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Section S.1 contains the proofs of the main results in the paper and sev-
eral auxiliary lemmas. The technical assumptions required to obtain the uni-
form rate results for the local linear Fréchet regression estimator that is uti-
lized to obtain an estimate of the object link function uniformly across the
single-index values and the direction parameter are listed in Section S.2. A
detailed remark regarding the critical assumption (AS5) in Section 3 in the
main article can be found in Section S.3. Additional data analysis results are
in Section S.4 for human mortality data and data on a Riemannian manifold,
specifically on the positive segment of a sphere as observed for mood compo-
sitional data. This section also contains additional simulations for the special
case of Euclidean responses and additional numerical results for resting-state
fMRI image (ADNI) data.

S.1. Proofs and auxiliary results.
In this section, we provide the proofs of the results in Section 3 of the main manuscript and
state and include several auxiliary lemmas.

PROOF OF PROPOSITION 2. By assumption (A2), mg(x'8,0) is a continuous function
of @ for all § € © for almost all x on the compact ball ©. This implies mg(x'9,0) is uni-
formly continuous in @ € © for almost all x. That is, there exists § > 0 for any € > 0 and
61,05 € O such that |0; — 0| < 6, implies d (mg(x ' 61,01), ma(x'62,05)) < < for almost
all x. This implies the uniform continuity of d?(y, mg(x'8,0)) as a function of @, for all
6 € O for almost all x, . To see this, let 81,05 € O such that |@; — 85| — 0, and observe

|d*(y, me(x"01,01)) — d*(y, me(x' 65,65))]
= |d(yam®(XTé1,9_1)) + d(yam®(XT52,9_2))| |d(y,m®(XT9_1,§1)) - d(@/7m®(XT9_2,52))|
< (|d(y, ma(x"61,81))]
+ |d(y, ma(x" ,02))|) |d(y, me(x" 01,01)) — d(y, me(x" 62,0,))|
<2D|d(y, mg(x'61,6:)) — d(y, mg(x" 62,6,))]
<2Dd (mg(x'01,01), mg(x"02,05)) — 0.

This holds for almost all x,y. The second inequality uses the assumption that ) has
a finite diameter D. The last inequality follows from the triangle inequality. The above
technique will be used repeatedly in the subsequent proofs. By bounded convergence,
E(d?*(Y,mg(X'0,0))) is a continuous function of @ for all @ € ©. Hence the map 6 —
H(), 6 € O is continuous.

Note that

H(9) =E[d*(Y,mg(X'8,0))] = E[E(d*(Y,me (X8, 6))[X)]
= E[E(d*(Y,mg(X'0,0) X" 8p)].
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The last equality is true since the single index model mg depends on X only through the pa-
rameter Oy € ©. Now, according to the single index Fréchet regression model mg (X' 89, 0o)
is the conditional Fréchet mean at XTOO Since the conditional Fréchet mean is assumed to
be the unique minimizer of the conditional Fréchet objective function, for each 6 € © with
0 i 00’

E[d*(Y,ma(X"0,8))X 00 > E[d*(Y,ma (X 0o,00))|X " 00],
where the strict inequality holds on the set R(8) = {X € R? : mg(X '8, 8) # mg (X' 0p,00)}.
Thus, on the set R(0),

H(6) = E[E(d*(Y,me(X"6,8))X" o]
> E[E(d?(Y,mg(x" 89,00))) X" 00] = E[d*(Y,mg (X" 80,00))] = H(b).

Further, under assumption (A0), this set has positive probability, i.e., P(R(8)) > 0. Denoting
1if X e A,

the indicator function as [ (A4) = , , it follows that
0 otherwise

H(0) E[E(d*(Y,mg(X"0,0))|X"80)I (R())] > H (o).
Thus 8y is the unique minimizer of H (@), for all § € ©. O

Throughout the following, v~ denotes weak convergence as per [11], £*°(Q2) the space of
bounded functions on §2, | - | the Euclidean norm on R? and | - | 7 the Frobenius norm.

Lemma 1 is adapted as stronger version of Theorem 1 of [1]. Uniformity over the sin-
gle index value ¢t was already required in [1] to achieve uniform convergence of local linear
Fréchet regression. In the single index model framework, there is a new parameter vector 6,
the presence of which requires an additional uniformity requirement over 8. The lemma can
be proved following a similar argument and we provide a brief sketch of the proof at the end
of this section.

PROOF OF THEOREM 1. It is shown that the map @ — H (@) is continuous and 8y and

6 are the respective unique minimizers of H(6) and V;,(8). By Corollary 3.2.3 in [11] it is

then sufficient to show the convergence of sup |V,,(8) — H(0)|, to zero in probability. To
]

do this we first show that V,, v~ H in () and apply Theorem 1.3.6 of [11]. The weak
convergence result is proved (see Theorem 1.5.4 of [11]) by checking that
(C1) V,,(8) — H(@) = op(1) forall G e O,
(C2) V, is asymptotically equi-continuous in probability, that is, for all €, 7 > 0, there exists
§ >0 such that, limsup P| sup  |Vp(01) — Va(62)| > €| <.
n—w 16:—6:||<s

We first express the difference between the sample and population objective functions as
the sum of two differences by introducing the intermediate quantity V;,(-) as described in

equation (2.7). Recalling V;, () := leMl dQ(Y,m@(Xl 0,0)),
(S.1) [Vi(8) — H(B)] = [Va(8) — Vo (B)| + [Vn(8) — H(8)].

Now,

Va(8) —

M
i D Tl 0.0) B o 8.8))| - o),
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by Weak Law of Large Numbers, since Vn() can be seen as an i.i.d sum. As for the first term
in (S.1),

The steps to obtain (S.2) are similar to those followed in the proof of Proposition 2, using the
total boundedness of €2 and properties of the metric d.

It remains to show 7 M d(rng (f(lTé, 0), m@(f(lTG_, 0)) £, 0. Observe that,

M
1 . oT A = cT=~ =
17 2 A0he(X; 0,0),me(X, 6,0))
=1
1 X _ _ 1
(S.3) <MZ supsup d(rmg(t,0), mg(t,0)) = MZ Op(ay) = op(1),
=1 06 't =1

where a,, is the rate of uniform convergence for the local linear Fréchet regression esti-
mate, as given in equation (3.1) in the main manuscript for Lemma 1 [1]. We use here that
the Op terms in the sum are uniform in /. Hence the result follows. Thus we have (C1).
The finite distribution converges weakly since, for any k€ A" and 01, ...,0; € ©, we have
(V(B1), ... Vi (B)) o (H(B1), .., H(By).

It is also important to observe that, by virtue of Lemma 1,

(S.4)
6O
1 M ~T~ = ~T - = 1 M — —
%gM;W%%&@WW&W<M§¥@MWWﬂMWﬂ)
= Op(ay).

For (C2), let e, >0 and 81,0, € O.

(S5 P| sup ‘Vn(él) — Vn(Gg)’ >€
H9_1—§2H<(5

<P| swp  [Vi(@)-Ta@)|> S|+ P| s [Va@) - V@) >
 16,—u)<s 16,621 <5 3
+P| s V(@) = Va(@)] > 7|
[6:—62|<d 3

Using (S.4), the first two terms of (S.5) are Op(a,) = op(1), uniformly in 6; and 5 respec-
tively. For the third term,

(S.6) P

sup
[61—02||<o

Vo(61) — Nn(éQ)) > 6]



M
<P sup 2D i Z d(m@(f(lTO_l, 0_1),m@(XlT§2, 52)) > —
|6, —02] <5 =1
By the assumption on mg being Lipschitz continuous with Lipschitz constant L (see as-
sumption (A2)),and X having a bounded support, (see assumptions (R1)-(R2)), choosing
0 < g5z we have, (S5.6) — 0, as § — 0. The asymptotic equi-continuity result for the
stochastic process V;,(0), 8 € © follows. O

PROOF OF COROLLARY 1. For any x € R?, we observe that, by the triangle inequality of
the metric,

(S.7) d(1ey(x"0,8), me(x B, Bp))

<d(ing(x'0,0),me(x'0,0)) + d(mg(x" 8,8, me(x" 8o, 8)).
From Lemma 1 we know that

Supsup d(1hg(t,0),me(t,0)) = Op(as) = op(1),

where a,, is as defined in equation (3.1) in the main manuscript. Since 0 lies in a small
neighborhood around O¢ for n large enough, the first term of (S.7) converges to zero in

probability. Note that by assumption (A2), mg is continuous. Since, by Theorem 1 Eﬂ
6o, using continuous mapping theorem, the second term of (S.7) also converges to zero in
probability. The result follows using Slutsky’s theorem. O

Before proceeding with the proof of the asymptotic normality for 6, recall that 6 =
(QI,B)T, for all @ € ©. It is important to note that the full vector @ can be written as a
function of the last (p — 1) elements @ since the first element #; of O can be written as
01 = v/1 — |0]2. Thus we can view H(-), V;,(-), and V}, () to be effectively only functions
of @ € O, respectively. Further, since the map H : @ — @ is continuous, assumption (A2)
implies the L—Lipschitz continuity of the regression function mg, as a function of 6 € ©.
Also note that 8, 6, and 6 are minimizers for the criteria functions H(-), V,(-), and V,,(-)
respectively. These are continuous as a function of 6, the latter two almost surely.

It is also possible to define the partial derivatives of each of the criteria functions with
respect to the components of @ in terms of limits of finite differences. The following function
fxy : RP71 — R was defined in Section 2.3,

Fey(0) = fay(Oa,...,0,) = d* (y,me(x" (01,...,0p,...,0s,...,60,))), 1,5 =2,....p,
and the first and second ordered forward finite differences of fy , are

(S.8)
Va(X,0,0,) = fay (B O +ay. o 0,) — fry (B2 o\ Ops ... 6p),

V2(X, Y, 0ry 05) = fry(02, - 0+ ayen o 05+ ay...0p) — fry(B2,.. 00 +a,....06...,0)
— fay(O2s e Oy O ay o 0,) + oy (B Oy B, 6)).

Define the population derivatives as limits of difference quotients as follows,

oH(O) . 1 _

29, .—;I_I)r(l) EE(VE(X,Y,HT)), r=2,...,p,

2

0"H(6) = lim 1 E(v g(X,Y,GT,HS)), rs=2,...,p.

00,00, = =50 &2
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Then
(S.9)
GH(0)  0H(0)\' ,, 0°H(6) i
. AZH(6) = th
AH(O) < 392 ’ a9}0 ' ( ) 897“693 r,s:2,...,p7 ™
OH(O) ._ 1o H(02,00 00 t8,00,)—H (02,0000,
ae(T bi= 50 ( . 2 | .

oHe) =;i_1)1[1)g%[H(Gz,...,HT+€,...,93+€,...0p)—H(Hg,...,QT+E,...,05,...,9p)

forr,s=2,...,p.
The corresponding empirical estimates are given by

oV, (0) 1 . -
=T v ()(la}ﬁa 9 ), r= 2,. ., D,
20, hM &
62‘/ M
00, 69 - Z XZ’YLGMG) §=2,...,p,

where
Vn(%,9,00) = fay O, 0r + hyo o 0p) — Fry(B2, o 00y, 0,),
V2(%, 1, 0r,05) = fxy(Bas- . Or+hyor B+ Dy 0))
(S.10) — fay(Boy o0+ Ry B, 0))
— fxy(B2y o 0y O+ Ry 0))
+ ey B2y Oy sy 0y,

and

Fxy(0) = fxy(Ba2,...,0,) = d* (y, (X (01,...,0r,...,05,0,))), 7,5 =2,...,p.

Thus
(S.11)
i@\ 2 *Vu(6) ,
= A n = ) th
( 26, : ae  A7Va(6) 20,005 ) ),
V() . Vi(a,....00+h,.. ,,,) Vi (02,00,

20, )
oVa(6) #[Vn(ﬂg,...ﬂr—l—h,...,@s+h,...0p)—Vn(ﬁg,...,ﬁr+h,...,95,...,9p)

00,0,
V(B 0n,.. O+ a,...,0,) +Vn(eg,...,er,...,es,...,ep)],

for r,s,= 2,...,p, where h = h(n) is a tuning parameter depending on n such that when
n — o0, h(n) — 0, and Mh?(n) — co as in assumption (A6).



In the same vein, we define the derivatives for the intermediate objective function f/n()
forr,s=2,...,p,
(S.12)

~ ~ T ~
- [V,(8)  aV.(0) 25 oy 0*V,(0) ,
AV, (0) = ( 28, a0, , A°V,(0): 20,20, 2 , with
r,8=2,...,p

Vu(0) . Vi(02,....00+h,....0,) =V (0,...0,,....0,)
o0, -

oV (6) #[Vn(GQ,...,GTJrh,...,HS+h,...0p)* (O Oy Ry O, 0)

ov,(0) 11 i .
Y vh<X17Y2707‘)7 74:2,...7]?,
0 hMl:1
2V, 0) 11 o
= ﬁinh(XZaYiaeraas), 7“,3:2,...,]).
00,00, h Ml:1

The relevant limits are assumed to exist.

PROPOSITION S.1.1.  Under assumptions (A2) and (A6),

| A%V, (0) — AZH(0)| 5 0 for any 6 € ©.

~ A2/ 277 T
PROOF. E(A%V,,(6)) = (E(O;g@),...xa(@;igi%) Forr=2,....p,

2y 11 Y - 1 1 & G O
E(a Vi (9)) = E( Z V%L(XZ»H,&,HS)) = ﬁE (M V%(X[,Y,er,es))
I=1 =1

00,00, h? M
1 9,5 0?H ()
= o E(TRLT1L6,.00) » S ash -0

Similarly, for r,s =2,...,p,

02V, (6) 113 1 Ve -

Var(m)z\/ar thl:Zlvh(XhYlagraes) vaaf(vh(xl,yﬁrﬁs))
Now from the definition of V%(ffl, 0,,05) in (S.8),
_ _ 2

(S.13) Var (V3 (X0, Y1, 6,,04) <E((v%<xz,yz,erjes>) >

- E[dQ(?},m@(XZT(Hl,...,GT +hye0s+h,...0,))
— PV, me(X] (01,...,0, +h,....0....0,)))
— PV, me((X, (01,...,00,... .0, +h,....0,)))

2% < 2
+ &2V, me(X, (91,...,er,...,as,...,ep)))]
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Using the fact that for any two random variable U and V, E(U + V)? < 2E(U?) + 2E(V?),

(S.14) Var (vi(f{,,ffl, 07«,95))
< zE[dQ(E,m@(X,T(el,...,er +hy i 0s+h, ... 0,)
2(v < 2
— (Y, me(X, (01,....0, + h,...,&s,...,ﬁp)))]
v 2E[d2<1>l,m@(5<f(91, Oy Ot Ry 0,)))

~ ~ T 2
— (Y, me(X, (91,...,9“...,98,...,ep)))]
< 16D?L2h2.

The last inequality follows using the same technique as in the proof of Proposition 2, em-
ploying the triangle inequality and fact that for any u, v € 2 one has d(u,v) < D for some
D > 0 due to the total boundedness of the space (€2, d) with diameter D; L is the Lipschitz
constant for mg from assumption (A2). Then

16D? >
Ch2M

As long as h = h(n) — 0 such that h?M =— o0, as n — oo (assumption (A6)), we
have Var (V%L(f(l, Y], QT,GS)) — 0 for any 0. Combining these we have Var(AZ2V,(0)) =

A(h(n)) — 0 for h = h(n) — 0 such that h2M — o0, asn — o0, where A = ((ars))rs=2.... p;
with

Var (V%(Xhﬁ,&,ﬁs)) = MLMVM (V,Ql(f(l,l}l,ﬁr,@sD <

The result follows. O

PROPOSITION S.1.2.  Under assumptions (A2) and(A6)
(S.15) VM(AV,(60) — AH(60)) 2 N(0,5(60))
where 3(6o) = ((0+5(00)))r.s=2,...p With

lim Var (1v.(X,Y,60,)) ifr=s

s 00) = e—0
ors(6o) hn% Cov( <X,Y,6o,), 1V6(X,Y,6?05)) ifr+#s

PROOF. Writing 8¢ = (6pe, . . . ,Hop)T € O and recalling

oV, 90r 1
aeor = ;E Xl71/1790’l“)

we observe that %{?f”) is anii.d sum of M terms Vh(f(l, Y, 60r))i=1,....m- Note that

Vi (Bor 1 o - H (6o, ,
E M =E| -vn(X;, Y, 00,) | — OH (6or) as h = h(n) — 0, under assumption (A6).
890r h a‘907”
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Thus, E(AV;,,(60)) — AH () as n — o0 and h = h(n) — 0. Further, under assumption
(A6),asn — oo and h — 0,

1 - -~ 1 -~ o (0p), ifr=s,
C —Vn(X1, Y7, 600r), = Vi(X;, Y, 005) | — .
v (h 2(X1, Y, bor) h n(X1 Y0, b )> {O’rs(go), otherwise.

PROPOSITION S.1.3.  Under assumptions (A0)-(A3),
16 — 60 = Op(M~"/2).
PROOF. Consider the probability P(v/M |6 — 0| > 2F) for a large L. We aim to show

that this probability can be made arbitrarily small as L grows large. Let ,, = M /2. For any
n>0,

P(Hé — G| > ern) < Y P 'ra<[0-60|<2r,)+P (2”9 — 8] > n) .

j>L,2i"1r,<n

The second term goes to zero by the consistency of 0 to 6 according to Theorem 1. As for
the first term, define “shells" S; := {6 € © :2/"1r,, < |6 — 09| < 277, } so that

P(2 71, < |6 — 60| <2/r,) = P(€ S;).

As 0 minimizes V},(6) it follows that

P6eS;)<P (Sup (Vi (0) = Vi (60)) = o) .

6¢eS,
Now, |6 — 6o > 29~ 1r,, for 6 € S; implies by assumption (A1), that
(S.16) H(0) — H(80) 2 |0 — 60o|* 2 2% 22 for@eS;,
which implies Zug) |H(8) — H(6g)| = 2%~2r2. Thus, the event sup |V,,(8) — V,,(60)| = 0
€s;

I BGSJ'
can only happen if V;, and H are not too close. Let

Un(6) :=V,,(8) — H(8) for O € O.
It follows from (S.16) that
(S.17)

P <sup (Va(8) — Vi(60)) = 0) <P (sup (Un(8) — Un(60)) = 22j‘2M‘1>
0¢es; 0eS,;

<P ( sup (Un(0) —U,(60)) = 22j—2M_1)
0:|0—060|<2ir,

1
<1 E| su Un(8) — Un(60)) | .
9%-22 [9:9—001||)<2J‘rn( (9) ( 0))]

The last inequality follows using Markov’s inequality. Next, to control the term on the
right-hand side of (S.17) uniformly over small |@ — 6g|, define the functions gy :=
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d?(y,mg(x" @)) and the function class Ms = {gg — gg, : |0 — 00| < &}. Since by assump-
tion (A2), for every 61,05 € O,

ge, — 9o, < 2diam(2)L| 60, — 62| for some constant L > 0,

an envelope function for M, is Gs = 2diam(Q)LJ. Note that E(GZ) = O(6?). Let
N(e,Bs5(00),| - |) be the e— covering number for the ball Bs(0¢) := {0 : |@ — 6| < 0}
of radius ¢ centered at Bg, that is, the minimal number of balls of radius € needed to cover
the set Bs(6o) is N (g, Bs(60), | - ||). Since © < RP, we have [11],

N(e, Bs(0o), - [) < (05)”

3

Thus the entropy integral

1
J=J() = fo Viog Nz, B3(80), | - [)de = O(1).

Using Theorems 2.7.11 and 2.14.2 of [11] we have for small enough 4,

J[E(GY)]"”
S.18 E U, (0) — Un(8p)) | < =204
(S.18) LSFE)@( () ( 0))] Nili
Thus
(S.19) P27 Yy, < |6 — 60| < 2r,,)

2jrn
N M22i-2,2 22
The last equality is obtained by setting r, = M ~'/2. As a consequence,

P(VM|G-6o|>2") < Y G)J

j>L,25-1r,<n

/\

= (const.)27,

The sum converges to zero as L — o0 and the result follows. O

PROPOSITION S.1.4. Under assumptions (A2), (A3), (A4), and(A6)
VM(6 - 69) > N (0,A(60)),
where A(8) := (A2H(60)) " %(80) (AZH(6)) .
PROOF. Consider a Taylor expansion of f/n(-), with derivatives as defined in (S.8)—(S.12).

Under assumption (A6), for a suitable choice of the tuning parameter /(n) — 0 such that
Mh?(n) — o0, as n — o0, the Taylor expansion of the first order difference AV, approaches
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a smooth limit. The following arguments are similar to those demonstrating asymptotic nor-
mality of a ~multivariate Maximum Likelihood Estimator [4], using linearization [11]. As 8
minimizes V,,

0= AV, (0) = AV,(60) + A*V,,(8.)(0 — o)

(S.20) VM (6 —6y) = /M (Agffn(e*)) - (AVn(Bo) - AH(Oo)) :

where 0, € RP~! is such that, |0, —6g| < [6—8p|. The inverse (Agf/n(a*)) is assumed
to exist since @ is the minimizer of Vj,(-) and, V;,(-) being continuous, (Azf/n(é’*)) is non-
zero in a sufficiently small ball around 6. From Propositions S.1.1 and S.1.2,
VM(AV,(80) — AH(80)) = N(0,5(80)).
and A2V}, (0) is asymptotically consistent for A% H () for any 6. Thus,
A%V,(0,) — A%H(6,) 50,

for 0, as described in (S.20). Note that H(-) is continuous and A® H () assumed to be non-
zero in a small ball around 6. Now, since 0 is consistent for 8y and |0, — 0| < [0 — O],
under the assumption that A® H (-) is continuous, the result follows. O

We now proceed to show that the intermediate objective function Vn() has a positive
curvature near its minimizer.

PROPOSITION S.1.5.  Under assumptions (AO) - (AS5), there exist c1 > 0 and 1 > 0 such
that whenever ||6 — 0| <,

P[Va(8) = Va(8) — c1]6 - 8]* > 0] — 1,

PROOF. We apply assumption (AS) to each term in the summand in the definition of f/n()

First note that, since V,,(60) < V,,(0) for any 6 € ©, we have
V(0 +2a) — 2V, (0 + a) — Vi, (8) < V(0 + 2a) — 2V, (0) + V, (8) = Vi (0 + 2a) — Vi, (6).

Setting zp = f(lTé, a= X;a, U =~l~/l in assumption (A5) and considering 0 = 6 + 2a to be
any point in the neighborhood of @ such that 2a < 1, we have, using assumption (A5),

V(0 + 2a) — Vi (0) = Vi, (0 + 2a) — 2V, (0 + a) — V,,(0)

By the WLLN for the i.i.d sum of X,;X, , [ =1,..., M,
koo (1M )
“O0-0)T1=Y'XX, |(0—-06
w00 (4 3500

> gAl(e —6)T(6-6)>0.

Ry
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The last two inequalities hold under the assumption that the matrix E(X X ") is positive
definite with the smallest eigen value A; bounded away from 0. Thus, for ¢; = %\1,

PV (8) — Vi (8) — c1]|0 — 0]? = 0] — 1. O
It remains to show that

PROPOSITION S.1.6.  Under assumptions (A0)-(AS), (Ul)-(U3), and (RI)-(R2),
|6 — 6] = Op(a)?).

where a,, is as defined in for Lemma 1 [1].

PROOF. Define O := {0 :V,,(8) — e < V,(6) + €} for some € > 0. Then under proposi-
tion S.1.5, for any € O, [0 — 8] = Op('/?).
Now, from Lemma 1 [1], for any ¢ > 0, there exists My > 0 such that

P (CLEan(@) —V,(0)| > Mg) — 0, for all M > My and for any 8. Define
Ey :=sup{a, }|Vn(0) — Vi (0)| < My} and Ey = E
0O

and observe P(E3) — 0 for large enough M. Choosing € = Myay, 1in the above definition of
O, one finds that ©,,,,, is nonempty and bounded above, since 8 € Oy, and O, <
©. We claim that 6 € © 7,4, on E;. Suppose this is not the case. Then V,,(8) — Moa,, >

Vn(0) + Mya,. On Eq,
Vin(8) > Vi (0) — Moay, > Vi, (0) + Moa, > Vi, (8) >V, (6),

which is a contradiction, since  minimizes V,(0) : 0 € ©. Thus, feco Mya,, On I7, that is

Vi (8) — V,,(8) < 2Mya,,. Based on the positive curvature condition on V;,(-) around 6 given
in proposition S.1.5, on F/; we have,

P(c1]0 - 0]* < 2Moan) = P(c1]0 — 8]* < |Vo(6) = V,(6)]) — 1.
For L > 2My/cq,
P (agl/QHé 4 > L)
s (a;1/2ué 0 > L|E1) P(Ey) + P (a;Wué 4 > L]Eg) P(E»)
= Op(1), since P(E3) — 0 for large enough M.
Thus |6 — 0] = Op(al/?). O

PROOF OF THEOREM 2. Decompose
VM (O —0) =M —0) + VM6 — 6p)

From assumption (A4), M = M (n) such that Ma, — 0, as n — oo, with a,, as de-
fined in equation (3.1) in the main manuscript for Lemma 1 [1]. Thus, using Proposi-
tion S.1.6, the first term is op(1) and by Proposition S.1.4 the second term converges
in distribution to Z, where Z is a Gaussian random variable with mean 0 and variance
A(6p) = (A'?H(Oo))_l Y (6o) (A'QH(HO))_1 . The result follows. O
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PROOF OF PROPOSITION 3. The estimator 2(00) for 3(09) has elements
2(00) = ((6—7“8(00)))7',3:2,“";; with

—~ . R 2
S 72X Vi 00r) — (i S Tu (X0 i 00r)) i =,
S VR, Y, 00) V(X0 V7, Ops)
- (ﬁZ{Zl §h(X17Y790r)> (hiM P 6h,(Xl,Ylﬁos)) ,ifr #s,

> >
- g

ars (00) =

where the auxiliary quantities are defined as in (S.10). Given a p x ¢ random matrix
R, = ((Rl(]”))) fori=1,...,pand j =1,...,q, R, converges to a normal limit if vec(R,,)
converges to a multivariate normal distribution in the standard sense. We denote the asymp-

n)

totic expectation of RZ( ;| as i for all 7, j and the asymptotic covariance between Rg;l) and

RSE) as X;jrs. If R, has an asymptotic normal distribution, the distribution is characterized by
the mean 1o = ((p;5)) and covariance 3 = {¥;;,s} forany ¢,7 =1,...,pand j,s =1,...,q
Here p is p x ¢ matrix and Y. is a four-tensor.

The convergence in distribution described here can easily be understood in the standard
multivariate sense by vectorizing the matrices in question. Standard results from multivariate
statistics, specifically the delta method, extend immediately to the matrix case. Define the
following auxiliary quantities:

Ar5(60) = hm E (Vh X, Y7, 00,) Vh(Xl,ﬁ,QOs)>,

B, (60) —}ILILI}) E<Vh Xy, Y7, Oor )

C4(80) = lim E(vh Xl,Yl,005>

M
~ 1 ~ o~ o~~~
Ars(09) = i Z Vn(X1, Y7, 00,) Vi (X1, Y7, O0s),
I1=1
~ 1 M .
BT(GO)ZTZ h(XbYanr);
=1
~ 1 M .
Cis(60) = 777 D, (X1, Vi, bs),
I=1
_ 1 M - -
Ars(B0) = 577 2, V(X0 Y1,00r) V(X1 Vi bos),
=1
5 1 X -
BT(HO) TZ h(leyrlaQOT)v

. 1 o
Cs(Bo) = 177 Z Vi (X1, Y7, 00s).
=1

We denote the collection C = {4,s, B,,Cs} for r,s =2,...,p. Let g be a matrix-valued
function on the space of such collections with component functions ¢,5(C) = 4,5 — B,Cs
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forall r,s = 2,...,p. Note that g is clearly differentiable. For the collections

C(60) = {Ars(60). B+ (60). Cs(80)},
C(6o) = {Ars(60), Br(60),Cs(6o)}, and
C(60) = {Ar5(60), B-(60),C5(80)},
respectively, 2(00) =yg(C ( 0)), £(00) = g(C(6p)), and X(Bg) = g(C(Bo)). It is sufficient

to show that the collection v/M (C(8g) — C(8g)), appropriately vectorized, follows a multi-
variate normal distribution, whence an application of the delta method gives the final result.
Now,

VM(C(8o) — C(80)) = VM (C(Bo) — C(o)) + VM(C(80) — C(60)).

The first term in the sum is op(1) and the second term converges in distribution to N (0, D)
by applying the CLT to the i.i.d. random vectors in the appropriately vectorized collec-
tion C(@p), with D as the covariance matrix of the collection of vectors. Denoting the
Jacobian of vec(g) evaluated at C(6p) as J(C(6p)), applying the delta method leads to
J(C(80))D(J(C(6p)))T as the asymptotic variance of vec(Z(6g)). O

The above Proposition 3 implies that 3(8g) — %(6g) = op(1). Furthermore,

PROPOSITION S.1.7.  Under assumptions (A0) and (A2)-(A6),

sup (3(0) — £(6)) 5 0.
60

PROOF. Recall the definition of 3(0) = ((0,5(0)))rs=2,..p, Where, for any 6 € O,

111% Var (2v.(X,Y.6,)), ifr=se{2,...,p}

rs 0) = :
ors(0) lim Cov (1V(X,Y,0,), 1V=(X,Y,0,)), if r # 5,7, 5€ {2,....p}.

The estimator of 3(8) is given by 3(8) = ((6,5(8)))r.s=2

77777

ORI . e 2
i D 93X, Y2,0,) — (3 S 90X ¥1,0)) s if = se {2}
rs(0) = { 7t Sy Vn(X0, Y1, 00) V1 (X0, Y7, 6)
— (e 2 90 (X0 72,00) ) (i T TR0 70,05) ) if 7 # s € {2,).

To obtain elementwise convergence, we introduce an intermediate version, where for any
0c0O,as X(0) = ((6,5(0)))r,s=2,..p With

~  ~ ~ o~ 2
o Dt V3 (X0 V2 0) — (b S vn (R Y2,6,)) L ifr = se (2,0}
6-7”5(0) = ﬁzgl vh(Xl7E79T)vh(Xl7Y798)
- (ﬁ i Vh(Xz,Yz,er)> (ﬁ > Vh(XuYh@s)> ifr#s€{2,...,p},

where all auxiliary quantities are defined in (S.8)- (S.12). We focus on each element of the
covariance matrix separately. For € {2,...,p} and any 6 € O,

M
sup| 17 Z (X, Y1, 0,) — lim 1E(v5()~(l,17l,9r))‘

e—0 €

b\*—‘
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1 Mg 1
<sup|— N =90 (X,, V7, 0, X, V.6,

Sup Mgh n(X1,Y1,60,) — 7 E(Vh(X;,Y] ))‘
1 o 1 o
+sup |- E(V4 (X, ¥1,6,)) — lim E(VE(XZ,Y,HT))’

0, h e—0 €

The second term on the r.h.s. goes to zero as h — 0. As for the first term on the r.h.s., consider

M
1 1. ~
(S:21) sup M;hvh(xz,y,er) E(w(xl,n,er))‘
M M
1 1. 1 1
< n r) 7 s Ly
Slejl,p M;hvh(xzayﬁ) M;h (X1,Y7,6;)
1
3 V(X Y0, 0,) — S E(VA(X, Y,
+s‘191Tp Py n(X1,Y7,0,) (Va(Xq ))‘

The second term on the r.h.s. of (S.21) goes to zero in probability by a uniform LLN, as
V4 (X}, Y,6,)| < 2DLh, where L is the Lipschitz constant for mg in assumption (A2), and
we note that © is compact and Vv, (X, ffl, -) is continuous. For the first term on the r.h.s., by
the uniform convergence of Mg to mg from Lemma 1,

(S.22)

SUp ’§h()~(la%,9r) — V(X Y1,6,)| < (Mg (t,0),mg(t,0)) = Op(an),

where a,, is as in equation (3.1) in the main manuscript and the rate is uniform for all 1 < <
M and does not depend on M. Then

Sélp Z Xlayzye th XZ,YE,H )
' =1 l 1
since M h — oo, as per assumption (A6), and Ma,, — 0, as per assumption (A4), as n — o0.
Next we consider the product terms in the element-wise covariance. For r,s € {2,...,p},
and any @ € O,
M

~ o~ 1 ~ o~ ~ o~
Z XlaY79 Vh(Xl,}/l,es) - hQE(vh(XZaY7‘97‘)vh(Xl)}/lv€8))‘

M
1 ~ o ~ o~ o~ .
< X, },6,)9, (X, V1,6, (X1, V2, 0,) V1 (X, Vi, O
Gsug) hQMl_Z;vh( ! )VR(X1,Y7,05) — hQMZVh 1,Y1,0:) Vi (X )
M
+ sup iZivh(fh Y1,60,)Va(X1, Y, 05) — iE(Vh(fil Y1,0,)V (X1, V1, 65))
0T795 Ml:1h2 9 »vr ) ) S h2 9 »r ) ) S *

Again, by a similar argument as above, the second term on the r.h.s. goes to zero in probabil-
ity. As for the first term on the r.h.s.,

(S.23) sup ’W(Xz,ﬁ,@rﬁh(xl,ﬁﬁs) — (X1, Y1, 0,) V5 (X1, Y, 05)

zesug)H@h(Xl??veT) - Vh(f(l,ﬁ,er)][§h(5([,)~/,es) - Vh(il,ﬁ,es)]
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+ Vi(X, Y1, 0,) V(X0 Y2, 05) + Vi (X0, Y1, 05) U (X0, Y7, 67
(S.24) — 2V4(X1, Y1, 60,) Vi (X0, V7, 6)|
The first term on the r.h.s. of (S.23) is Op(a2) by (S.22), observing that

sup |[9n (X0, 2, 6,) = 90 (X ¥, 00119 (K1, Vi, 04) = (X0, 72,6,

< S;IP ‘W(Xz,ffﬁr) — vu(X,Y7,6,) Un(X1,Y1,05) — Vi (X, Y3, 05)] .

As for the second term on the r.h.s. of (S.23),
Sug\vh(f(l,fﬁ,9r)§h(5(l,57l,93) + Vi(X, Y1,04)V1(X1, Y1, 6,

7Us

(S.25) —25,(X1, Y7, 0,) V1 (X1, Y7, 6,)|

< SU%) ’Vh(thfz,@r)@h(xz,?,@s) — (X1, Y7, 0,) V1 (X, Y7, 65)

+ 98115 ‘vh(xl;?7as>§h(ffl70r) — (X1, Y1, 0,) V1 (X, Y7, 05)
= sup [73(X0, Y1, 0.)[94 (X0, Y1, 602) = T (X1, Y1, 0,)]
+ qug) ’vh(Xlaﬁags)[ﬁh(XlaﬁaeT) - Vh(Xl,%,er)]‘ .

From (S.22), and using the fact that supy, 1V1(X;, Y3, 0;)| < 2DLh is bounded for j = r,s,
for any r, s € {2 ..,p}, both terms in (S. 25) are Op(han) Combining these results,

M

XZ?Y79 Vh(Xl,ﬁ,es) - h Z vh Xl7n70 )Vh(Xl,?,es)
=1 =1

h2M

= sup‘

M
th Z vh XZ7Y79 vh<Xl7}/2707">][§h(Xl7Y708> - vh(leifl?HS)]

+vh(Xhi/)0T)§h(Xl)Y798) + vh(Xhi/)GS)ﬁh(lei}lueT) - QV}Z<X[,Y/[,97»)V}Z(X[,Y/,05)

=0p(a2/h2) + Op(an/h) 50,

where assumptions (A4) and (A6) imply hM — oo and Ma,, — 0 as n — co. Finally, plug-
ging into the elementwise definitions, by decomposing

(5.26) sup [6,5(0) — 0r5(0)| < sup |6,5(0) — G75(0)] + sup |5,5(0) — 015(6)| L 0,

7‘765 07‘7 s Vs

the result follows. O

PROPOSITION S.1.8.  Under assumptions (A2), (A4), and (A6),

sup|| A2V, (0) — AZH(9)| 5 0.
0O
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PROOF. Observe

(8.27) )
sup| A*V,,(0) — A®H(0)| < sup| A*V,,(8) — A®V,,(0)] + sup| A*V,,(8) — A*H ()|
[I5S] 0e© 0e©

and for the second term on the r.h.s. of (S.27), consider the difference between the second
order partial derivatives

| EVa(6)  O*H(6)
os | 00,00, 00,00,
— 1§1v2(}2 ¥,0,,0,) — lim ~E(V2(X, Y, 0,,0,))
798}}2 M = h2 h Is X1 Yry al_{% 52 s Ly Up,Ug
TR R 1
< — Y = vi(X,Y,,0,,0,) — SE(Vi(X,Y,6,,
HS}%Z Ml_zlhzvh( s 17079) 72 (vh( 0 9))‘
1 2 . 1 9
+Sup 2 E(VA(X, Y0, 05)) = lim SE(VZ(X,Y,0,,05))

The second term on the r.h.s. goes to zero as h — 0. As for the first term on the r.h.s., we note
that for each r,s = 2,...,p, |V3(X,Y,0,,0,)| < Kh? for some constant K > 0. Further, ©
is a compact set, and from the proof of Proposition 2, V#(X,Y,6,,6,)/h? is continuous in
0,,05. Thus, by a uniform LLN,

sup
0,05

9

M
1 1 ok v 1 2 P
7 20 7 VK T ) = TE(VA K.Y 0r.00) 0

as h — 0. As for the first term on the r.h.s. of (S.27). Consider the elementwise differences

2V, (0) 2V, 0] 1 1 & o
ASTAE SR ASTA P 2,(X;, 7,0, 2(X,.Y3,0,. 0,
Sllp 697‘505 597"693 hQMlxlg'up ‘v 1y 179 79) vh( 1y 179 79)

1
<8D ﬁﬂ Zsupsup d(mhe(t,0), mg(t,0)) =8D 2 OP(an)

where the Op term is uniform in [ = 1,..., M and doesn’t depend on M. By assumptions
(A4) and (A6), the above term goes to zero in probability, implying that

sup| A®V;,(8) — Agf/n(e)| =op(1)
0O

and the result follows. O
PROOF OF PROPOSITION 4. Recall, forany 8 € ©, A(8) = (A*H(0))"'X(0)(A*H(6))!

and A(6) = (A%V,,(8)) " $(6) (A%V,,(9)) " . Writing

(5.28) A(6) — A(8o) = (A(6) — A(6)) + (A(6) — A(60)),

we need to show that both terms on the RHS converge to zero in probability. For the first
term, it suffices to show that

sup A(6) — A(6) 50,
96@05
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where O is a small J- nelghborhood of the true parameter 00 i.e., forany 0 >0, O := {0 :

|6 — 8o < 8}. By Theorem 1, since @ is consistent for 8, 8 € O for large enough sample
size n with high probability. Observe that

A(6) — A(6)

— (A%V, (a))*1 $(0) (421/ (6)) " — (A%H(9))"'(0)(A%H(6)) !
— (A2V,(0) ' [S(0) ~ 2(0) | (A%V2(6)) "

+(A%H(6))71%(6) [(A?V (0)) "~ (A%H(9))"']

+[(a2v(0) " = (A2H(6) | 2(6) (A%Va(6) .

From the proof of Propositions S.1.7 and S.1.8, we have sup %(8) — £(6) £ 0 and
0cO

Zug (A*V,(6)) — (A*H(6)) £0. Also, A?H(6) is upper-bounded, and since 0y is the
€

global minimizer of H (@), it is bounded away from 0 in any neighborhood ©gs of 8¢. Thus

(A®?H(6))! is bounded above on ©s and uniformly continuous. Further, by virtue of con-

tinuity of A% H () and the uniform probability convergence of A?V,,(-) to A® H(-) on the

parameter space © (Proposition S.1.8), one can show that (AQVn(H)) ~! such that 8 e ©0s,

is bounded above and uniformly continuous with high probability for a large enough sample

size, therefore yielding sup (A*V,,(9)) - (A?H(9))™ ! Lo. Combining the above ar-
0cOy5

guments it follows that sup A(6) — A(6) L 0. Finally, noting that P(6 € ©s) — 1 for any
06@05

§ > 0 and a large enough sample size, we have A(0) — A(8) Lo.

For the second term in (S.28), under the assumption of the total boundedness of ({2, d) and
the continuity of the local linear Fréchet regression function (assumption (A2)), both X(+)
and A? H (-) are continuous functions of 8. Thus applying continuous mapping theorem and

using the consistency of @ (Theorem 1) we have A(8) — A(6p) 0. The result follows
combining the two terms in (S.28) using Slutsky’s theorem. O

PROOF OF COROLLARY 4. For any x € X < R?, we observe that, by the triangle inequal-
ity of the metric,

(S.29) d(ine(x' 8,8), mg(x" 8o, 00))

From Lemma 1, we know that
supsup d(ig(t, 0), mg(t,8)) = Op(an),
g t

where a, is as defined in equation (3.1) in the main manuscript. Thus, the first term
of (S.29) is Op(a,). Now by assumption (A2), mg is continuous and, by Theorem 2,

0 — 6y =0p(M -1 2). Using continuous mapping theorem, the second term of (S.29) is
Op(M -1/ 2). The result follows using Slutsky’s theorem under assumption (A4). O

PROOF OF COROLLARY 5. We partition 8 into sub-vectors as 6 = (é(r),é(r))T, where
é(r) = (él, e ,9T)T and 0 = (ér+17 AU ép)T. Similarly, we can partition the true direction
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as 0o = (Bo(r), 03)) T, where Oy = (601, -, 00,) " and 85 = (o415, 00,) 7. Since,
from Corollary 3 we know that, under suitable assumptions
VM(A(6))7Y2(6 — 60) > N(0,1,-1).

applying the the linear transformation 6 = (0, 60™)) — 0 forany 8:070 < 1, we have
VMA@ 1260 5 N0, 1,_,),

where A(6®)) is the (p — r) dimensional sub- matrix of the asymptotic covariance matrix
A(8). Thus, under the null hypothesis Hy : BO®) = ¢, for some ¢ x (p — r) matrix B with
1 < g <p-—r ofrank ¢, we can form a Wald- type test statistic

M(BO® — )T (BAO™)) BT (B —¢) 5 7.
For the particular choice of B = I,_,, a simultaneous confidence region for 0((;) can be
computed, as is given in Corollary 5. O

PROOF OF PROPOSITION 5. Recall the population and sample versions of the index pa-
rameters as M-estimation problems

0o = argmin H(0), H(6) = E[d*(Y,m(X'6,0))],
0:0c0

0 = argmin V,,(0), V,,(0) =
0:0c0

5 eT
d*(Yi, e (X, 6,0)),

N
Il
—

S
Mi

~ ~ ~ 1
0 = argmin V,,(0), V,,(0) =

~ T
~— N RV, me(X, 0.,0)),
rgi 31 24 (Timo(X/ 6,6))

Mi

T
—_

where © = {6 : 0 RP71 7070 < 1} = RP~!, as defined in equation (3.4) in the main
manuscript. We want to show the consistency of the proposed bootstrap estimator A* :=
E[M(é* —0)(6* —0)T|(X1, Y1), ..., (X, ?M)]. Here 6* denotes the M-estimator com-

puted from a bootstrap sample (5(7, 171*) l=1,..., M for the objective function V,,. Define
the auxiliary quantity

A* = E[M(é* —0)(6* —0)T|(Xy, 171) (X, ?M)] , where 6* denotes the M-estimator
computed from a bootstrap sample (Xl , ) l= 1 ., M for the objective function V,.
First note that by Proposition S.1.6, 9 ~—050. Also, under similar assumptions re-

quired for Proposition S.1.6, one can show that 8* — 6* i 0, resulting in A* — A* £o.
Now, one can show the consistency of A* by applying Theorem 2.2 of [5], Define gg =
d?(y, mg(x"8)). One needs to show

(i) There exist a g € ©, and a positive constant ¢ such that H(0) — H(6o) = c||@ — 8o |? for
all 0 e O.

(ii) The class of functions M := {ga — ga, : |6 — 6ol < 0,0 € O} has envelope F;s such that
fore > 0, E[F; 21€] < constant x §2*< for all § > 0. Further the class M satisfies the uniform
entropy condition: J(1, M) < constant for all 6 > 0, where the constants are independent
of 8. Here the entropy integral J(1, M) = So (€/6, Fs,| - |)de’, where N (', Fs, | - |) is
the covering number for the set }'5 using balls of size 0¢’.
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(i) follows immediately from assumption (A1). For showing (ii) note that
(S.30) g6 — go, =d*(y, mg(x' 0)) — d*(y, mg(x' 0p))
<2diam(Q)d(mg(x' ), meg(x ' 6g))
<2diam(Q) L]0 — 6o
The last inequality follows using the assumption (A2) on mg being Lipschitz continuous
with the Lipschitz constant L and assumption (A3) on X having a bounded support. Thus the

function class M has the envelope F5 = 2diam(Q2) L5 with E[F7*¢] = constant x §2+¢,
since €2 is totally bounded. Now, since © < RP~ I and from (S.30) the function class M5

is a class of Lipschitz functions in 8 € ©, we have N6, Fs,| - |) < ( )p "[11]. As a
consequence, J(1, My) = O(1) since So log ( ;) de’ < c0. Thus the result follows. O

PROOF OF LEMMA 1. First recall that for any given unit direction 0 € O, T5 denotes the
support of the random variable 7' = X '8, where © is defined in equation (2.5) in Section 2.
For bounded random variables X, we can write 73 T for some bounded 7 < R. Since all
possible values of x' @ is contained in 7" uniformly for € ©, one has

supsup d(1g(t,0), me(t,0))

0cO t€Ts
<su$ d(mg(t,0), mg(t,0)) = Op(ay),
te
where a,, is the appropriate sequence described in assumption (A4). The last result follows
from Theorem 1 of [1] using the technical assumptions (U1)- (U3) and (R1)- (R2). ]

S.2. Technical assumptions (U1)- (U3), (R1)- (R2).

In this section, we describe the technical assumptions needed to establish the uniform rate of
convergence for the local linear Fréchet regression estimator in Lemma 1 in Section 3 of the
main manuscript. We also provide motivation and discuss suitable examples regarding the
assumptions.

The assumptions required to obtain the technical results are essentially the same as those
used before in the Fréchet regression literature, specifically in [1]. To adapt these assumptions
to the present situation, we require the curvature and entropy conditions to hold uniformly
across all index values and direction parameters. The curvature and entropy conditions can be
verified for commonly observed objects such as univariate probability distributions, positive
definite matrices, or data on the surface of a sphere, as well as other random objects under
suitable metrics.

Denote by 75 the support of the random variable T" = X6 for any given unit direction
0 € ©, where O is defined in equation (2.5) of the main manuscript. Under assumption (A3),
for bounded random variables X, we can write 73 < 7 for some bounded subset 7 of R.
For a given direction 6 € © such that X' @ = ¢, where © is as given in equation (2.5), the
conditional Fréchet mean is given by
(S.31) mg(t,0) = argmin M (w,t,0); M(w,t,0) :=E(d*(Y,w) X 8 =t),

wef)

and the local linear Fréchet regression estimate by

(8.32)  1hg(t,0) = argmin Ly (w,t,0); Ly(w,t,0)

1
weN ’I’L

iﬁ X/, 0,t,b)d>(Y;,w)),

where S is the empirical estimate (from equation (2.10)) of the nonparametric weight func-
tion (described in equation (2.8)) in Section 2 of the main manuscript and b is the bandwidth
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parameter for the kernel involved in the localized Fréchet mean. We also define the interme-
diate localized weighted Fréchet means as

(S.33) me(t,0) = argmin Eb(w,t, 0); ib(w,t,e_) = E(S(XTé,t,b)d2(Y,w)),

wef
where the nonparametric weight function is described in equation (2.8) in the main
manuscript. The following additional assumptions are required, which are analogous ver-
sions of the assumptions in [1].

(U1) For all t € T and 6 € ©, the minimizers mg(t,8), g (t,0), and mg(t,0) exist and
are unique, the latter two almost surely. In addition, for any € > 0,

inf inf [M(w,t,0) — M(mg(t,0),t,0)] >0,
teT d(me(t,0),w)>e

liminf inf inf Ly(w,t,0) — Ly(mg(t,0),t,0)] >0,
mintin it (Lyfet.0) = Lyimo(t.0).1.0)

(S.34)

and there exists ¢ = ¢(¢) > 0 such that

A — N — —

(S.35) P <inf inf [Ln(w,t,0) — L,(mg(t,0),t,0)] > c) — 1.
€T d(1hg(t,0),w)>e

(U2) Let B,(mg(t,0)) < Q be a ball of radius 7 centered at mg(t,6) and
N (e, B,(mg(t,)),d) be its covering number using balls of radius €. Then

1
(5.36) lim | sup \/1 +log N (re, B.(mg(t,8)),d)de = O(1).
r—0+ Jo teT
(U3) There exists 71,79 > 0, ¢1,co > 0, and 1, 82 > 1 such that
inf inf [M(w,t,0) — M(mg(t,0),t,0) — c1d*(w, mg(t,0))"] =0,
€T d(me(t,0),w)<r
(8.37)

liminf inf inf_ [Ly(w,t,0) — Ly(d(tag(t,8),t,0) — cad®(w,me(t,0))] = 0.
b—0 €T d(w,me(t,0))<rs

Furthermore, we require the following assumptions for kernels and distributions.

(R1) The kernel K is a probability density function, symmetric around zero, uniformly
continuous on R such that §, K(z)7z* < oo, for j,k =1,...6. The derivative K’ ex-
ists and is bounded on the support of K, i.e., Sup,.x(z)=0 [K'(2)| < o0. Additionally,
§p 22| K’ (z)]1/|zlog |z]|dz < 0.

(R2) For any given unit direction 8 € ©, the marginal density Jrg of T = X" and the
conditional densities fT7§|Y(~, y) of T' given Y = y exist and are twice continuously dif-
ferentiable in the interior of 7 for all § € ©, the latter for all y € 2. The marginal density
f1,6 is bounded away from zero on its support 7 for all OcOie.,infier fyrg(t)>0.

The second-order derivative f% 5 is uniformly bounded for all t € T, 8 € O, that is,

Super | f% 5(t)| < o0. The second-order partial derivatives (02 fray/ ot?)(-,y) are uni-

formly bounded, uniform over all fcO,ie.,
SUper SUPyeq (0% f1.gy /0%) ()| < ©.

Additionally, for any open set B < €2, P(Y € B|X "6 =t) is continuous as a function
of tand 6. Forany t € 7 and 0 € ©, M (w, t,0) is equicontinuous, that is,

limsup sup sup ’M(w,t,él) - M(w,t,ég)‘ =0.
0,0, teT we)
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Similar yet weaker assumptions have been made in [7] for pointwise rates of convergence
for local linear Fréchet regression estimators. [1] made stronger assumptions in this regard
to establish uniform convergence results over univariate predictor values. In the above as-
sumptions (U1)- (U3) we adapt those in [1], incorporating uniform bounds over the index
parameter as well as over the values of the single index. Since the objective function for the
local Fréchet regression involves both the index value x'8 = ¢ and the index parameter 6,
conditions on the well-separatedness, entropy, and curvature needs to be extended for all val-
ues of ¢ and 0. These assumptions are adapted from empirical process theory, guarantee the
asymptotic uniform equicontinuity of L;, and control the behavior of L, — M and L, — Ly
near the minimizers mg(t,8) and 1mg(t, ), respectively, uniformly over ¢ and 6. assump-
tion (U1) is commonly used to establish the uniform consistency of M-estimators [11] by
showing the weak convergence of the respective empirical processes. In conjunction with the
assumption that the metric space (2 is totally bounded, this implies the pointwise convergence
of the minimizers for any given ¢ and 0; it also ensures that the asymptotic uniform equicon-
tinuity of Ly and Ly, and implies the (asymptotic) uniform equicontinuity of g and Mg,
whence the uniform convergence of the minimizers follows as the support of x ' 8 is compact
for any 6.
Assumptions (U1)- (U3) are easily verified for specific metric space-valued objects.

Example 1 Let () be the set of probability distributions on a closed interval of R with finite
second moments, endowed with the Wasserstein-2 distance dyy, i.e., for any two distribu-
tional objects Y7 and Ys with cdfs Fy, and FYy, respectively,

1
dy (Y2, Y2) = j (Fyh(2) - Fy(2))%de,

where F;J 1(2) is the quantile function for Yj, j = 1,2. The Wasserstein space (€, dy)
satisfies assumptions (U1)- (U3) with 51 = 82 = 2.

Example 2 Let () be the space of r-dimensional correlation matrices, i.e., Ssymmetric, pos-
itive semidefinite matrices in R"™*" with diagonal elements equal to 1, endowed with the
Frobenius metric dr . Specifically for any two elements Y7, Y5 € €,

dF(Yl, Yg) = \/trace((Yl — YQ)T<Y1 — Yg))
The space (£, dr) satisfies assumptions (U1)- (U3) with 1 = 53 = 2.

For Examples 1-2, we note that since the Wasserstein space for one-dimensional distri-
butions and the space of correlation matrices are Hadamard spaces, there exists a unique
minimizer of M(-,t,0) for any t € T and 8 € © [10]. Examples 1-2 follow from similar ar-
guments as those in the proofs of Propositions 1-2 of [7] by observing that the arguments
hold uniformly across ¢ and 0. Assumptions (R1) and (R2) are standard distributional as-
sumptions for local nonparametric regression and are needed to show the convergence of the
bias and stochastic parts for the local linear Fréchet estimator uniformly over all ¢ and . In
particular, Assumption (R1) can be verified for a general class of kernel functions given by

cx(1— 21 ([-1,1]), ke Z,

where ¢, = \/1%({]?(721)1) is such that Sl_l cx(1 — 2?)"dz = 1 and the indicator function is

defined as [(A) = 1if X € A, and 0 otherwise. The Epanechnikov kernel K (z) = 3(1 —
22)I([~1,1]) belongs to this class of kernel functions for x = 1 with ¢,; = 3/4.
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mag(z0+ a)
P

mg(z0 + 2a) 7
Fig 1: The left figure shows the geodesic triangle formed by the three points u, mg(29),
me(z0 + 2a), where v is the midpoint of the geodesic connecting the points mg(zp) and
meg(zo + 2a). The red line depicts the true regression function mg. mg(zo + a) is closely
approximated by v lying on a geodesic that connects mg(z9) with mg(zo + 2a). The right
hand side shows the reference triangle in R? as an illustration of the CAT(0) inequality.

S.3. Further discussion of assumption (AS).
Assumption (AS5) in Section 3 of the main manuscript intuitively means that mg can be
locally approximated by straight lines in Euclidean space and geodesics in geodesic spaces. In
the Euclidean case, it is satisfied for twice differentiable functions mg, a common assumption
for classical single index modeling. Beyond the Euclidean special case, assumption (AS5)

Consider first the Euclidean case, where {2 is a compact subset M c R and denote the link
function mg, by m. Noting that the map  : @ +— 8 is continuous, and mg(z' 6,0) := ¢(0) =
#(h(8)), for some function ¢ of @ € © and for any given z € X — R, with a slight abuse of
notation, we write mg(z ' 6,0) instead of mg(z'0,0). For any given z€ X < R? and § € ©
such that 876 < 1, denote m (2'6,8) = m(z0,6) by m(z), where zy = 26 € R and for
a small enough a € (0,ap), such that zg, zop + 2a € T, we have m(zg), m(zo + a), m(zo +
2a) € M. If m(-) is twice continuously differentiable in any open subset containing zy such
that the derivatives are uniformly bounded, the midpoint on the straight line (geodesic path)
connecting m(z9) and m(zo + 2a) is given by v = [m(z) + m(zo + 2a)]. Using a second-
order Taylor expansion for the function m around zy, we have

lv —mg(z0 + a)|| &
~ I fm(zo) + m(z0 +2a)] ~ me (20 + )]

a)? a®
:H[%m(zo) + ém(zo) +am’(2) + ;<22) m"(¢1)] = [m(z0) + am/(z0) + o

m"(G)]l e

= la?[m"(G) ~ 3" (@)

where zp < (1 < 2zg9 + 2a, and zg < (2 < 29 + a. Assuming a uniform bound on the second
derivative of m, such that |m”(z)| < C for some C > 0 and for all z € T, we have that
v — ma (20 + a)||p < 2%a?. Thus, assumption (K2) holds for C, = 3C//2, as long as the
bound C on the second derivative of m is sufficiently small.

Next, we consider ) to be the space of univariate distributions, JF, endowed with the
Wasserstein-2 metric dyy. The quantile functions for the distributional objects mg(20),
meg(zo + a), and mg(2zp + 2a) are denoted by Q(meg(20))(:), Q(mg(zo + a))(-), and
Q(meg(z0 + 2a))(+), respectively. Similarly, the quantile function of the midpoint v of the
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geodesic path connecting mg(20) and mg(zo + 2a) is given by

1

Q)(-) = 5[Q(me(20)) (") + Q(me(20 +2a))(-)].

We write q(20)() = Q(meg(20))(-) = q(20)(:), analogously for related quantities. The
Wasserstein distance between v and mg (29 + ) is then given by

1

diy (v, me (20 +a)) = f (Q(v)(t) — Q(ma(z0 +2a))(1))* dt

0
2
) (A 200 s 200

We assume that for every ¢ € [0, 1], ¢(z)(t) is twice continuously differentiable as a function
of z, for any z in an open subset containing z( such that derivatives of ¢(z)(¢) are uniformly
bounded for each ¢ € [0, 1]. Using a second-order Taylor expansion of ¢(-)(¢) pointwise ¢ €
[0,1], and following a similar argument as in the Euclidean case, we have

1

2
Bylomolia+ @) = [ (@'c)® - ja' 1)

0
Lastly, under the assumption that the |¢”(z)(t)| < 7(t), such that Sé r2(t) < C, assumption
(K2) holds for C, = 3/2C, as long as the bound C is sufficiently small.

We further illustrate the argument for assumption (K2) for distributional objects in the
specific context of a location-scale family of univariate distributions, F, endowed with the
Wasserstein-2 metric dyy. Denoting the location and scale parameters as p(-) and o(-) re-
spectively, the quantile function corresponding to the distribution object mg(z0) € F will be
given by

Q(me(20))(-) = n(z0) + o(20)F (),

where F~1(-) is the quantile function for the distribution object mg(zo). The quantile func-
tions for mg(zo + a) and mg (2o + 2a) can be similarly defined. Also, the quantile function
of the midpoint of the geodesic path connecting mg(2o) and mg(zo + 2a) is given by

1 1 _
Q)() = 5[a(z0) + (0 + 2)] + 5[0(20) + o (20 + 20)]F ().
The Wasserstein distance between v and mg(zo + a) is given by

p(20) + (20 + 2a) ’

2

— (20 + a)

a2y (v, me (20 + a)) = )
o(z0) + o(zo0 + 2a) ?

+
2

o(z0) +o(z0 + QG)U(ZO . a)> 1/2

+U(z0+a)—2< 5

2
+

o(z0) + (2o + 2a) 2

2

- ‘H(ZO) + p(20 + 2a)
= 2

— u(z0 + a) —o(z0+a)

)

where the last inequality holds because 10(20) + o(29 + 2a) and o(z + a) are both positive.

Assuming p(-) and o(+) are twice continuously differentiable in any open subset containing
zo such that their derivatives are uniformly bounded, the result follows in a similar manner to
the Euclidean case.
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We next show that assumption (A5) holds under the sufficient conditions (K1), (K2),and
(K3), that is, for any u € 2, and 2o € T, there exists some x > 0, such that, for any small
a>0,

(5.38) %[dQ(u, (20 + 2a)) — 202 (u, mes (20 + a)) + d2(u, mes(20))] > &
Observe that
(S.39) %[dQ(u, me (20 + 2a)) — 2d*(u, mg (20 + a)) + d*(u, mg(20))]
=l s (20 + 20)) — 24221, 0) + 0, s (20))]

+%[2d2(u7 v) = 2d* (u,me (20 + a))]-

Assumption (K3) in conjunction with assumption (A2) implies that mg is bi-Lipschitz with
constants 0 < L, < L. We have

(5.40) 2aL, < d(mg(z0 + 2a),mg(20)) < 2La.
Thus the first term of (S.39) becomes
(S.41)

1

= [dz(u,m@(z() +2a)) — 2d?(u,v) + d2(u,m@(zo))]

412
>

d?(me(z0 + 2a), mg(20))
where this inequality follows from assumptions (A2), using (S.40). Assuming € is a geodesic
CAT(0) space, the geodesic triangle A(u, mg(20), ma(z0 + 2a)), formed by the vertices u,
meg(z0), and mg(zo + 2a), will have a comparison triangle A(p, g, 7) in the reference space
R? for some points p, 7, 7 € R2. This implies
(S.42) d(u,me(20)) = [Ip = dllz,  d(u,me(z0 + 2a)) = [|p - 7l|&,

d(meg(20),v) =lg = vllz, d(me(zo + 2a),v) = ||7 — 0]z

By virtue of assumption (K1),
(S.43) d(u,v) <|[|p— 0|5
Thus combining (S.41)- (S.43) one obtains

[d2(u,m@(z0 +2a)) — 2d?(u,v) + d2(u,m@(zo))] ,

1
(S.44) ) [dQ(u,m@(zo +2a)) — 2d2(u,v) + d2(u,m@(zo))]
lp—7|%—=lp—ol% _ |p—o|%—-lp—dl%
S9r2 [[F—2ll= [lg—2l= —972%0.
i 17 —qlle *

This uses the fact that 7, v, ¢ are co-linear in the Euclidean space with v being the midpoint
between  and ¢, and hence the second order difference is just 1. Thus the first term of (S.39)
is seen to be greater than or equal to 2L2.

As for the second term of (S.39), by simple algebra and the triangle inequality,

2 [0,0) — (ol + )

(5.45)

= 2 )+ da, g0+ )] () — dumo(z0 + a))

4D

<¥d(v,m@(zo +a)) <4DC,.
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The last inequality follows from equation (B.2) in assumption (K2). In assumption (K2),
given L and D, C, can be chosen sufficiently small such that 2L2 > 4DC. Thus, combin-
ing (S.44) and (S.45) with (S.39), the result follows for x = ZLZ —4DC, > 0.

S.4. Additional data illustrations and simulations.

This section provides further illustrations of data applications and simulations. Random ob-
jects considered in the additional data demonstrations discussed in this section are univari-
ate probability distributions with compact support endowed with the Wasserstein-2 metric
(applied to human mortality data) and compositional data that are mapped to the positive
segment of a sphere, endowed with the geodesic distance and applied to the mood compo-
sitional data. Further illustrations of the proposed method include an additional plot for the
ADNI study and a simulation study with Euclidean responses.

S.4.1. Human mortality and age-at-death distributional object responses.

The performance of the proposed model is demonstrated with an application to human mor-
tality data across countries. We view the age-at-death distributions as random object re-
sponses of interest and aim to find their association with Euclidean predictors such as eco-
nomic, social, and healthcare indices among other relevant factors, aiming at a comprehensive
understanding of human longevity and health conditions.

For this analysis, we used the lifetables for males aggregated yearly in age groups vary-
ing from age 0 to 110 for 40 countries in the calendar year 2010. The data consist of period
lifetables for each country and each calendar year and were obtained from the Human Mor-
tality Database (https://www.mortality.org/). We computed histograms of age-at-death from
the lifetables for each country and calendar year, which were then smoothed with local least
squares to obtain smooth estimated probability density functions for age-at-death using the
R package frechet [2]. After this preprocessing step, the data are a sample of univariate prob-
ability distributions for n = 40 countries was obtained, shown in the left panel of Figure 2.
We equipped the sample of age-at-death distributions with the Wasserstein-2 metric (€2, dyy)
and selected the following six socio-economic predictors measured at the calendar year 2010:
X1 = Population density (people per sq. km of land area), X» = Fertility rate, total (births per
woman), X3 = GDP per capita, at Purchasing Power Parity (PPP), X, = Access to electricity
(% of the population), X5 = Current health expenditure (% of GDP), and Xg = Unemploy-
ment, total (% of the total labor force) (national estimate). The data were obtained from the
World Bank Database at https://data.worldbank.org.

We first standardized all predictors separately, then applied the proposed Index Fréchet Re-
gression (IFR) method to obtain the estimated unit direction parameter (rounded to 4 decimal
places)

~

0 = (0.0173,0.7875,0.5879,0.0167,0.1646, —0.0807)T.
The estimated coefficient for the predictor Fertility Rate (X5) has the highest absoluteAvalue,
indicating its heavy influence relative to the other five predictors on the index X', and
hence on the fitted value for the IFR model. The estimated index XTa_ can be also perceived
as the first sufficient predictor, which reduces the dimension of the predictor space without
losing the information about the response. This aligns with the sufficient dimension reduction
methods for Fréchet regression [12] and provides an insight into the overall dependence of

the predictors on the object response.
In the right panel of Figure 2, the age-at-death densities are plotted against the estimated

index values, aka the first sufficient predictors, X' . It is evident that countries with low


https://www.mortality.org/
https://data.worldbank.org
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index values have modes of the distribution at lower ages, while for countries with high
values of the index, the modes of mortality distributions are significantly higher. Further, the
countries with higher index values indicate very low infant mortality rates.

Xapul
Xopul

Fig 2: Data visualization for age-at-death densities for 40 countries at the calendar year 2010.
The left panel shows the observed densities at random order while the right panel plots the
observed densities against the estimated index values from the proposed Index Fréchet Re-
gression (IFR) model.

The plots of the observed and estimated age-at-death densities over the support of age
[0,110] and against the estimated index values, aka the first estimated sufficient predictor, are
shown in Figure 3. It is interesting to observe that the estimated index values are associated
with the location and variation features of the age-at-death distributions. Specifically, with
the increase in the values of the index, the mean of the mortality distribution increases non-
linearly while the standard deviation diminishes, indicating the death age more concentrates
between 70 and 80. This finding is in line with the observations of [12], who employed several
sufficient dimension reduction (SDR) techniques to the mortality distributions.

FurtlAler, the importance of various predictors can be inferred from the estimated coeffi-

cients 8. As before we keep the first predictor (X; = Population density) with the corre-
sponding coefficient 6, = 0.0173 > 0 in the model and test for the following hypothesis:
Hy :0p2 = -+ = 0op = 0 vs. Hy, the complement of Hy, which is the test for overall regres-
sion effect for object responses. Writing 6 = (ég, cey éﬁ), the test statistic is constructed as

T, = 07 (K*B)_lé wr x? under Hy (see Section 5.1), where A’; is the bootstrap estimator
for asymptotic covariance matrix as described in Proposition 5. The null hypothesis is re-
jected at level a if T}, > x2(1 — a). From our analysis, T}, = 18.883 > 11.0705 = x2(1 — «)
for the level o = 0.05. The p-value is actually 0.002 and the null hypothesis is thus clearly
rejected, demonstrating there is a regression effect. Upon further analysis it is found that the
most significant predictors, in order, are Xy = Fertility rate, total (births per woman), X3 =
GDP per capita, at Purchasing Power Parity (PPP), and X5 = Current health expenditure (%
of GDP).
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Fig 3: The observed and estimated age-at-death distributions for 40 countries at the calendar
year 2010 are displayed in the left and right panel of figure, respectively. The distributions
are plotted over the support of the age interval [0, 110] against the index values estimated by
the IFR model.

We proceed to compare fits for the year 2010 from the IFR model with the Global Fréchet
Regression (GFR) model with the 6—dimensional predictors, as well as with three separate
Local Fréchet Regression (LFR) models, where the three important predictors Fertility Rate,
GDP per capita and Health Expenditure are considered in each LFR model separably as uni-
variate predictors. The global Fréchet model suffers from model-induced bias, while the local
linear Fréchet Regression models with individual univariate predictors lack relevant informa-
tion from other variables. The IFR model is a semiparametric approach that combines the
strengths of both of these models. Figure 4 displays the observed as well as the fitted distri-
butions (as densities) for these five models. The superiority of the IFR model compared to the
local linear Fréchet fits, using only the relatively important predictor variables individually
indicates that all predictors simllltaneously play an important role in the overall prediction

through the estimated index x ' 8. To study the effect of the most important predictors, GDP
per capita, fertility rate, and Health expenditure percentage on the age-of-death densities, we
fitted the IFR model when varying the value of one predictor, while keeping the other two
fixed at their mean levels. For example, the left-most panel of Figure 5 illustrates how the
age-at-death density changes with increasing levels of GDP per capita, while the other two
predictors are kept fixed. The fitted densities are color coded such that blue to red indicates
a smaller to a larger value of GDP. We find that smaller values of GDP are associated with
left-shifted age-at-death distributions for the population. For increasing levels of health ex-
penditure per capita and fertility rates, the age-at-death densities also shift rightwards, but to
a lesser extent.

Finally, to illustrate the out-of-sample prediction performance of the proposed IFR model,
we randomly split the dataset into a training set with sample size n.,i, = 20 and a test set
with the remaining nes = 20 subjects. The IFR method was implemented as follows: For
any given unit direction 8 € ©, we partition the domain of the projections into M equal-
width non-overlapping bins and consider the representative observations X; and Y; for the
data points belonging to the /—th bin. The “true” index parameter is estimated as 8 as per

equation (2.11). We then take the fitted objects obtained from the training set and predict
the responses in the test set using the covariates present in the test set. As a measure of the
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Fig 4: Figure displaying the observed and predicted smooth densities. Clockwise, from top-
left the observed densities (OBS), the fitted densities using Index Frechet Regression (IFR),
Global Fréchet Regression (GFR), and Local Fréchet Regression (LFR). The predictors used
for the LFR fits are Fertility Rate (LFR1), GDP per capita (LFR2) and Health Expenditures
(LFR3), respectively. Densities are color-coded (blue to red indicating low to high) by the
mode of the age-at-death distribution.
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Fig 5: Figure showing the effects of the significant predictors X3 = GDP per capita, X5 = Fertility
rate, and X5 = Current health expenditure. The left panel shows the change in density with changing
value of X3 from low (blue) to high (red), when X7 and X35 are fixed at their mean level, and analo-
gously for middle and right panels.

efficacy of the fitted model, we compute the root mean squared prediction error (RMPE) as

" 1/2
1 T est ~ ~ ~ A~

(S.46) RMPE = diy (Vo me(X76,0)) |
Mn[es‘ 7; w l @( l )

where Y and 7 (X!**'T0, 0) denote, respectively, the /™ observed and predicted responses
! SIS p y p Y
in the test set, evaluated at the binned observation XJ**'. For any two distribution objects
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F,G € (9, dw), the Wasserstein-2 distance is given by

1
A (P.G) = [ (F71(s) - G (o)),
0
where F~! and G~! are the quantile functions corresponding to F' and G respectively. We
repeat this process 500 times, and compute RMPE for each split for the subjects separately.
The mean and sd of the RMPE over the repetitions are shown in Table 1 for the IFR method,
as well as for the GFR and individual LFR fits.

TABLE 1
Mean and sd (in parenthesis) of the RMPE as given in (S.46) comparing the performance of various Fréchet
regression models: Index Fréhet Regression (IFR), Global Fréchet Regression (GFR), Local Fréchet Regression
(LFR). The predictors used for the three individual LFR fits are Fertility Rate, GDP per capita at PPP, and
Health Expenditure, respectively, as indicated in parentheses.

LFR1 LFR2 LFR3

IFR GFR (on Fertility Rate) (on GDP (on Health
per Capita-PPP) | Expenditure)

0.178 (0.0552) | 0.287 (0.0671) 0.491 (0.0605) 0.603 (0.0654) | 0.339 (0.0565)

Using out-of-sample performance, the IFR model emerges as the best model, as the aver-
age RMPE of 0.178 is much lower than that of any of the other models.

S.4.2. Emotional well-being for unemployed workers: Compositional data as random ob-

Jject responses.
We demonstrate the proposed IFR method for the analysis of mood compositional data. Com-
positional data are random vectors with non-negative components, where the components of
these vectors sum to 1. With a square-root transformation of the components, compositional
vectors can be transformed to unit vectors that lie on the positive segment of a sphere SP~!
if the compositional vectors are p—dimensional [8, 9]. Thus one can represent compositional
data as manifold-valued objects that lie on the surface of a sphere. The data used for this ap-
plication were collected in the Survey of Unemployed Workers in New Jersey [6] conducted
in the fall of 2009 and the beginning of 2010, during which the unemployment rate in the US
peaked at 10% after the financial crisis of 2007 — 2008; similar data were used to illustrate
longitudinal compositional methods in [3]. We note that here the object-valued responses lie
on a manifold (sphere) with positive curvature. Thus the sufficient (but not necessary) con-
dition for assumption (AS5) that the underlying metric space behaves like a CAT(0) space is
not satisfied. This example thus provides a check on the behavior of IFR when the random
objects are situated in a positively curved space.

Unemployed workers belonging to a stratified random sample were surveyed at entry into
the study, where we analyzed the data for n = 3301 workers with complete measurements.
A key variable in the survey was the proportion of time the workers spent in each of the
four moods: bad, low/irritable, mildly pleasant, and very good while at home; we use this 4-
dimensional compositional vector as the response. Formally, the composition measurement
of interest is Z = (Z1, Z», Z3, Z4)7, where Z; is the proportion of time a worker spent in the
j-th mood when at home, 7 =1,...,4. The square-root transformed compositional data

Y = (Y17Y27}/E37Y4)T = (\/215 \/?27 \/237\/24)1—’

lie on the sphere S3. We adopt the geodesic metric on this sphere d,(y,y*) = arccos(y ' y*).

These square root transformed compositional data are treated as the object responses in
a regression model with the following 10 baseline predictors obtained from the question-
naire, reflecting various socio-economic and demographic information: (1) life satisfaction
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(discrete with levels 0-3, 3 meaning most satisfied) (2) highest education level (discrete with
levels 0-5, indicating high school or less, high school diploma or equivalent, college educa-
tion, college diploma, graduate school, and graduate degree, respectively), (3) marital status
(discrete with levels 0-5, indicating single (never married), married, separated, divorced, wid-
owed, and domestic partnership (living together but not married), respectively), (4) number
of children (discrete), (5) the number of people in the household (discrete), (6) total annual
household income (continuous), (7) hours per week working at the last job (continuous), (8)
how the last job ended (discrete with levels 0-2 lost job, quit job, and temporary job ended,
respectively), (9) weeks spent looking for work (continuous), and (10) credit card balance
(continuous).
For these data, the IFR model produces the coefficient estimates

~

6 = (0.483,0.134, —0.166, —0.190, 0.042, 0.303,0.075,0.230, 0.662, —0.307)T.

The estimated coefficients can be used to obtain interpretable visualizations of the effect
of the individual predictors on the compositional response through the (estimated) single
index link function, which can further lead to effective inference for the proposed IFR model.
For example, we illustrate below (Figure 6) the effect of the predictor “life satisfaction™
on the mood compositional data. To this end, the IFR model is fitted over varying levels
of life satisfaction, from low (0) to high (3), while the other predictors are fixed at their
median levels. We observe an association between a lower life satisfaction level with a higher
proportion of bad mood, while a higher value of life satisfaction is associated with a better
mood when all of the other predictors are fixed.

1.00+1
0.754
0.504
0.25+
0.004

Iev'ell Iev'eI2 Iev'el3 Iev'el4
Life satisfaction

Mood . Bad mood . Low/ irritable
composition [ Mildly pleasant [ Very good mood

Fig 6: A stacked barplot showing the effect of life satisfaction, from Level 1 (0) to Level 4
(3), on the mood composition, when all the other predictor levels are kept fixed. A higher life
satisfaction level is associated with a larger proportion of good mood.

The predictive performance of the model is computed based on the root mean prediction
error (RMPE) as

M 1/2
1 T est ~ ~T2 2
RMPE — &2 (Ytest,m X' 6.0 ) ,
Mn[est ; g l @( 1 )
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TABLE 2
Mean and sd (in parenthesis) of root mean prediction error (RMPE) over 200 repetitions, as obtained from the
local fits of the index Fréchet regression (IFR) model, the global Fréchet regression (GFR) model, and four
individual local linear Fréchet regression (LFR) models incorporating univariate continuous predictors. Here,
Nyrain and Neest denote the sample sizes for the split training and testing datasets respectively.

Mirain ___ THest IFR GFR LFR{ LFRoy LFR3 LFRy

04779 07661  0.6771  0.7220  1.1127  1.0122
(0.0720)  (0.0418)  (0.0021)  (0.0450) (0.0910)  (0.0810)

2201 1100

where ?lte“ and m@(XlTé) denote, respectively, the [ observed and predicted responses in
the test set, evaluated at the binned average X;. We repeat this process 200 times, and compute
RMPE for each split for the subjects separately. For comparison purposes, we fit the data with
the other applicable object regression methods, namely, the global Fréchet regression (GFR)
method with the four-dimensional mood-compositional data as the response residing on the
surface of the sphere S% — R*, coupled with the 10-dimensional predictors; and individual
local linear Fréchet regression (LFR) methods accommodating the afore-mentioned object
response, while incorporating the continuous predictors total annual household income, hours
per week working at the last job, weeks spent looking for work and credit card balance as
univariate predictors. Like nonparametric regression, the LFR method does not work for
discrete/ categorical predictors. We denote the results from the four individual univariate
local regression by LFR;, j =1, 2,3, 4, respectively. Table 2 summarizes the results.

We observe that the out-of-sample prediction error is quite low. In fact, it is very close
to the average fitting error (0.351), calculated as the average distance between the observed
training sample and the predicted objects based on the covariates in the training sets, which
supports the validity of the proposed IFR models.

Since in this example the object-valued responses lie on a manifold (sphere) with positive
curvature, the sufficient (but not necessary) condition for assumption (AS5) that the underly-
ing metric space behaves like a CAT(0) space is not satisfied. However, the numerical perfor-
mance of the IFR method is quite good, suggesting a certain degree of model robustness of
the IFR method.

S.4.3. Additional results for the analysis of ADNI neuroimaging data.
Continuing from Section 5.1 in the main manuscript, we illustrate the 95% confidence region
for the coefficients (01,602, 60,) of the predictors: stages of the disease, age, and total score in
a 3-dimensional plot in Figure 7.

S.4.4. Additional simulations for Euclidean responses.

Here the object response of interest is assumed to lie in the Euclidean space. For generating
the predictor vectors we consider a 5—dimensional vector distributed as truncated multivari-
ate normal distributions, where each of the components is truncated to lie between [—10, 10].
The components are assumed to be correlated such that X; correlates with X2 and X3 with
r = 0.5, and X5 and X3 correlate with » = 0.25. The variances for each of the five compo-
nents are 0.1. The empirical power against the sequence of alternatives in equation (3.10)
increases steeply (see Figure 8) as we deviate from the null hypothesis in equation (3.9) in
Section 3 of the main manuscript, especially corresponding to higher sample size and under
identity link.

The empirical power function, as we deviate from the null hypothesis in equation (3.9) is
computed and illustrated in the left panel in Figure 8. Empirical evidence suggests that the
proposed test is consistent for a higher sample size of n = 1000, and leads to the correct
nominal level of the test.
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State of disease Total score
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Fig 7: The figure shows the 3-dimensional plot for the 95% confidence region of (61, 62,04):
the coefficients of the effects of the predictors- age, total score, and stage of the disease,
respectively.
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Fig 8: Simulation for Euclidean response using different link functions showing the empir-
ical power function for Euclidean responses. The black, red, and blue curves correspond
to the identity, square, and exponential link functions used in the data-generating mecha-
nism, respectively, while the dashed and solid patterns correspond to the varying sample
sizes n = 100 and n = 1000, respectively. The level of the tests is o = 0.05 and is indicated
by the dashed line parallel to the x-axis.

The consistency of the estimates is illustrated in Table 3 based on 500 replications of the
simulation scenario. Further, the performance of the proposed method is compared to the
classical Euclidean single index model fits. To this end, the R package np was called from
Julia, for fitting the classical single index regression to the simulated Euclidean responses.
The prediction performance of the classical single index fits, denoted by NP, is compared
with that of the IFR method, as well as with a Global Fréchet Regression (GFR) method
and four separate Local Frécet Regression (LFR) fits. The GFR method utilizes the multi-
variate predictors while the four LFR methods treat each of the four-dimensional predictor
components as a univariate predictor individually. Note that in all of the methods- NP, GFR,
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TABLE 3

Table showing bias and variance of 8 (measured in radians) based on 500 replications for a Euclidean vector

response. The predictors X1, ..., X5 are generated from a truncated multivariate normal distribution.

linkl (z+— z) | link2 (2 — 22) | link3 (z — %)

bias dev bias dev bias dev
n=100 | 0.013 | 0.061 | 0.025 | 0.048 | 0.037 | 0.029
n=1000 | 0.006 | 0.021 | 0.014 | 0.019 | 0.013 | 0.009

LFR - binning is not required. The mean and sd of the root mean prediction error (RMPE)
over 200 Monte Carlo simulation runs are reported in Table 4. The data is simulated using

TABLE 4

Table showing the mean (sd in parenthesis) RMPE for various regression methods for simulated Euclidean

responses. The methods compared are index Fréchet regression (IFR), classical Euclidean single index

regression using the R package “np” (NP), global Fréchet Regression (GFR) with the 4-dimensional predictor,
and four individual local linear Fréchet regression (LFR) models that treat each predictor components as a
univariate predictor. The sample size is fixed at n = 1000 and the RMPE are computed over 200 Monte Carlo

simulation runs.

Identity link Square link Exponential link

IFR | 0.0255(0.0110) | 0.1383 (0.1031) | 0.1972 (0.1205)
NP | 0.0187(0.0201) | 0.1117 (0.1077) | 0.1578 (0.0442)
GFR | 0.0003 (0.0018) | 0.1465 (0.0299) | 0.2181 (0.0748)
LFR1 | 0.0788 (0.0208) | 0.2686 (0.0558) | 0.3342 (0.1882)
LFR2 | 0.0784 (0.0204) | 0.2627 (0.0540) | 0.3237 (0.1912)
LFR3 | 0.0617 (0.0209) | 0.2774 (0.0555) | 0.3162 (0.1892)
LFR4 | 0.0730 (0.0197) | 0.2694 (0.0561) | 0.3664 (0.1888)

three different generating mechanisms - the identity, squared, and exponential link functions,
and the sample size n = 1000 is considered. For the identity link function, i.e., when the
simulated data is generated according to a linear model, the GFR method gives the lowest
prediction error. This is indeed expected since the GFR boils down to a linear regression
model when the object data are Euclidean. For other situations the NP method for the classical
single index model outperforms the other methods, however, the proposed IFR method proves
competitive with a comparable magnitude of the prediction error. The boxplot of the RMPEs
for the above situations is shown in Figure 9.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

REFERENCES

CHEN, Y. and MULLER, H.-G. (2022). Uniform convergence of local Fréchet regression with applications
to locating extrema and time warping for metric space valued trajectories. The Annals of Statistics 50
1573-1592.

CHEN, Y., GAJARDO, A., FAN, J., ZHONG, Q., DUBEY, P., HAN, K., BHATTACHARIEE, S. and
MULLER, H.-G. (2020). frechet: Statistical Analysis for Random Objects and Non-Euclidean Data
R package version 0.2.0.

DaI1, X., LIN, Z. and MULLER, H.-G. (2021). Modeling sparse longitudinal data on Riemannian manifolds.
Biometrics 77 1328-1341.

DAVISON, A. C. (2003). Statistical Models 11. Cambridge University Press.

KATO, K. (2011). A note on moment convergence of bootstrap M-estimators. Statistics & Decisions 28
51-61.

KRUEGER, A. B., MUELLER, A., DAVIS, S. J. and SAHIN, A. (2011). Job search, emotional well-being,
and job finding in a period of mass unemployment: Evidence from high-frequency longitudinal data
[with comments and discussion]. Brookings Papers on Economic Activity 1-81.

PETERSEN, A. and MULLER, H.-G. (2019). Fréchet regression for random objects with Euclidean predic-
tors. The Annals of Statistics 47 691-719. https://doi.org/10.1214/17-AO0S1624


https://doi.org/10.1214/17-AOS1624

34

0.8
0.6
o
= 0.4
@
0.2
0.01 *—-
Ideﬁtity Squ'are Expoﬁential
Link Link Link

B3 Eucl E3 IFR E3 LFR2 @ LFR4

B GFR B8 LFR1 B LFR3

Fig 9: Figure showing boxplot of RMPEs for various regression methods for simulated Eu-
clidean responses. The methods compared are index Fréchet regression (IFR), classical Eu-
clidean single index regression using the R package “np” (NP), global Fréchet Regression
(GFR) with the 4-dimensional predictor, and four individual local linear Fréchet regression
(LFR) models that treat each predictor components as a univariate predictor. The sample size
is fixed at n = 1000 and the RMPE are computed over 200 Monte Carlo simulation runs.

[8] SCEALY, J. and WELSH, A. (2011). Regression for compositional data by using distributions defined on the
hypersphere. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 351-375.
[9] SCEALY, J. and WELSH, A. (2014). Colours and cocktails: Compositional data analysis. Australian & New
Zealand Journal of Statistics 56 145-169.
[10] STUurM, K.-T. (2003). Probability measures on metric spaces of nonpositive. Heat Kernels and Analysis
on Manifolds, Graphs, and Metric Spaces: Lecture Notes from a Quarter Program on Heat Kernels,
Random Walks, and Analysis on Manifolds and Graphs: April 16-July 13, 2002, Emile Borel Centre of
the Henri Poincaré Institute, Paris, France 338 357.
[11] VAN DER VAART, A. and WELLNER, J. (2000). Weak Convergence and Empirical Processes: with Appli-
cations to Statistics (Springer Series in Statistics). Springer.
[12] ZHANG, Q., XUE, L. and L1, B. (2021). Dimension reduction and data visualization for Fréchet regression.
arXiv preprint arXiv:2110.00467.



	Proofs and auxiliary results
	Technical assumptions (U1)- (U3), (R1)- (R2) 
	Further discussion of assumption (A5)
	Additional data illustrations and simulations
	Human mortality and age-at-death distributional object responses
	Emotional well-being for unemployed workers: Compositional data as random object responses
	Additional results for the analysis of ADNI neuroimaging data
	Additional simulations for Euclidean responses

	References

