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Non-Euclidean data that are indexed with a scalar predictor such as time
are increasingly encountered in data applications, while statistical methodol-
ogy and theory for such random objects are not well developed yet. To address
the need for new methodology in this area, we develop a total variation reg-
ularization technique for nonparametric Fréchet regression, which refers to a
regression setting where a response residing in a metric space is paired with
a scalar predictor and the target is a conditional Fréchet mean. Specifically,
we seek to approximate an unknown metric-space valued function by an es-
timator that minimizes the Fréchet version of least squares and at the same
time has small total variation, appropriately defined for metric-space valued
objects. We show that the resulting estimator is representable by a piece-wise
constant function and establish the minimax convergence rate of the proposed
estimator for metric data objects that reside in Hadamard spaces. We illus-
trate the numerical performance of the proposed method for both simulated
and real data, including metric spaces of symmetric positive-definite matri-
ces with the affine-invariant distance, of probability distributions on the real
line with the Wasserstein distance, and of phylogenetic trees with the Billera–
Holmes–Vogtmann metric.

1. Introduction. Regression analysis is a foundational technique in statistics aiming to
model the relationship between response variables and covariates or predictor variables. Con-
ventional regression models are designed for Euclidean responses Y and predictors X and
include parametric models such as linear or polynomial regression and generalized linear
models as well as various nonparametric approaches, such as kernel and spline smoothing.
All of these models target the conditional expectation E(Y |X).

In response to the emergence of new types of data, the basic Euclidean regression models
have been extended to the case of non-Euclidean data, where a relatively well-studied sce-
nario concerns manifold-valued responses. For instance, Chang (1989), Fisher (1995) studied
regression models for spherical and circular data, while Shi et al. (2009), Steinke, Hein and
Schölkopf (2010), Davis et al. (2010), Fletcher (2013), Cornea et al. (2017) investigated such
models for the case of more general Riemannian manifolds. Also classical local regression
techniques, such as Nadaraya–Watson smoothing and local polynomial smoothing, have been
generalized to cover responses that lie on manifolds (Pelletier (2006), Yuan et al. (2012),
Hinkle, Fletcher and Joshi (2014)). In this paper, we extend the scope of these previous ap-
proaches and study the regression problem for response variables that are situated on a metric
space, more specifically, a Hadamard or Alexandrov space. Due to the absence of rich geo-
metric and algebraic structure in these metric spaces, this problem poses new challenges that
go beyond the regression problem for the Euclidean or manifold case.

While regression with metric-space valued responses covers a wide range of random ob-
jects and therefore is of intrinsic interest, the literature on this topic so far is quite limited.
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Existing work includes Faraway (2014), who considered regression for non-Euclidean data
by a Euclidean embedding using distance matrices, similar to multidimensional scaling, as
well as intrinsic approaches by Hein (2009), who studied Nadaraya–Watson kernel regression
for general metric spaces, and by Petersen and Müller (2019), who introduced linear and local
linear regression for metric-space valued response variables and approached the regression
problem within the framework of conditional Fréchet means.

In this paper, we propose a novel regularization approach for nonparametric regression
with metric-space valued response variables and a scalar predictor variable. We utilize a total
variation based penalty, introducing in Section 3 an appropriate modification of the definition
of total variation that covers metric-space valued functions. Specifically, the inclusion of a
total variation penalty term in the estimating equation for Fréchet regression leads to a penal-
ized M-estimation approach for metric-space valued data. We refer to the proposed method as
total variation regularized Fréchet regression or simply regularized Fréchet regression. While
regularized Fréchet regression can be developed for any geodesic metric space, we focus here
primarily on the family of Hadamard spaces. This family includes the Euclidean space and
forms a rich class of metric spaces that have important practical applications; see Examples
1–3 and Section 6 for more details.

Total variation regularization was introduced by Rudin, Osher and Fatemi (1992) for im-
age recovery/denoising. There is a vast literature on this regularization technique from the
perspective of image denoising and signal processing; see Chambolle et al. (2010) for a brief
introduction and review. From a statistical perspective and for Euclidean data, this method
was studied by Mammen and van de Geer (1997) from the viewpoint of locally adaptive
regression splines and by Tibshirani et al. (2005), who connected it to the lasso. Recent de-
velopments along this line include optimal rates (Hütter and Rigollet (2016)), trend filtering
(Kim et al. (2009), Tibshirani (2014)) and total variation regularized regression when predic-
tors are on a tree or graph (Wang et al. (2016), Ortelli and van de Geer (2018)). Extensions to
manifold-valued data were first investigated by Pennec, Fillard and Ayache (2006) with a ro-
bust variant of the total variation regularization, then by Lellmann et al. (2013), Weinmann,
Demaret and Storath (2014) with the first-order total variation, and further by Bergmann
et al. (2014), Bergmann and Weinmann (2016) with the second-order total variation, although
without asymptotic analysis. Total variation penalties were also shown to confer advantages
for regression models in brain imaging (Wang, Zhu and ADNI (2017)). We generalize these
approaches to the case of data in a Hadamard space and provide a detailed asymptotic anal-
ysis for total variation regularized Fréchet regression for the first time. The generalization
of total variation regularization to Hadamard spaces, and especially the theoretical analy-
sis, are challenged by the lack of rich differential structures that are not available in generic
Hadamard spaces.

We tackle these challenges by leveraging the convexity of the Hadamard space, taking ad-
vantage of the convexity of the distance function and the strong convexity of the squared
distance function; see Section 4. Moreover, to overcome the technical difficulties arising
from the lack of vector and analytic structures of Hadamard spaces, we develop new geo-
metric ideas that are relevant for statistical analysis in these spaces, such as Alexandrov inner
product, geometric interpolation of metric-space valued functions, and geometric center of
functions (Fréchet integrals); see Appendix B for details. Combined with convexity, these
new constructions enable us to obtain minimax rates of convergence for the proposed esti-
mator for a family of Hadamard spaces and functions of bounded variation. In addition, as
these geometric constructions apply to general metric spaces and convexity extends to certain
subspaces of Alexandrov spaces, the theory also applies for certain non-Hadamard spaces.

The structure of the paper is as follows. A brief introduction to metric geometry is given
in Section 2. Total variation regularized Fréchet regression is introduced in Section 3, and
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asymptotic results are presented in Section 4. Numerical studies for synthetic data are pro-
vided in Section 5. In Section 6, we illustrate the application of the proposed method to
analyze data on the evolution of human mortality profiles using the Wasserstein distance on
the space of probability distributions and to study the dynamics of brain connectivity using
task-related functional magnetic resonance imaging (fMRI) signals and the affine-invariant
distance on the space of symmetric positive-definite matrices.

2. Concepts and tools from metric geometry. To state the estimation method and the-
ory in Sections 3 and 4, we need to make use of various concepts from metric geometry that
are briefly reviewed here; a more comprehensive treatment can be found in Chapters 2, 4 and
9 of Burago, Burago and Ivanov (2001).

Geodesics. For a generic metric space (M, d) and a closed interval T = [a, b] ⊂ R, given a
curve γ parameterized by T on M, that is, γ : T → M, and a set P = {t0 ≤ t1 ≤ · · · ≤ tk} ⊂
T consisting of k + 1 points in T , we use the quantity Rd(γ,P ) = ∑k

j=1 d(γ (tj ), γ (tj−1))

to define the length of γ , denoted by |γ |, which is given by

(2.1) |γ | = sup
P∈P

Rd(γ,P );

here P is the collection of subsets of T whose cardinality is finite. The metric space (M, d)

is a length space if d(p, q) = infγ |γ |, where the infimum ranges over all continuous curves
γ : T → M connecting p and q , that is, γ (a) = p and γ (b) = q . A geodesic on M is a
curve γ : T → M such that d(γ (s), γ (t)) = |t − s| for s, t ∈ T . The metric space (M, d) is a
geodesic space if any pair of points can be connected by a geodesic, and is a uniquely geodesic
space if this geodesic is unique. The geodesic connecting p and q in a uniquely geodesic
space is denoted by pq . Geodesics in a metric space are the counterpart of straight lines in
a Euclidean space. They have been explored for statistical regression of non-Euclidean data,
such as geodesic regression (Fletcher (2013)).

Curvature. Unlike Euclidean spaces, a general metric space is often not flat, and curvature is
used to measure the amount of deviation from being flat. A standard approach to classifying
curvature is to compare geodesic triangles on the metric space to those on the following
reference spaces M2

κ :

• When κ = 0, M2
κ =R

2 with the standard Euclidean distance;
• When κ < 0, M2

κ is the hyperbolic space H2 = {(x, y, z) ∈R
3 : x2 +y2 −z2 = −1 and z >

0} with the hyperbolic distance function d(p, q) = cosh−1(zpzq − xpxq − ypyq)/
√−κ ,

where p = (xp, yp, zp) and q = (xq, yq, zq);
• When κ > 0, M2

κ is the sphere S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1} with the angular
distance function d(p, q) = cos−1(xpxq + ypyq + zpzq)/

√
κ .

A geodesic triangle with vertices p, q , r in a uniquely geodesic space M, denoted by
�(p, q, r), consists of three geodesic segments that connect p to q , p to r and q to r , re-
spectively. A comparison triangle of �(p, q, r) in the reference space M2

κ is a geodesic tri-
angle on M2

κ formed by vertices p̄, q̄ , r̄ such that d(p, q) = d̄κ (p̄, q̄), d(p, r) = d̄κ (p̄, r̄),
and d(q, r) = d̄κ (q̄, r̄), where d̄κ denotes the distance function on M2

κ . In addition, every
point x on the geodesic pq (pr , respectively) has a counterpart x̄ on the geodesic segment
p̄q̄ (p̄r̄ , respectively) of the comparison triangle such that d(p, x) = d̄κ (p̄, x̄). We say the
(global) curvature of M is lower (upper, respectively) bounded by κ if every geodesic tri-
angle with perimeter less than 2Dκ , where Dκ = π/

√
κ if κ > 0 and Dκ = ∞ otherwise,

satisfies the following property: There exists a comparison triangle �(p̄, q̄, r̄) in Mκ such
that d(x, y) ≥ d̄κ (x̄, ȳ) (d(x, y) ≤ d̄κ (x̄, ȳ), respectively) for all x ∈ pq and y ∈ pr and their
comparison points x̄ and ȳ on �(p̄, q̄, r̄).
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Angles. The comparison angle ∠̄p(q, r) between q and r at p is defined by

(2.2) ∠̄p(q, r) = arccos
d2(p, q) + d2(p, r) − d2(q, r)

2d(p, q)d(p, r)
.

This is utilized to introduce the concept of an (Alexandrov) angle between two geodesics γ

and η emanating from p in a uniquely geodesic space, which is denoted by ∠p(γ, η) and
defined by

∠p(γ, η) = lim sup
s,t→0

∠̄p

(
γ (s), η(t)

)
.

Note that ∠p(γ, η) does not depend on the length of γ or η. For three distinct points p, q , r

in a uniquely geodesic subset of M, we define the angle ∠p(q, r) =∠p(pq,pr).

Alexandrov spaces and Hadamard spaces. A geodesic space with lower or upper bounded
curvature is called an Alexandrov space, and a complete geodesic space with curvature upper
bounded by 0 is called a Hadamard space. Every geodesic triangle �(p, q, r) in a Hadamard
space then satisfies the CAT(0) inequality, that is, d(x, y) ≤ d̄0(x̄, ȳ) for all x ∈ pq and
y ∈ pr and their comparison points x̄, ȳ ∈ R

2. A geodesic space in which every geodesic
triangle satisfies the CAT(0) inequality is called a CAT(0) space; a Hadamard space is a com-
plete CAT(0) space. Moreover, every CAT(0) space is uniquely geodesic. Every Euclidean
space is a Hadamard space, while non-Euclidean Hadamard spaces include symmetric posi-
tive definite matrices, some Wasserstein spaces and Billera–Holmes–Vogtmann phylogenetic
tree spaces and more; see Examples 1–3. These spaces have broad applications in science
and statistics.

Riemannian manifolds. A Riemannian manifold is a smooth manifold with a smooth metric
tensor 〈·, ·〉 (Lang (1995), page 170), such that for each p ∈ M, the tensor 〈·, ·〉p defines an
inner product on the tangent space TpM at p. The metric tensor induces a distance func-
tion that turns the Riemannian manifold into a metric space (Lang (1995), page 184). The
sectional curvature at p is defined for two linearly independent tangent vectors u and v at
p ∈ M and is given by 〈R(u,v)v,u〉p

〈u,u〉p〈v,v〉p−〈u,v〉2
p

∈ R, where R is the Riemannian curvature tensor

(Lang (1995), page 227). A complete Riemannian manifold is a Hadamard manifold if it is
simply connected and has everywhere nonpositive sectional curvature.

3. Regularized Fréchet regression with total variation. Let (M, d) be a metric space
and Y a random element in M, where d denotes the distance function on M. When M is
a Euclidean space, which is a special metric space, the expectation or mean of Y is an im-
portant concept to characterize the average location of Y . For a non-Euclidean metric space,
we replace the mean with the Fréchet mean, which is an element of M that minimizes the
Fréchet function F(·) = Ed2(·, Y ); in the Euclidean case it coincides with the usual mean
for random vectors with finite second moments. In a general metric space with a given prob-
ability measure, the Fréchet mean might not exist, and even when it exists it might not be
unique. We shall assume that Fréchet means exist and are unique for the random objects we
consider in the following. This is the case for Hadamard spaces when F(p) < ∞ for some
p ∈ M (Bhattacharya and Patrangenaru (2003), Sturm (2003), Afsari (2011), Patrangenaru
and Ellingson (2015)) and Alexandrov spaces with sufficient concentration assumption and/or
additional convexity conditions (Lin and Müller (2021), Lemma S.7).

We consider a curve μ : T → M that potentially varies with the sample size n and is
parameterized by the interval T = [a, b]. For n > 0 independent observations Yi at the des-
ignated time point ti ∈ T for i = 1, . . . , n, we assume the following model:

(3.1) Ed2(y,Yi) < ∞ for some y ∈M and μ(ti) = arg min
y∈M

Ed2(y,Yi),
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and assume that a ≤ t1 ≤ · · · ≤ tn ≤ b are equally spaced; the assumption of equal spacing
that we adopt here for simplicity is not essential, and the results can be easily extended to the
non-equally spaced case, by applying the concept of design densities (Sacks and Ylvisaker
(1970)).

Our goal is to obtain a mean curve estimate μ̂ from the given data pairs (ti, Yi) by mini-
mizing the loss function

Lλ(γ ) = 1

n

n∑
i=1

d2(
γ (ti), Yi

) + λTV(γ ),

where TV(γ ) = |γ | is the total variation of the curve γ , measured by its length as defined by
equation (2.1), and λ ≥ 0 is a regularization parameter depending on n. The curve estimate is
then

(3.2) μ̂ ∈ arg min
TV(γ )<∞

Lλ(γ ),

and its deviation from the target μ is quantified by the pseudo-metrics

(3.3) dn(μ̂,μ) =
{
n−1

n∑
i=1

d2(
μ̂(ti),μ(ti)

)}1/2

,

where d̃ is a pseudo-metric if d̃(f, g) = d̃(g, f ) ≥ 0 and d̃(f,h) ≤ d̃(f, g) + d̃(g, h) for all
f , g, h. In the above, both Lλ and dn are empirical, in the sense that they compare γ and
μ̂ with their respective targets only at the design points t1, . . . , tn. Nevertheless, the theory
developed in the next section implies that with probability tending to one μ̂ converges to
μ, in the sense that

∫
T d2(μ̂(t),μ(t))dt → 0, under the assumption TV(μ) ≤ C for a fixed

constant C ≥ 0 and a suitable asymptotic assumption on the spacing of the design points ti
that will be satisfied for example if these points are equidistantly distributed over an interval.

The estimator μ̂, although not unique, has the property that μ̂(t) = μ̂(t1) for t ∈ [a, t1] and
μ̂(t) = μ̂(tn) for t ∈ [tn, b]. Otherwise, the following function

μ̌(t) =

⎧⎪⎪⎨
⎪⎪⎩

μ̂(t1) for t ∈ [a, t1),

μ̂(t) for t ∈ [t1, tn],
μ̂(tn) for t ∈ (tn, b],

satisfies n−1 ∑n
i=1 d2(μ̌(ti), Yi) = n−1 ∑n

i=1 d2(μ̂(ti), Yi) and TV(μ̌) < TV(μ̂), which im-
plies Lλ(μ̌) < Lλ(μ̂) and thus contradicts the optimality of μ̂. Indeed, the following result
shows that μ̂ can be chosen to have a simple structure.

PROPOSITION 1. For any μ̃ that minimizes Lλ(·), there is a step function μ̂ such that
μ̂(ti) = μ̃(ti) for all i = 1, . . . , n and TV(μ̂) ≤ TV(μ̃).

PROOF. It is clear that TV(μ̃) ≥ ∑n
i=0 d(μ̃(ti+1), μ̃(ti)), where t0 = a and tn+1 = b.

Define

μ̂(t) =
{
μ̃(ti), t ∈ [a, b) and t ∈ [ti , ti+1),

μ̃(tn), t = b.

Then μ̂(ti) = μ̃(ti) for i = 1, . . . , n. Also, from the definition, μ̂(t) is constant over [ti , ti+1).
One thus finds TV(μ̂) = ∑n

i=0 d(μ̂(ti+1), μ̂(ti)) = ∑n
i=0 d(μ̃(ti+1), μ̃(ti)) ≤ TV(μ̃). �

The above proposition shows that one can always choose a step function to minimize the
loss function Lλ. In the following, we may therefore assume that μ̂ is a step function. The
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class of step functions is not only sufficiently powerful to approximate any function of finite
total variation, but also advantageous in modeling functions that are discontinuous since it
incorporates jumps of the function estimates, in contrast to classical smoothing methods that
usually assume a smooth underlying regression function. Incorporating jumps or discontinu-
ities is of interest in many applications (Kolar and Xing (2012), Zhu, Fan and Kong (2014),
Dubey and Müller (2020a)). Our approach makes it possible to go beyond Euclidean spaces
and to fit metric-space valued functions with jumps, as demonstrated in Section 6.2.

The tuning parameter λ controls the number of constant pieces of the estimate μ̂ and the
magnitude of the distance between the pieces. For instance, a large value of λ leads to a
small number of constant pieces. In the next section we will show that the choice λ � n−2/3

will optimize the asymptotic performance, where the notation λ � n−2/3 denotes that there
are constants c2 ≥ c1 > 0 such that c1n

−2/3 ≤ λ ≤ c2n
−2/3. In practice, λ can be chosen via

cross-validation. In some situations it is useful to choose it as the minimal number that yields
a desired number of pieces of μ̂; see Section 6.2. For computation of μ̂, we adopt the iterative
proximal point algorithm of Weinmann, Demaret and Storath (2014), who showed that this
algorithm is convergent for Hadamard spaces; further details are in Appendix A.

4. Theory.

4.1. Hadamard manifolds and spaces. To study the asymptotic properties of the estimate
μ̂ given in (3.2), we assume uniform sub-Gaussianity of the random quantities d(μ(ti), Yi),
as follows. A random variable X is sub-Gaussian if E exp(βX2) < ∞ for a constant β > 0,
and a collection X of random variables is uniformly sub-Gaussian, if there are constants
β, ζ > 0 such that E exp(βX2) ≤ ζ < ∞ for all X ∈ X . The following condition states that
the distances of random objects Yi to their Fréchet means are uniformly sub-Gaussian. This
is guaranteed and thus the condition is not needed whenever the diameter of the space M is
bounded.

(H1) There exist constants β > 0 and ζ > 0 such that for the data Yi in model (3.1)

sup
1≤i≤n

E
[
exp

{
βd2(

μ(ti), Yi

)}] ≤ ζ < ∞,

that is, the random variables d(μ(ti), Yi) are uniformly sub-Gaussian.

Let VM be the collection of all M-valued curves of bounded total variation. We focus on
a subcollection GM ⊂ VM, which could correspond to the entire collection VM or a proper
subcollection of VM such as the class of Lipschitz continuous curves. Then the pseudo-metric
function dn in (3.3) turns GM into a pseudo-metric space. Let G R

M(C) ⊂ GM be a collection
of functions γ ∈ GM with TV(γ ) ≤ C, such that there exists a ball B ⊂ M of radius R > 0
with γ (t) ∈ B for all γ and t ; we write GM(C) = G ∞

M(C). The following result, valid for any
(non-unique) minimizer μ̂ in (3.2), establishes the convergence rate of the estimator μ̂ for μ,
where μ is allowed to vary with the sample size n.

THEOREM 1. For a family R(p, κ) of complete and simply connected Riemannian man-
ifolds of dimension no larger than p and with sectional curvature bounded between κ ≤ 0
and 0, choosing λ � n−2/3 implies that

lim
D→∞ lim sup

n→∞
sup

F∈Fn

PF

{
dn(μ̂,μ) > Dn−1/3} = 0,

where μ is defined in (3.1), μ̂ is given in (3.2), PF is the probability measure induced by F ,
and Fn = Fn(p, κ,C,β, ζ ) for constants p,C,β, ζ > 0 and κ ≤ 0 is the collection of joint
probability distributions of Y1, . . . , Yn on M for which M ∈ R(p, κ), TV(μ) ≤ C and (H1)
holds for β, ζ > 0.



3516 Z. LIN AND H.-G. MÜLLER

The manifold in the above theorem is a Hadamard manifold which is also a Hadamard
space according to Theorem 1A.6 of Bridson and Haefliger (1999). This motivates us to gen-
eralize the above result to general Hadamard spaces that are not a manifold. To this end, we
first observe that Riemannian manifold-valued functions of bounded total variation satisfy
an entropy condition, as follows. For a subset B of GM, the minimal number of balls of ra-
dius δ in (GM, dn) to cover B is denoted by N(δ,B, dn). The covering number N(δ,B, dn)

depends on dn, which in turn depends on the metric d as per (3.3). Proposition 4 in Ap-
pendix D shows that manifolds M in the family R(p, κ) of Theorem 1 satisfy the following
condition:

(H2) For a fixed R > 0, there exists a constant K > 0 that may depend on R, such that
logN(δ,G r

M(r), dn) ≤ Kδ−1 for all δ > 0, n ≥ 1 and 0 < r ≤ R.

This condition essentially controls the (local) complexity of the underlying space M, and
is key for the asymptotic analysis based on empirical process theory, such as Mammen and
van de Geer (1997). For those Hadamard spaces and classes GM of functions that satisfy the
condition, we have the following result that generalizes Theorem 1.

THEOREM 2. For C > 0, for a family H (K) of Hadamard spaces such that for each
M ∈ H (K) the class of functions GM satisfies the condition (H2) for R = 15C, with λ �
n−2/3, one has

lim
D→∞ lim sup

n→∞
sup

F∈Fn

PF

{
dn(μ̂,μ) > Dn−1/3} = 0,

where μ is defined in (3.1), μ̂ is given in (3.2), PF is the probability measure induced by F ,
and Fn = Fn(K,C,β, ζ ) for constants K,C,β, ζ > 0 is the collection of joint probability
distributions of Y1, . . . , Yn on M for which M ∈ H (K), μ ∈ GM(C), and (H1) holds for
β, ζ > 0.

When M is the one-dimensional Euclidean space R, Donoho and Johnstone (1998)
showed that the minimax rate is n−1/3 for the class of uniformly bounded variation; see
also Sadhanala, Wang and Tibshirani (2016). Since H (K) contains the one-dimensional
Euclidean space for the same class of functions, the rate in the above theorem is also the
minimax rate for the family H (K); our result is thus a generalization of the minimax result
of Donoho and Johnstone (1998) to Hadamard spaces. In addition, if the entropy condition
of (H2) is replaced with logN(δ,G r

M(r), dn) ≤ Kδ−α for some constant α ∈ (0,2), then the
proof of Theorem 2 can be modified to show that d(μ̂,μ) = OP (n−1/(2+α)).

There are various geometric properties of Hadamard spaces that enable the extension in
Theorem 2; the most important among these is the convexity outlined in the following propo-
sition.

PROPOSITION 2. For C > 0, let M (K) be a family of metric spaces such that for each
M ∈ M (K) the class GM(C) of functions satisfies (H2) with R = 15C. In addition, the
following conditions hold for a universal constant C1 > 0. For each M ∈ M (K):

(a) d2(q, r) ≥ d2(p, r) − 2d(p, q)d(p, r) cos∠p(q, r) + d2(p, q) for all p,q, r ∈ M;
(b) the function f (r) = d(p, r) cos∠p(q, r) is Lipschitz continuous with a Lipschitz con-

stant no larger than C1 for all p,q ∈ M;
(c) E{d(μ(ti), Yi) cos∠μ(ti )(Yi, q)} ≤ 0 for all q ∈ M, n ≥ 1 and 1 ≤ i ≤ n.

For λ � n−2/3, it then holds that

(4.1) lim
D→∞ lim sup

n→∞
sup

F∈Fn

PF

{
dn(μ̂,μ) > Dn−1/3} = 0,
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where μ is defined in (3.1), μ̂ is given in (3.2), PF is the probability measure induced by F ,
and Fn = Fn(K,C,β, ζ ) is a collection of joint probability distributions of Y1, . . . , Yn on
M ∈ M (K) such that μ ∈ GM(C), and the conditions (c) and (H1) hold for β, ζ > 0.

The first two conditions of the above proposition emerge as properties of Hadamard space.
In fact, condition (a) is an alternative characterization of the CAT(0) space, which has non-
positive curvature (also known as NPC space). To see this, by Proposition 1.7 in Chapter II.1
of Bridson and Haefliger (1999), M is a CAT(0) space if and only if for all p,q, r ∈ M,
d(q, r) ≥ d̄0(q̄, r̄), where p̄, q̄ , r̄ form a triangle in the reference space M2

0 = R
2 such that

d(p, q) = d̄0(p̄, q̄), d(p, r) = d̄0(p̄, r̄) and ∠p̄(q̄, r̄) = ∠p(q, r). Then, by the law of cosines
one further has d2(q, r) ≥ d̄2

0 (q̄, r̄) = d̄2
0 (p̄, q̄)−2d̄0(p̄, q̄)d̄0(p̄, r̄) cos∠p̄(q̄, r̄)+ d̄2

0 (p̄, r̄) =
d2(p, q) − 2d(p, q)d(p, r) cos∠p(q, r) + d2(p, r). As the condition (a) implies that M is a
CAT(0) space which is uniquely geodesic, the angles ∠p(q, r) and ∠μ(ti )(Yi, q) in Proposi-
tion 2 are well defined. Verification of the Lipschitz condition (b) is nontrivial for a general
Hadamard space. Using various properties of the Hadamard space, we show in Lemma S.1
(Lin and Müller (2021)) that condition (b) holds for all Hadamard spaces with the universal
constant C1 = 5. Finally, Lemma S.7 (Lin and Müller (2021)) shows that condition (c) also
holds for Hadamard spaces. Consequently, Theorem 2 follows directly from Proposition 2,
and Theorem 1 follows as a special case of Theorem 2.

The CAT(0) inequality, which holds for Hadamard spaces, implies the convexity of the
distance function, that is,

(4.2) d
(

�p,q�θ , �p, r�θ

) ≤ θd(q, r) for all θ ∈ [0,1] and all p,q, r ∈ M,

where �p,q�θ denotes the point that sits on the geodesic segment connecting p to q and
satisfies d(p, �p,q�θ ) = θd(p, q). This convexity is used to bound the total variation of the
geodesically interpolated functions γ̃θ (t) = �μ(t), γ (t)�θ by the total variation of the func-
tions μ and γ ; see Section S.1 of the Supplementary Material (Lin and Müller (2021)). We
provide an overview of the main steps of the proof of Proposition 2 demonstrating how it re-
lies on new geometric ideas that are introduced here to establish this key result in Appendix B,
while the detailed steps of the proof are provided in Section S.1 of the Supplementary Mate-
rial.

In the following, we discuss three pertinent examples which will also be further investi-
gated in simulations and data applications.

EXAMPLE 1 (Symmetric positive-definite matrices). Symmetric positive-definite (SPD)
matrices as random objects arise in many applications that include computer vision (Rathi,
Tannenbaum and Michailovich (2007)), medical imaging (Fillard et al. (2005), Arsigny et al.
(2006), Pennec, Fillard and Ayache (2006), Fletcher and Joshi (2007), Dryden, Koloydenko
and Zhou (2009)) and neuroscience (Friston (2011)). For example, diffusion tensor imag-
ing, which is commonly used to obtain brain connectivity maps based on magnetic reso-
nance imaging (MRI), produces 3 × 3 SPD matrices that characterize the local diffusion
(Zhou et al. (2016)). For the space of m × m SPD matrices, denoted by Sym+

� (m), the Eu-
clidean distance function dE(A,B) = ‖A − B‖F that is based on the Frobenius norm ‖ · ‖F

suffers from the so-called swelling effect: The determinant of the average SPD matrix is
larger than any of the individual determinants (Arsigny et al. (2007)). Rectifying this issue
motivates the use of more sophisticated distance functions, such as the Log-Euclidean dis-
tance dLE(A,B) = ‖ logA − logB‖F (Arsigny et al. (2007)), the affine-invariant distance
dAI(A,B) = ‖ log(A−1/2BA−1/2)‖F (Moakher (2005), Pennec, Fillard and Ayache (2006))
or the Log-Cholesky distance (Lin (2019)), where logA is the matrix logarithm of A. Either
of the above distance functions is indeed induced by a Riemannian metric tensor that turns
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Sym+
� (m) into a complete and simply connected Riemannian manifold of nonpositive and

bounded sectional curvature. Therefore, Theorem 1 applies to this case.

EXAMPLE 2 (Wasserstein space W2(R)). Let W2(R) be the space of probability distri-
butions on the real line R and with finite second moments, equipped with the Wasserstein
distance dW(G1,G2) = [∫ 1

0 {G−1
1 (s) − G−1

2 (s)}2 ds]1/2, where G−1
1 and G−1

2 are the (left
continuous) quantile functions corresponding to distribution functions G1 and G2. Accord-
ing to Proposition 4.1 of Kloeckner (2010), W2(R) is a CAT(0) space. As W2(R) inherits the
completeness of R, W2(R) is also a Hadamard space. We illustrate the utility of W2(R) for
data analysis in a study of mortality profiles in Section 6.1. As in the proof of Proposition 1
of Petersen and Müller (2019), one can show that supG∈W2(R) logN(εδ,BG(δ), dW ) ≤ Kε−1

for a constant K and all δ, ε > 0, where BG(δ) = {G̃ ∈ W2(R) : dW(G, G̃)) ≤ δ}. Then, for
the function class G of Lipschitz continuous W2(R)-valued functions defined on T , using
Proposition 3 in Appendix D, we can establish condition (H2), and therefore the rate in The-
orem 2 applies. It is worth noting that W2(R

m) is not a Hadamard space for m ≥ 2 (Kloeckner
(2010), Section 4), so that Theorem 2 does not apply.

EXAMPLE 3 (Phylogenetic trees). Phylogenetic trees are central data objects in the field
of evolutionary biology, where they are used to represent the evolutionary history of a set of
organisms. In a seminal paper by Billera, Holmes and Vogtmann (2001), phylogenetic trees
with m leaves are modeled by metric m-trees endowed with a metric that turns the space
of phylogenetic m-trees into a metric space, as follows. A leaf is a vertex that is connected
by only one edge, and a metric m-tree is a tree with m uniquely labeled leaves and positive
lengths on all interior edges, where an edge is called an interior edge if it does not connect to a
leaf. A collection of m-trees that have the same tree structure (taking leaf labels into account)
but different edge lengths can be identified with the orthant (0,∞)r , where r (determined by
the tree structure) is the number of interior edges of each tree in the collection. Collections
of different tree structures, identified by different orthants, can be glued together along the
common faces of the orthants. With this identification between points and metric m-trees, a
natural distance function dT on the space Tm of all metric m-trees is defined in the following
way: For two trees in the same orthant, their distance is the Euclidean distance, while for
two trees from different orthants, their distance is the minimum length over all paths that
connect them and consist of only connected segments, where a segment is a straight line
within an orthant. According to Lemma 4.1 of Billera, Holmes and Vogtmann (2001), the
space (Tm,dT ) is a CAT(0) space. In addition, as a cubical complex, by Theorem 1.1 of
Bridson (1991) it is also a complete metric space and thus a Hadamard space. For a fixed m,
from the construction of Tm, one can see that the covering number N(εδ,Bx(δ), dT ) for the
ball Bx(δ) centered at x ∈ Tm and with radius δ is of the same order as the covering number
of the unit ball of a finite-dimensional Euclidean space, which is O(ε−k) for a k = k(m) ≥ 1.
For the function class G of Tm-valued Lipschitz continuous functions, using Proposition 3
in Appendix D, one finds that the condition (H2) holds for Tm and G . Therefore, Theorem 2
applies to this case.

4.2. Extension to Alexandrov spaces. The development of our main results crucially de-
pends on the convexity of the Hadamard space, characterized by condition (a) of Proposi-
tion 2, which is shown to be equivalent to the CAT(0) inequality and implies the convexity
(4.2) of the distance function of the Hadamard space. By examining the proofs of Proposi-
tion 2 and Lemma S.5 in the Supplementary Material (Lin and Müller (2021)), one finds that
condition (a) can be relaxed to

(4.3) d2(q, r) ≥ d2(p, q) − 2d(p, r)d(p, q) cos∠p(q, r) + cd2(p, r)
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for a universal constant c > 0, where we note that c = 1 for Hadamard spaces. It turns out
that inequality (4.3) holds for some subspaces of Alexandrov spaces with positive lower and
upper bounded curvature, and thus our main results potentially carry over to such subspaces.

Another key ingredient is the strong convexity of the squared distance function of a
Hadamard space. A real-valued function f defined on a convex subset of Rk is strongly con-
vex with parameter η > 0 if f ((1 − θ)p + θq) ≤ (1 − θ)f (p)+ θf (q)− ηθ(1 − θ)‖p − q‖2

for all p, q in the convex subset and θ ∈ [0,1]. To generalize this concept to functions
with geodesic-metric-space valued arguments, we observe that the convex combination
(1 − θ)u + θv lies on the straight line connecting u and v, and is conveniently replaced
with a point on the geodesic connecting p and q . Specifically, we refer to a function f de-
fined on a geodesically convex subset C of a geodesic space as a strongly convex function
on C with parameter η > 0 if f (�p,q�θ ) ≤ (1 − θ)f (p) + θf (q) − ηθ(1 − θ)d2(p, q) for
all p,q ∈ C and θ ∈ [0,1], where a subset in a geodesic space is geodesically convex if for
any two points in the subset there exists a unique geodesic contained within the subset that
connects those two points. One of the nice properties of strongly convex functions is the
existence and uniqueness of a minimizer on a geodesically convex closed subspace when
the function is continuous (Sturm (2003), Proposition 1.7). For any fixed element q of a
Hadamard space, the function f (·) = d2(·, q) that is defined on this space is continuous and
strongly convex with parameter η = 1 (Bačák (2015), equation (2)). This implies the strong
convexity of the Fréchet function F(·) = Ed2(·, Y ), whence the Fréchet mean of a random
object on a Hadamard space always exists and is unique provided that the Fréchet function
is finite. For specific Alexandrov spaces, the squared distance function shares the property of
being strongly convex over some geodesically convex subspaces; see Example 4 below.

Utilizing strong convexity and the relaxed condition (4.3) makes it possible to extend the
main results in Section 4.1 to certain Alexandrov spaces. Let M be an Alexandrov space
with positive lower and upper bound on curvature, where the upper bound is denoted by κ .
The space M generally has a finite diameter, according to Theorem 1.9 of Petrunin and
Tuschmann (1999). Consequently, the sub-Gaussianity condition (H1) is automatically satis-
fied for all random objects in M. We need the following additional assumptions.

(A1) There exists Q > 0 such that logN(δ,G r
M(r), dn) ≤ rQδ−1 for all δ > 0 and r > 0.

(A2) There exists a geodesically convex closed subset C ⊂M of diameter less than π/(2
√

κ)

such that:

(A2a) Yi ∈ C for all n ≥ 1 and 1 ≤ i ≤ n,
(A2b) the function h(x) = d2(x, y) is strongly convex with a universal constant

C2 > 0 for all y ∈ C, and
(A2c) d2(q, r) ≥ d2(p, q) − 2d(p, r)d(p, q) cos∠p(q, r) + C3d

2(p, r) ≥ 0 for a
universal constant C3 > 0 and all p,q, r ∈ C.

The entropy condition (A1) is a simplified version of the condition (H2), as now the space M
is of bounded diameter. The bound on the diameter of the subset C implies that C is a uniquely
geodesic subset of M and thus ensures that the angle ∠p(q, r) in (A2c) is well defined.
As previously mentioned, the strong convexity condition (A2b) implies the existence and
uniqueness of the Fréchet mean, and (A2c) is a relaxation of condition (a) of Proposition 2.
Then, with an argument similar to the proof of Proposition 2, the following holds.

THEOREM 3. For a family A (R, κ) of positively curved Alexandrov spaces, all of which
have a diameter bounded by R and a curvature upper bounded by κ > 0, with λ � n−2/3, one
has

lim
D→∞ lim sup

n→∞
sup

F∈Fn

PF

{
dn(μ̂,μ) > Dn−1/3} = 0,
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where μ is defined in (3.1), μ̂ is given in (3.2), PF is the probability measure induced by
a probability distribution F , and Fn = Fn(R, κ,Q,C,C2,C3) for constants R, κ , Q, C,
C2, C3 is the collection of joint probability distributions of Y1, . . . , Yn on M for which M ∈
A (R, κ), μ ∈ GM(C), and conditions (A1)–(A2) hold.

EXAMPLE 4 (Time-indexed compositional data). Such data arise in various settings that
include longitudinal compositional data (Dai and Müller (2018)). Specifically, for composi-
tional data Yi = (zi,1, . . . , zi,k+1) such that zi,j ≥ 0 and

∑k+1
j=1 zi,j = 1, i = 1, . . . , n, one may

apply the square root transformation on each zi,j and view (
√

zi,1, . . . ,
√

zi,k+1) as elements
of the quadrant C = {(x1, . . . , xk+1) ∈ S

k : xj ≥ 0 for j = 1, . . . , k + 1}. Compositional data
can thus be viewed as sampled from the convex subset C, where the diameter of this quad-
rant is π/2. Then, for all p,q, r ∈ C, whenever d(q, r) ≤ c1 < π/2 for a universal constant
c1 > 0, according to the Taylor expansion of the function h(·) = d2(·, r) at p and its gradi-
ent and Hessian (Pennec (2018), Supplement A), we find that (4.3) holds for some universal
constant c = c2 > 0 (depending on c1). In addition, the Hessian of h is positive on C uni-
formly for all r ∈ C, which implies the strong convexity of h. Then condition (A2) is satisfied
if Pr{d(∂C, Yi) ≥ c3 for all 1 ≤ i ≤ n} = 1 for a universal constant c3 > 0, where ∂C is the
boundary of C and d(∂C,p) is the distance of p to the set ∂C. This requirement corresponds
to points being not too close to the boundary of C. This is a mild condition, as c3 can be
arbitrarily small. For the class G of Sk-valued functions of bounded variation defined on T ,
applying Proposition 4 in Appendix D, we find that (A1) is also satisfied, and thus Theorem 3
applies.

In the above example, all data are located in a subset that has a diameter less than π/2
and is thus strictly smaller than a hemisphere. If we allow data to be arbitrarily close to the
equator, then the constant c2 approaches to zero, and thus the convexity conditions in (A2)
might be violated. As pointed out by a reviewer, the minimal distance to the equator will
play a non-ignorable role, and the convergence rate of Theorem 3 is expected to change in
dependence on this minimal distance, along with changing constants C2 and C3 in (A2). In
the extreme case that all data points are located on the equator, the population Fréchet mean
μ may not be uniquely defined and thus the total variation regularized estimator might not
converge. Another extreme case is that the expected Hessian vanishes at the Fréchet mean.
For this case Eltzner and Huckemann (2019) show that the empirical Fréchet mean may
still converge to the population Fréchet mean, but at a slower rate. Whether the regularized
estimator proposed here exhibits a similar behavior is of theoretical interest and could be a
topic for future research.

5. Simulation studies. We consider three metric spaces, namely, the SPD matrix space
Sym+

� (m) endowed with the affine-invariant distance in Example 1 with m = 3, the Wasser-
stein space W2(R) in Example 2, and the Billera–Holmes–Vogtmann space of phyloge-
netic trees in Example 3. For each of these metric spaces, two settings are examined with
T = [a, b] = [0,1]. In the first setting, the underlying mean functions μ(t), t ∈ T , are lo-
cally constant, while in the second setting they smoothly vary with t ∈ T . Further details are
given in Table 1. The first setting represents a favorable scenario for total variation regular-
ized Fréchet regression, since the estimator is also locally constant, while the second setting
is more challenging.

For each setting, we investigated two sample sizes, n = 50 and n = 150 for the design
points ti = (i − 1)/(n − 1) with i = 1, . . . , n. For the SPD matrix space, data Yi were gen-

erated as Yi = μ(ti)
1/2 exp{μ(ti)

−1/2Siμ(ti)
−1/2}μ(ti)

1/2 with vec(Si)
i.i.d∼ N(0,0.252I6),
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TABLE 1
The mean functions for the metric spaces and settings considered in the simulation study, where I3 is the 3 × 3

identity matrix, N(ν,σ 2) denotes the Gaussian distribution with mean ν and variance σ 2,
φ(t) = 2(1 + e−40(t−0.25))−1 if t ∈ [0,0.5) and φ(t) = 2(1 + e40(t−0.75))−1 if t ∈ [0.5,1], where the included

figures depict the function φ that is continuous with rapid changes and is used in Setting II, and phylogenetic
trees T1, T2 and T3. The length of each edge of these trees is one

Setting I Setting II

SPD μ(t) =

⎧⎪⎪⎨
⎪⎪⎩

I3 t ∈ [0, 1
3 ),

2I3 t ∈ [ 1
3 , 2

3 ),

3I3 t ∈ [ 2
3 ,1]

μ(t) = {1 + φ(t)}I3

Wasserstein μ(t) =

⎧⎪⎪⎨
⎪⎪⎩

N(0,1) t ∈ [0, 1
3 ),

N(1,1.52) t ∈ [ 1
3 , 2

3 ),

N(2,22) t ∈ [ 2
3 ,1]

μ(t) = N(φ(t), {1 + φ(t)}2)

Tree μ(t) =

⎧⎪⎪⎨
⎪⎪⎩

T1 t ∈ [0, 1
3 ),

T2 t ∈ [ 1
3 , 2

3 ),

T3 t ∈ [ 2
3 ,1]

μ(t) = �T1, T3 �φ(t)/2

where μ(t) is as in Table 1, Si is a 3 × 3 symmetric matrix and vec(S) is its vector represen-
tation, that is, the 6-dimensional vector obtained by stacking elements in the lower triangular
part of S, and I6 denotes the 6 × 6 identity matrix.

For the Wasserstein space, we adopted the method in Petersen and Müller (2019) to gen-
erate observations Yi , as follows. Let ai = EZ and bi = {E(Z − EZ)2}1/2 for Z ∼ μ(ti),
where again the distributions μ(t) are as listed in Table 1 for the Wasserstein case. We then
first sample νi ∼ N(ai,1) and σi ∼ Gamma(α1, α2), with shape parameter α1 = 0.5b2

i and
rate parameter α2 = 0.5bi . Note that Evi = ai and Eσi = bi . Then Yi is obtained by trans-
porting the distribution N(νi, σ

2
i ) by a transport map T that is uniformly sampled from the

collection of maps Tk(x) = x − sin(kx)/|k| for k ∈ {±2,±1}. Note that Yi is not a Gaussian
distribution due to the transportation. Nevertheless, one can show that the Fréchet mean of Yi

is exactly μ(ti).
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TABLE 2
Simulation results for average Root Integrated Squared Error (RISE) of the total variation regularized estimators

for the fitted versus true functions for the two settings considered and random objects corresponding to
symmetric positive definite (SPD) matrices, probability distributions with the Wasserstein metric, and
phylogenetic trees. The standard errors based on 100 Monte Carlo replicates are given in parentheses

SPD Wasserstein Trees

Setting n = 50 n = 150 n = 50 n = 150 n = 50 n = 150

I 0.210 (0.057) 0.124 (0.042) 0.516 (0.127) 0.321 (0.064) 0.294 (0.116) 0.209 (0.083)
II 0.256 (0.054) 0.164 (0.041) 0.604 (0.141) 0.372 (0.073) 0.368 (0.131) 0.235 (0.097)

For the case of phylogenetic trees, we generated each Yi by translating μ(ti) along a ran-
dom geodesic emanating from μ(ti) for a random distance that follows the uniform distri-
bution on [0,0.5]. This requires identification and computation of geodesics in the Billera–
Holmes–Vogtmann phylogenetic tree space Tm (m = 7 in our setting), for which we em-
ployed the algorithm by Owen and Provan (2011).

The regularization parameter λ was chosen by fivefold cross-validation. Specifically,
we treated the design points as if they were random, and randomly split the data D :=
{(t1, Y1), . . . , (tn, Yn)} into five even partitions D1, . . . ,D5. For a given value of λ, for each
k = 1, . . . ,5, the proposed estimation procedure was applied to D\Dk to obtain an estimator
μ̂−k . The cross-validation error for the given λ was calculated by

∑5
k=1

∑
(t,Y )∈Dk

d2(μ̂−k(t),

Y ), and the value of λ minimizing the cross-validation error was selected. The results are
based on 100 Monte Carlo runs. The estimation quality of μ̂ is quantified by the root inte-
grated squared error (RISE)

RISE(μ̂) =
{∫

T
d2
M

(
μ̂(t),μ(t)

)
dt

}1/2
.

The results in Table 2 indicate that as sample size grows, the estimation error decreases in
both the favorable setting and the challenging setting. Moreover, we observe that the decay
rate of the empirical RISE in the table, defined as the ratio of the RISE with n = 150 and the
RISE with n = 50, is approximately 0.62. This seems to agree quite well with our theory in
Section 4 that suggests a rate of (50/150)1/3 ≈ 0.69.

6. Applications.

6.1. Mortality. We applied the proposed method to analyze the evolution of the dis-
tributions of age-at-death using mortality data from the Human Mortality Database at
www.mortality.org. The database contains yearly mortality for 37 countries, grouped by age
from 0 to 110+. Specifically, the data provide a lifetable with a discretization by year, which
can be easily converted into a histogram of age-at-death, one for each country and calendar
year. Starting from these fine-grained histograms, a simple smoothing step then leads to the
density function of age-at-death for a given country and calendar year. We focus on the adult
(age 18 or more) mortality densities of Russia and the calendar years from 1959 to 2014. The
time-indexed densities of age-at-death are shown in the form of a heat map in Figure 1(a)
for males and for females in Figure 2(a). The patterns of mortality for males and females are
seen to differ substantially.

Applying the proposed total variation regularized Fréchet regression for distributions as
random objects with the Wasserstein distance to these data, we employ a fine grid on the
interval [10−2.5,10−0.1] and use the aforementioned fivefold cross validation to select the

http://www.mortality.org
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FIG. 1. Total variation regularized Fréchet regression for time-indexed mortality distributions of males in Rus-
sia, where panel (a) displays the raw yearly mortality density functions, and panel (b) the fitted densities obtained
with total variation regularization.

regularization parameter λ. The selected values are λ = 10−1.5 and λ = 10−1.7 for males and
females, and the resulting estimates are shown in Figure 1(b) and Figure 2(b), respectively.

This suggests that the proposed total variation regularized Fréchet estimator adapts well
to the smoothness of the target function. For example, the female mortality dynamics is seen
to be relatively smooth, and the estimator accordingly is also quite smooth. In contrast, male
age-at-death distributions exhibit sharp shifts; the proposed estimator reflects this well and
preserves the discontinuities in the mortality dynamics. This demonstrates desirable flexi-
bility of total variation regularized Fréchet regression, as it appropriately reflects relatively
smooth trajectories, while at the same time preserving edges/boundaries when present. This
flexibility has been documented previously for the Euclidean case (Strong and Chan (2003)),
and is shown here to extend to the much more complex case of metric-space valued data.

Specifically, a major shift in mortality distributions occurred around 1992 and is well rep-
resented in the estimates for both males and females, with a much larger shift for males. The
direction of the shift was towards increased mortality for both males and females, as the age-
at-death distributions moved left, implying increased mortality at younger ages. A weaker

FIG. 2. Total variation regularized Fréchet regression for time-indexed mortality distributions of females in
Russia, where panels (a) and (b) are as in Figure 1.
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shift that occurred in 2008 is also captured by the estimator for both males and females, and
again is more expressed for males. This latter shift was towards decreased mortality.

These findings pinpoint a period from 1992–2008, during which the turmoil following the
collapse of the Soviet Union 1988–1991 appears to have had devastating impacts on mor-
tality. The strong shift in 1992 is relatively easy to explain with social ills such as increased
alcoholism and joblessness that followed the collapse of the Soviet Union; it affected males
more than females.

6.2. Functional connectivity. We applied the proposed total variation regularization
method for random objects also to data on functional connectivity in the human brain from
the Human Connectome Project (Essen et al. (2013)) that were collected between 2012 and
2015. Out of 970 subjects in the study, for 850 subjects social cognition task related fMRI
data are available. In this study, each participant was sequentially presented with five short
video clips while in a brain scanner, which recorded a fMRI signal. Each clip showed squares,
circles and triangles that either interacted in a certain way or moved randomly. The fMRI sig-
nals were recorded at 274 time points spaced 0.72 seconds apart. The starting times for the
five video clips are approximately at time points 11, 64, 117, 169 and 222, respectively, with
ending times approximately at time points 39, 92, 144, 197 and 250, respectively, so there
are overall 10 time points where the nature of the visual input is changing. A natural question
is then whether changes in brain connectivity, as quantified by fMRI signals, are associated
with the above time points that indicate changes in visual input. To address this question, we
estimated the changes through total variation regularized Fréchet regression without using
knowledge about the video clip switch times. As described in Appendix C, we selected 8
brain regions and applied a preprocessing pipeline to obtain the observations Yi ∈ Sym+

� (8)

at each time point ti , for i = 1, . . . , n = 243, which are depicted in Figure 3(a), where for
illustration purposes each SPD matrix has been vectorized into an 8(8 + 1)/2 = 36 (taking
symmetry into account) dimensional vector represented by a row in the heat map, indicating
the relative values of the vector elements.

This SPD sequence is quite noisy and does not clearly indicate whether the mean brain
connectivity changes in accordance with the transition points of the visual input as described
above. Thus, to gain insight whether the pattern of brain connectivity follows the pattern
of visual inputs, it is necessary to denoise these data. Assuming constant brain connectiv-
ity while the visual input is constant (video on or off), this motivates the fitting of locally
constant functions with a few knots for SPD random objects and thus the application of the
proposed total variation regularized Fréchet regression. This is due to the fact that the pro-
posed estimator μ̂ can be viewed as a locally constant function in time with adaptive knot
placement, mapping time into metric space, in our case the space of SPD matrices.

When applying total variation regularized Fréchet regression, one has to select the regu-
larization parameter λ. Generally, we recommend to use the aforementioned cross-validation
procedure. However, in the particular application at hand, since we may assume that the num-
ber of jumps (the discontinuous points of μ) is known to be J = 10, we can simply choose
the smallest value of λ that yields Ĵ = 10 jumps of μ̂. Due to the choice of P = 16 > 11 for
computing Yi in Appendix C, the sequence does not contain sufficient information about the
start time point of the first video clip, which is t = 11. Therefore, we target J = 9 and choose
the smallest value of λ that yields Ĵ = 9.

Practically, we performed the proposed total variation regularization for the SPD case on
the sequence Yi for different choices of the regularization parameter λ on a fine grid within
the interval [0.01,0.02]. Panels (b)–(i) in Figure 3 display the resulting estimates by using
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FIG. 3. Total variation regularized Fréchet regression for dynamic functional connectivity derived from fMRI
data. Time is on the vertical axis and the times where visual input changes are explicitly indicated by the tick labels
in Panel (a). The lower triangular portions of the SPD covariance matrices of brain connectivity are shown in
vectorized form along the horizontal axis. Panel (a) depicts the raw empirical functional connectivity and panels
(b)–(i) depict fitted connectivity, obtained by applying the proposed total variation regularized Fréchet regression.
From each panel to the next, the regularization parameter is successively increased such that the number of jump
points decreases by one. For each of the panels (b)–(i), the tick labels on the left side indicate the locations of the
jump points of the fitted step function. In (b) and (c), labels for time points 172 and 181 are overlapping.

the affine-invariant distance (Moakher (2005), Pennec, Fillard and Ayache (2006)); results
by using the Log-Euclidean distance (Arsigny et al. (2007)) are similar. For each panel, the
minimal value of the regularization parameter λ was chosen so that the number of jump points
ranged from 9 (smaller λ) to 2 (larger λ), respectively. From Figure 3(b), where one has 9
jump points of μ̂, we find that the detected jump points closely match the times when the
videos clips started and ended, with the exception of time points 11 and 250, which is due
to insufficient data between these first and last events and the respective boundaries, and the
event at time point 197, which is split into two jump points, at time points 181 and 202. As
λ increases, the number of jump points of the estimates decreases. Further discussion can be
found in Appendix C.

7. Concluding remarks. The theoretical developments of the paper are rooted in con-
vexity properties of Hadamard spaces, which provide key ingredients for establishing the
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minimax convergence rate for the class of Hadamard spaces. The minimax convergence rate
is achieved for the one-dimensional Euclidean space, which is a special case of a Hadamard
space. As suggested by a reviewer, in light of the work Hotz et al. (2013) which shows that
the sample Fréchet mean converges to its population counterpart at a rate faster than n−1/2 in
some negatively curved spaces, an interesting future topic is to investigate whether a conver-
gence rate faster than n−1/3 is possible for our estimator in some Hadamard spaces of strictly
negative curvature. The convexity also entails an extension to some subspaces of positively
curved Alexandrov spaces, where distance functions are strongly convex over the subspaces
as per condition (A2b). However, a comprehensive treatment for the case of Alexandrov
spaces is substantially more challenging, as seen in Example 4 and the related discussion.
This requires a theory beyond convexity and thus falls outside of the scope of this paper.

Extensions to multivariate or manifold-valued domains are also interesting and nontrivial.
For multivariate domains, one promising direction is to extend the Hardy–Krause total varia-
tion that is utilized by Fang, Guntuboyina and Sen (2021) for multidimensional total variation
regularization, since it extends to the multidimensional case most of the features of the one-
dimensional case, for example, given by the supremum over partitions. Other interesting and
important topics to explore in the future include finite risk bounds and sharp oracle inequal-
ities for the estimated regression function under the setting of Section 4, complementing the
asymptotic theory developed in this paper; sharp bounds are very challenging in this setting
due to the limited geometric and analytic structure that is available in general metric spaces.

Reviewers have pointed out that the entropy condition (H2) is local in nature, in the sense
that the constant K might depend on R and it holds only for all r ≤ R for an arbitrary but fixed
R > 0 and that if the entropy condition were global, that is, logN(rδ,G r

M(r), dn) ≤ Kδ−1

for all r, δ > 0, the proof of Proposition 2 could be simplified by using a strategy of van de
Geer (2001), where the constant C might also vary with sample size n. It remains however
unclear how such a global entropy condition can be verified for the class of general metric-
space valued functions of bounded variation. Even for more specific metric spaces such as
Riemannian manifolds, Proposition 4 in the Supplementary Material (Lin and Müller (2021))
suggests that the curvature effect plays an important role in the metric entropy bound. More
precise results are left for future study.

An alternative way to allow C to vary with n in Proposition 2, suggested by a reviewer, is to
exploit convexity as in Chinot, Lecué and Lerasle (2020), where one does not require a metric
entropy condition. However, Chinot, Lecué and Lerasle (2020) and the related work Alquier,
Cottet and Lecué (2019) require the concept of Gaussian mean width to characterize com-
plexity of the class of functions under consideration, which is indirectly connected to metric
entropy, for example, via Sudakov’s inequality (Ledoux and Talagrand (2011), Theorem 3.18)
and Dudley’s inequality (Ledoux and Talagrand (2011), Theorem 11.17). Generalization of
Gaussian mean width to metric-space valued functions and determining its precise relation
with metric entropy is another challenging and interesting topic for future exploration.

APPENDIX A: COMPUTATIONAL DETAILS

To compute the total variation regularized estimator defined in (3.2), we adopt a simpli-
fied version of the cyclic proximal point algorithm proposed by Weinmann, Demaret and
Storath (2014). To find the step function estimator according to Proposition 1, noting that
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TV(μ̂) = ∑n−1
i=1 d(μ̂(ti), μ̂(ti+1)), it is sufficient to compute μ̂i ≡ μ̂(ti) for i = 1, . . . , n. This

is achieved by minimizing the function

L̃λ(p1, . . . , pn) = 1

2

n∑
i=1

d2(pi, Yi) + nλ

2

n−1∑
j=1

d(pj ,pj+1)

over the product space Mn. For p = (p1, . . . , pn) and G(p) = ∑n
i=1 d2(pi, Yi), the family of

proximal mappings of G is defined by

proxαG p = arg min
q∈Mn

(
αG(q) + n

2
d2
n(p,q)

)
,

where α > 0 is a parameter and d2
n(p,q) = n−1 ∑n

i=1 d2(pi, qi). It is easy to check that
the kth component of proxαG p is �pk,Yk �θ with θ = α(1 + α)−1, where we recall that
�p,q�θ denotes the point sitting on the geodesic segment connecting p and q that satisfies
d(p, �p,q�θ ) = θd(p, q).

For the proximal mappings of the function Hj(p) = d(pj ,pj+1), given by

proxαHj
p = arg min

q∈Mn

(
αHj(q) + n

2
d2
n(p,q)

)
,

one finds that if k �= j, j + 1, then the kth component of proxαHj
p is equal to pk . It is

shown in Weinmann, Demaret and Storath (2014) that the j th component of proxαHj
p

is given by �pj ,pj+1�θ , while the (j + 1)th component is �pj+1,pj �θ , where θ =
min{α/d(pj ,pj+1),1/2} and that the algorithm converges to the minimizer of L̃λ for
Hadamard spaces.

The computational details are summarized in Algorithm 1, where the symbol := denotes
the assignment or update operator, evaluating the expression on the right-hand side and then
assigning the value to the variable on the left-hand side.

Algorithm 1 Cyclic Proximal Point Algorithm for Total Variation Regularized Fréchet Re-
gression

Require: α1, α2, . . . such that
∑∞

k=1 α2
k < ∞ and

∑∞
k=1 αk = ∞

1: for i = 1, . . . , n do
2: μ̂i := Yi

3: end for
4: for r = 1,2, . . . do
5: for i = 1, . . . , n − 1 do
6: θ := αr

1+αr

7: μ̂i := �μ̂i, Yi �θ

8: end for
9: for j = 1, . . . , n − 1 do

10: θ := min{αrλn/{2d(μ̂j , μ̂j+1)},1/2}
11: μ̂′

j := �μ̂j , μ̂j+1�θ and μ̂′
j+1 := �μ̂j+1, μ̂j �θ

12: μ̂j := μ̂′
j and μ̂j+1 := μ̂′

j

13: end for
14: end for
Output: μ̂(ti) = μ̂1, . . . , μ̂(tn) = μ̂
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APPENDIX B: KEY STEPS AND GEOMETRY IN THE PROOFS

To prove Proposition 2, we develop novel geometric arguments that make it feasible to ex-
tend arguments of Mammen and van de Geer (1997) to metric-space valued random objects.
We first outline how key arguments used in Mammen and van de Geer (1997) (rephrased in
our context in terms of language and notations) can be modified to connect them to the core
ideas of our geometric constructions, and then provide a detailed proof of Proposition 2 in
the Supplementary Material (Lin and Müller (2021)). In this section, the referenced lemmas
and equations with labels prefixed by “S” are described in Lin and Müller (2021).

There are three key steps in the proofs of Theorems 9 and 10 of Mammen and van de Geer
(1997) that were deployed to study the total variation regularized regression for the traditional
situation where M = R. Once these steps have been identified and established, the rest of the
proof of Mammen and van de Geer (1997) is standard. However, these key steps were geared
to the linear structure and analytic properties of R, and there is no possibility to modify them
for situations without Euclidean structure. To provide versions for general Hadamard spaces
is a serious challenge that we tackle in this paper. To overcome the technical hurdles, we need
to leverage the convexity of Hadamard spaces to obtain geometric versions of these key steps,
as follows.

The first key ingredient is the decomposition of μ into two orthogonal parts by project-
ing into a space of polynomials and its orthogonal complement. These two parts are handled
separately. The complement part is uniformly bounded whenever TV(μ) < C. The prob-
lem is then transformed into estimating a uniformly bounded R-valued function μ (here we
reuse the symbol μ to conform to the notation used in our proof) with TV(μ) < C via to-
tal variation regularization. For Hadamard spaces, such projections and the space of poly-
nomials do not exist. To circumvent this difficulty, we introduce the concept of center of
an M-valued function γ , which can be characterized as a Fréchet integral (Petersen and
Müller (2016), Dubey and Müller (2020b)) and is defined to be the minimizer of the function
Fγ (p) = ∫

T d2(p, γ (t))dt over M, if Fγ (p) < ∞ for some p ∈ M. Its discrete version,
the center of γ at t1, . . . , tn, is the minimizer of Fγ,n(p) = n−1 ∑n

i=1 d2(p, γ (ti)). Instead
of projection, we show that the centers of μ̂ and μ at t1, . . . , tn are close to each other in
Lemma S.6. Consequently, we can restrict our focus on functions whose center is close to
the center of μ. This makes it possible to bypass the decomposition of μ and μ̂. Note that
μ(t1), . . . ,μ(tn) themselves are the centers of the observed data. The center of μ is then the
center of these centers.

A second key ingredient in Mammen and van de Geer (1997) is the inequality d2
n(μ, μ̂) ≤

λ{TV(μ) − TV(μ̂)} + 2n−1 ∑n
i=1 εi{μ̂(ti) − μ(ti)}, where εi = Yi − μ(ti). In Hadamard

spaces, neither the εi nor the differences μ̂(ti) − μ(ti) or the products εi{μ̂(ti) − μ(ti)} ex-
ist, as these notions are all intimately tied to an underlying Euclidean structure that is not
present in metric spaces. To address this challenge, we first use the convexity condition (a)
in Proposition 2 to obtain a similar inequality. A key step is then to replace the products
εi{μ̂(ti) − μ(ti)} with d(μ(ti), μ̂(ti))d(μ(ti), Yi) cos∠μ(ti )(Yi, μ̂(ti)), which we refer to as
Alexandrov inner product in this paper, and to replace the assumption of zero mean errors
Eεi = 0 with the characterization of Fréchet means in (S.13). These concepts have not been
studied previously to the knowledge of the authors and are likely of more general interest.

The third key ingredient is the observation that the function μ̂ − μ, after being scaled
by TV(μ̂) + C, has total variation bounded by a constant, that is, TV((μ̂ − μ)/(TV(μ̂) +
C)) ≤ 1. This eventually enables one to use Lemma 3.5 of van de Geer (1990) for the
function (μ̂ − μ)/(TV(μ̂) + C) in order to bound the term n−1 ∑n

i=1 εi{μ̂(ti) − μ(ti)} by
d1/2(μ̂,μ)(TV(μ̂) + C)1/2OP (n−1/2). Then the rate of μ̂ can be derived by a standard ar-
gument that combines this with the inequality obtained for the second key ingredient. In
our context, it is difficult to find a geometric counterpart of TV((μ̂ − μ)/(TV(μ̂) + C)) as
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this involves subtraction and scaling of functions, which are not available in non-Euclidean
spaces. To overcome this hurdle, we propose the new idea of geodesic interpolation γ̃θ be-
tween two functions μ and γ , defined by γ̃θ (t) = �μ(t), γ (t)�θ for θ ∈ [0,1]. Then the con-
vexity (S.8) suggests d(γ̃θ (s), γ̃θ (t)) ≤ θd(γ (s), γ (t)) + (1 − θ)d(μ(s),μ(t)) and further
TV(γ̃θ ) ≤ θ TV(γ ) + (1 − θ)TV(μ). In other words, the total variation of the interpolated
function γ̃θ is bounded by the convex combination of the total variations of μ and γ . If we
set θ = C/{TV(γ ) + C}, then TV(γ̃θ ) ≤ 2C when TV(μ) ≤ C. In particular, this interpo-
lation preserves the closeness of the centers, that is, according to Lemma S.4, if the center
of γ is close to the center of μ, then the center of γ̃θ is also close to the center of μ. Thus
the interpolation simultaneously mimics the subtraction and scaling of R-valued functions.
This is again a general principle that we expect to be useful for other investigations where
one requires a metric-space counterpart of a standardization procedure that involves function
subtraction and scaling.

We note that in order to establish the closeness of the centers in Lemma S.6, we first
establish a suboptimal rate for μ̂ in Lemma S.5 using last two ideas in the above described
key ingredients. This is made possible by Lemma S.3, where we use the sub-Gaussianity
condition (H1) and convexity of the Hadamard space to show that, with probability tending
to one, the image of μ̂ is encompassed by a ball centered at the center of μ with radius
of the order logn. As the proof of Proposition 2 depends on Lemma S.5 and several other
proofs are similar, to avoid repetition, we provide details about the implementation of the
above described ideas mainly in the proof of Lemma S.5, and in the proof of Proposition 2
those additional details that are genuinely different from those developed for the proof of
Lemma S.5.

APPENDIX C: FURTHER DETAILS ON THE APPLICATION TO BRAIN
CONNECTIVITY

Data preprocessing. We divided the brain into 68 regions of interest based on the “Desikan–
Killiany” atlas (Desikan et al. (2006)) and picked eight possible regions that are related to
social skills, that is, the left and right part of superior temporal, inferior parietal, temporal
pole and precuneus (Green, Horan and Lee (2015)). The dynamics of functional connectivity
for each subject is represented by the changing nature of the cross-covariance between these
eight regions, computed by a moving local window that includes 2P time points. Specifically,
denoting by Vij the vector of the BOLD (blood-oxygen-level dependent) fMRI signals of
the j th subject at the ith time point, the connectivity at i = P + 1,18, . . . ,274 − P + 1 is
computed by

�ij = 1

P

i+P−1∑
k=i−P

(Vkj − V̄ij )(Vkj − V̄ij )
T with V̄ij = 1

P

i+P−1∑
k=i−P

Vkj .

In a last preprocessing step, we aggregated the information at the same time point across
all subjects by computing

Yi = arg min
�∈Sym+

� (8)

1

850

850∑
j=1

d2(�,�ij ),

where d is the affine-invariant distance (Moakher (2005), Pennec, Fillard and Ayache (2006))
on Sym+

� (8). The sequence Y1, . . . , Yn then constituted the observed time-indexed random
objects to be analyzed by the proposed regularized Fréchet regression.

We set P = 16 and found that the results were not sensitive to the choice of P within the
reasonable range [12,20]. This led to a sequence of n = 243 time-indexed 8 × 8 covariance
(symmetric positive definite, SPD) matrices. For better numerical stability, each matrix was
scaled by the constant 10−3.
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Further discussion of the results. In panel (i) of Figure 3, there are only two jump points
left, at time points 42 and 64. This suggests that changes in the fMRI signal caused by early
events are more pervasive than those at later events, which is also in line with the fact that
the video transition at time point 197 gave rise to two estimated jump points, located slightly
before and after. These findings might be due to a stronger brain reaction to the stimulus when
the video clip is presented early on in the recording sequence, with subsequent attenuation.

This example demonstrates that changing the penalty can be used as a tool to determine a
hierarchy of jump points with the more pronounced jump points persisting even when large
penalties are applied. Remarkably, the location of the estimated jump points is hardly affected
by the size of the penalty in this example.

APPENDIX D: AUXILIARY RESULTS

PROPOSITION 3. Let (X , d) be a metric space that has a finite diameter and satisfies
supx∈X logN(εδ,Bx(δ), d) ≤ Kε−α for constants α,K > 0 and for all ε, δ > 0, where Bx(δ)

denotes the ball in X centered at x and with radius δ. For a collection B(L) of Lipschitz
continuous X -valued functions defined on T = [a, b] with a common Lipschitz constant L <

∞, it holds that

logN
(
δ,B(L), dn

) ≤ 6αK
{
2L(b − a)δ−1 + 1

} + 4αKRαδ−α,

where R denotes the diameter of X .

PROPOSITION 4. Let (M, d) be a connected smooth Riemannian manifold, and � ⊂ M
a closed uniquely geodesic subspace of diameter R > 0. Suppose that B ≡ B(p,D1,D2) is
a collection of �-valued functions defined on T such that supt d(γ (t),p) ≤ D1 and TV(γ ) ≤
D2 for some p ∈ � and all γ ∈ B, where D1, D2 are constants. Let κ ≥ 0 be a constant such
that the sectional curvature of � falls into the interval [−κ, κ]. Then for all D1 ∈ (0,R] and
D2 > 0,

logN(δ,B, dn) ≤ k
{
c0k

1/2(
1 + cκR2)2

D2δ
−1 + log

(
D1

(
1 + cκR2)

k1/2δ−1)}
,

where k is the dimension of M, c0 is an absolute constant and cκ is a constant depending
only on κ .
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SUPPLEMENTARY MATERIAL

Supplement to “Total variation regularized Fréchet regression for metric-space val-
ued data” (DOI: 10.1214/21-AOS2095SUPP; .pdf). We provide proofs for propositions and
theorems in Section 4 and Appendix D.

https://doi.org/10.1214/21-AOS2095SUPP
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