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Section S.1 contains the proofs of the main results in the paper and sev-
eral auxiliary lemmas. The technical assumptions required to obtain the uni-
form rate results for the local linear Fréchet regression estimator that is uti-
lized to obtain an estimate of the object link function uniformly across the
single-index values and the direction parameter are listed in Section S.2. A
detailed remark regarding the critical assumption (A5) in Section 3 in the
main article can be found in Section S.3. Additional data analysis results are
in Section S.4 for human mortality data and data on a Riemannian manifold,
specifically on the positive segment of a sphere as observed for mood compo-
sitional data. This section also contains additional simulations for the special
case of Euclidean responses and additional numerical results for resting-state
fMRI image (ADNI) data.

S.1. Proofs and auxiliary results.
In this section, we provide the proofs of the results in Section 3 of the main manuscript and
state and include several auxiliary lemmas.

PROOF OF PROPOSITION 2. By assumption (A2), m‘pxJθ̄, θ̄q is a continuous function
of θ̄ for all θ̄ P Θ̄ for almost all x on the compact ball Θ̄. This implies m‘pxJθ̄, θ̄q is uni-
formly continuous in θ̄ P Θ̄ for almost all x. That is, there exists δ ą 0 for any ε ą 0 and
θ̄1, θ̄2 P Θ̄ such that }θ̄1 ´ θ̄2} ď δ, implies d

`

m‘pxJθ̄1, θ̄1q,m‘pxJθ̄2, θ̄2q
˘

ď ε for almost
all x. This implies the uniform continuity of d2py,m‘pxJθ̄, θ̄qq as a function of θ̄, for all
θ̄ P Θ̄ for almost all x, y. To see this, let θ̄1, θ̄2 P Θ̄ such that }θ̄1 ´ θ̄2} Ñ 0, and observe
ˇ

ˇd2py,m‘pxJθ̄1, θ̄1qq ´ d2py,m‘pxJθ̄2, θ̄2qq
ˇ

ˇ

“
ˇ

ˇdpy,m‘pxJθ̄1, θ̄1qq ` dpy,m‘pxJθ̄2, θ̄2qq
ˇ

ˇ

ˇ

ˇdpy,m‘pxJθ̄1, θ̄1qq ´ dpy,m‘pxJθ̄2, θ̄2qq
ˇ

ˇ

ď p
ˇ

ˇdpy,m‘pxJθ̄1, θ̄1qq
ˇ

ˇ

`
ˇ

ˇdpy,m‘pxJθ̄2, θ̄2qq
ˇ

ˇq
ˇ

ˇdpy,m‘pxJθ̄1, θ̄1qq ´ dpy,m‘pxJθ̄2, θ̄2qq
ˇ

ˇ

ď 2D
ˇ

ˇdpy,m‘pxJθ̄1, θ̄1qq ´ dpy,m‘pxJθ̄2, θ̄2qq
ˇ

ˇ

ď 2Dd
`

m‘pxJθ̄1, θ̄1q,m‘pxJθ̄2, θ̄2q
˘

Ñ 0.

This holds for almost all x, y. The second inequality uses the assumption that Ω has
a finite diameter D. The last inequality follows from the triangle inequality. The above
technique will be used repeatedly in the subsequent proofs. By bounded convergence,
Epd2pY,m‘pXJθ̄, θ̄qqq is a continuous function of θ̄ for all θ̄ P Θ̄. Hence the map θ̄ ÞÑ

Hpθ̄q, θ̄ P Θ̄ is continuous.
Note that

Hpθ̄q “ Erd2pY,m‘pXJθ̄, θ̄qqs “ ErEpd2pY,m‘pXJθ̄, θ̄qq|Xqs

“ ErEpd2pY,m‘pXJθ̄, θ̄q|XJθ̄0qs.
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The last equality is true since the single index model m‘ depends on X only through the pa-
rameter θ̄0 P Θ̄. Now, according to the single index Fréchet regression model m‘pXJθ̄0, θ̄0q

is the conditional Fréchet mean at XJθ̄0. Since the conditional Fréchet mean is assumed to
be the unique minimizer of the conditional Fréchet objective function, for each θ̄ P Θ̄ with
θ̄ ‰ θ̄0,

Erd2pY,m‘pXJθ̄, θ̄qq|XJθ̄0s ě Erd2pY,m‘pXJθ̄0, θ̄0qq|XJθ̄0s,

where the strict inequality holds on the set Rpθ̄q “ tX P Rp :m‘pXJθ̄, θ̄q ‰ m‘pXJθ̄0, θ̄0qu.
Thus, on the set Rpθ̄q,

Hpθ̄q “ ErEpd2pY,m‘pXJθ̄, θ̄qq|XJθ̄0s

ą ErEpd2pY,m‘pxJθ̄0, θ̄0qqq|XJθ̄0s “ Erd2pY,m‘pXJθ̄0, θ̄0qqs “ Hpθ̄0q.

Further, under assumption (A0), this set has positive probability, i.e., P pRpθ̄qq ą 0. Denoting

the indicator function as I pAq “

#

1 if X P A,

0 otherwise
, it follows that

Hpθ̄q ěErEpd2pY,m‘pXJθ̄, θ̄qq|XJθ̄0qI
`

Rpθ̄q
˘

s ą Hpθ̄0q.

Thus θ̄0 is the unique minimizer of Hpθ̄q, for all θ̄ P Θ̄.

Throughout the following, ù denotes weak convergence as per [11], ℓ8pΩq the space of
bounded functions on Ω, } ¨ } the Euclidean norm on Rp and } ¨ }F the Frobenius norm.

Lemma 1 is adapted as stronger version of Theorem 1 of [1]. Uniformity over the sin-
gle index value t was already required in [1] to achieve uniform convergence of local linear
Fréchet regression. In the single index model framework, there is a new parameter vector θ̄,
the presence of which requires an additional uniformity requirement over θ̄. The lemma can
be proved following a similar argument and we provide a brief sketch of the proof at the end
of this section.

PROOF OF THEOREM 1. It is shown that the map θ̄ ÞÑ Hpθ̄q is continuous and θ̄0 and
pθ̄ are the respective unique minimizers of Hpθ̄q and Vnpθ̄q. By Corollary 3.2.3 in [11] it is
then sufficient to show the convergence of sup

θ̄

}Vnpθ̄q ´ Hpθ̄q}, to zero in probability. To

do this we first show that Vn ù H in ℓ8pΩq and apply Theorem 1.3.6 of [11]. The weak
convergence result is proved (see Theorem 1.5.4 of [11]) by checking that

(C1) Vnpθ̄q ´ Hpθ̄q “ oP p1q for all θ̄ P Θ̄,
(C2) Vn is asymptotically equi-continuous in probability, that is, for all ϵ, η ą 0, there exists

δ ą 0 such that, limsup
nÑ8

P

«

sup
}θ̄1´θ̄2}ďδ

ˇ

ˇVnpθ̄1q ´ Vnpθ̄2q
ˇ

ˇ ą ϵ

ff

ă η.

We first express the difference between the sample and population objective functions as
the sum of two differences by introducing the intermediate quantity Ṽnp¨q as described in
equation (2.7). Recalling Ṽnpθ̄q :“ 1

M

řM
l“1 d

2pỸl,m‘pX̃J

l θ̄, θ̄qq,

}Vnpθ̄q ´ Hpθ̄q} “ |Vnpθ̄q ´ Ṽnpθ̄q| ` |Ṽnpθ̄q ´ Hpθ̄q|.(S.1)

Now,

|Ṽnpθ̄q ´ Hpθ̄q| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

d2pỸl,m‘pX̃J

l θ̄, θ̄qq ´ Epd2pY,m‘pXJθ̄, θ̄qqq

ˇ

ˇ

ˇ

ˇ

ˇ

“ oP p1q,
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by Weak Law of Large Numbers, since Ṽnp¨q can be seen as an i.i.d sum. As for the first term
in (S.1),

|Vnpθ̄q ´ Ṽnpθ̄q| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

d2pỸl, m̂‘pX̃J

l θ̄, θ̄qq ´
1

M

M
ÿ

l“1

d2pỸl,m‘pX̃J

l θ̄, θ̄q

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2D
1

M

M
ÿ

l“1

dpm̂‘pX̃J

l θ̄, θ̄q,m‘pX̃J

l θ̄, θ̄qq.(S.2)

The steps to obtain (S.2) are similar to those followed in the proof of Proposition 2, using the
total boundedness of Ω and properties of the metric d.

It remains to show 1
M

řM
l“1 dpm̂‘pX̃J

l θ̄, θ̄q,m‘pX̃J

l θ̄, θ̄qq
P

ÝÑ 0. Observe that,

1

M

M
ÿ

l“1

dpm̂‘pX̃J

l θ̄, θ̄q,m‘pX̃J

l θ̄, θ̄qq

ď
1

M

M
ÿ

l“1

sup
θ̄PΘ̄

sup
t

dpm̂‘pt, θ̄q,m‘pt, θ̄qq “
1

M

M
ÿ

l“1

OP panq “ oP p1q,(S.3)

where an is the rate of uniform convergence for the local linear Fréchet regression esti-
mate, as given in equation (3.1) in the main manuscript for Lemma 1 [1]. We use here that
the OP terms in the sum are uniform in l. Hence the result follows. Thus we have (C1).
The finite distribution converges weakly since, for any k P N and θ̄1, . . . , θ̄k P Θ, we have
pVnpθ̄1q, . . . , Vnpθ̄kqq ù pHpθ̄1q, . . . ,Hpθ̄kqq.
It is also important to observe that, by virtue of Lemma 1,

sup
θ̄PΘ̄

|Vnpθ̄q ´ Ṽnpθ̄q|

(S.4)

ď sup
θ̄PΘ̄

1

M

M
ÿ

l“1

dpm̂‘pX̃J

l θ̄, θ̄q,m‘pX̃J

l θ̄, θ̄qq ď
1

M

M
ÿ

l“1

sup
θ̄

sup
t

dpm̂‘pt, θ̄q,m‘pt, θ̄qq

“ OP panq.

For (C2), let ϵ, γ ą 0 and θ̄1, θ̄2 P Θ̄.

P

«

sup
}θ̄1´θ̄2}ďδ

ˇ

ˇVnpθ̄1q ´ Vnpθ̄2q
ˇ

ˇ ą ϵ

ff

(S.5)

ďP

«

sup
}θ̄1´θ̄2}ďδ

ˇ

ˇ

ˇ
Vnpθ̄1q ´ Ṽnpθ̄1q

ˇ

ˇ

ˇ
ą

ϵ

3

ff

` P

«

sup
}θ̄1´θ̄2}ďδ

ˇ

ˇ

ˇ
Vnpθ̄2q ´ Ṽnpθ̄2q

ˇ

ˇ

ˇ
ą

ϵ

3

ff

` P

«

sup
}θ̄1´θ̄2}ďδ

ˇ

ˇ

ˇ
Ṽnpθ̄1q ´ Ṽnpθ̄2q

ˇ

ˇ

ˇ
ą

ϵ

3

ff

.

Using (S.4), the first two terms of (S.5) are OP panq “ oP p1q, uniformly in θ̄1 and θ̄2 respec-
tively. For the third term,

P

«

sup
}θ̄1´θ̄2}ďδ

ˇ

ˇ

ˇ
Ṽnpθ̄1q ´ Ṽnpθ̄2q

ˇ

ˇ

ˇ
ą

ϵ

3

ff

(S.6)
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ďP

«

sup
}θ̄1´θ̄2}ďδ

2D
1

M

M
ÿ

l“1

dpm‘pX̃J

l θ̄1, θ̄1q,m‘pX̃J

l θ̄2, θ̄2qq ą
ϵ

3

ff

.

By the assumption on m‘ being Lipschitz continuous with Lipschitz constant L (see as-
sumption (A2)),and X having a bounded support, (see assumptions (R1)-(R2)), choosing
δ ă ϵ

6DL : we have, (S.6) Ñ 0, as δ Ñ 0. The asymptotic equi-continuity result for the
stochastic process Vnpθ̄q, θ̄ P Θ̄ follows.

PROOF OF COROLLARY 1. For any x P Rp, we observe that, by the triangle inequality of
the metric,

dpm̂‘pxJpθ̄,pθ̄q,m‘pxJθ̄0, θ̄0qq(S.7)

ďdpm̂‘pxJpθ̄,pθ̄q,m‘pxJpθ̄,pθ̄qq ` dpm‘pxJpθ̄,pθ̄q,m‘pxJθ̄0, θ̄0qq.

From Lemma 1 we know that

sup
θ̄

sup
t

dpm̂‘pt, θ̄q,m‘pt, θ̄qq “ OP panq “ oP p1q,

where an is as defined in equation (3.1) in the main manuscript. Since pθ̄ lies in a small
neighborhood around θ̄0 for n large enough, the first term of (S.7) converges to zero in
probability. Note that by assumption (A2), m‘ is continuous. Since, by Theorem 1 pθ̄

P
Ñ

θ̄0, using continuous mapping theorem, the second term of (S.7) also converges to zero in
probability. The result follows using Slutsky’s theorem.

Before proceeding with the proof of the asymptotic normality for θ̂, recall that θ̄ “

pθ1,θqJ, for all θ̄ P Θ̄. It is important to note that the full vector θ̄ can be written as a
function of the last pp ´ 1q elements θ since the first element θ1 of θ̄ can be written as
θ1 “

a

1 ´ }θ}2. Thus we can view Hp¨q, Ṽnp¨q, and Vnp¨q to be effectively only functions
of θ P Θ, respectively. Further, since the map H : θ ÞÑ θ̄ is continuous, assumption (A2)
implies the L´Lipschitz continuity of the regression function m‘ as a function of θ P Θ.
Also note that θ0, θ̃, and θ̂ are minimizers for the criteria functions Hp¨q, Ṽnp¨q, and Vnp¨q

respectively. These are continuous as a function of θ, the latter two almost surely.
It is also possible to define the partial derivatives of each of the criteria functions with

respect to the components of θ in terms of limits of finite differences. The following function
fx,y :Rp´1 ÞÑ R was defined in Section 2.3,

fx,ypθq “ fx,ypθ2, . . . , θpq “ d2
`

y,m‘pxJpθ1, . . . , θr, . . . , θs, . . . , θpqq
˘

, r, s “ 2, . . . , p,

and the first and second ordered forward finite differences of fx,y are

▽apx, y, θrq “ fx,ypθ2, . . . , θr ` a, . . . , θpq ´ fx,ypθ2, . . . , θr, . . . , θpq,

(S.8)

▽2
apx, y, θr, θsq “ fx,ypθ2, . . . , θr ` a, . . . , θs ` a, . . . θpq ´ fx,ypθ2, . . . , θr ` a, . . . , θs, . . . , θpq

´ fx,ypθ2, . . . , θr, . . . , θs ` a, . . . , θpq ` fx,ypθ2, . . . , θr, . . . , θs, . . . , θpq.

Define the population derivatives as limits of difference quotients as follows,

BHpθq

Bθr
:“ lim

εÑ0

1

ε
Ep▽εpX, Y, θrqq, r “ 2, . . . , p,

B2Hpθq

BθrBθs
:“ lim

εÑ0

1

ε2
Ep▽2

εpX, Y, θr, θsqq, r, s “ 2, . . . , p.
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Then
(S.9)

∆Hpθq :“

ˆ

BHpθq

Bθ2
, . . .

BHpθq

Bθp

˙J

,∆2Hpθq :“

ˆˆ

B2Hpθq

BθrBθs

˙˙

r,s“2,...,p

, with

$

’

’

’

&

’

’

’

%

BHpθq

Bθr
:“ lim

εÑ0

Hpθ2,...,θr`ε,...,θpq´Hpθ2,...,θr,...,θpq

ε ,

BHpθq

Bθrθs
“ lim

εÑ0

1
ε2

”

Hpθ2, . . . , θr ` ε, . . . , θs ` ε, . . . θpq ´ Hpθ2, . . . , θr ` ε, . . . , θs, . . . , θpq

´Hpθ2, . . . , θr, . . . , θs ` ε, . . . , θpq ` Hpθ2, . . . , θr, . . . , θs, . . . , θpq

ı

,

for r, s “ 2, . . . , p.
The corresponding empirical estimates are given by

BVnpθq

Bθr
:“

1

hM

M
ÿ

l“1

p▽hpX̃l, Ỹl, θrq, r “ 2, . . . , p,

B2Vnpθq

BθrBθs
“

1

h2M

M
ÿ

l“1

x▽2
hpX̃l, Ỹl, θr, θsq, r, s “ 2, . . . , p,

where

(S.10)

p▽hpx, y, θrq “ f̂x,ypθ2, . . . , θr ` h, . . . , θpq ´ f̂x,ypθ2, . . . , θr, . . . , θpq,

x▽2
hpx, y, θr, θsq “ f̂x,ypθ2, . . . , θr ` h, . . . , θs ` h, . . . θpq

´ f̂x,ypθ2, . . . , θr ` h, . . . , θs, . . . , θpq

´ f̂x,ypθ2, . . . , θr, . . . , θs ` h, . . . , θpq

` f̂x,ypθ2, . . . , θr, . . . , θs, . . . , θpq,

and

f̂x,ypθq “ f̂x,ypθ2, . . . , θpq “ d2
`

y, m̂‘pxJpθ1, . . . , θr, . . . , θs, θpqq
˘

, r, s “ 2, . . . , p.

Thus
(S.11)

∆Vnpθq :“

ˆ

BVnpθq

Bθ2
, . . .

BVnpθq

Bθp

˙J

, ∆2Vnpθq :“

ˆˆ

B2Vnpθq

BθrBθs

˙˙

r,s“2,...,p

, with

$

’

’

&

’

’

%

BVnpθq

Bθr
:“ Vnpθ2,...,θr`h,...,θpq´Vnpθ2,...,θr,...,θpq

h ,
BVnpθq

Bθrθs
“ 1

h2

”

Vnpθ2, . . . , θr ` h, . . . , θs ` h, . . . θpq ´ Vnpθ2, . . . , θr ` h, . . . , θs, . . . , θpq

´Vnpθ2, . . . , θr, . . . , θs ` a, . . . , θpq ` Vnpθ2, . . . , θr, . . . , θs, . . . , θpq

ı

,

for r, s,“ 2, . . . , p, where h “ hpnq is a tuning parameter depending on n such that when
n Ñ 8, hpnq Ñ 0, and Mh2pnq Ñ 8 as in assumption (A6).
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In the same vein, we define the derivatives for the intermediate objective function Ṽnp¨q

for r, s “ 2, . . . , p,
(S.12)

∆Ṽnpθq :“

˜

BṼnpθq

Bθ2
, . . .

BṼnpθq

Bθp

¸J

, ∆2 Ṽnpθq :“

˜˜

B2Ṽnpθq

BθrBθs

¸¸

r,s“2,...,p

, with

$

’

’

&

’

’

%

BṼnpθq

Bθr
:“ Ṽnpθ2,...,θr`h,...,θpq´Ṽnpθ2,...,θr,...,θpq

h ,
BṼnpθq

Bθrθs
“ 1

h2

”

Ṽnpθ2, . . . , θr ` h, . . . , θs ` h, . . . θpq ´ Ṽnpθ2, . . . , θr ` h, . . . , θs, . . . , θpq

´Ṽnpθ2, . . . , θr, . . . , θs ` a, . . . , θpq ` Ṽnpθ2, . . . , θr, . . . , θs, . . . , θpq

ı

Using the notations defined in (S.8) we can rewrite

BṼnpθq

Bθr
“

1

h

1

M

M
ÿ

l“1

▽hpX̃l, Ỹl, θrq, r “ 2, . . . , p,

B2Ṽnpθq

BθrBθs
“

1

h2
1

M

M
ÿ

l“1

▽2
hpX̃l, Ỹl, θr, θsq, r, s “ 2, . . . , p.

The relevant limits are assumed to exist.

PROPOSITION S.1.1. Under assumptions (A2) and (A6),

}∆2 Ṽnpθq ´ ∆2Hpθq}
P
Ñ 0 for any θ P Θ.

PROOF. Ep∆2 Ṽnpθqq “

´

Ep
B2Ṽnpθq

B2θ2
q, . . .Ep

B2Ṽnpθq

B2θp
q

¯J

. For r “ 2, . . . , p,

Ep
B2Ṽnpθq

BθrBθs
q “ E

˜

1

h2
1

M

M
ÿ

l“1

▽2
hpX̃l, Ỹl, θr, θsq

¸

“
1

h2
E

˜

1

M

M
ÿ

l“1

▽2
hpX̃l, Ỹl, θr, θsq

¸

“
1

h2
E

´

▽2
hpX̃l, Ỹl, θr, θsq

¯

Ñ
B2Hpθq

BθrBθs
as h Ñ 0.

Similarly, for r, s “ 2, . . . , p,

Varp
B2Ṽnpθq

B2θrBθs
q “ Var

˜

1

h2
1

M

M
ÿ

l“1

▽2
hpX̃l, Ỹl, θr, θsq

¸

“
1

h4M
Var

´

▽2
hpX̃l, Ỹl, θr, θsq

¯

Now from the definition of ▽2
hpỸl, θr, θsq in (S.8),

Var
´

▽2
hpX̃l, Ỹl, θr, θsq

¯

ď E
ˆ

´

▽2
hpX̃l, Ỹl, θr, θsq

¯2
˙

(S.13)

“ E
”

d2pỸl,m‘pX̃J

l pθ1, . . . , θr ` h, . . . , θs ` h, . . . θpqqq

´ d2pỸl,m‘pX̃J

l pθ1, . . . , θr ` h, . . . , θs, . . . , θpqqq

´ d2pỸl,m‘pX̃J

l pθ1, . . . , θr, . . . , θs ` h, . . . , θpqqq

` d2pỸl,m‘pX̃J

l pθ1, . . . , θr, . . . , θs, . . . , θpqqq

ı2
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Using the fact that for any two random variable U and V, EpU ` V q2 ď 2EpU2q ` 2EpV 2q,

Var
´

▽2
hpX̃l, Ỹl, θr, θsq

¯

(S.14)

ď 2E
”

d2pỸl,m‘pX̃J

l pθ1, . . . , θr ` h, . . . , θs ` h, . . . , θpqqq

´ d2pỸl,m‘pX̃J

l pθ1, . . . , θr ` h, . . . , θs, . . . , θpqqq

ı2

` 2E
”

d2pỸl,m‘pX̃J

l pθ1, . . . , θr, . . . , θs ` h, . . . , θpqqq

´ d2pỸl,m‘pX̃J

l pθ1, . . . , θr, . . . , θs, . . . , θpqqq

ı2

ď 16D2L2h2.

The last inequality follows using the same technique as in the proof of Proposition 2, em-
ploying the triangle inequality and fact that for any u, v P Ω one has dpu, vq ă D for some
D ą 0 due to the total boundedness of the space pΩ, dq with diameter D; L is the Lipschitz
constant for m‘ from assumption (A2). Then

Var
´

▽2
hpX̃l, Ỹl, θr, θsq

¯

“
1

h4M
Var

´

▽2
hpX̃l, Ỹl, θr, θsq

¯

ď
16D2L2

h2M
.

As long as h “ hpnq Ñ 0 such that h2M “Ñ 8, as n Ñ 8 (assumption (A6)), we
have Var

´

▽2
hpX̃l, Ỹl, θr, θsq

¯

Ñ 0 for any θ. Combining these we have Varp∆2 Ṽnpθqq “

Aphpnqq Ñ 0 for h “ hpnq Ñ 0 such that h2M Ñ 8, as n Ñ 8, where A “ pparsqqr,s“2,...,p;
with

ars “

#

Varp B2Ṽnpθq

Bθ2
r

q if r “ s,

Varp B2Ṽnpθq

Bθrθs
q if r ‰ s.

.

The result follows.

PROPOSITION S.1.2. Under assumptions (A2) and(A6)

(S.15)
?
Mp∆Ṽnpθ0q ´ ∆Hpθ0qq

D
Ñ Np0,Σpθ0qq

where Σpθ0q “ ppσrspθ0qqqr,s“2,...,p with

σrspθ0q “

$

&

%

lim
εÑ0

Var
`

1
ε▽εpX, Y, θ0rq

˘

if r “ s

lim
εÑ0

Cov
`

1
ε▽εpX, Y, θ0rq, 1

ε▽εpX, Y, θ0sq
˘

if r ‰ s

PROOF. Writing θ0 “ pθ02, . . . , θ0pqJ P Θ and recalling

BṼnpθ0rq

Bθ0r
“

1

M

M
ÿ

l“1

1

h
▽hpX̃l, Ỹl, θ0rq,

we observe that BṼnpθ0rq

Bθ0r
is an i.i.d sum of M terms ▽hpX̃l, Ỹl, θ0rqql“1,...,M . Note that

E

˜

BṼnpθ0rq

Bθ0r

¸

“ E
ˆ

1

h
▽hpX̃l, Ỹl, θ0rq

˙

Ñ
BHpθ0rq

Bθ0r
as h “ hpnq Ñ 0, under assumption (A6).
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Thus, Ep∆Ṽnpθ0qq Ñ ∆Hpθ0q as n Ñ 8 and h “ hpnq Ñ 0. Further, under assumption
(A6), as n Ñ 8 and h Ñ 0,

Cov

ˆ

1

h
▽hpX̃l, Ỹl, θ0rq,

1

h
▽hpX̃l, Ỹl, θ0sq

˙

Ñ

#

σrrpθ0q, if r “ s,

σrspθ0q, otherwise.

PROPOSITION S.1.3. Under assumptions (A0)-(A3),

}θ̃ ´ θ0} “ OP pM´1{2q.

PROOF. Consider the probability P p
?
M}θ̃ ´ θ0} ą 2Lq for a large L. We aim to show

that this probability can be made arbitrarily small as L grows large. Let rn “ M´1{2. For any
η ą 0,

P
´

}θ̃ ´ θ0} ą 2Lrn

¯

ď
ÿ

jąL,2j´1rnďη

P p2j´1rn ă }θ̃ ´ θ0} ď 2jrnq ` P
´

2}θ̃ ´ θ0} ą η
¯

.

The second term goes to zero by the consistency of θ̃ to θ0 according to Theorem 1. As for
the first term, define “shells" Sj :“ tθ P Θ : 2j´1rn ă }θ ´ θ0} ď 2jrnu so that

P p2j´1rn ă }θ̃ ´ θ0} ď 2jrnq “ P pθ̃ P Sjq.

As θ̃ minimizes Ṽnpθq it follows that

P pθ̃ P Sjq ď P

˜

sup
θPSj

pṼnpθq ´ Ṽnpθ0qq ě 0

¸

.

Now, }θ ´ θ0} ą 2j´1rn for θ P Sj implies by assumption (A1), that

Hpθq ´ Hpθ0q Á }θ ´ θ0}2 Á 22j´2r2n for θ P Sj ,(S.16)

which implies sup
θPSj

|Hpθq ´ Hpθ0q| ě 22j´2r2n. Thus, the event sup
θPSj

|Ṽnpθq ´ Ṽnpθ0q| ě 0

can only happen if Ṽn and H are not too close. Let

Unpθq :“ Ṽnpθq ´ Hpθq for θ P Θ.

It follows from (S.16) that

P

˜

sup
θPSj

pṼnpθq ´ Ṽnpθ0qq ě 0

¸

ď P

˜

sup
θPSj

pUnpθq ´ Unpθ0qq ě 22j´2M´1

¸

(S.17)

ďP

˜

sup
θ:}θ´θ0}ď2jrn

pUnpθq ´ Unpθ0qq ě 22j´2M´1

¸

À
1

22j´2r2n
E

«

sup
θ:}θ´θ0}ď2jrn

pUnpθq ´ Unpθ0qq

ff

.

The last inequality follows using Markov’s inequality. Next, to control the term on the
right-hand side of (S.17) uniformly over small }θ ´ θ0}, define the functions gθ :“
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d2py,m‘pxJθqq and the function class Mδ “ tgθ ´ gθ0
: }θ ´ θ0} ă δu. Since by assump-

tion (A2), for every θ1,θ2 P Θ,

gθ1
´ gθ2

ď 2diampΩqL}θ1 ´ θ2} for some constant L ą 0,

an envelope function for Mδ is Gδ “ 2diampΩqLδ. Note that EpG2
δ q “ Opδ2q. Let

Npε,Bδpθ0q, } ¨ }q be the ε´ covering number for the ball Bδpθ0q :“ tθ : }θ ´ θ0} ď δu

of radius δ centered at θ0, that is, the minimal number of balls of radius ε needed to cover
the set Bδpθ0q is Npε,Bδpθ0q, } ¨ }q. Since Θ Ă Rp, we have [11],

Npε,Bδpθ0q, } ¨ }q ď

ˆ

Cδ

ε

˙p

.

Thus the entropy integral

J “ Jpδq “

ż 1

0

a

logNpε,Bδpθ0q, } ¨ }qdε “ Op1q.

Using Theorems 2.7.11 and 2.14.2 of [11] we have for small enough δ,

E

«

sup
θ:}θ´θ0}ďδ

pUnpθq ´ Unpθ0qq

ff

ď
J

“

EpG2
δ q

‰1{2

?
M

.(S.18)

Thus

P p2j´1rn ă }θ̃ ´ θ0} ď 2jrnq(S.19)

“P pθ̃ P Sjq

ďP

˜

sup
θPSj

Ṽnpθq ´ Ṽnpθ0q ě 0

¸

ďP

˜

sup
θPSj

pUnpθq ´ Unpθ0qq ě 22j´2r2n

¸

À
2jrn

?
M22j´2r2n

“ pconst.q2´2j .

The last equality is obtained by setting rn “ M´1{2. As a consequence,

P
´?

M}θ̃ ´ θ0} ą 2L
¯

ď
ÿ

jąL,2j´1rnďη

ˆ

1

4

˙j

.

The sum converges to zero as L Ñ 8 and the result follows.

PROPOSITION S.1.4. Under assumptions (A2), (A3), (A4), and(A6)
?
Mpθ̃ ´ θ0q

D
Ñ N p0,Λpθ0qq ,

where Λpθ0q :“
`

∆2Hpθ0q
˘´1

Σpθ0q
`

∆2Hpθ0q
˘´1

.

PROOF. Consider a Taylor expansion of Ṽnp¨q, with derivatives as defined in (S.8)– (S.12).
Under assumption (A6), for a suitable choice of the tuning parameter hpnq Ñ 0 such that
Mh2pnq Ñ 8, as n Ñ 8, the Taylor expansion of the first order difference ∆Ṽn approaches
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a smooth limit. The following arguments are similar to those demonstrating asymptotic nor-
mality of a multivariate Maximum Likelihood Estimator [4], using linearization [11]. As θ̃
minimizes Ṽn,

0 “ ∆Ṽnpθ̃q “ ∆Ṽnpθ0q ` ∆2 Ṽnpθ˚qpθ̃ ´ θ0q

?
Mpθ̃ ´ θ0q “ ´

?
M

´

∆2 Ṽnpθ˚q

¯´1 ´

∆Ṽnpθ0q ´ ∆Hpθ0q

¯

,(S.20)

where θ˚ P Rp´1 is such that, }θ˚ ´θ0} ď }θ̃´θ0}. The inverse
´

∆2 Ṽnpθ˚q

¯´1
is assumed

to exist since θ̃ is the minimizer of Ṽnp¨q and, Ṽnp¨q being continuous,
´

∆2 Ṽnpθ˚q

¯

is non-

zero in a sufficiently small ball around θ̃. From Propositions S.1.1 and S.1.2,
?
Mp∆Ṽnpθ0q ´ ∆Hpθ0qq

D
Ñ Np0,Σpθ0qq,

and ∆2 Ṽnpθq is asymptotically consistent for∆2Hpθq for any θ. Thus,

∆2 Ṽnpθ˚q ´ ∆2Hpθ˚q
P
Ñ 0,

for θ˚ as described in (S.20). Note that Hp¨q is continuous and ∆2Hpθq assumed to be non-
zero in a small ball around θ0. Now, since θ̃ is consistent for θ0 and }θ˚ ´ θ0} ď }θ̃ ´ θ0},
under the assumption that ∆2Hp¨q is continuous, the result follows.

We now proceed to show that the intermediate objective function Ṽnp¨q has a positive
curvature near its minimizer.

PROPOSITION S.1.5. Under assumptions (A0) - (A5), there exist c1 ą 0 and η ą 0 such
that whenever }θ ´ θ̃} ă η,

P rṼnpθq ´ Ṽnpθ̃q ´ c1}θ ´ θ̃}2 ě 0s Ñ 1,

PROOF. We apply assumption (A5) to each term in the summand in the definition of Ṽnp¨q.
First note that, since Vnpθ̃q ď Vnpθq for any θ P Θ, we have

Ṽnpθ̃ ` 2aq ´ 2Ṽnpθ̃ ` aq ´ Ṽnpθ̃q ď Ṽnpθ̃ ` 2aq ´ 2Ṽnpθ̃q ` Ṽnpθ̃q “ Ṽnpθ̃ ` 2aq ´ Ṽnpθ̃q.

Setting z0 “ X̃J

l θ̃, a “ X̃J

l a, u “ Ỹl in assumption (A5) and considering θ “ θ̃ ` 2a to be
any point in the neighborhood of θ̃ such that 2a ă η, we have, using assumption (A5),

Ṽnpθ̃ ` 2aq ´ Ṽnpθ̃q ě Ṽnpθ̃ ` 2aq ´ 2Ṽnpθ̃ ` aq ´ Ṽnpθ̃q

ě
1

M

M
ÿ

l“1

κpX̃J

l aq2 “
1

M

M
ÿ

l“1

κ

4
pX̃J

l pθ ´ θ̃qq2

“
κ

4
pθ ´ θ̃qJ

˜

1

M

M
ÿ

l“1

X̃lX̃
J

l

¸

pθ ´ θ̃q

By the WLLN for the i.i.d sum of X̃lX̃
J

l , l “ 1, . . . ,M,

κ

4
pθ ´ θ̃qJ

˜

1

M

M
ÿ

l“1

X̃lX̃
J

l

¸

pθ ´ θ̃q
P
Ñ

κ

4
pθ ´ θ̃qJEpXXJqpθ ´ θ̃q

ě
κ

4
λ1pθ ´ θ̃qJpθ ´ θ̃q ą 0.
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The last two inequalities hold under the assumption that the matrix EpXXJq is positive
definite with the smallest eigen value λ1 bounded away from 0. Thus, for c1 “ κ

4λ1,

P rṼnpθq ´ Ṽnpθ̃q ´ c1}θ ´ θ̃}2 ě 0s Ñ 1.

It remains to show that

PROPOSITION S.1.6. Under assumptions (A0)-(A5), (U1)-(U3), and (R1)-(R2),

}θ̂ ´ θ̃} “ OP pa1{2
n q.

where an is as defined in for Lemma 1 [1].

PROOF. Define Θϵ :“ tθ : Ṽnpθq ´ ϵ ď Ṽnpθ̃q ` ϵu for some ε ą 0. Then under proposi-
tion S.1.5, for any θ P Θε, }θ ´ θ̃} “ OP pϵ1{2q.

Now, from Lemma 1 [1], for any δ ą 0, there exists M0 ą 0 such that
P

´

a´1
n |Vnpθq ´ Ṽnpθq| ą M0

¯

Ñ 0, for all M ą M0 and for any θ. Define

E1 :“ sup
θPΘ

ta´1
n |Vnpθq ´ Ṽnpθq| ď M0u and E2 “ Ec

1

and observe P pE2q Ñ 0 for large enough M0. Choosing ϵ “ M0an in the above definition of
Θϵ, one finds that ΘM0an

is nonempty and bounded above, since θ̃ P ΘM0an
and ΘM0an

Ă

Θ. We claim that θ̂ P ΘM0an
on E1. Suppose this is not the case. Then Ṽnpθ̂q ´ M0an ą

Ṽnpθ̃q ` M0an. On E1,

Vnpθ̂q ą Ṽnpθ̂q ´ M0an ą Ṽnpθ̃q ` M0an ą Vnpθ̃q ą Vnpθ̂q,

which is a contradiction, since θ̂ minimizes Vnpθq : θ P Θ. Thus, θ̂ P ΘM0an
on E1, that is

Ṽnpθ̂q ´ Ṽnpθ̃q ď 2M0an. Based on the positive curvature condition on Ṽnp¨q around θ̃ given
in proposition S.1.5, on E1 we have,

P pc1}θ̂ ´ θ̃}2 ď 2M0anq ě P pc1}θ̂ ´ θ̃}2 ď |Ṽnpθ̂q ´ Ṽnpθ̃q|q Ñ 1.

For L ą 2M0{c1,

P
´

a´1{2
n }θ̂ ´ θ̃} ą L

¯

“ P
´

a´1{2
n }θ̂ ´ θ̃} ą L|E1

¯

P pE1q ` P
´

a´1{2
n }θ̂ ´ θ̃} ą L|E2

¯

P pE2q

“ OP p1q, since P pE2q Ñ 0 for large enough M0.

Thus }θ̂ ´ θ̃} “ OP pa
1{2
n q.

PROOF OF THEOREM 2. Decompose
?
Mpθ̂ ´ θ0q “

?
Mpθ̂ ´ θ̃q `

?
Mpθ̃ ´ θ0q

From assumption (A4), M “ Mpnq such that Man Ñ 0, as n Ñ 8, with an as de-
fined in equation (3.1) in the main manuscript for Lemma 1 [1]. Thus, using Proposi-
tion S.1.6, the first term is oP p1q and by Proposition S.1.4 the second term converges
in distribution to Z, where Z is a Gaussian random variable with mean 0 and variance
Λpθ0q “

`

∆2Hpθ0q
˘´1

Σpθ0q
`

∆2Hpθ0q
˘´1

. The result follows.
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PROOF OF PROPOSITION 3. The estimator pΣpθ0q for Σpθ0q has elements
pΣpθ0q “ pppσrspθ0qqqr,s“2,...,p with

pσrspθ0q “

$

’

’

&

’

’

%

1
hM

řM
l“1

x▽2
hpX̃l, Ỹl, θ0rq ´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rq

¯2
, if r “ s,

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rqp▽hpX̃l, Ỹl, θ0sq

´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rq

¯ ´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0sq

¯

, if r ‰ s,

where the auxiliary quantities are defined as in (S.10). Given a p ˆ q random matrix
Rn “ ppR

pnq

ij qq for i “ 1, . . . , p and j “ 1, . . . , q, Rn converges to a normal limit if vecpRnq

converges to a multivariate normal distribution in the standard sense. We denote the asymp-
totic expectation of Rpnq

ij as µij for all i, j and the asymptotic covariance between R
pnq

ij and

R
pnq
rs as Σijrs. If Rn has an asymptotic normal distribution, the distribution is characterized by

the mean µ “ ppµijqq and covariance Σ “ tΣijrsu for any i, r “ 1, . . . , p and j, s “ 1, . . . , q.
Here µ is p ˆ q matrix and Σ is a four-tensor.

The convergence in distribution described here can easily be understood in the standard
multivariate sense by vectorizing the matrices in question. Standard results from multivariate
statistics, specifically the delta method, extend immediately to the matrix case. Define the
following auxiliary quantities:

Arspθ0q “ lim
hÑ0

1

h
E

´

▽hpX̃l, Ỹl, θ0rq▽hpX̃l, Ỹl, θ0sq

¯

,

Brpθ0q “ lim
hÑ0

1

h
E

´

▽hpX̃l, Ỹl, θ0rq

¯

,

Cspθ0q “ lim
hÑ0

1

h
E

´

▽hpX̃l, Ỹl, θ0sq

¯

,

pArspθ0q “
1

hM

M
ÿ

l“1

p▽hpX̃l, Ỹl, θ0rqp▽hpX̃l, Ỹl, θ0sq,

pBrpθ0q “
1

hM

M
ÿ

l“1

p▽hpX̃l, Ỹl, θ0rq,

pCspθ0q “
1

hM

M
ÿ

l“1

p▽hpX̃l, Ỹl, θ0sq,

Ãrspθ0q “
1

hM

M
ÿ

l“1

▽hpX̃l, Ỹl, θ0rq▽hpX̃l, Ỹl, θ0sq,

B̃rpθ0q “
1

hM

M
ÿ

l“1

▽hpX̃l, Ỹl, θ0rq,

C̃spθ0q “
1

hM

M
ÿ

l“1

▽hpX̃l, Ỹl, θ0sq.

We denote the collection C “ tArs,Br,Csu for r, s “ 2, . . . , p. Let g be a matrix-valued
function on the space of such collections with component functions grspCq “ Ars ´ BrCs
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for all r, s “ 2, . . . , p. Note that g is clearly differentiable. For the collections

pCpθ0q “ t pArspθ0q, pBrpθ0q, pCspθ0qu,

Cpθ0q “ tArspθ0q,Brpθ0q,Cspθ0qu, and

C̃pθ0q “ tÃrspθ0q, B̃rpθ0q, C̃spθ0qu,

respectively, pΣpθ0q “ gp pCpθ0qq, Σpθ0q “ gpCpθ0qq, and Σ̃pθ0q “ gpC̃pθ0qq. It is sufficient
to show that the collection

?
Mp pCpθ0q ´ Cpθ0qq, appropriately vectorized, follows a multi-

variate normal distribution, whence an application of the delta method gives the final result.
Now,

?
Mp pCpθ0q ´ Cpθ0qq “

?
Mp pCpθ0q ´ C̃pθ0qq `

?
MpC̃pθ0q ´ Cpθ0qq.

The first term in the sum is oP p1q and the second term converges in distribution to Np0,Dq

by applying the CLT to the i.i.d. random vectors in the appropriately vectorized collec-
tion C̃pθ0q, with D as the covariance matrix of the collection of vectors. Denoting the
Jacobian of vecpgq evaluated at Cpθ0q as JpCpθ0qq, applying the delta method leads to
JpCpθ0qqDpJpCpθ0qqqJ as the asymptotic variance of vecppΣpθ0qq.

The above Proposition 3 implies that pΣpθ0q ´ Σpθ0q “ oP p1q. Furthermore,

PROPOSITION S.1.7. Under assumptions (A0) and (A2)-(A6),

sup
θPΘ

pΣ̂pθq ´ Σpθqq
P
Ñ 0.

PROOF. Recall the definition of Σpθq “ ppσrspθqqqr,s“2,...,p, where, for any θ P Θ,

σrspθq “

$

&

%

lim
εÑ0

Var
`

1
ε▽εpX, Y, θrq

˘

, if r “ s P t2, . . . , pu

lim
εÑ0

Cov
`

1
ε▽εpX, Y, θrq, 1

ε▽εpX, Y, θsq
˘

, if r ‰ s, r, s P t2, . . . , pu.

The estimator of Σpθq is given by Σ̂pθq “ ppσ̂rspθqqqr,s“2,...,p with

σ̂rspθq “

$

’

’

&

’

’

%

1
h2M

řM
l“1

p▽2
hpX̃l, Ỹl, θrq ´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θrq

¯2
, if r “ s P t2, . . . , pu

1
h2M

řM
l“1

p▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq

´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θrq

¯ ´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θsq

¯

, if r ‰ s P t2, . . . , pu.

To obtain elementwise convergence, we introduce an intermediate version, where for any
θ P Θ, as Σ̃pθq “ ppσ̃rspθqqqr,s“2,...,p with

σ̃rspθq “

$

’

’

&

’

’

%

1
h2M

řM
l“1▽

2
hpX̃l, Ỹl, θrq ´

´

1
hM

řM
l“1▽hpX̃l, Ỹl, θrq

¯2
, if r “ s P t2, . . . , pu

1
h2M

řM
l“1▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

´

´

1
hM

řM
l“1▽hpX̃l, Ỹl, θrq

¯ ´

1
hM

řM
l“1▽hpX̃l, Ỹl, θsq

¯

, if r ‰ s P t2, . . . , pu,

where all auxiliary quantities are defined in (S.8)- (S.12). We focus on each element of the
covariance matrix separately. For r P t2, . . . , pu and any θ P Θ,

sup
θr

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h
p▽hpX̃l, Ỹl, θrq ´ lim

εÑ0

1

ε
Ep▽εpX̃l, Ỹl, θrqq

ˇ

ˇ

ˇ

ˇ

ˇ
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ď sup
θr

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h
p▽hpX̃l, Ỹl, θrq ´

1

h
Ep▽hpX̃l, Ỹl, θrqq

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
θr

ˇ

ˇ

ˇ

ˇ

1

h
Ep▽hpX̃l, Ỹl, θrqq ´ lim

εÑ0

1

ε
Ep▽εpX̃l, Ỹl, θrqq

ˇ

ˇ

ˇ

ˇ

The second term on the r.h.s. goes to zero as h Ñ 0. As for the first term on the r.h.s., consider

sup
θr

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h
p▽hpX̃l, Ỹl, θrq ´

1

h
Ep▽hpX̃l, Ỹl, θrqq

ˇ

ˇ

ˇ

ˇ

ˇ

(S.21)

ď sup
θr

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h
p▽hpX̃l, Ỹl, θrq ´

1

M

M
ÿ

l“1

1

h
▽hpX̃l, Ỹl, θrq

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
θr

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h
▽hpX̃l, Ỹl, θrq ´

1

h
Ep▽hpX̃l, Ỹl, θrqq

ˇ

ˇ

ˇ

ˇ

ˇ

The second term on the r.h.s. of (S.21) goes to zero in probability by a uniform LLN, as
|▽hpX̃l, Ỹl, θrq| ď 2DLh, where L is the Lipschitz constant for m‘ in assumption (A2), and
we note that Θ is compact and ▽hpX̃l, Ỹl, ¨q is continuous. For the first term on the r.h.s., by
the uniform convergence of m̂‘ to m‘ from Lemma 1,

sup
θr

ˇ

ˇ

ˇ

p▽hpX̃l, Ỹl, θrq ´ ▽hpX̃l, Ỹl, θrq

ˇ

ˇ

ˇ
ď 4D sup

θ
sup
t

dpm̂‘pt,θq,m‘pt,θqq “ OP panq,

(S.22)

where an is as in equation (3.1) in the main manuscript and the rate is uniform for all 1 ď l ď

M and does not depend on M . Then

sup
θr

ˇ

ˇ

ˇ

ˇ

ˇ

1

hM

M
ÿ

l“1

p▽hpX̃l, Ỹl, θrq ´
1

hM

M
ÿ

l“1

▽hpX̃l, Ỹl, θrq

ˇ

ˇ

ˇ

ˇ

ˇ

P
Ñ 0,

since Mh Ñ 8, as per assumption (A6), and Man Ñ 0, as per assumption (A4), as n Ñ 8.
Next we consider the product terms in the element-wise covariance. For r, s P t2, . . . , pu,

and any θ P Θ,

sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

h2M

M
ÿ

l“1

p▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ´
1

h2
Ep▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

h2M

M
ÿ

l“1

p▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ´
1

h2M

M
ÿ

l“1

▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h2
▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq ´

1

h2
Ep▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Again, by a similar argument as above, the second term on the r.h.s. goes to zero in probabil-
ity. As for the first term on the r.h.s.,

sup
θr,θs

ˇ

ˇ

ˇ

p▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ
(S.23)

“ sup
θr,θs

ˇ

ˇrp▽hpX̃l, Ỹl, θrq ´ ▽hpX̃l, Ỹl, θrqsrp▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θsqs
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` ▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ` ▽hpX̃l, Ỹl, θsqp▽hpX̃l, Ỹl, θrq

´ 2▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq
ˇ

ˇ(S.24)

The first term on the r.h.s. of (S.23) is OP pa2nq by (S.22), observing that

sup
θr,θs

ˇ

ˇ

ˇ
rp▽hpX̃l, Ỹl, θrq ´ ▽hpX̃l, Ỹl, θrqsrp▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θsqs

ˇ

ˇ

ˇ

ď sup
θr

ˇ

ˇ

ˇ

p▽hpX̃l, Ỹl, θrq ´ ▽hpX̃l, Ỹl, θrq

ˇ

ˇ

ˇ
sup
θl

ˇ

ˇ

ˇ

p▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ
.

As for the second term on the r.h.s. of (S.23),

sup
θr,θs

ˇ

ˇ▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ` ▽hpX̃l, Ỹl, θsqp▽hpX̃l, Ỹl, θrq

´ 2▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq
ˇ

ˇ(S.25)

ď sup
θr,θs

ˇ

ˇ

ˇ
▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ

` sup
θr,θs

ˇ

ˇ

ˇ
▽hpX̃l, Ỹl, θsqp▽hpỸl, θrq ´ ▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ

“ sup
θr,θs

ˇ

ˇ

ˇ
▽hpX̃l, Ỹl, θrqrp▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θsqs

ˇ

ˇ

ˇ

` sup
θr,θs

ˇ

ˇ

ˇ
▽hpX̃l, Ỹl, θsqrp▽hpX̃l, Ỹl, θrq ´ ▽hpX̃l, Ỹl, θrqs

ˇ

ˇ

ˇ
.

From (S.22), and using the fact that supθj |▽hpX̃l, Ỹl, θjq| ă 2DLh is bounded for j “ r, s,
for any r, s P t2, . . . , pu, both terms in (S.25) are OP phanq. Combining these results,

sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

h2M

M
ÿ

l“1

p▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ´
1

h2M

M
ÿ

l“1

▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
θr,θs

ˇ

ˇ

ˇ

1

h2M

M
ÿ

l“1

rp▽hpX̃l, Ỹl, θrq ´ ▽hpX̃l, Ỹl, θrqsrp▽hpX̃l, Ỹl, θsq ´ ▽hpX̃l, Ỹl, θsqs

`▽hpX̃l, Ỹl, θrqp▽hpX̃l, Ỹl, θsq ` ▽hpX̃l, Ỹl, θsqp▽hpX̃l, Ỹl, θrq ´ 2▽hpX̃l, Ỹl, θrq▽hpX̃l, Ỹl, θsq

ˇ

ˇ

ˇ

“OP pa2n{h2q ` OP pan{hq
P
Ñ 0,

where assumptions (A4) and (A6) imply hM Ñ 8 and Man Ñ 0 as n Ñ 8. Finally, plug-
ging into the elementwise definitions, by decomposing

sup
θr,θs

|σ̂rspθq ´ σrspθq| ď sup
θr,θs

|σ̂rspθq ´ σ̃rspθq| ` sup
θr,θs

|σ̃rspθq ´ σrspθq|
P
Ñ 0,(S.26)

the result follows.

PROPOSITION S.1.8. Under assumptions (A2), (A4), and (A6),

sup
θPΘ

}∆2Vnpθq ´ ∆2Hpθq}
P
Ñ 0.
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PROOF. Observe
(S.27)
sup
θPΘ

}∆2Vnpθq ´ ∆2Hpθq} ď sup
θPΘ

}∆2Vnpθq ´ ∆2 Ṽnpθq} ` sup
θPΘ

}∆2 Ṽnpθq ´ ∆2Hpθq}

and for the second term on the r.h.s. of (S.27), consider the difference between the second
order partial derivatives

sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

B2Ṽnpθq

BθrBθs
´

B2Hpθq

BθrBθs

ˇ

ˇ

ˇ

ˇ

ˇ

“sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h2
▽2
hpX̃l, Ỹl, θr, θsq ´ lim

εÑ0

1

ε2
Ep▽2

εpX, Y, θr, θsqq

ˇ

ˇ

ˇ

ˇ

ˇ

ďsup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h2
▽2
hpX̃l, Ỹl, θr, θsq ´

1

h2
Ep▽2

hpX, Y, θr, θsqq

ˇ

ˇ

ˇ

ˇ

ˇ

` sup
θr,θs

ˇ

ˇ

ˇ

ˇ

1

h2
Ep▽2

hpX, Y, θr, θsqq ´ lim
εÑ0

1

ε2
Ep▽2

εpX, Y, θr, θsqq

ˇ

ˇ

ˇ

ˇ

The second term on the r.h.s. goes to zero as h Ñ 0. As for the first term on the r.h.s., we note
that for each r, s “ 2, . . . , p, |▽2

hpX, Y, θr, θsq| ď Kh2 for some constant K ą 0. Further, Θ
is a compact set, and from the proof of Proposition 2, ▽2

hpX, Y, θr, θsq{h2 is continuous in
θr, θs. Thus, by a uniform LLN,

sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

l“1

1

h2
▽2
hpX̃l, Ỹl, θr, θsq ´

1

h2
Ep▽2

hpX, Y, θr, θsqq

ˇ

ˇ

ˇ

ˇ

ˇ

P
Ñ 0,

as h Ñ 0. As for the first term on the r.h.s. of (S.27). Consider the elementwise differences

sup
θr,θs

ˇ

ˇ

ˇ

ˇ

ˇ

B2Vnpθq

BθrBθs
´

B2Ṽnpθq

BθrBθs

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

h2
1

M

M
ÿ

l“1

sup
θr,θs

ˇ

ˇ

ˇ

x▽2
hpX̃l, Ỹl, θr, θsq ´ ▽2

hpX̃l, Ỹl, θr, θsq

ˇ

ˇ

ˇ

ď 8D
1

h2
1

M

M
ÿ

l“1

sup
θ

sup
t

dpm̂‘pt,θq,m‘pt,θqq “ 8D
1

h2
OP panq,

where the OP term is uniform in l “ 1, . . . ,M and doesn’t depend on M . By assumptions
(A4) and (A6), the above term goes to zero in probability, implying that

sup
θPΘ

|∆2Vnpθq ´ ∆2 Ṽnpθq| “ oP p1q

and the result follows.

PROOF OF PROPOSITION 4. Recall, for any θ P Θ, Λpθq “ p∆2Hpθqq´1Σpθqp∆2Hpθqq´1

and pΛpθq “
`

∆2Vnpθq
˘´1

pΣpθq
`

∆2Vnpθq
˘´1

. Writing

pΛpθ̂q ´ Λpθ0q “ ppΛpθ̂q ´ Λpθ̂qq ` pΛpθ̂q ´ Λpθ0qq,(S.28)

we need to show that both terms on the RHS converge to zero in probability. For the first
term, it suffices to show that

sup
θPΘ0δ

pΛpθq ´ Λpθq
P
Ñ 0,
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where Θ0δ is a small δ- neighborhood of the true parameter θ0 i.e., for any δ ą 0, Θ0δ :“ tθ :

}θ ´ θ0} ď δu. By Theorem 1, since θ̂ is consistent for θ0, θ̂ P Θ0δ for large enough sample
size n with high probability. Observe that

pΛpθq ´ Λpθq

“
`

∆2Vnpθq
˘´1

pΣpθq
`

∆2Vnpθq
˘´1

´ p∆2Hpθqq´1Σpθqp∆2Hpθqq´1

“
`

∆2Vnpθq
˘´1

”

pΣpθq ´ Σpθq

ı

`

∆2Vnpθq
˘´1

` p∆2Hpθqq´1Σpθq

”

`

∆2Vnpθq
˘´1

´ p∆2Hpθqq´1
ı

`

”

`

∆2Vnpθq
˘´1

´ p∆2Hpθqq´1
ı

Σpθq
`

∆2Vnpθq
˘´1

.

From the proof of Propositions S.1.7 and S.1.8, we have sup
θPΘ

pΣpθq ´ Σpθq
P
Ñ 0 and

sup
θPΘ

`

∆2Vnpθq
˘

´ p∆2Hpθqq
P
Ñ 0. Also, ∆2Hpθq is upper-bounded, and since θ0 is the

global minimizer of Hpθq, it is bounded away from 0 in any neighborhood Θ0δ of θ0. Thus
p∆2Hpθqq´1 is bounded above on Θ0δ and uniformly continuous. Further, by virtue of con-
tinuity of ∆2Hpθq and the uniform probability convergence of ∆2Vnp¨q to ∆2Hp¨q on the
parameter space Θ (Proposition S.1.8), one can show that

`

∆2Vnpθq
˘´1 such that θ P Θ0δ ,

is bounded above and uniformly continuous with high probability for a large enough sample
size, therefore yielding sup

θPΘ0δ

`

∆2Vnpθq
˘´1

´ p∆2Hpθqq´1 P
Ñ 0. Combining the above ar-

guments it follows that sup
θPΘ0δ

pΛpθq ´ Λpθq
P
Ñ 0. Finally, noting that P pθ̂ P Θ0δq Ñ 1 for any

δ ą 0 and a large enough sample size, we have pΛpθ̂q ´ Λpθ̂q
P
Ñ 0.

For the second term in (S.28), under the assumption of the total boundedness of pΩ, dq and
the continuity of the local linear Fréchet regression function (assumption (A2)), both Σp¨q

and ∆2Hp¨q are continuous functions of θ. Thus applying continuous mapping theorem and
using the consistency of θ̂ (Theorem 1 ) we have Λpθ̂q ´ Λpθ0q

P
Ñ 0. The result follows

combining the two terms in (S.28) using Slutsky’s theorem.

PROOF OF COROLLARY 4. For any x P X Ă Rp, we observe that, by the triangle inequal-
ity of the metric,

dpm̂‘pxJpθ̄,pθ̄q,m‘pxJθ̄0, θ̄0qq(S.29)

ďdpm̂‘pxJpθ̄,pθ̄q,m‘pxJpθ̄,pθ̄qq ` dpm‘pxJpθ̄,pθ̄q,m‘pxJθ̄0, θ̄0qq.

From Lemma 1, we know that

sup
θ̄

sup
t

dpm̂‘pt, θ̄q,m‘pt, θ̄qq “ OP panq,

where an is as defined in equation (3.1) in the main manuscript. Thus, the first term
of (S.29) is OP panq. Now by assumption (A2), m‘ is continuous and, by Theorem 2,
pθ̄ ´ θ̄0 “ OP pM´1{2q. Using continuous mapping theorem, the second term of (S.29) is
OP pM´1{2q. The result follows using Slutsky’s theorem under assumption (A4).

PROOF OF COROLLARY 5. We partition θ̂ into sub-vectors as θ̂ “ pθ̂prq, θ̂
prqqJ, where

θ̂prq “ pθ̂1, . . . , θ̂rqJ and θ̂prq “ pθ̂r`1, . . . , θ̂pqJ. Similarly, we can partition the true direction



18

as θ0 “ pθ0prq,θ
prq

0 qJ, where θ0prq “ pθ01, . . . , θ0rqJ and θ
prq

0 “ pθ0r`1, . . . , θ0pqJ. Since,
from Corollary 3 we know that, under suitable assumptions

?
MppΛpθ̂qq´1{2pθ̂ ´ θ0q

D
Ñ Np0, Ip´1q,

applying the the linear transformation θ “ pθprq,θ
prqq ÞÑ θprq for any θ : θJθ ă 1, we have

?
MppΛpθ̂prqqq´1{2θ̂prq D

Ñ Np0, Ip´rq,

where pΛpθ̂prqq is the pp ´ rq dimensional sub-matrix of the asymptotic covariance matrix
pΛpθ̂q. Thus, under the null hypothesis H0 : Bθprq “ ζ, for some q ˆ pp ´ rq matrix B with
1 ď q ď p ´ r of rank q, we can form a Wald-type test statistic

MpBθ̂prq ´ ζqJpBppΛpθ̂prqqq´1BJq´1pBθ̂prq ´ ζq
D
Ñ χ2

q .

For the particular choice of B “ Ip´r, a simultaneous confidence region for θprq

0 can be
computed, as is given in Corollary 5.

PROOF OF PROPOSITION 5. Recall the population and sample versions of the index pa-
rameters as M-estimation problems

θ0 “ argmin
θ:θPΘ

Hpθq, Hpθq “ Erd2pY,m‘pXJθ,θqqs,

θ̂ “ argmin
θ:θPΘ

Vnpθq, Vnpθq “
1

M

M
ÿ

l“1

d2pỸl, m̂‘pX̃J

l θ,θqq,

θ̃ “ argmin
θ:θPΘ

Ṽnpθq, Ṽnpθq “
1

M

M
ÿ

l“1

d2pỸl,m‘pX̃J

l θ,θqq,

where Θ “ tθ : θ P Rp´1,J θJθ ă 1u Ă Rp´1, as defined in equation (3.4) in the main
manuscript. We want to show the consistency of the proposed bootstrap estimator Λ̂˚ :“

E
”

Mpθ̂˚ ´ θ̂qpθ̂˚ ´ θ̂q⊺|pX̃1, Ỹ1q, . . . , pX̃M , ỸM q

ı

. Here θ̂˚ denotes the M-estimator com-

puted from a bootstrap sample pX̃˚

l , Ỹ
˚
l q, l “ 1, . . . ,M for the objective function Vn. Define

the auxiliary quantity
Λ̃˚ :“ E

”

Mpθ̃˚ ´ θ̃qpθ̃˚ ´ θ̃q⊺|pX̃1, Ỹ1q, . . . , pX̃M , ỸM q

ı

, where θ̃˚ denotes the M-estimator

computed from a bootstrap sample pX̃˚

l , Ỹ
˚
l q, l “ 1, . . . ,M for the objective function Ṽn.

First note that by Proposition S.1.6, θ̂ ´ θ̃
P
Ñ 0. Also, under similar assumptions re-

quired for Proposition S.1.6, one can show that θ̂˚ ´ θ̃˚ P
Ñ 0, resulting in Λ̂˚ ´ Λ̃˚ P

Ñ 0.
Now, one can show the consistency of Λ̃˚ by applying Theorem 2.2 of [5], Define gθ “

d2py,m‘pxJθqq. One needs to show
(i) There exist a θ0 P Θ, and a positive constant c such that Hpθq ´Hpθ0q ě c}θ ´ θ0}2 for
all θ P Θ.
(ii) The class of functions Mδ :“ tgθ ´ gθ0

: }θ ´θ0} ď δ,θ P Θu has envelope Fδ such that
for ε ą 0, ErF2`ε

δ s ď constantˆδ2`ε for all δ ą 0. Further the class Mδ satisfies the uniform
entropy condition: Jp1,Mδq ď constant for all δ ą 0, where the constants are independent
of δ. Here the entropy integral Jp1,Mδq “

ş1
0Npε1δ,Fδ, } ¨ }qdε1, where Npε1δ,Fδ, } ¨ }q is

the covering number for the set Fδ using balls of size δε1.
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(i) follows immediately from assumption (A1). For showing (ii) note that

gθ ´ gθ0
“d2py,m‘pxJθqq ´ d2py,m‘pxJθ0qq(S.30)

ď2diampΩqdpm‘pxJθq,m‘pxJθ0qq

ď2diampΩqL}θ ´ θ0}.

The last inequality follows using the assumption (A2) on m‘ being Lipschitz continuous
with the Lipschitz constant L and assumption (A3) on X having a bounded support. Thus the
function class Mδ has the envelope Fδ “ 2diampΩqLδ with ErF2`ε

δ s “ constant ˆ δ2`ε,
since Ω is totally bounded. Now, since Θ Ă Rp´1, and from (S.30) the function class Mδ

is a class of Lipschitz functions in θ P Θ, we have Npε1δ,Fδ, } ¨ }q ď C
`

1
ε1

˘p´1 [11]. As a
consequence, Jp1,Mδq “ Op1q since

ş1
0 log

`

1
ε1

˘

dε1 ă 8. Thus the result follows.

PROOF OF LEMMA 1. First recall that, for any given unit direction θ̄ P Θ̄, Tθ̄ denotes the
support of the random variable T “ XJθ̄, where Θ̄ is defined in equation (2.5) in Section 2.
For bounded random variables X, we can write Tθ̄ Ă T for some bounded T Ă R. Since all
possible values of xJθ̄ is contained in T uniformly for θ̄ P Θ̄, one has

sup
θ̄PΘ̄

sup
tPTθ̄

dpm̂‘pt, θ̄q,m‘pt, θ̄qq

ďsup
tPT

dpm̂‘pt, θ̄q,m‘pt, θ̄qq “ OP panq,

where an is the appropriate sequence described in assumption (A4). The last result follows
from Theorem 1 of [1] using the technical assumptions (U1)- (U3) and (R1)- (R2).

S.2. Technical assumptions (U1)- (U3), (R1)- (R2) .
In this section, we describe the technical assumptions needed to establish the uniform rate of
convergence for the local linear Fréchet regression estimator in Lemma 1 in Section 3 of the
main manuscript. We also provide motivation and discuss suitable examples regarding the
assumptions.

The assumptions required to obtain the technical results are essentially the same as those
used before in the Fréchet regression literature, specifically in [1]. To adapt these assumptions
to the present situation, we require the curvature and entropy conditions to hold uniformly
across all index values and direction parameters. The curvature and entropy conditions can be
verified for commonly observed objects such as univariate probability distributions, positive
definite matrices, or data on the surface of a sphere, as well as other random objects under
suitable metrics.

Denote by Tθ̄ the support of the random variable T “ XJθ̄ for any given unit direction
θ̄ P Θ̄, where Θ̄ is defined in equation (2.5) of the main manuscript. Under assumption (A3),
for bounded random variables X, we can write Tθ̄ Ă T for some bounded subset T of R.
For a given direction θ̄ P Θ̄ such that XJθ̄ “ t, where Θ̄ is as given in equation (2.5), the
conditional Fréchet mean is given by

(S.31) m‘pt, θ̄q “ argmin
ωPΩ

Mpω, t, θ̄q; Mpω, t, θ̄q :“ Epd2pY,ωq|XJθ̄ “ tq,

and the local linear Fréchet regression estimate by

(S.32) m̂‘pt, θ̄q “ argmin
ωPΩ

L̂npω, t, θ̄q; L̂npω, t, θ̄q :“
1

n

n
ÿ

i“1

pSpXJ
i θ̄, t, bqd

2pYi, ωqq,

where pS is the empirical estimate (from equation (2.10)) of the nonparametric weight func-
tion (described in equation (2.8)) in Section 2 of the main manuscript and b is the bandwidth
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parameter for the kernel involved in the localized Fréchet mean. We also define the interme-
diate localized weighted Fréchet means as

(S.33) m̃‘pt, θ̄q “ argmin
ωPΩ

L̃bpω, t, θ̄q; L̃bpω, t, θ̄q :“ EpSpXJθ̄, t, bqd2pY,ωqq,

where the nonparametric weight function is described in equation (2.8) in the main
manuscript. The following additional assumptions are required, which are analogous ver-
sions of the assumptions in [1].

(U1) For all t P T and θ̄ P Θ̄, the minimizers m‘pt, θ̄q, m̂‘pt, θ̄q, and m̃‘pt, θ̄q exist and
are unique, the latter two almost surely. In addition, for any ε ą 0,

(S.34)

inf
tPT

inf
dpm‘pt,θ̄q,ωqąε

rMpω, t, θ̄q ´ Mpm‘pt, θ̄q, t, θ̄qs ą 0,

lim inf
bÑ0

inf
tPT

inf
dpω,m̃‘pt,θ̄qqąε

rL̃bpω, t, θ̄q ´ L̃bpm̃‘pt, θ̄q, t, θ̄qs ą 0,

and there exists c “ cpεq ą 0 such that

(S.35) P

ˆ

inf
tPT

inf
dpm̂‘pt,θ̄q,ωqąε

rL̂npω, t, θ̄q ´ L̂npm̂‘pt, θ̄q, t, θ̄qs ě c

˙

Ñ 1.

(U2) Let Brpm‘pt, θ̄qq Ă Ω be a ball of radius r centered at m‘pt, θ̄q and
N pε,Brpm‘pt, θ̄qq, dq be its covering number using balls of radius ϵ. Then

(S.36) lim
rÑ0`

ż 1

0
sup
tPT

b

1 ` logN prε,Brpm‘pt, θ̄qq, dqdϵ “ Op1q.

(U3) There exists r1, r2 ą 0, c1, c2 ą 0, and β1, β2 ą 1 such that

inf
tPT

inf
dpm‘pt,θ̄q,ωqăr1

rMpω, t, θ̄q ´ Mpm‘pt, θ̄q, t, θ̄q ´ c1d
2pω,m‘pt, θ̄qqβ1s ě 0,

lim inf
bÑ0

inf
tPT

inf
dpω,m̃‘pt,θ̄qqăr2

rL̃bpω, t, θ̄q ´ L̃bpdpm̃‘pt, θ̄q, t, θ̄q ´ c2d
2pω, m̃‘pt, θ̄qqβ2s ě 0.

(S.37)

Furthermore, we require the following assumptions for kernels and distributions.

(R1) The kernel K is a probability density function, symmetric around zero, uniformly
continuous on R such that

ş

RKpxqjxk ă 8, for j, k “ 1, . . .6. The derivative K 1 ex-
ists and is bounded on the support of K , i.e., supx:Kpxqą0 |K 1pxq| ă 8. Additionally,
ş

R x
2|K 1pxq|

a

|x log |x||dx ă 8.

(R2) For any given unit direction θ̄ P Θ̄, the marginal density fT,θ̄ of T “ XJθ̄ and the
conditional densities fT,θ̄|Y p¨, yq of T given Y “ y exist and are twice continuously dif-
ferentiable in the interior of T for all θ̄ P Θ̄, the latter for all y P Ω. The marginal density
fT,θ is bounded away from zero on its support T for all θ̄ P Θ̄ i.e., inftPT fXJθ̄ptq ą 0.

The second-order derivative f2

T,θ̄
is uniformly bounded for all t P T , θ̄ P Θ̄, that is,

suptPT |f2

T,θ̄
ptq| ă 8. The second-order partial derivatives pB2fT,θ̄|Y {Bt2qp¨, yq are uni-

formly bounded, uniform over all θ̄ P Θ̄, i.e.,
suptPT supyPΩ |pB2fT,θ̄|Y {Bt2qp¨, yq| ă 8.

Additionally, for any open set B Ă Ω, P pY P B|XJθ “ tq is continuous as a function
of t and θ̄. For any t P T and θ̄ P Θ̄, Mpω, t, θ̄q is equicontinuous, that is,

limsup
θ̄1Ñθ̄2

sup
tPT

sup
ωPΩ

ˇ

ˇMpω, t, θ̄1q ´ Mpω, t, θ̄2q
ˇ

ˇ “ 0.
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Similar yet weaker assumptions have been made in [7] for pointwise rates of convergence
for local linear Fréchet regression estimators. [1] made stronger assumptions in this regard
to establish uniform convergence results over univariate predictor values. In the above as-
sumptions (U1)- (U3) we adapt those in [1], incorporating uniform bounds over the index
parameter as well as over the values of the single index. Since the objective function for the
local Fréchet regression involves both the index value xJθ̄ “ t and the index parameter θ̄,
conditions on the well-separatedness, entropy, and curvature needs to be extended for all val-
ues of t and θ̄. These assumptions are adapted from empirical process theory, guarantee the
asymptotic uniform equicontinuity of L̃b, and control the behavior of L̃b ´ M and L̂n ´ L̃b

near the minimizers m‘pt, θ̄q and m̃‘pt, θ̄q, respectively, uniformly over t and θ̄. assump-
tion (U1) is commonly used to establish the uniform consistency of M-estimators [11] by
showing the weak convergence of the respective empirical processes. In conjunction with the
assumption that the metric space Ω is totally bounded, this implies the pointwise convergence
of the minimizers for any given t and θ̄; it also ensures that the asymptotic uniform equicon-
tinuity of L̃b and L̂n, and implies the (asymptotic) uniform equicontinuity of m̃‘ and m̂‘,
whence the uniform convergence of the minimizers follows as the support of xJθ̄ is compact
for any θ̄.

Assumptions (U1)- (U3) are easily verified for specific metric space-valued objects.

Example 1 Let Ω be the set of probability distributions on a closed interval of R with finite
second moments, endowed with the Wasserstein-2 distance dW , i.e., for any two distribu-
tional objects Y1 and Y2 with cdfs FY1

and FY2
respectively,

dW pY1, Y2q “

ż 1

0
pF´1

Y1
pzq ´ F´1

Y2
pzqq2dz,

where F´1
Yj

pzq is the quantile function for Yj , j “ 1,2. The Wasserstein space pΩ, dW q

satisfies assumptions (U1)- (U3) with β1 “ β2 “ 2.
Example 2 Let Ω be the space of r-dimensional correlation matrices, i.e., symmetric, pos-

itive semidefinite matrices in Rrˆr with diagonal elements equal to 1, endowed with the
Frobenius metric dF . Specifically for any two elements Y1, Y2 P Ω,

dF pY1, Y2q “
a

traceppY1 ´ Y2q⊺pY1 ´ Y2qq.

The space pΩ, dF q satisfies assumptions (U1)- (U3) with β1 “ β2 “ 2.

For Examples 1-2, we note that since the Wasserstein space for one-dimensional distri-
butions and the space of correlation matrices are Hadamard spaces, there exists a unique
minimizer of Mp¨, t, θ̄q for any t P T and θ̄ P Θ̄ [10]. Examples 1-2 follow from similar ar-
guments as those in the proofs of Propositions 1-2 of [7] by observing that the arguments
hold uniformly across t and θ̄. Assumptions (R1) and (R2) are standard distributional as-
sumptions for local nonparametric regression and are needed to show the convergence of the
bias and stochastic parts for the local linear Fréchet estimator uniformly over all t and θ̄. In
particular, Assumption (R1) can be verified for a general class of kernel functions given by

cκp1 ´ x2qκI pr´1,1sq , κ P Z,

where cκ “
Γpk` 3

2
q

?
πΓpk`1q

is such that
ş1

´1 cκp1 ´ x2qκdx “ 1 and the indicator function is

defined as I pAq “ 1 if X P A, and 0 otherwise. The Epanechnikov kernel Kpxq “ 3
4p1 ´

x2qI pr´1,1sq belongs to this class of kernel functions for κ “ 1 with cκ “ 3{4.
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Fig 1: The left figure shows the geodesic triangle formed by the three points u, m‘pz0q,
m‘pz0 ` 2aq, where v is the midpoint of the geodesic connecting the points m‘pz0q and
m‘pz0 ` 2aq. The red line depicts the true regression function m‘. m‘pz0 ` aq is closely
approximated by v lying on a geodesic that connects m‘pz0q with m‘pz0 ` 2aq. The right
hand side shows the reference triangle in R2 as an illustration of the CAT(0) inequality.

S.3. Further discussion of assumption (A5).
Assumption (A5) in Section 3 of the main manuscript intuitively means that m‘ can be
locally approximated by straight lines in Euclidean space and geodesics in geodesic spaces. In
the Euclidean case, it is satisfied for twice differentiable functions m‘, a common assumption
for classical single index modeling. Beyond the Euclidean special case, assumption (A5)

Consider first the Euclidean case, where Ω is a compact subset M Ă R and denote the link
function m‘ by m. Noting that the map h : θ ÞÑ θ̄ is continuous, and m‘pzJθ̄, θ̄q :“ ϕpθ̄q “

ϕphpθqq, for some function ϕ of θ̄ P Θ̄ and for any given z P X Ă Rp, with a slight abuse of
notation, we write m‘pzJθ,θq instead of m‘pzJθ̄, θ̄q. For any given z P X Ă Rp and θ P Θ
such that θJθ ă 1, denote m

`

zJθ,θ
˘

“ mpz0,θq by mpz0q, where z0 “ zJθ P R and for
a small enough a P p0, a0q, such that z0, z0 ` 2a P T , we have mpz0q,mpz0 ` aq,mpz0 `

2aq P M. If mp¨q is twice continuously differentiable in any open subset containing z0 such
that the derivatives are uniformly bounded, the midpoint on the straight line (geodesic path)
connecting mpz0q and mpz0 ` 2aq is given by v “ 1

2 rmpz0q `mpz0 ` 2aqs. Using a second-
order Taylor expansion for the function m around z0, we have

∥v ´ m‘pz0 ` aq∥E

“∥1
2

rmpz0q ` mpz0 ` 2aqs ´ m‘pz0 ` aq∥E

“∥r
1

2
mpz0q `

1

2
mpz0q ` am1pz0q `

1

2

p2aq2

2
m2pζ1qs ´ rmpz0q ` am1pz0q `

a2

2!
m2pζ2qs∥E

“∥a2rm2pζ1q ´
1

2
m2pζ2qs∥E ,

where z0 ă ζ1 ă z0 ` 2a, and z0 ă ζ2 ă z0 ` a. Assuming a uniform bound on the second
derivative of m, such that |m2pzq| ď C for some C ą 0 and for all z P T , we have that
∥v ´ m‘pz0 ` aq∥E ď 3C

2 a2. Thus, assumption (K2) holds for C˚ “ 3C{2, as long as the
bound C on the second derivative of m is sufficiently small.

Next, we consider Ω to be the space of univariate distributions, F , endowed with the
Wasserstein-2 metric dW . The quantile functions for the distributional objects m‘pz0q,
m‘pz0 ` aq, and m‘pz0 ` 2aq are denoted by Qpm‘pz0qqp¨q, Qpm‘pz0 ` aqqp¨q, and
Qpm‘pz0 ` 2aqqp¨q, respectively. Similarly, the quantile function of the midpoint v of the
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geodesic path connecting m‘pz0q and m‘pz0 ` 2aq is given by

Qpvqp¨q “
1

2
rQpm‘pz0qqp¨q ` Qpm‘pz0 ` 2aqqp¨qs.

We write qpz0qp¨q “ Qpm‘pz0qqp¨q “ qpz0qp¨q, analogously for related quantities. The
Wasserstein distance between v and m‘pz0 ` aq is then given by

d2W pv,m‘pz0 ` aqq “

ż 1

0
pQpvqptq ´ Qpm‘pz0 ` 2aqqptqq

2 dt

“

ż 1

0

ˆ

qpz0qptq ` qpz0 ` 2aqptq

2
´ qpz0 ` 2aqptq

˙2

dt

We assume that for every t P r0,1s, qpzqptq is twice continuously differentiable as a function
of z, for any z in an open subset containing z0 such that derivatives of qpzqptq are uniformly
bounded for each t P r0,1s. Using a second-order Taylor expansion of qp¨qptq pointwise t P

r0,1s, and following a similar argument as in the Euclidean case, we have

d2W pv,m‘pz0 ` aqq “

ż 1

0

ˆ

a2rq2pζ1qptq ´
1

2
q2pζ2qptqs

˙2

dt,

Lastly, under the assumption that the |q2pzqptq| ď rptq, such that
ş1
0 r

2ptq ă C, assumption
(K2) holds for C˚ “ 3{2C, as long as the bound C is sufficiently small.

We further illustrate the argument for assumption (K2) for distributional objects in the
specific context of a location-scale family of univariate distributions, F , endowed with the
Wasserstein-2 metric dW . Denoting the location and scale parameters as µp¨q and σp¨q re-
spectively, the quantile function corresponding to the distribution object m‘pz0q P F will be
given by

Qpm‘pz0qqp¨q “ µpz0q ` σpz0qF´1p¨q,

where F´1p¨q is the quantile function for the distribution object m‘pz0q. The quantile func-
tions for m‘pz0 ` aq and m‘pz0 ` 2aq can be similarly defined. Also, the quantile function
of the midpoint of the geodesic path connecting m‘pz0q and m‘pz0 ` 2aq is given by

Qpvqp¨q “
1

2
rµpz0q ` µpz0 ` 2aqs `

1

2
rσpz0q ` σpz0 ` 2aqsF´1p¨q.

The Wasserstein distance between v and m‘pz0 ` aq is given by

d2W pv,m‘pz0 ` aqq “

ˇ

ˇ

ˇ

ˇ

µpz0q ` µpz0 ` 2aq

2
´ µpz0 ` aq

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

σpz0q ` σpz0 ` 2aq

2
` σpz0 ` aq ´ 2

ˆ

σpz0q ` σpz0 ` 2aq

2
σpz0 ` aq

˙1{2
ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

ˇ

ˇ

ˇ

ˇ

µpz0q ` µpz0 ` 2aq

2
´ µpz0 ` aq

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

σpz0q ` σpz0 ` 2aq

2
´ σpz0 ` aq

ˇ

ˇ

ˇ

ˇ

2

,

where the last inequality holds because 1
2σpz0q `σpz0 `2aq and σpz0 `aq are both positive.

Assuming µp¨q and σp¨q are twice continuously differentiable in any open subset containing
z0 such that their derivatives are uniformly bounded, the result follows in a similar manner to
the Euclidean case.
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We next show that assumption (A5) holds under the sufficient conditions (K1), (K2),and
(K3), that is, for any u P Ω, and z0 P T , there exists some κ ą 0, such that, for any small
a ą 0,

1

a2
rd2pu,m‘pz0 ` 2aqq ´ 2d2pu,m‘pz0 ` aqq ` d2pu,m‘pz0qqs ě κ(S.38)

Observe that
1

a2
rd2pu,m‘pz0 ` 2aqq ´ 2d2pu,m‘pz0 ` aqq ` d2pu,m‘pz0qqs(S.39)

“
1

a2
rd2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qqs

`
1

a2
r2d2pu, vq ´ 2d2pu,m‘pz0 ` aqqs.

Assumption (K3) in conjunction with assumption (A2) implies that m‘ is bi-Lipschitz with
constants 0 ď L˚ ď L. We have

2aL˚ ď dpm‘pz0 ` 2aq,m‘pz0qq ď 2La.(S.40)

Thus the first term of (S.39) becomes

1

a2
“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qq
‰

(S.41)

ě
4L2

˚

d2pm‘pz0 ` 2aq,m‘pz0qq

“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qq
‰

,

where this inequality follows from assumptions (A2), using (S.40). Assuming Ω is a geodesic
CAT(0) space, the geodesic triangle △pu,m‘pz0q,m‘pz0 ` 2aqq, formed by the vertices u,
m‘pz0q, and m‘pz0 ` 2aq, will have a comparison triangle △pp̄, q̄, r̄q in the reference space
R2 for some points p̄, q̄, r̄ P R2. This implies

dpu,m‘pz0qq “ ||p̄ ´ q̄||E , dpu,m‘pz0 ` 2aqq “ ||p̄ ´ r̄||E ,(S.42)

dpm‘pz0q, vq “ ||q̄ ´ v̄||E , dpm‘pz0 ` 2aq, vq “ ||r̄ ´ v̄||E .

By virtue of assumption (K1),

dpu, vq ď ||p̄ ´ v̄||E .(S.43)

Thus combining (S.41)– (S.43) one obtains
1

a2
“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu, vq ` d2pu,m‘pz0qq
‰

(S.44)

ě2L2
˚

}p̄´r̄}2E´}p̄´v̄}2E
||r̄´v̄||E

´
}p̄´v̄}2E´}p̄´q̄}2E

||q̄´v̄||E

||r̄ ´ q̄||E
“ 2L2

˚ ą 0.

This uses the fact that r̄, v̄, q̄ are co-linear in the Euclidean space with v̄ being the midpoint
between r̄ and q̄, and hence the second order difference is just 1. Thus the first term of (S.39)
is seen to be greater than or equal to 2L2

˚.
As for the second term of (S.39), by simple algebra and the triangle inequality,

ˇ

ˇ

ˇ

ˇ

2

a2
rd2pu, vq ´ d2pu,m‘pz0 ` aqqs

ˇ

ˇ

ˇ

ˇ

(S.45)

“
2

a2
|pdpu, vq ` dpu,m‘pz0 ` aqqq| |pdpu, vq ´ dpu,m‘pz0 ` aqqq|

ď
4D

a2
dpv,m‘pz0 ` aqq ď 4DC˚.
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The last inequality follows from equation (B.2) in assumption (K2). In assumption (K2),
given L and D, C˚ can be chosen sufficiently small such that 2L2

˚ ą 4DC˚. Thus, combin-
ing (S.44) and (S.45) with (S.39), the result follows for κ “ 2L2

˚ ´ 4DC˚ ą 0.

S.4. Additional data illustrations and simulations.
This section provides further illustrations of data applications and simulations. Random ob-
jects considered in the additional data demonstrations discussed in this section are univari-
ate probability distributions with compact support endowed with the Wasserstein-2 metric
(applied to human mortality data) and compositional data that are mapped to the positive
segment of a sphere, endowed with the geodesic distance and applied to the mood compo-
sitional data. Further illustrations of the proposed method include an additional plot for the
ADNI study and a simulation study with Euclidean responses.

S.4.1. Human mortality and age-at-death distributional object responses.
The performance of the proposed model is demonstrated with an application to human mor-
tality data across countries. We view the age-at-death distributions as random object re-
sponses of interest and aim to find their association with Euclidean predictors such as eco-
nomic, social, and healthcare indices among other relevant factors, aiming at a comprehensive
understanding of human longevity and health conditions.

For this analysis, we used the lifetables for males aggregated yearly in age groups vary-
ing from age 0 to 110 for 40 countries in the calendar year 2010. The data consist of period
lifetables for each country and each calendar year and were obtained from the Human Mor-
tality Database (https://www.mortality.org/). We computed histograms of age-at-death from
the lifetables for each country and calendar year, which were then smoothed with local least
squares to obtain smooth estimated probability density functions for age-at-death using the
R package frechet [2]. After this preprocessing step, the data are a sample of univariate prob-
ability distributions for n “ 40 countries was obtained, shown in the left panel of Figure 2.
We equipped the sample of age-at-death distributions with the Wasserstein-2 metric pΩ, dW q

and selected the following six socio-economic predictors measured at the calendar year 2010:
X1 “ Population density (people per sq. km of land area), X2 “ Fertility rate, total (births per
woman), X3 “ GDP per capita, at Purchasing Power Parity (PPP), X4 “ Access to electricity
(% of the population), X5 “ Current health expenditure (% of GDP), and X6 “ Unemploy-
ment, total (% of the total labor force) (national estimate). The data were obtained from the
World Bank Database at https://data.worldbank.org.

We first standardized all predictors separately, then applied the proposed Index Fréchet Re-
gression (IFR) method to obtain the estimated unit direction parameter (rounded to 4 decimal
places)

pθ̄ “ p0.0173,0.7875,0.5879,0.0167,0.1646,´0.0807q⊺.

The estimated coefficient for the predictor Fertility Rate (X2) has the highest absolute value,
indicating its heavy influence relative to the other five predictors on the index XJpθ̄, and
hence on the fitted value for the IFR model. The estimated index XJpθ̄ can be also perceived
as the first sufficient predictor, which reduces the dimension of the predictor space without
losing the information about the response. This aligns with the sufficient dimension reduction
methods for Fréchet regression [12] and provides an insight into the overall dependence of
the predictors on the object response.

In the right panel of Figure 2, the age-at-death densities are plotted against the estimated
index values, aka the first sufficient predictors, XJpθ̄. It is evident that countries with low

https://www.mortality.org/
https://data.worldbank.org
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index values have modes of the distribution at lower ages, while for countries with high
values of the index, the modes of mortality distributions are significantly higher. Further, the
countries with higher index values indicate very low infant mortality rates.
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Fig 2: Data visualization for age-at-death densities for 40 countries at the calendar year 2010.
The left panel shows the observed densities at random order while the right panel plots the
observed densities against the estimated index values from the proposed Index Fréchet Re-
gression (IFR) model.

The plots of the observed and estimated age-at-death densities over the support of age
r0,110s and against the estimated index values, aka the first estimated sufficient predictor, are
shown in Figure 3. It is interesting to observe that the estimated index values are associated
with the location and variation features of the age-at-death distributions. Specifically, with
the increase in the values of the index, the mean of the mortality distribution increases non-
linearly while the standard deviation diminishes, indicating the death age more concentrates
between 70 and 80. This finding is in line with the observations of [12], who employed several
sufficient dimension reduction (SDR) techniques to the mortality distributions.

Further, the importance of various predictors can be inferred from the estimated coeffi-
cients pθ̄. As before we keep the first predictor (X1 “ Population density) with the corre-
sponding coefficient θ̂1 “ 0.0173 ą 0 in the model and test for the following hypothesis:
H0 : θ02 “ ¨ ¨ ¨ “ θ0p “ 0 vs. H1, the complement of H0, which is the test for overall regres-
sion effect for object responses. Writing θ̂ “ pθ̂2, . . . , θ̂6q, the test statistic is constructed as
T̃n “ θ̂JppΛ˚

Bq´1θ̂
approx.

„ χ2
5 under H0 (see Section 5.1), where pΛ˚

B is the bootstrap estimator
for asymptotic covariance matrix as described in Proposition 5. The null hypothesis is re-
jected at level α if T̃n ą χ2

5p1´αq. From our analysis, T̃n “ 18.883 ą 11.0705 “ χ2
5p1´αq

for the level α “ 0.05. The p-value is actually 0.002 and the null hypothesis is thus clearly
rejected, demonstrating there is a regression effect. Upon further analysis it is found that the
most significant predictors, in order, are X2 “ Fertility rate, total (births per woman), X3 “

GDP per capita, at Purchasing Power Parity (PPP), and X5 “ Current health expenditure (%
of GDP).
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Fig 3: The observed and estimated age-at-death distributions for 40 countries at the calendar
year 2010 are displayed in the left and right panel of figure, respectively. The distributions
are plotted over the support of the age interval r0,110s against the index values estimated by
the IFR model.

We proceed to compare fits for the year 2010 from the IFR model with the Global Fréchet
Regression (GFR) model with the 6´dimensional predictors, as well as with three separate
Local Fréchet Regression (LFR) models, where the three important predictors Fertility Rate,
GDP per capita and Health Expenditure are considered in each LFR model separably as uni-
variate predictors. The global Fréchet model suffers from model-induced bias, while the local
linear Fréchet Regression models with individual univariate predictors lack relevant informa-
tion from other variables. The IFR model is a semiparametric approach that combines the
strengths of both of these models. Figure 4 displays the observed as well as the fitted distri-
butions (as densities) for these five models. The superiority of the IFR model compared to the
local linear Fréchet fits, using only the relatively important predictor variables individually
indicates that all predictors simultaneously play an important role in the overall prediction
through the estimated index xJpθ̄. To study the effect of the most important predictors, GDP
per capita, fertility rate, and Health expenditure percentage on the age-of-death densities, we
fitted the IFR model when varying the value of one predictor, while keeping the other two
fixed at their mean levels. For example, the left-most panel of Figure 5 illustrates how the
age-at-death density changes with increasing levels of GDP per capita, while the other two
predictors are kept fixed. The fitted densities are color coded such that blue to red indicates
a smaller to a larger value of GDP. We find that smaller values of GDP are associated with
left-shifted age-at-death distributions for the population. For increasing levels of health ex-
penditure per capita and fertility rates, the age-at-death densities also shift rightwards, but to
a lesser extent.

Finally, to illustrate the out-of-sample prediction performance of the proposed IFR model,
we randomly split the dataset into a training set with sample size ntrain “ 20 and a test set
with the remaining ntest “ 20 subjects. The IFR method was implemented as follows: For
any given unit direction θ̄ P Θ̄, we partition the domain of the projections into M equal-
width non-overlapping bins and consider the representative observations X̃l and Ỹl for the
data points belonging to the l´th bin. The “true” index parameter is estimated as pθ̄ as per
equation (2.11). We then take the fitted objects obtained from the training set and predict
the responses in the test set using the covariates present in the test set. As a measure of the
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Fig 4: Figure displaying the observed and predicted smooth densities. Clockwise, from top-
left the observed densities (OBS), the fitted densities using Index Frechet Regression (IFR),
Global Fréchet Regression (GFR), and Local Fréchet Regression (LFR). The predictors used
for the LFR fits are Fertility Rate (LFR1), GDP per capita (LFR2) and Health Expenditures
(LFR3), respectively. Densities are color-coded (blue to red indicating low to high) by the
mode of the age-at-death distribution.
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Fig 5: Figure showing the effects of the significant predictors X3 “ GDP per capita, X2 “ Fertility
rate, and X5 “ Current health expenditure. The left panel shows the change in density with changing
value of X3 from low (blue) to high (red), when X2 and X5 are fixed at their mean level, and analo-
gously for middle and right panels.

efficacy of the fitted model, we compute the root mean squared prediction error (RMPE) as

RMPE “

»

–

1

Mntest

Mntest
ÿ

i“1

d2W

´

Ỹ test
l , m̂‘pX̃test⊺

l
pθ̄,pθ̄q

¯

fi

fl

1{2

,(S.46)

where Ỹ test
l and m̂‘pX̃test⊺

l
pθ̄,pθ̄q denote, respectively, the lth observed and predicted responses

in the test set, evaluated at the binned observation X̃test
l . For any two distribution objects
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F,G P pΩ, dW q, the Wasserstein-2 distance is given by

dW pF,Gq “

ż 1

0
pF´1psq ´ G´1psqq2ds,

where F´1 and G´1 are the quantile functions corresponding to F and G respectively. We
repeat this process 500 times, and compute RMPE for each split for the subjects separately.
The mean and sd of the RMPE over the repetitions are shown in Table 1 for the IFR method,
as well as for the GFR and individual LFR fits.

TABLE 1
Mean and sd (in parenthesis) of the RMPE as given in (S.46) comparing the performance of various Fréchet

regression models: Index Frćhet Regression (IFR), Global Fréchet Regression (GFR), Local Fréchet Regression
(LFR). The predictors used for the three individual LFR fits are Fertility Rate, GDP per capita at PPP, and

Health Expenditure, respectively, as indicated in parentheses.

IFR GFR
LFR1

(on Fertility Rate)

LFR2
(on GDP

per Capita-PPP)

LFR3
(on Health

Expenditure)
0.178 (0.0552) 0.287 (0.0671) 0.491 (0.0605) 0.603 (0.0654) 0.339 (0.0565)

Using out-of-sample performance, the IFR model emerges as the best model, as the aver-
age RMPE of 0.178 is much lower than that of any of the other models.

S.4.2. Emotional well-being for unemployed workers: Compositional data as random ob-
ject responses.
We demonstrate the proposed IFR method for the analysis of mood compositional data. Com-
positional data are random vectors with non-negative components, where the components of
these vectors sum to 1. With a square-root transformation of the components, compositional
vectors can be transformed to unit vectors that lie on the positive segment of a sphere Sp´1

if the compositional vectors are p´dimensional [8, 9]. Thus one can represent compositional
data as manifold-valued objects that lie on the surface of a sphere. The data used for this ap-
plication were collected in the Survey of Unemployed Workers in New Jersey [6] conducted
in the fall of 2009 and the beginning of 2010, during which the unemployment rate in the US
peaked at 10% after the financial crisis of 2007 – 2008; similar data were used to illustrate
longitudinal compositional methods in [3]. We note that here the object-valued responses lie
on a manifold (sphere) with positive curvature. Thus the sufficient (but not necessary) con-
dition for assumption (A5) that the underlying metric space behaves like a CAT(0) space is
not satisfied. This example thus provides a check on the behavior of IFR when the random
objects are situated in a positively curved space.

Unemployed workers belonging to a stratified random sample were surveyed at entry into
the study, where we analyzed the data for n “ 3301 workers with complete measurements.
A key variable in the survey was the proportion of time the workers spent in each of the
four moods: bad, low/irritable, mildly pleasant, and very good while at home; we use this 4-
dimensional compositional vector as the response. Formally, the composition measurement
of interest is Z “ pZ1,Z2,Z3,Z4q⊺, where Zj is the proportion of time a worker spent in the
j-th mood when at home, j “ 1, . . . ,4. The square-root transformed compositional data

Y “ pY1, Y2, Y3, Y4q⊺ “ p
?
Z1,

?
Z2,

?
Z3,

?
Z4qJ,

lie on the sphere S3. We adopt the geodesic metric on this sphere dgpy, y˚q “ arccospyJy˚q.
These square root transformed compositional data are treated as the object responses in

a regression model with the following 10 baseline predictors obtained from the question-
naire, reflecting various socio-economic and demographic information: (1) life satisfaction
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(discrete with levels 0-3, 3 meaning most satisfied) (2) highest education level (discrete with
levels 0-5, indicating high school or less, high school diploma or equivalent, college educa-
tion, college diploma, graduate school, and graduate degree, respectively), (3) marital status
(discrete with levels 0-5, indicating single (never married), married, separated, divorced, wid-
owed, and domestic partnership (living together but not married), respectively), (4) number
of children (discrete), (5) the number of people in the household (discrete), (6) total annual
household income (continuous), (7) hours per week working at the last job (continuous), (8)
how the last job ended (discrete with levels 0-2 lost job, quit job, and temporary job ended,
respectively), (9) weeks spent looking for work (continuous), and (10) credit card balance
(continuous).

For these data, the IFR model produces the coefficient estimates

pθ̄ “ p0.483,0.134,´0.166,´0.190,0.042,0.303,0.075,0.230,0.662,´0.307q⊺.

The estimated coefficients can be used to obtain interpretable visualizations of the effect
of the individual predictors on the compositional response through the (estimated) single
index link function, which can further lead to effective inference for the proposed IFR model.
For example, we illustrate below (Figure 6) the effect of the predictor “life satisfaction”
on the mood compositional data. To this end, the IFR model is fitted over varying levels
of life satisfaction, from low (0) to high (3), while the other predictors are fixed at their
median levels. We observe an association between a lower life satisfaction level with a higher
proportion of bad mood, while a higher value of life satisfaction is associated with a better
mood when all of the other predictors are fixed.
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Mood
composition

Bad mood Low/ irritable

Mildly pleasant Very good mood

Fig 6: A stacked barplot showing the effect of life satisfaction, from Level 1 (0) to Level 4
(3), on the mood composition, when all the other predictor levels are kept fixed. A higher life
satisfaction level is associated with a larger proportion of good mood.

The predictive performance of the model is computed based on the root mean prediction
error (RMPE) as

RMPE “

»

–

1

Mntest

Mntest
ÿ

i“1

d2g

´

Ỹ test
l , m̂‘pX̃J

l
pθ̄,pθ̄q

¯

fi
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1{2

,
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TABLE 2
Mean and sd (in parenthesis) of root mean prediction error (RMPE) over 200 repetitions, as obtained from the

local fits of the index Fréchet regression (IFR) model, the global Fréchet regression (GFR) model, and four
individual local linear Fréchet regression (LFR) models incorporating univariate continuous predictors. Here,

ntrain and ntest denote the sample sizes for the split training and testing datasets respectively.

ntrain ntest IFR GFR LFR1 LFR2 LFR3 LFR4

2201 1100
0.4779

p0.0720q

0.7661
p0.0418q

0.6771
p0.0021q

0.7220
p0.0450q

1.1127
p0.0910q

1.0122
p0.0810q

where Ỹ test
l and m̂‘pX̃J

l
pθ̄q denote, respectively, the lth observed and predicted responses in

the test set, evaluated at the binned average X̃l. We repeat this process 200 times, and compute
RMPE for each split for the subjects separately. For comparison purposes, we fit the data with
the other applicable object regression methods, namely, the global Fréchet regression (GFR)
method with the four-dimensional mood-compositional data as the response residing on the
surface of the sphere S3 Ă R4, coupled with the 10-dimensional predictors; and individual
local linear Fréchet regression (LFR) methods accommodating the afore-mentioned object
response, while incorporating the continuous predictors total annual household income, hours
per week working at the last job, weeks spent looking for work and credit card balance as
univariate predictors. Like nonparametric regression, the LFR method does not work for
discrete/ categorical predictors. We denote the results from the four individual univariate
local regression by LFRj , j “ 1,2,3,4, respectively. Table 2 summarizes the results.

We observe that the out-of-sample prediction error is quite low. In fact, it is very close
to the average fitting error p0.351q, calculated as the average distance between the observed
training sample and the predicted objects based on the covariates in the training sets, which
supports the validity of the proposed IFR models.

Since in this example the object-valued responses lie on a manifold (sphere) with positive
curvature, the sufficient (but not necessary) condition for assumption (A5) that the underly-
ing metric space behaves like a CAT(0) space is not satisfied. However, the numerical perfor-
mance of the IFR method is quite good, suggesting a certain degree of model robustness of
the IFR method.

S.4.3. Additional results for the analysis of ADNI neuroimaging data.
Continuing from Section 5.1 in the main manuscript, we illustrate the 95% confidence region
for the coefficients pθ1, θ2, θ4q of the predictors: stages of the disease, age, and total score in
a 3-dimensional plot in Figure 7.

S.4.4. Additional simulations for Euclidean responses.
Here the object response of interest is assumed to lie in the Euclidean space. For generating
the predictor vectors we consider a 5´dimensional vector distributed as truncated multivari-
ate normal distributions, where each of the components is truncated to lie between r´10,10s.
The components are assumed to be correlated such that X1 correlates with X2 and X3 with
r “ 0.5, and X2 and X3 correlate with r “ 0.25. The variances for each of the five compo-
nents are 0.1. The empirical power against the sequence of alternatives in equation (3.10)
increases steeply (see Figure 8) as we deviate from the null hypothesis in equation (3.9) in
Section 3 of the main manuscript, especially corresponding to higher sample size and under
identity link.

The empirical power function, as we deviate from the null hypothesis in equation (3.9) is
computed and illustrated in the left panel in Figure 8. Empirical evidence suggests that the
proposed test is consistent for a higher sample size of n “ 1000, and leads to the correct
nominal level of the test.



32

Fig 7: The figure shows the 3-dimensional plot for the 95% confidence region of pθ1, θ2, θ4q:
the coefficients of the effects of the predictors- age, total score, and stage of the disease,
respectively.
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Fig 8: Simulation for Euclidean response using different link functions showing the empir-
ical power function for Euclidean responses. The black, red, and blue curves correspond
to the identity, square, and exponential link functions used in the data-generating mecha-
nism, respectively, while the dashed and solid patterns correspond to the varying sample
sizes n “ 100 and n “ 1000, respectively. The level of the tests is α “ 0.05 and is indicated
by the dashed line parallel to the x-axis.

The consistency of the estimates is illustrated in Table 3 based on 500 replications of the
simulation scenario. Further, the performance of the proposed method is compared to the
classical Euclidean single index model fits. To this end, the R package np was called from
Julia, for fitting the classical single index regression to the simulated Euclidean responses.
The prediction performance of the classical single index fits, denoted by NP, is compared
with that of the IFR method, as well as with a Global Fréchet Regression (GFR) method
and four separate Local Frécet Regression (LFR) fits. The GFR method utilizes the multi-
variate predictors while the four LFR methods treat each of the four-dimensional predictor
components as a univariate predictor individually. Note that in all of the methods- NP, GFR,
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TABLE 3
Table showing bias and variance of pθ̄ (measured in radians) based on 500 replications for a Euclidean vector

response. The predictors X1, . . . ,X5 are generated from a truncated multivariate normal distribution.

link1 (x ÞÑ x) link2 (x ÞÑ x2) link3 (x ÞÑ ex)
bias dev bias dev bias dev

n “ 100 0.013 0.061 0.025 0.048 0.037 0.029
n “ 1000 0.006 0.021 0.014 0.019 0.013 0.009

LFR - binning is not required. The mean and sd of the root mean prediction error (RMPE)
over 200 Monte Carlo simulation runs are reported in Table 4. The data is simulated using

TABLE 4
Table showing the mean (sd in parenthesis) RMPE for various regression methods for simulated Euclidean

responses. The methods compared are index Fréchet regression (IFR), classical Euclidean single index
regression using the R package “np” (NP), global Fréchet Regression (GFR) with the 4-dimensional predictor,

and four individual local linear Fréchet regression (LFR) models that treat each predictor components as a
univariate predictor. The sample size is fixed at n “ 1000 and the RMPE are computed over 200 Monte Carlo

simulation runs.
Identity link Square link Exponential link

IFR 0.0255 (0.0110) 0.1383 (0.1031) 0.1972 (0.1205)
NP 0.0187 (0.0201) 0.1117 (0.1077) 0.1578 (0.0442)

GFR 0.0003 (0.0018) 0.1465 (0.0299) 0.2181 (0.0748)
LFR1 0.0788 (0.0208) 0.2686 (0.0558) 0.3342 (0.1882)
LFR2 0.0784 (0.0204) 0.2627 (0.0540) 0.3237 (0.1912)
LFR3 0.0617 (0.0209) 0.2774 (0.0555) 0.3162 (0.1892)
LFR4 0.0730 (0.0197) 0.2694 (0.0561) 0.3664 (0.1888)

three different generating mechanisms - the identity, squared, and exponential link functions,
and the sample size n “ 1000 is considered. For the identity link function, i.e., when the
simulated data is generated according to a linear model, the GFR method gives the lowest
prediction error. This is indeed expected since the GFR boils down to a linear regression
model when the object data are Euclidean. For other situations the NP method for the classical
single index model outperforms the other methods, however, the proposed IFR method proves
competitive with a comparable magnitude of the prediction error. The boxplot of the RMPEs
for the above situations is shown in Figure 9.
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