasing myelination and white matter volume, changing cortical

morphometry, and increasing sub-cortical gray matter volumes, synapse and neuronal den-

sity.

By scanning and assessing children throughout early development, longitudinal studies

are in theory able to characterise brain growth patterns consistently with age, and investigate

associations with current and future cognitive performance. However, in reality, longitudinal

data are often sparse and collected at different time points, as participants miss scans or as-

sessments because of illness or, more recently, self-isolation. In addition, some study designs,

such as hybrid or accelerated-longitudinal designs, intentionally scan children across different

age ranges in order to quickly collect data across a larger effective age range. The resulting

sparse and unbalanced nature of the data makes modeling the time-varying evolution of

brain growth patterns a challenge.

Growth patterns are typically studied in form of population-based growth trajectories,

making it easier to evaluate current and future development across differing geographies

and environmental settings. For example, based on physical growth data, an estimated 165

million children under 5 years of age are currently stunted and thus at risk or are failing to

achieve their developmental potential (UNICEF et al., 2012). However, growth curves are

mainly used to assess purely physical growth (i.e. length, height, weight), neglecting regions

that have been more closely linked to cognitive and motor development, such as the brain

(Silbereis et al., 2016). Following WHO guidelines to monitor physical growth (WHO, 2006),

Lambda-Mu-Sigma (LMS) and Box-Cox Power Exponential (BCPE) methods (Cole, 1988,

1994; Rigby and Stasinopoulos, 2004) are used to create physical growth curves. LMS and

BCPE assume that the age-specific Box-Cox transformation of the original measurements

Y ptq follows Gaussian and power exponential distributions, where Gaussian distributions
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are a special case of the latter. These distributional assumptions are restrictive and may

not hold in practice. For example, the LMS and BCPE methods are restricted to unimodal

distributions, while brain development can be characterized by multimodality in age-varying

distributions. Without such distributional assumptions, Cox and Jones (in separate contri-

butions to the discussion of Cole, 1988) proposed a nonparametric model to estimate the

τth conditional quantiles gτ p¨q by

pgτ “ argmin
g

n
ÿ

i“1

ρτ pYi ´ gpXiqq ` λ

ż

g2pzq2dz, (1)

where ρτ pzq “ τ maxtz, 0u ` p1´ τqmaxt´z, 0u for z P R.

Cox’s model does not include the regularization, as it sets λ “ 0, while Jones considers

the model with general λ ě 0. Koenker and Bassett (1978) impose a linearity condition

gpxq “ xJβ. However, this method suffers from quantile crossing, i.e. quantile lines pgτ

may (and often do) cross each other for different values of τ (He, 1997). This means that

a lower-level quantile could be larger than a higher-level quantile, e.g., a median at certain

time can be greater than the third quartile at the same time, which is unrealistic. Various

modifications have been proposed to overcome this crossing problem, usually under linearity

conditions (Koenker and Bassett, 1978); see also He (1997); Bondell et al. (2010).

Such linearity assumptions may not be valid for real-world data. Structural brain de-

velopment follows a nonlinear trajectory at both whole-brain and regional brain structure

levels (Gennatas et al., 2017; Bray et al., 2015; Gogtay and Thompson, 2010; Lebel et al.,

2008; Lebel and Beaulieu, 2011; Giorgio et al., 2010). Gray matter volume increases rapidly

during infancy, peaking within the first three years of life (Matsuzawa et al., 2001) and grad-

ually decreases thereafter. In contrast, white matter volume increases throughout childhood

and early adolescence (Barnea-Goraly et al., 2005; Blakemore and Choudhury, 2006) before

decreasing in older adulthood. Various studies have shown differences in these patterns by

biological sex, with boys showing a greater gray matter percentage overall and girls display-

ing a greater white matter percentage (Giedd and Rapoport, 2010). This leaves a need for

methodologies that help characterise longitudinal patterns of brain development, and to de-

velop population-based growth curves of brain development, aiming to investigate individual
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variability and benchmark potentially aberrant development. To capture and characterize

these nonlinear patterns of development, linear and linear mixed effects models previously

used in cross-sectional and longitudinal studies are ill-posed, and more flexible nonparamet-

ric methods are needed. Nonparametric methods for conditional quantile estimation have

been proposed based on kernel smoothing and splines (e.g., Samanta, 1989; Hendricks and

Koenker, 1992), as well as variants of model (1) with different penalties proposed in Koenker

et al. (1994). However, these methods either suffer from boundary effects detracting from

the global convergence of the estimators (e.g., Müller and Stadtmüller, 1999) or the crossing

problem.

To help address these shortcomings, we are using the Principal Analysis by Conditional

Expectation (PACE) (Yao et al., 2005), a functional data analysis approach, to model tra-

jectories of proportional gray matter (pGM), white matter (pWM) and cerebrospinal fluid

(pCSF) volumes from data from 446 children from 1 to 120 months of age. This method is

specifically geared towards sparse and irregularly observed longitudinal data (Wang et al.,

2016; Yao et al., 2005) and can be utilized to obtain estimates of true trajectories at subject

level, which is a difficult task when most of the subjects have only few repeats. Combining

these data and the recently developed Fréchet regression approach (Petersen and Müller,

2019) to construct age dynamic growth percentiles at the population level, we develop nor-

mative percentile ‘brain growth charts’ for proportions of GM, WM and CSF volumes from

infancy to pre-adolesence. We then examine dynamic associations between brain growth

trajectories and cognitive scores derived from the Mullen Scales of Early Learning (Mullen,

1995) in early and late childhood.

2 Materials and Methods

2.1 Subject Details and Demographics

Data used in this study were drawn from the ongoing longitudinal RESONANCE study

of healthy and neurotypical brain and cognitive development, based at Brown University in

Providence, RI, USA. From the RESONANCE cohort, 446 typically-developing children (195

3



girls) ages one to one hundred and twenty months were selected for analysis in this study.

General participant demographics are provided in Table 1, with children being representative

of the RI population.

RESONANCE is an accelerated-longitudinal study of a large community cohort of healthy

children with approximately half of the cohort enrolled between two and eight months of age;

and the remainder between two and four years of age. Depending on child age, study visits

occur every six (under age two) or twelve months (over age two), and include multi-modal

MRI, performance and parent-reported measures of cognitive and behavioral functioning,

anthropometry, and biospecimen collection.

To focus on healthy and neurotypically developing children, those with known major risk

factors for developmental abnormalities or cognitive impairments were excluded at enroll-

ment. Specifically, children born preterm (ă 37 weeks) or small for gestation age (ă 1500 g),

in utero exposure to alcohol, cigarette smoke or illicit substances; fetal ultrasound abnormal-

ities; complicated delivery resulting in 5 minute APGAR scores ă 8 and/or NCU admission;

neurological disorder in child (e.g. head injury resulting in loss of consciousness, epilepsy);

and psychiatric or learning disorder in the infant, parents or siblings (including maternal

depression requiring medication in the year prior to pregnancy). In addition to screening

at the time of enrollment, on-going screening for worrisome behaviors using validated tools

were performed to identify at-risk children and remove them from subsequent analysis.

2.2 Ethics Statement

Research ethics oversight was provided by the host institutions, including the Brown Uni-

versity and Lifespan institutional review boards. For all children, written informed consent

was obtained from their parents or legal guardians.

2.3 MRI Acquisition & Analysis

For all MR acquisition, children under 4 years of age were scanned during natural and non-

sedated sleep and older children were imaged whilst watching a movie or other video. Our

imaging protocol included relaxometry, multi-shell diffusion, resting-state connectivity, and
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Figure 1: Design plot displaying all pairs of ages for all included children from the RESO-
NANCE cohort.

magnetic resonance spectroscopy acquisitions in addition to the anatomical data. As a result,

depending on child compliance (sleeping and/or motion) high quality anatomical data was

not collected or available for every child at every scan time-point. Following data acquisition,

all scans were inspected for motion-related artifacts and image blurring or ghosting.

The design plot in Figure 1 illustrates all pairwise measurements with age. For the

RESONANCE cohort, this plot reveals the sparsity of the times when measurements were

taken. Most of the children only had one scan (Table 1), and most of the measurements

were taken at early ages before 5 years old (Figure 2).

Table 1: Distribution of numbers of repeats per child.

Number of repeats per child 1 2 3 4 5 6 8

Girls 114 44 21 12 4 0 0
Boys 149 54 24 14 6 4 1

T1-weighted anatomical data were acquired on a 3T Siemens Trio scanner with a 12-

channel head RF array. T1-weighted magnetization-prepared rapid acquisition gradient echo

anatomical data were acquired with an isotropic voxel volume of 1.2ˆ1.2ˆ1.2mm3, resampled

to 0.9ˆ0.9ˆ0.9mm3 Sequence specific parameters were: TE = 6.9ms; TR = 16ms; inversion
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Figure 2: Distributions of ages of observations for girls (left) and boys (right).

preparation time = 950ms; flip angle = 15 degrees; BW = 450Hz/Pixel. The acquisition

matrix and field of view were varied according to child head size in order to maintain a

constant voxel volume and spatial resolution across all ages (Dean et al., 2014). Using a

multistep registration procedure (O’Muircheartaigh et al., 2014), a series of study- and age-

specific anatomical T1-weighted templates were created corresponding to 6, 9, 12, 15, 18,

21, 24, and 27 month ages. At least 10 boys and 10 girls were included in each template.

An overall study template was then created from these age templates, which was aligned to

the MNI152 template (Lancaster et al., 2007). Each child’s anatomical T1-weighted image

was transformed into MNI space by first aligning to their age-appropriate template and then

applying the pre-computed transformation to MNI space, with the calculated individual

forward and reverse transformations saved and used for the volumetric analysis described

below. All template creation and image alignment was performed using a 3D nonlinear

approach (ANTS, Avants et al., 2014) with cross-correlation and mutual information cost

functions. This step was done so that previously calculated brain masks and initial WM,

GM, and CSF estimates could be aligned to the each child’s individual anatomical data

and used as starting priors for the Atropos voxel-wise WM, GM, and CSF segmentation

method. The resultant tissue partial volume maps were then thresholded at 0.2 and summed

to calculate total-brain, WM, GM, and CSF volumes and their proportional fraction (i.e.,

pWM = WM/(WM+GM+CSF)). Overall, pGM and pCSF decrease and pWM increase as

6



children age (Figure 3).
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Figure 3: Distributions of pGM (top), pWM (middle), and pCSF (bottom) observed within
each year increment of ages for girls (left) and boys (right).

2.4 Neurocognitive Assessments

Alongside neuroimaging data, each child’s cognitive development was assessed using a com-

bination of observed performance and parent-reported measures. For overall cognitive func-

tioning, children under 5 years of age were assessed using the Mullen Scales of Early Learn-

ing (Mullen, 1995), a standardized and population-normed tool for assessing overall (Early

Learning Composite, ELC), verbal (Verbal Development Quotient, VDQ) and non-verbal

abilities (Non-Verbal Development Quotient, NVDQ). To assess overall cognitive function-
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ing in older children, we used the full scale IQ (FSIQ) from the Wechsler Intelligence Scale

for Children 4th edition (Wechsler, 2012), an individually administered standard intelligence

test for children aged 6 to 16 years.

2.5 Statistical Methods

Functional data analysis (FDA) provides a powerful toolkit for analyzing longitudinal data.

The idea is to view the measurements for each individual as values of a random trajectory,

sometimes contaminated with measurement error. Similar to traditional principal component

analysis, functional principal component analysis (FPCA) is typically used for dimension

reduction and to identify dominant modes of variation in functional data. Classical FPCA

(Wang et al., 2016; Hall et al., 2006) aims at fully observed or densely observed curves

but faces great challenges in longitudinal settings when one has only very few repeated

measurements for each subject or the measurements are on an irregular grid. While the

mean function can be estimated by smoothing across neighborhoods even in sparse settings

as depicted in Figure 1, the estimation of the covariance surface, which is the backbone of

FPCA, is more complex in sparse settings (Yao et al., 2005; Wang et al., 2016). While this

challenge has been addressed and forms the key to link functional and longitudinal data

analysis, these developments are not widely known outside of nonparametric statistics and

one of the main goals of this paper is to introduce this novel approach to researchers in child

development, where longitudinal studies are paramount.

Principal component analysis through conditional expectation (PACE) (Yao et al., 2005)

is geared towards situations where the study design is very sparse and irregular, which is often

typical for longitudinal neuroimaging studies and is also the case for the RESONANCE data.

By pooling observations across subjects followed by smoothing steps, one can get estimates

of mean and covariance functions at the population level. At the subject level, one may

then use the functional principal component scores obtained from the PACE approach to

reconstruct trajectories. In Section 2.5.1, we describe in detail how we obtained mean and

covariance functions, the eigenfunctions of the corresponding auto-covariance operator, the

corresponding modes of variation and the individual trajectory fitting for the pGM, pWM

and pCSF volumes acquired in RESONANCE.
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The software to implement PACE modeling is available on CRAN as an R package titled

fdapace at https://CRAN.R-project.org/package=fdapace; see Carroll et al. (2020). We

use the functional concurrent regression model, also known as the varying coefficient model,

as described in Section 2.5.2, to study the association of pGM, pWM and pCSF with the

cognitive scores. Various estimation techniques are available for the model parameters such

as slope (function) and the intercepts for both dense and sparse longitudinal data (Cai et al.,

2000; Huang et al., 2004; Şentürk and Müller, 2010; Wu et al., 2010; Dai et al., 2019).

To derive and construct conventional quantile growth charts for pGM, pWM and pCSF

volumes, we employ local Fréchet regression (Petersen and Müller, 2019) which is a non-

parametric regression method with responses (in our case probability distributions) lying

in metric spaces and Euclidean predictors, whence we obtain estimates for age-dependent

quantile functions and hence age-varying dynamic quantiles/percentiles. An R package

frechet for the implementation of local Fréchet regression is available on CRAN at https:

//CRAN.R-project.org/package=frechet (Chen et al., 2020).

2.5.1 PACE Modeling

FPCA is a dimension reduction method that summarizes functional data in the form of scalar

valued functional principal component (FPC) scores. For a random function Xptq, t P I, the

mean function µptq and the autocovariance surface Cps, tq are given by

µptq “ E pXptqq and Cps, tq “ Cov pXpsq, Xptqq “
8
ÿ

k“1

λkφkpsqφkptq,

where λ1 ě λ2 ě . . . ě 0 are the eigenvalues and φk are the orthonormal eigenfunctions of

the autocovariance operator given by C : L2pIq Ñ L2pIq, Cpfq “
ş

I Cps, tqfpsqds. By the

Karhunen–Loève expansion, one can represent Xptq as

Xptq “ µptq `
8
ÿ

k“1

ψkφkptq, t P I,

where ψk “
ş

IpXptq ´ µptqqφkptqdt are the functional principal components. The ψk are

zero mean uncorrelated random variables, accounting for random fluctuations of the trajec-
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tory Xptq around the mean curve µptq. For the purpose of dimension reduction, the first

K eigenfunctions are used so that Xptq « µptq `
řK
k“1 ψkφkptq is represented using FPCs

pψ1, . . . , ψKq.

In practice, one has to estimate µptq, Cps, tq, λk and φk using a sample of observations

X̃iptjq where

X̃iptjq “ Xiptijq ` εij

are noisy longitudinal data, a corrupted version of Xiptq observed on a grid ti1, ti2, . . . , tini

for the ith subject. The noise variables εij are assumed to be normal with zero mean and

variance σ2. When the grid is the same and the ni are large for all the subjects, the cross-

sectional estimates of the targets µ̂ptq, Ĉps, tq, λ̂k, φ̂k, σ̂
2 are reliable, leading to trustworthy

estimates for ψk. However if the ni are small or the grid is irregular, as is typical for

many longitudinal studies in child development, estimation is much more challenging and

the numerical integration step in the estimation of the FPC scores ψk does not work any

longer. In such situations, the mean curve estimate µ̂ptq is obtained by smoothing pooled

data from all subjects and the covariance function estimate Ĉps, tq is obtained by smoothing

raw covariances (Yao et al., 2005). For the RESONANCE data, to adjust for their extreme

sparsity, we use 10% of the age domain and 15% of the age domain as bandwidth choices for

mean and covariance smoothing, respectively. Finally the FPCs ψk are obtained using best

linear unbiased predictors

ψ̂k “ λ̂kφ̂
T
k Σ̂´1Xi

pX̃i ´ µ̂q (2)

where

X̃i “ pXipti1q, . . . , Xiptini
qq , φ̂k “

´

φ̂pti1q, . . . , φ̂ptini
q

¯

, µ̂ “ pµ̂pti1q, . . . , µ̂ptini
qq

and

tΣ̂Xi
uuv “ Ĉptiu, tivq ` σ̂

2Ini
.

To determine the number of components K, it is common to take the minimum number

for explaining a given fraction of variance explained by looking at
řK
k“1 λ̂k{

ř8

k“1 λ̂k. Once
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K has been chosen, individual trajectories are reconstructed as

Xiptq “ µ̂ptq `
K
ÿ

k“1

ψ̂kφ̂kptq.

Under additional Gaussian assumptions, the estimates of the predicted FPC scores converge

to their targets, and pointwise/uniform confidence bands can be constructed for predicted

trajectories (Yao et al., 2005). In practical applications, to obtain the inverse in (2) is

sometimes problematic; a ridge approach that provides a generalized inverse can overcome

this and is described in Section S.1 in the Supplementary Materials.

For visualization in FDA, the modes of variation provide an insightful representation

of variance decomposition in a sample of functional or longitudinal data. The modes of

variation capture the deviation around the mean function scaled by the shape of the dominant

eigenfunctions. Formally, the kth mode of variation is defined as

µptq ˘ k
a

λkφkptq,

where the population quantities are estimated using their sample counterparts in data ap-

plications.

2.5.2 Varying Coefficient Modeling

The varying coefficient regression model, or the functional concurrent regression model,

between functional response Y ptq and functional predictor Xptq is given by

Y ptq “ β0ptq ` βptqXptq ` εptq (3)

where β0ptq and βptq are smooth coefficient functions and εp¨q is a zero mean Gaussian

process. Various estimation techniques are available for the intercept function β0ptq and the

slope function βptq for both dense and sparse functional data (Cai et al., 2000; Huang et al.,

2004; Şentürk and Müller, 2008; Wu et al., 2010; Şentürk and Müller, 2010; Şentürk and

Nguyen, 2011; Huang et al., 2004). For assessing the strength of the association, one can use
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the time-varying R2 function

R2
ptq “ 1´

Varpεptqq

VarpY ptqq
.

Greater values of R2ptq indicate that more variability in the response curve Y ptq is explained

by the linear model in Xptq. Positive values of the slope function βptq indicate positive

association between Y ptq and Xptq at t while negative slopes imply negative association.

2.5.3 Dynamic Quantile Modeling using Local Fréchet Regression

Given a closed interval D Ă R, we focus on the Wasserstein spaceW “WpDq of probability

distributions on D with finite second moments, endowed with the L2 Wasserstein distance

dW pq1, q2q “

"
ż 1

0

rF´11 puq ´ F´12 puqs2du

*1{2

, for q1, q2 PW .

Here, Fl and F´1l are the cumulative distribution function (cdf) and quantile function of ql,

for l “ 1, 2, where quantile functions are considered to be the left continuous inverse of the

corresponding cdfs; specifically, given a cdf F ,

F´1puq “ inftx P D : F pxq ě uu, for u P p0, 1q.

Let pT, P q be a pair of random elements taking values in T ˆW with joint distribution F ,

where T Ď R is the time domain. Due to the compactness of D, Erd2W pP, qq | T “ ts ă 8,

for all q P W and t P T . Since the Wasserstein space W is a Hadamard space (Kloeckner,

2010), there exists a unique minimizer of Erd2W pP, ¨q | T “ ts “: Mp¨, tq (Sturm, 2003), which

is the conditional Fréchet mean µ‘ptq of P given T “ t. Specifically,

µ‘ptq “ argmin
qPW

Mpq, tq.

With µ‘ptq, the τth conditional quantiles of P given T “ t can be expressed as F´1µ‘ptq
pτq,

for τ P p0, 1q, where F´1µ‘ptq
is the quantile function of µ‘ptq. Thus, in order to estimate the

conditional quantiles, it suffices to estimate the conditional Fréchet mean µ‘ptq. To this end,

we employ the local Fréchet regression approach (Petersen and Müller, 2019), described as
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follows. Firstly, we define a localized Fréchet mean by

ν‘ptq “ argmin
qPW

Lnpq, tq, with Lnpq, tq “ ErwpT, t, hqd2W pP, qqs.

Here, wps, t, hq “ σ´20 Khps´tqrκ2´κ1ps´tqs, where κz “ ErKhpT´tqpT´tq
zs, for z “ 0, 1, 2,

σ2
0 “ κ0κ2´κ

2
1, Khp¨q “ Kp¨{hq{h, K is a smoothing kernel, i.e., a density function symmetric

around zero, and h “ hpnq ą 0 is a bandwidth sequence.

Suppose tpTi, Piqu
n
i“1 are independent realizations of pT, P q. If the distributions Pi are

fully observed, setting pwps, t, hq “ pσ´20 Khps´ tqrpκ2´pκ1ps´ tqs, where pκz “ n´1
řn
i“1KhpTi´

tqpTi ´ tq
z, for z “ 0, 1, 2, and pσ2

0 “ pκ0pκ2 ´ pκ21, an oracle local Fréchet regression estimate is

rν‘ptq “ argmin
qPW

rLnpq, tq, with rLnpq, tq “ n´1
n
ÿ

i“1

pwpTi, t, hqd
2
W pPi, qq.

In practice, the distributions Pi are however rarely fully observed; instead we only ob-

serve random samples of measurements generated from Pi. This issue can be addressed

by estimating cdfs (e.g., Aggarwal, 1955; Read, 1972; Falk, 1983; Leblanc, 2012), quantile

functions (e.g., Parzen, 1979; Falk, 1984; Yang, 1985; Cheng and Parzen, 1997) or density

functions (e.g., Panaretos and Zemel, 2016; Petersen and Müller, 2016) of the underlying

distributions. For any q PW , we denote the estimated distribution by pq “ qp pF q, where pF is

a cdf estimate based on a random sample generated from q. If employing quantile function

or density estimation methods, one can obtain the cdf estimate by right continuous inversion

or integration. Replacing Pi with the corresponding estimates pPi, a data-based local Fréchet

regression estimate is

pν‘ptq “ argmin
qPW

pLnpq, tq, with pLnpq, tq “ n´1
n
ÿ

i“1

pwpTi, t, hqd
2
W p

pPi, qq.

However, in the RESONANCE data, only one measurement is available per distribution

at most ages. Subsequently, the distribution estimation methods mentioned before cannot

be applied directly. To resolve this issue, we divide the age domain T into bins S1 “

ra0, a1q, S2 “ ra1, a2q, . . . , SB “ raB´1, aBs, with minpT q “ a0 ă a1 ă . . . ă aB “ maxpT q.

Pooling the observations from all the subjects together, we denote the paired observations
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by ptj, Yjq, where tj is the observed time and Yj is a measurement generated from a random

distribution P ptjq at age tj, for j “ 1, . . . ,m. For the mid age bk “ pak´1 ` akq{2 of each

bin, we can obtain an estimate qP pbkq of the distribution P pbkq based on the observations

tYj : tj P Sku obtained at ages falling within the bin. Then the local Fréchet regression

estimate for RESONANCE data is

qν‘ptq “ argmin
qPW

qLBpq, tq, with qLBpq, tq “ B´1
B
ÿ

k“1

pwpbk, t, hqd
2
W p

qP pbkq, qq. (4)

With qν‘ptq for t P T , for any given τ P p0, 1q, an estimate for the τth conditional quantile

curve gτ is

pgτ ptq “ F´1
qν‘ptq

pτq, for t P T , (5)

where F´1
qν‘ptq

is the quantile function of qν‘ptq.

For RESONANCE data, we set the number of binsB “ 40, where the bins are constructed

such that each bin contains about 1{Bˆ100% “ 2.5% of the observed data. The bandwidth h

was chosen by 10-fold cross validation simultaneously for pGM, pWM and pCSF; specifically,

the bandwidth used for the analysis of proportions is 1.65.

3 Results

3.1 Population Level Analysis

3.1.1 Mean Function

Figure 4 illustrates the population level mean curves for development of proportions pGM,

pWM and pCSF in children from one year to nine years of age. We constructed 95% point-

wise confidence intervals by resampling the subjects 5, 000 times to generate the bootstrap

replicates of the mean function and then obtained the pointwise cutoffs from the bootstrap

replicates. No major differences in the levels of the mean proportions were detected between

boys and girls (Figure 4). However, there are significant differences in the mean raw brain

volume levels between boys and girls as illustrated in Figure S.1 in the supplement.
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Figure 4: Population level mean functions (solid lines) for proportion of gray matter (left),
white matter (middle) and CSF (right) evolution for children in the RESONANCE cohort.
The light ribbons correspond to 95% pointwise confidence intervals.
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Figure 5: Eigenfunctions for FPCA of proportion of gray matter (left), white matter (middle)
and CSF (right) for girls (top panel) and boys (bottom panel) in the RESONANCE cohort.
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Figure 6: Mode of variation plot for proportion of gray matter (top), proportion of white
matter (middle) and proportion of CSF (bottom) for girls (left) and boys (right) in the
RESONANCE cohort. The solid line corresponds to the mean function, the darker ribbon
represents the area covered by the first mode of variation around the mean function and the
lighter ribbon represents the area covered by the second mode of variation around the mean
function.

Figure 5 shows the dominant eigenfunctions and Figure 6 the corresponding modes of

variation obtained using the PACE approach of covariance estimation for the children in

the RESONANCE cohort differentiated by gender. For girls, the first eigenfunction for

proportions of gray matter and white matter is non-negative and increasing for most of the

period between one to nine years. This indicates that the predominant source of variation in
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the trajectories of pGM and pWM arises from increasing departures of these measurements

from the mean value as the children grow up. For pCSF in girls, the predominant variation

is reflected in contrasting patterns of growth between early and later ages. These shapes

capture the nature of variation in the trajectories around the mean function as reflected

in the corresponding first mode of variation in Figure 6. The contrasting shapes between

different growth periods forms the second mode of variation for pGM and pWM in girls

and also for pCSF in boys. Figures S.3 and S.2 in the supplement show the corresponding

behavior for the raw volumes.

3.1.2 Dynamic Percentiles

We constructed percentile growth charts of age-based dynamic quantiles by local Fréchet

regression as per (5) for pGM, pWM and pCSF, as shown in Figure 7. The resulting dynamic

percentiles for girls and boys mostly evolve in similar patterns. The dynamic percentiles of

pGM and pCSF in general decrease while the curves for pWM increase as children age, in

line with the crude summary of age-dependent distributions in Figure 3. Fluctuation in the

dynamic percentile curves of pCSF for boys reduces dramatically around age 6, while such

change seems to occur later for girls. For pWM, the augmentation of the dynamic percentiles

is relatively fast before age 4 and subsequently slows down. The percentiles of pGM show

similar temporal dynamics between genders overall, yet a difference can be seen in the 0.95

percentiles for higher ages. The results for volumes of GM, WM, and CSF are shown in

Figure S.4 and total brain volumes (TBV) in Figure S.5 in the Supplementary Material. As

a cautionary note we remark that the brain-for-age curves in this paper may not represent

the brain development in early childhood of for the entire population of typically developing

children in the US, or even in Providence, RI, due to the limited number of children involved

in this study. Our main goal here is rather to provide and illustrate a useful method to

construct brain-for-age curves for neurodevelopmental studies.

3.1.3 Dynamic Association with Cognitive Development scores

Brain structure and tissue development are known to be associated with cognitive skills. In

the following, we fit a linear varying coefficient model as described in equation (3) of section
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Figure 7: Age-based dynamic percentiles of proportions of GM (pGM, left), WM (pWM,
middle) and CSF (pCSF, right) estimated by local Fréchet regression as per (5) for RESO-
NANCE data.

2.5.2 with the time-varying ELC, VDQ, NVDQ and FSIQ scores as the response and pGM,

pWM and pCSF as predictors for the age interval 2 to 5.5 years for ELC, VDQ and NVDQ

scores and the age interval 6 to 10 years for the FSIQ score. Due to the extreme sparsity,

we do not differentiate this analysis across genders.

Figure 8 illustrates that the early age cognitive score NVDQ is significantly negatively

correlated with pCSF between three and a half to four and a half years of age. Around

the same period, NVDQ also shows significant positive associations with pWM. ELC is also

positively associated with pWM right before four years of age and negatively associated with

pCSF starting from four years to slightly after four years. For later years, the FSIQ score is

significantly negatively associated with pCSF around seven years of age and after nine years

and positively associated with pWM after nine years.

3.2 Subject Level Analysis

3.2.1 Individual Trajectory Modeling

Using PACE, as described in section 2.5.1 of the supplement, one can reconstruct the in-

dividual smooth underlying trajectories at the subject level. Trajectory predictions can be

obtained using the function fitted in the R package fdapace (Carroll et al., 2020). We
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Figure 8: The regression slope function (black solid line) along with 95% pointwise confidence
intervals (the grey ribbon) for varying coefficient model in equation (3) of section 2.5.2 with
ELC, VDQ, NVDQ and FSIQ as response (top to bottom) and pGM (left), pWM (middle)
and pCSF (right) as predictors. The orange portions of the ribbon indicate intervals where
the slope function is significantly away from zero.
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Figure 9: Individual trajectory prediction for three random boys in the RESONANCE data.
The black solid curves correspond to the fitted trajectory and grey ribbon to the 95% si-
multaneous confidence band around it. The red curve represents the population mean curve
and solid points correspond to the observations that were used in the fitting step.
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Figure 10: Individual trajectory prediction for three random girls in the RESONANCE data.
The plotting convention is same as in Figure 9.
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illustrate this approach for predicting the longitudinal evolution of pGM, pWM and pCSF

volumes for three randomly selected boys in Figures 9 and three randomly selected girls in

Figure 10. The plots show that the fitted trajectories align well with the measurements.

The corresponding fits for the raw volumes of GM, WM, CSF, and TBV are illustrated in

Figures S.6 and S.7 in the Supplement.

For validation of our approach, we selected one male and one female child with high

scan frequency (5 and 8 respectively) and only used the first 50% of their measurements for

fitting the trajectories. Once the fitted trajectories are obtained, the remaining measure-

ments are compared to the predicted ones. Figure 11 demonstrates the results. The future

measurements for these subjects are mostly contained within the uniform confidence band

of the fitted trajectories, constructed under the Gaussian assumption, in most of the cases.

This shows that the proposed approach does quite well in predicting individual trajectories

even with sparse observations per child. The corresponding validation results on the abso-

lute values of GM, WM, CSF and total brain volumes are illustrated in Figure S.8 in the

Supplement.

4 Discussion

4.1 Population-based longitudinal brain development with age

One of the most commonly used models to define paediatric well-being and development are

growth charts. Unfortunately, they only investigate outer physical features such as length

and weight for age, features mediated in their association with cognitive functioning by

brain size (Vuoksimaa et al., 2018). Healthy brain development has been identified as a key

predictor of current and future cognitive development (for a review, Gilmore et al., 2018),

but population-based childhood developmental brain-for-age growth charts are still missing.

One of the reasons could be that contrary to outer physical features, which are easier to

record, paediatric longitudinal MRI data are difficult to obtain and hence most often are

observed sparsely in time. These also happens in scenarios where scan data are missing or

obtained at a later time point (i.e. there is no concurrent acquisition), which then may lead
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Figure 11: The black curves correspond to the fitted trajectory and the grey ribbon to the
95% simultaneous confidence band for one selected boy (top) and one selected girl (bottom).
The black round points were used in the fitting step and the red triangular points are the
future measurements of the same child.
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to a participant’s exclusion from the analysis or a shift to a cross-sectional approach.

In order to compare longitudinal modeling outputs from the most prominent modeling

approaches, we first investigated average brain development with age at 95% point-wise

confidence intervals (Figure 4), eigenfunctions (Figure 5), and modes of variation (Figure 6)

estimated using PACE method; all divided by biological sex. As expected, raw volume

measures increased in total brain volumes (TBV) as well as GM, WM and CSF with age

(Figures S.1–S.3). Investigating proportional brain volumes, we demonstrated an initial pGM

and pCSF decrease coupled with and pWM increase. The original pGM decline coupled with

pWM increase reflects previous MR findings (Giedd et al., 1999; Toga et al., 2006; Brain

Development Cooperative Group, 2012) and parallels cellular processes of pruning following

prenatal neurogenesis and neural migration as expressed in pGM decline (and reflected in

their distribution (Figure 9), and synaptogenesis in the brain (for a review, Silbereis et al.,

2016). While trends were similar across methods, biological sex differences in proportional

brain volume development with age were consistent too. Specifically, differences in later

pCSF development seem to diverge between girls and boys, with stonger decreases that

flatten around age 6 for boys, and less pronounced decreases with a later flattening at 7.5

years for girls.

However, while population based mean function models help describe overall develop-

ment, they are unable to detect whether a child is well developing or struggling for their age.

Like physical growth charts, population-derived brain percentile growth curves allow investi-

gations of brain development across differing geographies and environmental settings. Here,

we used Fréchet regression to create percentile growth charts of age-based dynamic quantiles

for pGM, pWM and pCSF (Figure 7). The resulting dynamic percentiles for boys and girls

mostly evolve in similar patterns (Figures 9–10). Differences within development that were

not detectable previously are now more apparent. For example, the earlier flattening of

the pCSF curve in boys appears to happen earlier in the lower percentiles than the upper

percentiles (75th and above), and children in the 95th percentile experience a steeper second

increase in pGM between ages 3.5 and 6.5 when compared to children in lower percentiles

(Figure 7). Thus, using percentiles helps to place individual brain development trajectories,

informing about “where on the curve” a child is relative to the population. This aids to flag
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outliers and is expected to be useful for monitoring early brain development of individual

children. For example, early brain overgrowth is a characteristic finding in autism disorder;

and abnormalities in ventricle size may be indicative of inflammatory and other neurological

disorders. Further, mapping of early brain developmental growth curves could be useful for

identifying sensitive windows of changing dynamics that, for example, occur alongside major

developmental milestones or the acquisition of new functional skills and abilities (e.g., crawl-

ing, walking, and talking). Recently, normative percentile values (or “nomograms”) of total

gray matter volume as a function of age have been used as a potential reference application

in clinical and research settings for elderly adults (Nobis et al., 2019).

4.2 Dynamic Association of Brain Development with Cognitive

Development Growth Percentiles

While percentiles can help describe and put in perspective individual brain development, the

cognitive impact of for example, being placed in the lowest 5th percentile remains unknown.

As children develop and attain more skills, their brain structure (e.g., Marrus et al., 2018)

and network functional connectivity at rest changes (e.g., Bruchhage et al., 2020). In order

to link brain tissue volumes to cognitive development, we used a linear varying coefficient

model with scores of overall cognitive functioning as the response and pGM, pWM and pCSF

as predictors. Because of the broad age range of our sample, we had to use two different

assessments for overall cognitive function. For ages two to six, we used the early learning

coefficient, as well as the verbal and nonverbal developmental quotients from the Mullen

Scale of Learning, while for children aged six and up, we used the full scale IQ of the WISC

(Figure 8). We then identified intervals where the slopes of the varying coefficient models

were found to be significantly away from zero, thus identifying time zones of significant

positive and negative influence of cognitive scores on brain volume. In the younger group,

higher ELC and nonverbal NVDQ were associated with higher pWM between three and a

half and over four years, and lower pCSF from ages three and a half to four and a half.

While time windows differ between the ELC and NVDQ with the latter being broader, it

seems likely that the effect on ELC was driven by the effect of NVDQ as ELC is a summary
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measure that combines VDQ and NVDQ. When investigating the influence of the FSIQ as

a measure of overall function, we again showed increases in pWM to be associated with

increases in FSIQ between ages nine to ten, while increases in FSIQ are associated with

decreases in pCSF around age seven and ages nine to ten. Thus, increases in overall and

nonverbal cognitive functioning are associated with the strength of dynamics that is the

opposite for pWM and pCSF (Figure 8). Investigating the impact of brain development

on cognitive overall functioning may then allow for more appropriate neurodevelopmental

burden estimates and also help to identify primary risk factors in addition to objective and

quantitative measures for assessing possible age-specific intervention impact at the individual

and population level.

4.3 Individual Trajectory Modeling

Taking our approach one step further, we decided to reconstruct the individual smooth

underlying trajectories at the subject level using the PACE approach, which we illustrated

for three randomly selected boys and girls (Figures 9–10 respectively; Figures S.6–S.7 for

raw volumes). Interestingly, even when longitudinal time points are extremely sparse, the

fitted trajectories align well with the measurements. When using relatively highly sampled

longitudinal data for one boy and girl (5 and 8 scans respectively), then using only the first

50% of their measurements for fitting the trajectories, future measurements were mostly

contained within the confidence band of the fitted trajectories (Figure 11; Figure S.8 for raw

volumes).

Placing individual participant data on growth curves can inform about both typical

but also atypical development, including early detection of neurodevelopmental disorders or

later developmental struggles, which in turn can make school entry more difficult, leading

to more academic struggles in the future. For example, if a child’s data would place it into

the 5th percentile of pWM during a time window that has been identified to be sensitive

to the establishment of overall cognitive functioning, follow up tests and if needed early

interventions could help prevent possible future struggles from manifesting. The prediction

of future neurocognive development using percentiles as a population-based reference has

the potential to inform or predict whether a child might “fall off the curve”.
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4.4 Limitations

The PACE method proposed for the reconstruction of smooth trajectories from sparsely

observed longitudinal data relies on the fact that the individual measurements are taken at

random times. The estimation of individuals’ trajectories, which relies on the estimated FPC

scores, is implicitly conditional on the random observation times. The estimated FPC scores

target the conditional expectation of the true scores, which given an individual’s observations,

is the best linear predictor (best predictor under Gaussianity) of the true scores, and this

property does not require Gaussianity. The uniform confidence bands proposed for the

prediction of reconstruction of the individual trajectories are however valid only under the

assumption of Gaussianity of the true FPC scores.

We further note that the brain-for-age curves that we introduce in this paper may not

represent the brain development in early childhood for the entire population of typically

developing children in the US, or even in Providence, RI, due to the limited number of

children involved in this study. Our main goal is rather to provide and illustrate a method

to construct brain-for-age curves for neurodevelopmental studies.

4.5 Conclusions

We demonstrate that the PACE method is suitable to model and visualize trajectories of

gray matter, white matter and cerebrospinal fluid development in sparse longitudinal data

in a large paediatric cohort spanning early infancy to late childhood. These trajectories

can be enriched by dynamic percentiles for sparsely measured brain tissue data (Figure 7)

and applied at both population (Figures 4–8) and subject (Figures 9–11) levels. While we

have been using this novel analysis method to model neuroanatomical development, it can

be applied more broadly to any kind of sparse longitudinal data, including diffusion tensor

imaging, functional and other magnetic resonance imaging data outputs.
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