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Single index models provide an effective dimension reduction tool in
regression, especially for high dimensional data, by projecting a general mul-
tivariate predictor onto a direction vector. We propose a novel single-index
model for regression models where metric space-valued random object re-
sponses are coupled with multivariate Euclidean predictors. The responses
in this regression model include complex, non-Euclidean data, including co-
variance matrices, graph Laplacians of networks, and univariate probability
distribution functions, among other complex objects that lie in abstract metric
spaces. While Fréchet regression has proved useful for modeling the condi-
tional mean of such random objects given multivariate Euclidean vectors, it
does not provide for regression parameters such as slopes or intercepts, since
the metric space-valued responses are not amenable to linear operations. As a
consequence, distributional results for Fréchet regression have been elusive.
We show here that for the case of multivariate Euclidean predictors, the pa-
rameters that define a single index and projection vector can be used to substi-
tute for the inherent absence of parameters in Fréchet regression. Specifically,
we derive the asymptotic distribution of suitable estimates of these parame-
ters, which then can be utilized to test linear hypotheses for the parameters,
subject to an identifiability condition. Consistent estimation of the link func-
tion of the single index Fréchet regression model is obtained through local lin-
ear Fréchet regression. We demonstrate the finite sample performance of esti-
mation and inference for the proposed single index Fréchet regression model
through simulation studies, including the special cases where responses are
probability distributions and graph adjacency matrices. The method is illus-
trated for resting-state functional Magnetic Resonance Imaging (fMRI) data
from the ADNI study.

1. Introduction. Modeling the regression relationship between a real-valued response
Y and a multivariate Euclidean predictor vector X corresponds to specifying the form of
the conditional means mpxq “ EpY |X “ xq. Higher dimensionality of X can be problem-
atic when one is interested to go beyond the standard multiple linear models and aims for
a nonparametric estimation of mpxq. This provides strong motivation to consider regression
models that provide dimension reduction. Single index models are one of the most popular
approaches to achieve this under the assumption that the influence of the predictors on the
response can be collapsed to a single index, i.e., a projection on a specific direction, comple-
mented by a nonparametric link function. This reduces the predictors to a univariate index
while still capturing relevant features and since the nonparametric link function acts only on
a one-dimensional index, these models are not subject to the curse of dimensionality. The
single index model generalizes linear regression, where the link function is the identity. For
a real-valued response, Y and a p-dimensional predictor X, the semiparametric single index
regression model is given by

(1.1) EpY |X “ xq “ EpY |XJθ̄0 “ tq “ mpt, θ̄0q.
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In model (1.1), the dependence between Y and X, characterized by the conditional mean, is
summarized by the parameter vector θ̄0 and the link function m.

The function m is nonparametric and thus includes location and level changes, and there-
fore the vector X cannot include a constant that would serve as an intercept. For identifiability
reasons, θ̄0 is often assumed to be a unit vector with a positive first coordinate. A second ap-
proach is to require one component to equal one. This presupposes that the component that
is set to equal 1 indeed has a non-zero coefficient [44, 15]. Model (1.1) is only meaningful
if the Euclidean predictor vector X is of dimension 2 or larger. If X is one-dimensional, the
corresponding special case of the model is the one-dimensional nonparametric regression
EpY |X “ xq “ mpxq, which does not feature any parametric component.

The classical single index regression model with Euclidean responses has attracted atten-
tion from the scientific community for a long time due to its flexibility and the interpretability
of the (linear) coefficients and flexibility, owing to the nonparametric link function, as well
as due to its wide applicability in many scientific fields. The coefficient θ̄0 that defines the
single index xJθ̄0 along with the shape of the nonparametric component m characterizes
the relationship between the response and the predictor. The parametric component θ̄0 is of
primary interest for inference in this model. The problem of recovering the true direction θ̄0
can be viewed as a subclass of sufficient dimension reduction (SDR) techniques, where iden-
tifying the central subspace of X that explains most of the variation in Y has been a prime
target [42, 14, 40].

In addition to sufficient dimension reduction techniques, various related approaches to
estimate θ̄0 in (1.1) have been studied. These include projection pursuit regression (PPR)
[24, 28], average derivatives [30, 62], sliced inverse regression (SIR) [41], conditional min-
imum average variance estimation (MAVE) [69] and various other methods [68, 67]. These
approaches have focused on the nonparametric estimation of the link function to recover the
index parameter in (1.1) [29, 32, 31], partially linear versions [10, 71] and various noise mod-
els [11, 66]. Inference for the index parameters has also been well studied [20, 43, 25] for the
classical single index model.

Various extensions of single index regression have been considered more recently [75, 36],
including models with multiple indices or high-dimensional predictors [78, 76, 38], cen-
sored data [46], and longitudinal and functional data as predictors [34, 12, 21, 50]. How-
ever, none of these extensions has covered situations where responses are not in a Euclidean
vector space, even though this case is increasingly important for data analysis. Two very re-
cent exceptions are [70] and [73], who considered extending sufficient dimension reduction
approaches for the case of random objects. The overall lack of available methodology for
single-index models with random object responses motivates our approach. Non-Euclidean
complex data structures arising in areas such as biological or social sciences are becoming
increasingly common, due to technological advances that have made it possible to record and
efficiently store sensor data and images [56], shapes [61] or networks [64]. For example, one
might be interested in functional connectivity, quantified in the form of correlation matrices
obtained from neuroimaging studies, to study the effect of predictors on brain connectivity,
an application that we explore in Section 5.1.

Other examples of general metric space objects include probability distributions [18], such
as age-at-death distributions as observed in demography or network objects, such as internet
traffic networks. Such “object-oriented data” [47] or “random objects” [48] can be viewed as
random variables taking values in a separable metric space that is devoid of a vector space
structure and where only pairwise distances between the observed data are available. Almost
all existing methodology for single-index models as briefly reviewed above assumes that one
has Euclidean responses, and these methods rely in a fundamental way on the vector space
structure of the space where the responses reside. When there is no linear structure, a new
methodology is needed and this paper contributes to this development.
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A natural measure of location for random elements of a metric space is the Fréchet mean
[23], which is a direct generalization of the standard mean and is defined as the element
of the metric space for which the expected squared distance to all other elements, known
as the Fréchet function, is minimized. Depending on the space and metric, Fréchet means
may or may not exist as unique minimizers of the Fréchet function. Fréchet regression is an
extension of Fréchet means to the notion of conditional Fréchet means, and local as well as
global versions have been recently studied in several papers [55, 53, 57, 58, 4].

Global Fréchet regression is a generalization of linear regression for random object re-
sponses. In analogy to classical linear regression, it features a restrictive structural model
assumption. While the local linear version of Fréchet regression is more flexible, it suffers
from the curse of dimensionality as the dimension of the predictors increases. Further, nei-
ther version of the Fréchet regression incorporates an interpretable inference regime. In this
paper, we introduce (single) Index Fréchet Regression (IFR) to facilitate inference in the
context of Fréchet regression when the response variable is a random object lying in gen-
eral metric space and the predictor is a p-dimensional Euclidean vector X with p ě 1. Our
goal is to develop an extension of the conventional estimation and inference paradigm for
single-index models for this challenging case. It is assumed that the conditional expectation
(Fréchet regression) of Y depends on the predictor vector X only through the projection or
index XJθ̄0 for a parameter vector θ̄0 P Θ̄ P Rp. Since there is no notion of direction or sign
in a general metric space, we interpret the index parameter in the proposed index Fréchet
regression model (IFR) as the direction in the predictor space along which the variability of
the response is maximized. The semiparametric framework provided by the proposed single
index model facilitates stable estimation and interpretable inference.

It turns out to be useful to cast the direction estimation problem in the framework of
M-estimation for an appropriate objective function and to use empirical process theory to
show consistency of the proposed estimate. We derive an asymptotic normality result for
these estimators under mild assumptions on the metric space and the unknown link function
by utilizing an appropriate version of recent results of [13] concerning local linear Fréchet
regression estimators. Under suitable regularity assumptions, the asymptotic distribution of
the estimated index parameter can then be harnessed to construct a Wald-type statistic to
conduct inference. Combining this with an auxiliary result on the asymptotic convergence of
the estimated covariance matrix makes it possible to employ a bootstrap method to obtain
inference in finite sample situations.

When we finalized this work, we became aware that independently and simultaneously
another group also developed an approach for single index Fréchet regression [26]. We wish
to emphasize that this paper was not in any way influenced by this parallel development (with
preprints becoming available within days of each other).

The paper is organized as follows: The basic setup is defined in Section 2 and the theory on
the asymptotic behavior of the index parameter is provided in Section 3, with a focus on re-
sults for inference. The index vector is assumed to lie on a hyper-sphere, with a non-negative
first element to facilitate identifiability. Then it is natural to quantify the performance of the
proposed estimators by the geodesic distances between the estimated and true directions. The
results of simulation studies with various types of random objects as responses are reported
in Section 4 with additional results in the Supplement [5]. In Section 5 we apply the meth-
ods to infer and analyze the effect of age, sex, total Alzheimer’s brain score and the stage of
Alzheimer’s Disease on the brain connectivity of patients with dementia. Brain connectivity
is derived from fMRI signals of brain regions of interest [63] and quantified in the form of
correlation matrix objects. We present additional illustrations for human mortality data as
distributional objects and mood data of unemployed workers as compositional objects, with
details in the Supplement [5]. A brief discussion follows in Section 6.
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2. Model and Estimation Methods. In all of the following, pΩ, d,P q is a totally
bounded metric space with metric d and a probability measure P. The random objects Y
take values in Ω. This is coupled with a p-dimensional real-valued predictor X. Throughout
we will use bold letters to denote multivariate real vectors. The conditional Fréchet mean
of Y given X is a generalization of EpY |X “ xq to metric spaces, defined as the argmin of
Epd2pY,ωq|X “ xq, ω P Ω [55], i.e.,

E‘pY |X “ xq :“ argmin
ω P Ω

Epd2pY,ωq|X “ xq.(2.1)

Evaluated at the minimizer, the objective function in (2.1) is the corresponding generalized
measure of dispersion around the conditional Fréchet mean and can be viewed as a condi-
tional Fréchet function.

As discussed earlier, obtaining inference for Fréchet regression is an elusive goal, for both
the more restrictive global as well as the more flexible but the curse of dimensionality afflicted
local version of Fréchet regression. To move towards inference, we propose here a more
structured model, inspired by its Euclidean single index equivalent in (1.1), given by

E‘pY |X “ xq “ m‘pxJθ̄0, θ̄0q,(2.2)

where θ̄0 is the true direction parameter of interest. Model (1.1) emerges as a special case
of model (2.2) for a Euclidean response, as the conditional Fréchet mean coincides with the
conditional expectation EpY |Xq for the choice of the absolute Euclidean distance metric for
the case Ω “ R. In other words, the conditional Fréchet mean is assumed to be a function of
θ̄0 in such a way that the distribution of Y only depends on X only through the index XJθ̄0,
that is, Y K E‘pY |Xq|pXJθ̄0q. Thus

E‘pY |X “ xq “ E‘pY |XJθ̄0 “ tq “ m‘pt, θ̄0q,

and invoking local linear nonparametric Fréchet regression for the one-dimensional index
promises to overcome the curse of dimensionality problem. For projections XJθ̄0 P Tθ̄0

Ă R,
which depend on θ̄0, we consider predictors X with bounded norm such that Tθ̄0

Ă T ,
where T is a compact interval on R. We note that the link function, for given θ̄0 P Θ̄,
m‘ : Tθ̄0

ÞÑ pΩ, dq in the true model depends on the multivariate predictor X “ x only
through the single-index t “ xJθ̄0, as well as on the direction vector θ̄0 implicitly. Thus, ex-
plicitly characterizing this dependence, we define the Index Fréchet Regression (IFR) model
for random object response Y and Euclidean predictor X as

m‘pt, θ̄0q :“ argmin
ω P Ω

Epd2pY,ωq|XJθ̄0 “ tq.(2.3)

The coefficient θ̄0 P Rp is the quantity of interest for the single index Fréchet model owing
to its interpretability by quantifying the contribution of each predictor component. More
generally, the quantity in model (2.3) can be evaluated for any direction vector θ̄ P Θ̄ by

m‘pxJθ̄, θ̄q “ argmin
ω P Ω

Epd2pY,ωq|XJθ “ xJθ̄q.(2.4)

In the Euclidean case, identifiability conditions for the direction parameter have been
widely discussed in the literature [10, 44, 15, 77]. We assume the parameter space Θ̄ to
be constrained in order to ensure that θ̄ in the representation (2.4) is uniquely defined, where

Θ̄ :“ tθ̄ “ pθ1, . . . , θpqJ : }θ̄} “ 1, θ1 ą 0, θ̄ P Rpu.(2.5)

We first choose an identifiable parametrization that transforms the boundary of a unit ball
in Rp to the interior of a unit ball in Rpp´1q. By eliminating θ1, the parameter space Θ̄ can
be rearranged to tpp1 ´

řp
r“2 θ

2
rq1{2, θ2, . . . , θpqJ :

řp
r“2 θ

2
r ă 1u. This re-parametrization is
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the key to analyzing the asymptotic properties of the estimates for θ and also facilitating
efficient computation. The true parameter is then partitioned into θ̄ “ pθ1,θqJ, where θ “

pθ2, . . . , θpqJ. We estimate the pp´ 1q´ dimensional vector θ in the single-index model and
then use θ1 “ p1 ´

řp
r“2 θ

2
rq1{2 to obtain θ̂1.

PROPOSITION 1 (Identifiability of model (2.3)). Suppose h‘pxq “ E‘pY |X “ xq, that
the support S of h‘p¨q is a convex bounded set with at least one interior point and that h‘p¨q

is a non-constant continuous function on S. If

h‘pxq “ g1‘pαJx,αq “ g2‘pβJx,βq, for all x P S,

for some continuous object-valued link functions g1‘ and g2‘, and some α,β P Θ̄, where Θ̄
is as described in (2.5). Then α “ β and g1‘ ” g2‘ on tαJx|x P Su.

The above result can be proved using a similar argument as given in the proof of Theorem 1
of [44].

Scrutinizing the special case of a Euclidean response Y in model (1.1), the variation in Y
is seen to result from the variation in XJθ̄0 as well as from the variation in the error term in
the model, denoted by ε [33]. On the contour line XJθ̄0 “ c, the variability in Y only results
from the variability in ε. Along contour lines XJθ̄ “ c for θ̄ ‰ θ̄0, XJθ̄0 is not constant
and therefore the variability in Y along the contour lines XJθ̄ “ c, θ̄ ‰ θ̄0 is due to both
the variation in XJθ̄0 and in ε. Since Var

`

Y |XJθ̄ “ c
˘

measures the variability in Y on a
contour line XJθ̄ “ c, θ̄ ‰ θ̄0, one can characterize θ̄0 as the minimizer of the objective
function Hpθ̄q, where Hpθ̄q :“ EpVarpY |XJθ̄qq and θ̄0 “ argminθ̄PΘ̄Hpθ̄q. The constraint
θ̄Jθ̄ “ 1, with the first element of the index θ1 ą 0, ensures the identifiability of the objective
function. Defining an equivalence class of the parameter vector Θ̄θ̄0

:“ tθ̄ P Θ̄ :mpxJθ̄q “

mpxJθ̄0q a.e. in x for some mu for θ̄ R Θ̄θ̄0
, one has Hpθ̄0q ă Hpθ̄q.

To recover the true direction of the single index from model (2.3), the conditional variance
of Y given X “ x for a real-valued response can be replaced by the conditional Fréchet
variance d2pY,m‘pxJθ̄, θ̄qq for any given unit orientation vector θ̄. Thus, for a general object
response Y P pΩ, dq, θ̄0 can alternatively be expressed as

(2.6)

θ̄0 “argmin
θ̄ P Θ̄

Hpθ̄q, where Hpθ̄q “ E
`

d2
`

Y,m‘pXJθ̄, θ̄q
˘˘

,

m‘pt, θ̄q “ argmin
ωPΩ

Mpω, t, θ̄q, with Mpω, t, θ̄q :“ E
`

d2pY,ωq|XJθ̄ “ t
˘

.

This corresponds to finding the true parameter through the optimal direction that maximizes
the total variability of the responses, an idea developed in [33] for the case of Euclidean re-
sponses. Instead of choosing the parameter minimizing the expected variance explained by
the single index XJθ, for object responses the new goal is to choose the parameter minimiz-
ing the expected Fréchet variance.

To recover θ̄0 from the representation (2.6), one needs to also estimate the conditional
Fréchet mean, as in the IFR model (2.3), for which we employ the local linear Fréchet
regression estimate [55]. The idea is as specified below. We approximate the conditional
Fréchet mean m‘ in (2.6) by a locally weighted Fréchet mean that we refer to as intermedi-
ate weighted Fréchet mean. The weights for this intermediate Fréchet mean are derived from
a weight function Sp¨, ¨, ¨q that characterizes the effect on the predictors via a chosen kernel
function Kp¨q and a bandwidth parameter b such that Kbp¨q “ p1{bqKp¨{bq. For any given
unit direction index θ̄, this intermediate localized weighted Fréchet mean is

(2.7) m̃‘pt, θ̄q “ argmin
ωPΩ

L̃bpω, t, θ̄q, with L̃bpω, t, θ̄q :“ E
`

SpXJθ̄, t, bqd2pY,ωq
˘

,
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where
(2.8)

SpXJθ̄, t, bq “
1

σ2
0pt, θ̄q

KbpXJθ̄ ´ tqrµ2pt, θ̄q ´ µ1pt, θ̄qpXJθ̄ ´ tqs,

µlpt, θ̄q “ EpKbpXJθ̄ ´ tq pXJθ̄ ´ tqlq, l “ 0,1,2, σ2
0pt, θ̄q “ µ2pt, θ̄qµ0pt, θ̄q ´ µ2

1pt, θ̄q,

and Mp¨, t, θ̄q “ L̃bp¨, t, θ̄q ` Opbq for all t and θ̄; note that m̃‘pt, θ̄q is a non-random popu-
lation quantity.

Suppose we observe a random sample of paired observations pXi, Yiq, i “ 1, . . . , n, where
Xi is a p´dimensional Euclidean predictor and Yi is an object response situated in a metric
space pΩ, dq. Using the form of the intermediate target in (2.7) and replacing the auxiliary
parameters by their corresponding empirical estimates, the local Fréchet regression estimator
at a given value t of the single index for a given direction parameter θ̄ P Θ̄ is defined as

(2.9) m̂‘pt, θ̄q “ argmin
ω P Ω

L̂npω, t, θ̄q, with L̂npω, t, θ̄q :“
1

n

n
ÿ

i“1

pSpXJ
i θ̄, t, bqd

2pYi, ωq,

where
(2.10)
pSpXJ

i θ̄, t, bq “
1

σ̂2
0pt, θ̄q

KbpXJ
i θ̄ ´ tqrµ̂2pt, θ̄q ´ µ̂1pt, θ̄qpXJ

i θ̄ ´ tqs,

µ̂lpt, θ̄q “
1

n

n
ÿ

j“1

KbpXJ
i θ̄ ´ tq pXJ

i θ̄ ´ tql, l “ 0,1,2, σ̂2
0pt, θ̄q “ µ̂2pt, θ̄qµ̂0pt, θ̄q ´ µ̂2

1pt, θ̄q.

The following assumption pertains to the existence and uniqueness of the Fréchet means
in (2.6) and (2.9).

(A0) The conditional and weighted Fréchet means in (2.6), (2.7), and (2.9) are well defined,
i.e., they exist and are unique, the latter one almost surely. Further, for all θ̄ P Θ̄ such that
θ̄ ‰ θ̄0, P pX P Rp : m‘pXJθ̄, θ̄q ‰ m‘pXJθ̄0, θ̄0qq ą 0.

Existence and uniqueness of Fréchet means depend on the nature of the metric space and
the underlying probability measure and will be discussed further after (A4) in section 3.
For example, in the case of Euclidean responses, Fréchet means coincide with the usual
means for random vectors with finite second moments. In the case of Riemannian manifolds,
the existence, uniqueness, and convexity of the center of mass are guaranteed under certain
conditions [1, 52]. In a space with a negative or zero curvature, or in a Hadamard space
unique Fréchet means always exist [6, 7, 51, 37]. The existence of unique Fréchet means
in assumption (A0) is satisfied for the space pΩ, dW q of univariate probability distributions
with the 2-Wasserstein metric and also for the space pΩ, dF q of covariance matrices with the
Frobenius metric dF [55].

Assume that for all unit direction vectors θ̄ the support Tθ̄ of T :“ XJθ̄ is compact, where
all Tθ̄ are subsets of a fixed interval. For the derivation of distributional limit results, one
needs to establish sufficiently fast convergence of the estimated means. This challenge can
be overcome by partitioning the interval where the linear predictor is situated. Specifically,
we partition Tθ̄ into M equal-width non-overlapping bins tB1,B2, . . . ,BMu, where data
falling in different bins are independent and identically distributed. We denote by X̃l and Ỹl
the representative data points in the l´th bin, l “ 1, . . . ,M. The number of bins M depends
on the sample size n, where the choice of the sequence M “ Mpnq is discussed in (A4) in
section 3 below. The proposed estimator for the true direction θ̄0 in (2.6) is then given by

(2.11) p

sθ “ argmin
θ̄ P Θ̄

Vnpθ̄q, where Vnpθ̄q “
1

M

M
ÿ

l“1

d2
´

Ỹl, m̂‘pX̃J

l θ̄, θ̄q

¯

.
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Here m̂‘pX̃J

l θ̄, θ̄q, l “ 1, . . . ,M, is the local linear Fréchet regression estimator, constructed
based on the sample pXi, Yiq, i “ 1, . . . , n, and evaluated at each sample point of the binned
sample pX̃l, Ỹlq, l “ 1, . . . ,M, as described in (2.9) and (2.10). We also require an interme-
diate quantity that corresponds to the empirical version of Hp¨q in (2.6), defined as

(2.12) s̃θ “ argmin
θ̄ P Θ̄

Ṽnpθ̄q, where Ṽnpθ̄q “
1

M

M
ÿ

l“1

d2
´

Ỹl,m‘pX̃J

l θ̄, θ̄q

¯

.

The bandwidth b “ bpnq is a tuning parameter and features in the rate of convergence of
m̂‘ to m‘. We note that another possible estimator for m‘ could be obtained by applying
global Fréchet regression. This alternative estimator for the unknown link function in the IFR
model (2.3) does not depend on a tuning parameter as is needed for locally linear Fréchet
regression but is considerably less flexible.

3. Theory. The unknown quantities that constitute the Index Fréchet Regression (IFR)
model consist of the nonparametric link function and the index parameter, and thus the
asymptotic properties of the estimate of the true unit direction rely on those of the estimates of
the link function (based on local linear Fréchet regression) and the index parameter (through
an M-estimator of the criterion function H in (2.6)). The metric space pΩ, dq is assumed to be
totally bounded with diameter D, hence separable. In order to obtain the right bound on the
metric entropy of the space Ω, the boundedness assumption is crucial. While boundedness
imposes a restriction that is not needed in the Euclidean case, it is a quite feasible assumption
in general metric spaces, since, for commonly observed non-Euclidean objects, the underly-
ing metric space satisfies the total boundedness property. Examples include the Wasserstein-2
space of one-dimensional distributions with compact support and the space of spheres with
the geodesic metric and positive semi-definite matrices with Frobenius or power metric.

We make the following assumption on the objective function Hp¨q in (2.6).

(A1) There exist η ą 0 and C ą 0 such that whenever }θ̄ ´ θ̄0} ă η for θ̄ P Θ̄, we have
Hpθ̄q ´ Hpθ̄0q ě C}θ̄ ´ θ̄0}2.

The above condition on the curvature of the objective function H is standard in the empirical
process theory literature and controls the behavior of Ṽn ´ H near the minimum in order
to obtain rates of convergence. In addition, with regard to the quantities in (2.6), (2.9), and
(2.11) we require the following assumptions.

(A2) The link function m‘ is Lipschitz continuous, that is, there exists a real constant L ě 0
such that, for all x with a bounded norm, and for all θ̄1, θ̄2 P Θ̄,

d
`

m‘pxJθ̄1, θ̄1q,m‘pxJθ̄2, θ̄2q
˘

ď L}θ̄1 ´ θ̄2}.

(A3) For any given direction θ̄, the univariate index variable T :“ XJθ̄ is assumed to have a
density fT,θ̄p¨q with a compact support Tθ̄ Ă T for some bounded T Ă R. We denote the
space of predictors for which this holds by X Ă Rp.

(A4) For β1, β2 ą 1 that satisfy assumption (U3) in the Supplement [5] and any ε ą 0, let

(3.1) an “ maxtb2{pβ1´1q, pnb2q´1{p2pβ2´1q`εq, pnb2p´ log bq´1q1{p2pβ2´1qqu.

The number of non-overlapping bins M “ Mpnq, as defined in Section 2, is such that
M “ Mpnq Ñ 8 and Man Ñ 0 as n Ñ 8.

We note that for β1 “ β2 “ 2, which is the most common situation, an reduces to

an “ maxtb2, pnb2q´1{p2`εq, pnb2p´ log bq´1q1{2u.
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Assumption (A2) is a strong form of uniform continuity for the link function. Intuitively,
it limits how fast the object m‘ can change, introducing a concept of smoothness in the link
function for the IFR model (2.3). Lipschitz continuity is a natural choice of morphisms be-
tween metric spaces. This assumption is slightly stronger than the assumption of a strictly
monotone link function that is commonly used in classical single index literature to ensure
identifiability. Since the domain of the link function is compact, in the Euclidean response
case, our assumption would translate to having a strictly monotone continuous link function
with a bounded derivative. Essentially, assumption (A2) is weaker than a derivative condi-
tion and stronger than assuming only the strict monotonicity of the link function. Assump-
tion (A3) is basic. The predictors needed for the nonparametric Fréchet regression are re-
quired to be randomly distributed over the domain where the function is to be estimated, and
on average, to become denser as more data are collected. Sufficient for this to be satisfied
is that there is at least one continuous predictor and the predictors X are bounded. Assump-
tion (A4) is required for the rate of convergence and limit distribution results, for which we
involve the binning device, and it connects the uniform rate of convergence an for the local
linear Fréchet regression estimator as given in (3.1) with the number of bins M .

For most types of random objects, such as those in the Wasserstein-2 space (the space of
probability distributions equipped with the 2-Wasserstein distance) or the space of symmetric
positive semidefinite matrices endowed with the Frobenius or power metric, one has β1 “

β2 “ 2 in the definition of an in assumption (A4) (see assumptions (U1)-(U3) in Section
S.2. of the Supplement [5]). If one chooses the bandwidth sequence b for the local linear
Fréchet regression such that, for a given ε ą 0, b „ n´pβ1´1q{p2β1`4β2´6`2εq, then an is of
the order n

´ 1

pβ1`2β2´3`εq [13]. For β1 “ β2 “ 2, this becomes an „ n´ 1

3`ε . Any sequence
M “ Mpnq “ nγ with 0 ă γ ă 1

3 will then satisfy assumption (A4).
As an alternative characterization for the true direction parameter θ̄0, an important prop-

erty of the objective function Hp¨q in (2.6) is as follows.

PROPOSITION 2. Under assumptions (A0) and (A2), Hp¨q in model (2.6) is a continuous
function of θ̄ P Θ̄, and θ̄0 “ argmin

θ̄ P Θ̄

Hpθ̄q.

Additional assumptions (U1)-(U3) and (R1)-(R2) have been used previously in [55] and
[13], though in a slightly weaker form, and can be found in Section S.2. of the Supple-
ment [5]. These are regarding They concern the existence, uniqueness, and well separateness
of the minimizers, the metric entropy condition in terms of the covering number, and the
curvature of the metric space near the minimizers and are commonly used for the asymptotic
analysis of M estimators utilizing empirical process theory [65], here specifically to estab-
lish consistency and uniform rate of convergence for the local Fréchet regression estimator
in (2.11), uniform across the single-index values and the direction parameter. Uniformity
over the single index value t was already required in [13] to achieve uniform convergence of
local linear Fréchet regression. In the single index model framework, there is a new param-
eter vector θ̄, the presence of which requires an additional uniformity requirement over θ̄.
Assumptions (R1)-(R2) are commonly used in the local regression literature [60, 19].

We will make use of the following lemma, which is an appropriately modified version of
a known result (Theorem 1 of [13]), to deal with the link function when investigating the
asymptotic convergence rates of the proposed IFR estimator.

LEMMA 1. Under assumptions (U1)-(U3), (R1)-(R2) (see Supplement [5]) and if b Ñ 0,
such that nb2p´ log bq´1 Ñ 8 as n Ñ 8, for any ε ą 0,

(3.2) sup
θ̄PΘ̄

sup
tPTθ̄

dpm̂‘pt, θ̄q,m‘pt, θ̄qq “ OP panq,
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where an is as given in equation (3.1) in assumption (A4).

It is worth mentioning here that the binning approach is not required for basic consistency
results without rates (Theorem 3.1 and Corollary 1). One can indeed re-define the criteria
functions in (2.11) based on the whole sample pXi, Yiq i “ 1, . . . , n as

p

sθ “ argmin
θ̄ P Θ̄

Vnpθ̄q, where Vnpθ̄q “
1

n

n
ÿ

i“1

d2
`

Yi, m̂‘pXJ
i θ̄, θ̄q

˘

,

and carry on with the same proof techniques to show consistency of p

sθ to the true unit di-
rection vector θ̄0. However, to prove rates of convergence and investigate the asymptotic
behavior of the estimated parameter, we need to make use of the uniform convergence rate
an for local linear Fréchet regression, as given in Lemma 1. The binning step is necessary
to reduce the effective sample size from n to M “ Mpnq, the latter being intrinsically tied
by assumption (A4) to the uniform convergence rate an. The rate is effectively slower than
n´1{3, again by virtue of the uniform convergence rate an for the local linear Fréchet re-
gression estimator. One may alternatively consider global Fréchet regression to estimate the
unknown link function m‘, resulting in a near parametric rate of n´1{2. However, the global
Fréchet model may suffer from model-induced bias, since as a direct generalization of linear
regression, it may be overly restrictive for random object responses. For a consistent unam-
biguous representation, we refer to the minimizers in (2.11) and (2.12) based on the binned
samples as our quantities of interest throughout the rest of the manuscript.

For all of the following results, the basic assumptions (A0)-(A3) are assumed to be satis-
fied. We first demonstrate the consistency of the proposed estimator for the true index direc-
tion. All proofs can be found in Section S.1. of the Supplement [5].

THEOREM 3.1. Under the basic assumptions (A0)-(A3), and the technical assumptions
(U1)-(U3), and (R1)-(R2) listed in Section S.2. of the Supplement [5],

p

sθ ´ θ̄0
P

ÝÑ 0 on Θ̄,

where Θ̄ is as defined in (2.5).

Combining the consistency result for the direction vector in Theorem 3.1 with the uni-
form convergence of the local linear Fréchet regression estimator in Lemma 1 leads to the
asymptotic consistency of the estimated single index regression (IFR) model.

COROLLARY 1. Under the conditions required for Theorem 3.1, for any x P X Ă Rp,

d
´

m̂‘pxJp

sθ,psθq,m‘pxJθ̄0, θ̄0q

¯

“ oP p1q.

Since any θ̄ P Θ̄ can be decomposed into pθ1,θqJ, where θ1 ą 0 and }θ̄} “ 1 due to the
identifiability requirement, θ̄ is a function of θ. This makes it possible to write the criteria
function and the corresponding minimizers in terms of the sub-vector θ only,

(3.3) θ0 “ argmin
θ P Θ

Hpθq, θ̃ “ argmin
θ P Θ

Ṽnpθq, θ̂ “ argmin
θ P Θ

Vnpθq, where

Θ :“ tθ : θ P Rp´1,J θJθ ă 1u.(3.4)

We note that θ0, θ̃, and θ̂ are the unconstrained minimizers for the criteria functions Hp¨q,
Ṽnp¨q, and Vnp¨q respectively, which are continuous functions of θ, the latter two almost
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surely. Similarly the link function m‘pxJθ̄, θ̄q can be rewritten as m‘pxJrpθq, rpθqq, where
rpθq “ p1 ´

a

}θ}2,θqJ.
To study limit distributions, we impose an additional requirement on the interplay between

the metric dp¨, ¨q in the metric space of responses and the true regression function m‘, namely
that the second order difference of the function d2p¨,m‘pz0qq is bounded away from zero,
for any z0 P T , where T Ă R denotes the domain of m‘. Specifically, for z0 “ zJrpθq, for
some z P Rp and θ P Θ, we denote m‘pzJrpθq, rpθqq “ m‘pz0,θq by m‘pz0q. We assume
(A5) For any z0 P T Ă R and u P Ω, there exists some κ ą 0, and a0 ą 0, such that for any

sufficiently small 0 ă a ă a0, and z0 ` 2a P T ,

1

a2
“

d2pu,m‘pz0 ` 2aqq ´ 2d2pu,m‘pz0 ` aqq ` d2pu,m‘pz0qq
‰

ě κ.

In the Euclidean case, assumption (A5) means that m‘ can be locally approximated by
straight lines and is satisfied for twice differentiable functions m‘, a common assumption for
classical single index modeling. Beyond the Euclidean special case, assumption (A5) can be
shown to be satisfied for fairly general metric spaces. An example for this are CAT(0) spaces
(see [9]), where the regression function between two distinct points m‘pz0q and m‘pz0 `aq,
for some small a ą 0, can be approximated arbitrarily closely by the geodesic path connect-
ing them. Further details on this are provided in Appendix A and B.

The geometric assumption (A5) is crucial to show that the intermediate objective function
Ṽnp¨q has non-negative curvature near its minimizer θ̃ with high probability. This is neces-
sary to bound the rate of the convergence of the discrepancy between the intermediate index
parameter θ̃ and the estimated version θ̂. We proceed to define partial derivatives of the cri-
teria functions with respect to the components of θ. For any x P Rp with bounded norm and
y P pΩ, dq, define the function fx,y :Rp´1 ÞÑ R such that
(3.5)
fx,ypθq “ fx,ypθ2, . . . , θpq “ d2

`

y,m‘pxJpθ1, . . . , θr, . . . , θs, . . . , θpqq
˘

, r, s “ 2, . . . , p.

The first and second ordered forward finite differences of fx,y are given as follows
(3.6)

▽apx, y, θrq “ fx,ypθ2, . . . , θr ` a, . . . , θpq ´ fx,ypθ2, . . . , θr, . . . , θpq,

▽2
apx, y, θr, θsq “ fx,ypθ2, . . . , θr ` a, . . . , θs ` a, . . . θpq ´ fx,ypθ2, . . . , θr ` a, . . . , θs, . . . , θpq

´ fx,ypθ2, . . . , θr, . . . , θs ` a, . . . , θpq ` fx,ypθ2, . . . , θr, . . . , θs, . . . , θpq.

Define
$

’

&

’

%

∆Hpθq :“
´

BHpθq

Bθ2
, . . . BHpθq

Bθp

¯J

, BHpθq

Bθr
:“ lim

εÑ0

1
εEp▽εpX, Y, θrqq, r “ 2, . . . , p,

∆2Hpθq :“
´´

B2Hpθq

BθrBθs

¯¯

r,s“2,...,p
, B2Hpθq

BθrBθs
:“ lim

εÑ0

1
ε2Ep▽2

εpX, Y, θr, θsqq, r, s “ 2, . . . , p.

We note that Hp¨q, Ṽnp¨q, and Vnp¨q are all real-valued functions with domain in a con-
strained subset of Rp. The appropriate limits for defining the partial derivatives can be shown
to exist under (A2) and the assumed total boundedness of the metric space Ω. The estimated
versions of the finite difference derivatives are, for r, s “ 2, . . . , p,

$

’

&

’

%

∆Vnpθq :“
´

BVnpθq

Bθ2
, . . . BVnpθq

Bθp

¯J

, BVnpθq

Bθr
:“ 1

hM

řM
l“1

p▽hpX̃l, Ỹl, θrq,

∆2Vnpθq :“
´´

B2Vnpθq

BθrBθs

¯¯

r,s“2,...,p
, B2Vnpθq

BθrBθs
“ 1

h2M

řM
l“1

x▽2
hpX̃l, Ỹl, θr, θsq,
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(3.7)
p▽hpx, y, θrq “ f̂x,ypθ2, . . . , θr ` h, . . . , θpq ´ f̂x,ypθ2, . . . , θr, . . . , θpq,

x▽2
hpx, y, θr, θsq “ f̂x,ypθ2, . . . , θr ` h, . . . , θs ` h, . . . θpq ´ f̂x,ypθ2, . . . , θr ` h, . . . , θs, . . . , θpq

´ f̂x,ypθ2, . . . , θr, . . . , θs ` h, . . . , θpq ` f̂x,ypθ2, . . . , θr, . . . , θs, . . . , θpq,

with

(3.8) f̂x,ypθq “ f̂x,ypθ2, . . . , θpq “ d2
`

y, m̂‘pxJpθ1, . . . , θr, . . . , θs, θpqq
˘

, r, s “ 2, . . . , p.

Here h “ hpnq is a tuning parameter depending on n, for which we assume that

(A6) h “ hpnq Ñ 0 and Mh2pnq Ñ 8, as n Ñ 8.

Assumptions (A4) and (A6) together imply that furthermore an{h2 Ñ 0, as n Ñ 8.
Observe that the true and estimated index directions can be framed as M-estimators of

their respective criteria functions. This suggests utilizing empirical process-based approaches
to obtain distributional convergence of θ̂, specifically to adopt a linearization approach [65].
Specifically, we show that

?
Mpθ̂ ´ θ̃q “ oP p1q and

?
Mpθ̃ ´ θ0q

D
Ñ Z, where Z is a Gaus-

sian random variable. Combining these results, it follows that

THEOREM 3.2. Under assumptions (A1)-(A6), and assumptions (U1)-(U3), and (R1)-
(R2) listed in the Supplement Section S.2.,

?
Mpθ̂ ´ θ0q

D
Ñ Np´1 p0,Λpθ0qq ,

where M and an are as defined in assumption (A4), Λpθ0q :“
`

∆2Hpθ0q
˘´1

Σpθ0q
`

∆2Hpθ0q
˘´1

,
and Σpθ0q “ ppσrspθ0qqqr,s“2,... with

σrspθ0q “

$

&

%

lim
εÑ0

Var
`

1
ε▽εpX, Y, θ0rq

˘

, if r “ s P t2, . . . , pu,

lim
εÑ0

Cov
`

1
ε▽εpX, Y, θ0rq, 1

ε▽εpX, Y, θ0sq
˘

, if r ‰ s, r, s P t2, . . . , pu.

The asymptotic normality of p

sθ “ ppθ1, θ̂q follows from Theorem 3.2 with a simple applica-

tion of the multivariate delta method as pθ1 “

b

1 ´ }θ̂}2, implying p

sθ ´ θ̄0 “ OP pM´1{2q.

COROLLARY 2. Under the conditions required for Theorem 3.2,
?
Mp

p

sθ ´ θ̄0q
D
Ñ Np

`

0, JΛpθ0qJJ
˘

,

where J “

´´

Bθ̄
Bθ

¯¯
ˇ

ˇ

ˇ

θ“θ0

“

ˆ

´θJ{
a

1 ´ }θ}2

Ip´1

˙ˇ

ˇ

ˇ

ˇ

θ“θ0

is the Jacobian matrix of size p ˆ

pp ´ 1q.

Define the intuitive estimator pΣpθ0q for Σpθ0q given by pΣpθ0q “ pppσklpθ0qqqr,s“2,...,p, with

pσklpθ0q “

$

’

’

&

’

’

%

1
hM

řM
l“1

p▽2
hpX̃l, Ỹl, θ0rq ´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rq

¯2
, if r “ s,

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rqp▽hpX̃l, Ỹl, θ0sq

´

´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0rq

¯ ´

1
hM

řM
l“1

p▽hpX̃l, Ỹl, θ0sq

¯

, if r ‰ s.

The following two propositions imply consistent estimation of the covariance matrix.

PROPOSITION 3. Under assumptions (A1)-(A6),
?
M

´

vecppΣpθ0qq ´ vecpΣpθ0qq

¯

converges to a pp ´ 1q2´ dimensional normal distribution with mean vector 0 and a finite
covariance matrix.
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Details about the limiting covariance matrix can be found in Section S.1. of the Sup-
plement [5]. A natural estimate for the asymptotic covariance matrix in Theorem 3.2 is
pΛpθ̂q :“

´

∆2Vnpθ̂q

¯´1
pΣpθ̂q

´

∆2Vnpθ̂q

¯´1
.

PROPOSITION 4. Under assumptions (A1)-(A6), and assumptions (U1)-(U3), and (R1)-
(R2) listed in the Supplement Section S.2.,

pΛpθ̂q ´ Λpθ0q
P
Ñ 0.

With Slutsky’s theorem, combining the above propositions with Theorem 3.2,

COROLLARY 3. Under assumptions (A1)-(A6), and assumptions (U1)-(U3), and (R1)-
(R2) listed in the Supplement Section S.2.,

?
MppΛpθ̂qq´1{2pθ̂ ´ θ0q

D
Ñ Np0, Ip´1q,

where M and an are as defined in assumption (A4).

Again it is straightforward to extend the above result to obtain the limit distribution for
the full parameter vector p

sθ “ ppθ1, θ̂q, as due to the constraints the full parameter vector is a
function of the reduced one. Define the estimate for the Jacobian matrix of size p ˆ pp ´ 1q

as Ĵ “

´´

Bθ̄
Bθ

¯¯ˇ

ˇ

ˇ

θ“θ̂
“

ˆ

´θJ{
a

1 ´ }θ}2

Ip´1

˙
ˇ

ˇ

ˇ

ˇ

θ“θ̂

. Then using Corollary 2 and Proposition 4

one has
?
MpĴpΛpθ̂qĴJq´1{2p

p

sθ ´ θ̄0q
D
Ñ Np p0, Ipq , and furthermore

COROLLARY 4. Under the conditions required for Corollary 3, for any x P X Ă Rp,

d
´

m̂‘pxJp

sθ,psθq,m‘pxJθ̄0, θ̄0q

¯

“ OP pM´1{2q.

In applications of regression models, it is often important to test the statistical significance
of added predictors. Based on the above normality results, one can obtain Wald-type statistics
to test the significance of certain variables in the linear index. Since θ̄0 is on the surface of
the unit sphere, the constraint }θ̄0} “ 1 removes one dimension. The actual dimension of the
surface of the unit sphere is p ´ 1 and the values of pp ´ 1q components of θ̄0 determine
θ̄0 when without loss of generality, the value of the first component of θ̄0 is assumed to
be positive. Therefore one can obtain confidence regions for θ̄0 by constructing confidence
regions for the last pp ´ 1q components of θ̄0 only.

A common testing problem concerns the null hypothesis H0: θk “ 0, k “ r, . . . , p , for any
2 ď r ď p. More general tests of a linear null hypothesis H0: Bθprq “ 0 for a known matrix B
of full row rank and θprq “ pθr, . . . , θpqJ are also of interest and are implied by the following
result, which also provides (elliptical) asymptotic confidence regions for the components of
interest and whereas before M “ Mpnq is the number of bins in the binning step.

COROLLARY 5. Under the null hypothesis H0 : Bθprq “ ζ, for some q ˆ pp ´ r ` 1q

matrix B with 1 ď q ď p ´ r ` 1 of rank q, denoting the estimated asymptotic covariance
matrix for θ̂prq by pΛpθ̂prqq, then under the conditions required for Corollary 3,

Tn “ pBθ̂prq ´ ζqJpBppΛpθ̂prqq{Mq´1BJq´1pBθ̂prq ´ ζq
D
Ñ χ2

q .
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Specifying the last pp ´ r ` 1q components of the true direction index as
θ

prq

0 “ pθ0r, . . . , θ0pqJ, where r “ 2, . . . , p, a 100p1 ´ γq% confidence region for θprq

0 is

Cγ “ tθ P Rp´r`1 : pθ̂prq ´ θqJppΛpθ̂prqq{Mq´1pθ̂prq ´ θq ď c˚
γ , }θ} ă 1u,

with P pχ2
p´r`1 ď c˚

γq “ 1 ´ γ. Here pΛpθ̂prqq is the pp ´ r ` 1q dimensional sub-matrix of
the asymptotic covariance matrix pΛpθ̂q.

Observe that for r “ 2, θprq

0 “ θ0. Then Corollary 5 yields the confidence region for
the parameter θ0 as Cγ “ tθ P Rp´1 : pθ̂ ´ θqJppΛpθ̂q{Mq´1pθ̂ ´ θq ď c˚

γ , }θ} ă 1u, with
P pχ2

p´1 ď c˚
γq “ 1 ´ γ. Then the confidence region for θ̄0 can be obtained immediately

through the relationship θ̄0 “ pθ01,θ0qJ with θ01 “
a

1 ´ }θ0}2.
For practical implementation, direct estimation of the asymptotic covariance matrix is te-

dious since it involves a tuning parameter to approximate the partial derivative for multiple
variables by finite difference quotients. Instead, we use a nonparametric bootstrap approach
to provide a consistent estimator of the asymptotic covariance matrix [17, 59]. Consistency
of the bootstrap moment estimators for a general M-estimator is a well-studied problem. [35]
established uniform integrability of the bootstrap M-estimator, thereby giving sufficient con-
ditions for the consistency of the bootstrap moment estimators. Following similar arguments
as Theorem 2.2 in [35], we obtain consistency of the proposed bootstrap covariance matrix
estimator.

Let pX˚
1 , Y

˚
1 q, . . . , pX˚

n, Y
˚
n q denote a bootstrap sample, i.e., an independent sample from

the empirical distribution of the observed sample pX1, Y1q, . . . , pXn, Ynq. The bootstrap M-
estimator of θ0 is θ̂˚ “ argmin

θ P Θ

1
M

řM
l“1 d

2
´

Ỹ ˚
l , m̂‘ppX̃˚⊺

l θqq

¯

. Here Ỹ ˚
l and X̃˚

l are the

response and predictor values for observations falling in the l´th bin, l “ 1, . . . ,M. A boot-
strap estimator of the asymptotic covariance matrix is given by [35, 49, 8, 27]

Λ̂˚ :“ E
”

Mpθ̂˚ ´ θ̂qpθ̂˚ ´ θ̂q⊺|pX̃1, Ỹ1q, . . . , pX̃M , ỸM q

ı

.

PROPOSITION 5. Under assumptions (A1)-(A6), Λ̂˚ is consistent for the true asymptotic
covariance matrix Λpθ0q.

Combining the above proposition with Theorem 3.2 using the bootstrap covariance estima-
tor, an analog of Corollary 3 immediately follows, as

?
MpΛ̂˚q´1{2pθ̂ ´ θ0q

D
Ñ Np0, Ip´1q,

justifying the bootstrap construction of confidence regions and ensuing inference, where we
approximate the bootstrap covariance matrix Λ̂˚ by Monte Carlo estimation. The observed
sample pX1, Y1q, . . . , pXn, Ynq is resampled with replacement B times and the estimate for
the index parameter θ̂ computed for each bootstrap sample. Based on the bth bootstrap sample
the index parameter is estimated as θ̂˚

b , b “ 1, . . .B. The bootstrap estimate of the covariance
matrix is then Λ̂˚

B “ 1
B

řB
b“1Mpθ̂˚

b ´ θ̂qpθ̂˚
b ´ θ̂q⊺, which is also consistent for Λpθ0q.

As an example, if one applies the statistic in Corollary 5 to test the null hypothesis

(3.9) H0 : θ02 “ ¨ ¨ ¨ “ θ0p “ 0, where θ01 “ 1,

one can examine the power of the test for alternatives indexed by a parameter δ ą 0,

(3.10) H1δ : θ02 “ ¨ ¨ ¨ “ θ0p “ δ.

Under H0, Tn “ M θ̂JppΛ˚
Bq´1θ̂ „ χ2

pp´1q
asymptotically. Noting that pΛ˚

B is consistent for
Λpθ0q under both H0 and H1δ , the asymptotic distribution of Tn under H1δ is the non-central
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chi-square distribution χ2
pp´1q

pρnδq with pp ´ 1q degrees of freedom and non-centrality pa-
rameter ρnδ “ MθJ

δ pΛpθδqq´1θδ , where θδ “ pδ, . . . , δq. The asymptotic power of the level
α test under H1δ is P pTn ą χ2

pp´1q
p1 ´ αqq, where Tn „ χ2

pp´1q
pρnδq, which demonstrates

that for all δ ą 0 the asymptotic power converges to 1 with the rate M´1.

4. Implementation and simulation studies. Implementation of the single index Fréchet
regression (IFR) model in (2.6) requires the choice of two tuning parameters, the bandwidth
b “ bpnq used for the local linear Fréchet regression as per (2.3) and the number of bins
M “ Mpnq (see assumption (A4)). In applications, the tuning parameters pb,Mq can be
chosen by leave-one-out cross-validation. The first step is to select the optimal bandwidth
parameter b˚ by minimizing the mean discrepancy between the local linear Fréchet regression
estimates and the observed object responses, i.e.,

b˚ “ argmin
b

1

n

n
ÿ

i“1

d2pYi, m̂p´iq

`

XJ
i θ̄, θ̄

˘

q,

where m̂p´iq

`

XJ
i θ̄, θ̄

˘

is the local linear Fréchet regression estimate at XJ
i θ̄ obtained with

bandwidth b based on the sample excluding the i´th pair pXi, Yiq, i.e.,

m̂p´iq

`

XJ
i θ̄, θ̄

˘

“ argmin
ω P Ω

1

pn ´ 1q

ÿ

j‰i

pSpXJ
j θ̄,X

J
i θ̄, bqd

2pYj , ωq.

In practice, we replace leave-one-out cross-validation by 5´fold cross-validation when
n ą 30. Once b˚ is chosen a second leave-one-out cross-validation step is applied to select
the number of non-overlapping bins M˚, where the objective function to minimize is the
empirical Fréchet variance for the binned data,

M˚ “ argmin
M

1

M

M
ÿ

l“1

d2pỸl,m
b˚

‘p´lqpX̃J

l θ̄, θ̄qq.

Here mb˚

‘p´lqpX̃J

l θ̄, θ̄q is the local linear Fréchet regression estimate at X̃J

l θ̄ obtained with

bandwidth b based on the sample excluding the observation at the l´th bin pX̃l, Ỹlq, i.e.,

mb˚

‘p´lqpX̃J

l θ̄, θ̄q “ argmin
ω P Ω

1

n

n
ÿ

i“1

pSpXJ
i θ̄, X̃

J

l θ̄, b
˚qd2pYi, ωq.

Thus, for each given unit direction θ̄, we first select the optimal tuning parameters
pb˚,M˚q, which will generally vary with θ̄, and then employ them when computing the loss
function Vnpθ̄q. Finally, the index parameter is estimated as p

sθ, the unit direction minimizing
Vnpθ̄q over θ̄ such that θ̄Jθ̄ “ 1. This leads to an iterative scheme, where for a given unit
direction the tuning parameters pb˚,M˚q are initially selected by cross-validation and then
iteratively updated, in turn with updating θ̄ to minimize the loss function. We numerically
optimize the empirical loss Vnpθ̄q under the constraint θ̄Jθ̄ “ 1 via the following algorithm.

1. Take a grid of unit vectors θ̄ such that θ̄Jθ̄ “ 1. This is achieved by generating p dimen-
sional standard Gaussian random vectors with positive first elements and standardizing
them, utilizing the spherical symmetricity of p-dimensional standard Gaussian vectors.

2. For each θ̄, select optimal tuning parameters pb˚,M˚q (for bandwidth and number of
non-overlapping bins, respectively) by cross-validation.

3. Using pb˚,M˚q compute the loss function Vnpθq “ 1
M

řM
l“1 d

2pỸl, m̂‘pX̃J

l θ̄qq.
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4. Find the minimizer θ̂ of Vnpθq such that θ̄Jθ̄ “ 1 by searching over all directions θ̄
generated in step 1. In our implementation, we considered 500 directions.

The computational challenges to obtain Fréchet means vary by metric space. In many
cases, the key idea to compute the weighted Fréchet means reduces to solving a constrained
quasi-quadratic optimization problem and projecting back into the solution space. For ran-
dom objects such as distributions, positive semi-definite matrices, networks, and Riemannian
manifolds among others, obtaining the unique solution is computationally straightforward.
For our simulations we considered random objects corresponding to samples of univariate
distributions equipped with the Wasserstein´2 metric and samples of multivariate data with
the usual Euclidean metric.

We generated 500 Monte Carlo runs for each setting, and for each run obtained a direction

estimate p

sθ
piq

i “ 1, . . . ,500. The intrinsic Fréchet mean of these 500 estimates on the unit

sphere was then computed as pθ̄. Given that both the p

sθ
piq

and their target θ̄0 lie on the unit
sphere in Rp, bias and deviance of the estimator can be obtained as

biasp
p

sθq “ arccosxpθ̄, θ̄0y, devp
p

sθq “ yVarparccosxp

sθ
piq
,psθyq.(4.1)

To illustrate the performance of the Wald-type statistic for testing a linear hypothesis, we
again created Monte Carlo runs as described above except that components of the index were
generated to follow the null hypothesis in (3.9). To obtain the power function of the test
against the sequence of alternatives given in (3.10), we calculated the test statistic for 500
simulation runs and determined the fraction of tests that rejected the null hypothesis at the
nominal level α “ 0.05.

4.1. Distributional responses. The space of univariate distributions with the Wasserstein
metric provides an ideal setting for illustrating the efficacy of the proposed methods. For any
two distribution objects F,G P pΩ, dW q, the Wasserstein-2 distance is given by

dW pF,Gq “

ż 1

0
pF´1psq ´ G´1psqq2ds,(4.2)

where F´1 and G´1 are the quantile functions corresponding to F and G respectively. We
consider distributions on a bounded domain as responses Y p¨q that we represent by their
respective quantile functions QpY qp¨q and that are paired with a p dimensional Euclidean
predictor vector X. The true single index projections xJθ̄0 were obtained by first generating
pZ1, . . . ,Zpq⊺ from a multivariate Multivariate Gaussian distribution with EpZjq “ 0 and
CovpZj ,Zj1 q “ ρ “ 0.25. Then the components of X “ pX1, . . . ,Xpq⊺ were computed as
Xj “ 2ΦpZjq´1, where Φ is the standard normal distribution function. Finally, we generated
a p´dimensional unit vector θ̄0 such that }θ̄0} “ 1 and θ̄01 ą 0, and computed the projection
XJθ̄0. We selected p “ 4 and random responses were generated conditional on X, by adding
noise to the true regression quantile function

Qpm‘pxqqp¨q “ E
`

QpY qp¨q|XJθ̄0 “ xJθ̄0
˘

.(4.3)

For generating the distributional responses, two simulation settings were examined (see
Table 1). For both scenarios, three different link functions were considered for the data-
generating mechanism, namely ζpzq “ z, ζpzq “ z2, and ζpzq “ exppzq. In the first set-
ting, the true response was generated as a normal distribution with parameters depending on
XJθ̄0. For XJθ̄0 “ xJθ̄0, the distribution parameters µpxq „ NpζpxJθ̄0q,0.25q and σpxq „

Expp1{ηpxJθ̄0qq were independently sampled, where ηpzq “
exppzq

1`exppzq
. The corresponding
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distribution-valued regression function is given by m‘pxJθ̄0q “ EpQpY qp¨q|XJθ̄0 “ xJθ̄0q “

ζpxJθ̄0q ` ηpxJθ̄0qΦ´1p¨q, where Φp¨q is the standard normal distribution function.
For the second setting, the distributional parameter µpxq was sampled as before, while

the standard deviation parameter was fixed at σ “ 0.1. The resulting distributions were then
subjected to a random transport map T in Wasserstein space that is uniformly sampled from
the collection of transport maps Tkpaq “ a´ sinpkaq{|k| for k P t˘1,˘2,˘3u. The observed
distributions are not Gaussian anymore due to the added random transports Nevertheless, the
Fréchet mean can be shown to equal ζpxJθ̄0q ` σΦ´1p¨q.

In Table 1, T#p is a push-forward measure such that T#ppAq “ pptx : T pxq P Auq, for
any measurable function T : R Ñ R, distribution p P W , and set A Ă R. Here p is a Gaus-
sian distribution with parameters µ and σ as described above, and W is the metric space of
distributions on a compact support equipped with the 2-Wasserstein metric.

TABLE 1
Two different simulation settings for distributional objects.

Setting I Setting II
QpY qp¨q “ µ ` σΦ´1

p¨q,
where
µ „ NpζpxJθ̄0q,0.25q,

σ „ Exp

ˆ

1`exppxJθ̄0q

xJθ̄0

˙

.

QpY qp¨q “ T#pµ ` σΦ´1
p¨qq,

where
µ „ NpζpxJθ̄0q,0.25q, σ “ 0.1,
Tkpaq “ a ´ sinpkaq{|a|, k P t˘1,˘2,˘3u.

Following these specifications, for each Monte Carlo run we generated n density objects
and multivariate Euclidean predictors from the true model. The bias and deviance of the
estimated direction vectors for varying sample sizes and resulting from 500 Monte Carlo
runs are displayed in Table 2. The bias due to the local linear Fréchet estimation is generally
low and the variance of the estimates is seen to diminish with increasing sample size.

TABLE 2
Two different simulation settings for distributional objects. Bias and deviance (within parenthesis) of p

sθ
(measured in radians as per (4.1)) obtained from 500 Monte Carlo runs, where the predictor dimension is p “ 4,

and the tuning parameters pb,Mq were chosen by 5´fold cross-validation.

Setting I Setting II
link1

px ÞÑ xq

link2
px ÞÑ x2q

link3
px ÞÑ exppxqq

link1
px ÞÑ xq

link2
px ÞÑ x2q

link3
px ÞÑ exppxqq

bias dev bias dev bias dev bias dev bias dev bias dev
n = 100 0.041 0.029 0.053 0.039 0.045 0.061 0.029 0.027 0.022 0.037 0.028 0.044
n = 1000 0.023 0.013 0.027 0.012 0.029 0.012 0.010 0.012 0.011 0.014 0.017 0.021

The performance of the proposed method was further evaluated by computing the mean
squared deviation (MSD) between the observed and the fitted distributions. Denoting the
simulated true and estimated distribution objects by m‘pX̃J

l θ̄0q and m̂‘pX̃J

l
p

sθq, respectively,
for l “ 1, . . . ,M, the utility of the estimation was measured quantitatively by

MSD “
1

M

M
ÿ

l“1

d2W pm‘pX̃J

l θ̄0, θ̄0q, m̂‘pX̃J

l
p

sθ,psθqq,(4.4)

where dW p¨, ¨q is the Wasserstein-2 distance between two distributions.
We compared the estimation performance of the proposed single index Fréchet regres-

sion (IFR) method with global Fréchet regression (GFR), which directly handles multivariate
predictors as it is a generalization of global least squares regression [55]. Since local linear
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Fréchet regression (LFR) is subject to the curse of dimensionality and not suitable for p “ 4
predictors, we fitted four separate LFR models in turn for each of the univariate component
predictors and computed the Mean Squared Deviation (MSD) for each of these four fits. No
binning is required for either GFR or LFR model fits. In Figure 1 we denote the MSDs for
the four local linear Fréchet regression fits as LFR1, LFR2, LFR3, and LFR4, respectively.
Figure 1, displaying boxplots of the MSDs over 500 simulation runs for a sample size of
n “ 1000. The left and right panels correspond to simulation settings I and II, respectively,
and in each panel, three cases are considered corresponding to the different link functions
used to generate the distributional data. Overall six Fréchet regression methods are com-
pared, for two simulation settings and three data generation mechanisms. We observe that
the IFR method outperforms the baseline GFR and all four of the LFR methods in all scenar-
ios. The smallest difference between the IFR and GFR occurs when an identity link function
is used in the data generation mechanism. This is as expected since in this case the true model
essentially reduces to GFR, the equivalent of a linear model. The individual LFR models have
higher MSDs, which can be attributed to the fact that we are ignoring the effect of the other
predictors when fitting the local model with one predictor at a time.
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(a) Simulation Setting I.
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Fig 1: Boxplot of the mean squared deviation (MSD) of the fits using the single index
Fréchet regression model (IFR), the Global Fréchet regression (GFR) model, and four Local
Fréchet Regression (LFR) models using the univariate predictor components, for sample size
n “ 1000. Left and right panels correspond to simulation settings I and II, respectively. The
left, middle, and right columns in each of the panels correspond to the three different link
functions used in the data generation mechanism, namely, identity, square, and exponential
link functions, respectively; in all scenarios, the link functions are estimated from the data.
In the left panel, the outliers having MSD greater than 1 are marked in red with an upward
arrow and the corresponding MSD values are overlaid.

Figure 2 demonstrates the effect of the index values on the distributional objects under
simulation setting I for the different link functions when responses are represented in the
form od densities. The three data generation mechanisms are shown in the left, middle, and
right panels of Figure 2 respectively. For each case, the IFR model was fitted at the mean and
mean˘2 sigma levels of the index values, displayed in red, blue, and green lines respectively,
while the observed/simulated densities are overlaid in orange in each panel. In each case, for
a higher value of the index level, the fitted densities shift towards the top-right, indicating a
positive association of the single-index values on the mode of the distributions.
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Fig 2: Simulated (orange) and fitted (red, blue, and green) distributional objects represented
as densities for simulation setting I for sample size n “ 1000. The left, middle, and right
panels correspond to three link functions (identity, square, and exponential link) used in the
data generation process. In each case, the IFR model fits are obtained at three different levels
of the estimated index values, namely, at t “ meanpxJp

sθq´2ˆ sd(xJp

sθ) (red), t “ mean(xJp

sθ)
(blue) and t “ meanpxJp

sθq ` 2ˆ sd(xJp

sθ) (green).

To illustrate the out-of-sample prediction performance of the proposed IFR model, the
dataset was randomly split into a training set with sample size ntrain “ t2 ˚ n{3u and a test
set with the remaining ntest “ n ´ t2 ˚ n{3u subjects. The IFR method was implemented as
follows: for any given unit direction θ̄ P Θ̄, we partition the domain of the projections into
M equal-width non-overlapping bins and consider the representative observations X̃l and Ỹl
for the data points belonging to the l´th bin. The “true” index parameter was estimated as
p

sθ as per (2.11). We then took the fitted index obtained from the training set and predicted
the responses in the test set using the covariates present in the test set. As a measure of the
efficacy of the fitted model, we computed the root mean squared prediction error (RMPE) as

RMPE “

»

–

1

Mntest

Mntest
ÿ

i“1

d2W

´

Ỹ test
l , m̂‘pX̃test⊺

l
p

sθ,psθq

¯

fi

fl

1{2

,(4.5)

where Ỹ test
l and m̂‘pX̃test⊺

l
p

sθ,psθq denote, respectively, the lth observed and predicted responses
in the test set, evaluated at the binned observation X̃test

l and dW denotes the Wasserstein-2
metric in (4.2). We repeated this process 500 times and computed RMPE for each split for the
subjects separately. The mean and sd of the RMPE over the repetitions are shown in Table 3.
The IFR model is seen to fare best across the different models and scenarios.

For the case of distributional objects, the linear hypothesis test of H0 in (3.9) against the
sequence of alternatives H1δ in (3.10) was also carried out. The power functions correspond-
ing to the two simulation settings are shown in Figure 3a and 3b, respectively. As δ increases,
the power is seen to increase rapidly. This shows that the proposed test has non-trivial power
(see Figure 3). When δ is close to 0, the test sizes are approximately equal to the nominal
significance level of α “ 0.05. As expected, power increases with increasing sample size,
most notably under the identity link. In the second simulation setting when the distributional
objects are obtained by transporting a normal distribution, the power function increases at a
slower rate, especially under the highly nonlinear (exponential) link function.

4.2. Euclidean Responses. We applied the new approach targeting general random ob-
jects as responses for the special case of Euclidean responses. It is not specifically designed
for this case, where targeted, well-studied and well-honed single index models have a long
history. The numerical results show that the proposed method yields results that are some-
what inferior but overall still comparable to those obtained with specially tailored traditional
single index approaches; see Subsection S.4.4 of the Supplement [5].
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TABLE 3
Mean and sd (in parenthesis) of the RMPE as given in (4.5) comparing the performance of various Fréchet

regression models: Index Fréchet Regression (IFR), Global Fréchet Regression (GFR), Local Fréchet Regression
(LFR). The LFR fits are obtained for four individual predictor components separately.

Setting I Setting II
Identity

link
Square

link
Exponential

link
Identity

link
Square

link
Exponential

link

IFR
0.0023

(0.0012)
0.0092

(0.0276)
0.0302

(0.0979)
0.0490

(0.0330)
0.1452

(0.0286)
0.1666

(0.0988)

GFR
0.0136

(0.0002)
0.1668

(0.0085)
0.1599

(0.0176)
0.0661

(0.0189)
0.2531

(0.0095)
0.3413

(0.0186)

LFR1
0.0478

(0.0014)
0.1671

(0.0084)
0.3516

(0.0299)
0.0679

(0.0191)
0.1317

(0.0096)
0.2371

(0.0310)

LFR2
0.0479

(0.0015)
0.1667

(0.0081)
0.3507

(0.0294)
0.0563

(0.0190)
0.1666

(0.0091)
0.1881

(0.0302)

LFR3
0.0476

(0.0020)
0.1684

(0.0133)
0.3468

(0.0296)
0.1218

(0.0191)
0.1992

(0.0142)
0.1812

(0.0304)

LFR4
0.0454

(0.0062)
0.1659

(0.0101)
0.3346

(0.0284)
0.0880

(0.0189)
0.2177

(0.0110)
0.2033

(0.0293)
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(b) Simulation Setting II.

Fig 3: Empirical power as function of δ for density object responses. The black, red, and blue
curves correspond to the identity, square, and exponential link functions used in the data-
generating mechanism, respectively, while the dashed and solid lines correspond to sample
sizes n “ 100 and n “ 1000 respectively. The level of the tests is α “ 0.05 and is indicated
by the dashed line parallel to the x-axis.

5. Data analysis.

5.1. Resting state functional Magnetic Resonance Imaging: ADNI data.
Resting-state functional Magnetic Resonance Imaging (fMRI) methodology makes it possi-
ble to study brain activation and to identify brain regions or cortical hubs that exhibit similar
activity when subjects are in the resting state [2, 22]. In resting state fMRI, time series of
Blood Oxygen Level Dependent (BOLD) signals are observed in regions of interest (ROI),
where each ROI is represented by the signal of a seed voxel, which is the voxel in an ROI that
has the highest correlation with the signals of nearby voxels. Alzheimer’s Disease has been
found to be associated with anomalies in the functional integration of ROIs [16, 72].

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). BOLD signals for V “ 11
brain seed voxels for each subject were extracted for the following ROIs: MPFC (Ante-
rior medial prefrontal cortex), PCC (Posterior cingulate cortex), dMFPC (Dorsal medial
prefrontal cortex), TPJ (Temporal parietal junction), LTC (Lateral temporal cortex), TempP

adni.loni.usc.edu
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(Temporal pole), vMFPC (Ventral medial prefrontal cortex), pIPL (Posterior inferior parietal
lobule), Rsp (Retrosplenial cortex), PHC (Parahippocampal cortex) and HF` (Hippocam-
pal formation) [3]. The pre-processing of the BOLD signals was implemented by adopting
standard procedures of slice-timing correction, head motion correction and other standard
steps. The signals for each subject were recorded over the interval r0,270s (in seconds), with
K “ 136 measurements available at two-second intervals. From this the temporal correla-
tions were computed to construct the connectivity correlation matrix, also referred to as the
Pearson correlation matrix in the neuroimaging community.

The data set in our analysis consists of n “ 830 subjects at four stages of the disease:
372 CN (cognitively normal), 113 EMCI (early mild cognitive impairment), 200 LMCI (late
mild cognitive impairment), and 145 AD (Alzheimer’s) subjects. The inter-hub connectivity
Pearson correlation matrix for the i ´ th subject Yi with elements

pYiqqr “

řK
p“1psipq ´ s̄iqqpsipr ´ s̄irq

”´

řK
p“1psipq ´ s̄iqq2

¯ ´

řK
p“1psipq ´ s̄iqq2

¯ı1{2
, q, r “ 1, . . . ,11(5.1)

is the response object for each subject, where sipq is the pp, qqth element of the signal matrix
for the ith subject and s̄iq :“

1
K

řK
p“1 sipq is the mean signal strength for the qth voxel. For

Alzheimer’s disease studies, the ADAS-Cog-13 score (henceforth referred to as C score) is
a widely-used measure of cognitive performance. It quantifies impairments across cognitive
domains that are affected by Alzheimer’s disease [39]; higher scores indicate more serious
cognitive deficiency.

We considered p “ 10 predictors, namely, X1 “ stage for the disease (coded as 0-3, indi-
cating Cognitive normal (CN), Early and Late Mild cognitive impairment (EMCI and LMCI),
or Alzheimer’s Disease (AD), respectively), X2 “ age of the subject (in years), X3 “ 0 is the
subject is female and “ 1 if male), X4 “C score for the subject at the time of the first scan,
and additionally all pairwise interaction terms between the above predictors, i.e., the products
XjXk, j ‰ k,1 ď j, k ď 4

In a first step, we test the null hypothesis of no regression effect, i.e., with p “ 5,

H0 : θ0 “ 0pp´1qˆ1 vs. H1 : not all θ0j are 0, j “ 2, . . . , p,

where θ̄0 “ pθ01,θ0qJ and θ0 “ pθ02, . . . , θ0pqJ with θ01 “
a

1 ´ }θ0}2. The null model
has X1 included with θ01 “ 1 since it is known that the stage of cognitive impairment has
an effect on brain connectivity/ We obtain an estimate of the pp ´ 1q´ dimensional vector

θ̂ as the minimizer of Vnpθq as per (3.3) and θ̂01 “

b

1 ´ }θ̂}2. Under the null hypothe-

sis, T̃n “ θ̂JppΛ˚
Bq´1θ̂

approx.
„ χ2

pp´1q
. We find that T̃n “ 23.81, corresponding to a p value

of p “ 0.0046 ă 0.005, providing evidence that there is indeed a regression relationship.
We also implemented sequential predictor selection, where we specified an “alpha-to-enter”

TABLE 4
Details on step-wise model selection.

Step 1 Step 2 Step 3
Coeff. p-value Coeff. p-value Coeff p-value

Age -0.364 0.005 -0.394 - -0.401 -
Gender 0.198 0.122 0.558 0.161 0.173 0.113
C Score 0.371 0.094 0.207 0.010 0.279 -

level α “ 0.05 and considered X1 to be in the model and included each of X2, X3, and X4
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in the model separately along with X1 then testing the null hypotheses θj “ 0, j “ 2,3,4
separately. Table 4 illustrates the resulting step-wise model selection.

For example, for testing θ2 “ 0, we first obtained θ̂2 “ ´0.364, θ̂1 “
a

1 ´ p´.364q2 “

0.931) and T̃n “ 7.88 with a p-value of 0.005. Thus X2 (age) was added to the model in
step 1, followed by adding X4 (C score) in step 2, while X3 (gender) was not significant.
With X1, X2, and X4 in the model, we tested for the significance of the pairwise interaction
terms. The null hypothesis for this test is H0 : θ5 “ θ6 “ ¨ ¨ ¨ “ θ10 “ 0. The p-value was
0.106, and we did not include interactions in the final model. The estimated average Fréchet
error 1

n

řn
i“1 d

2pYi, m̂‘pX1iθ̂1 ` X2iθ̂2 ` X4iθ̂4qq was quite small p0.239q.
To construct the confidence regions for the coefficients pθ1, θ2, θ4q, we implemented the

local linear Fréchet regression with the Epanechnikov kernel and used 5-fold cross-validation
to select the bandwidth b. Using the bootstrap method to obtain the estimated covariance
matrix of the limiting distribution we obtained the 95% pairwise confidence ellipses for the
coefficients pθ1, θ2, θ4q of the predictors- disease stage, age, and C score, which are displayed
in Figure 4. We observe that none of the pairwise confidence ellipses includes the origin and
therefore the p-values are ă 0.05, implying the significance of the predictors.
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Fig 4: The 95% confidence ellipses for pairs of coefficients for predictors stage of the disease
(X1), age (X2), and C score (X4).

To illustrate the effect of the single index on the response, we computed the estimated
index of the fitted model for each subject and then obtained the 25%,50%, and 75% quantiles
across all subjects, with values q1 “ 15.048, q2 “ 16.430 and q3 “ 18.250, respectively. The
values of the four covariates for the subjects with estimated index values closest to q1, q2, and
q3 are in Table 5, and their observed and fitted functional connectivity correlation matrices
are illustrated in Figure 5. The fitted correlation matrices correspond to the values of the
estimated object link function at the three index values and are contrasted with the observed
correlation matrices for the three subjects. This gives an idea of how the fitted correlation
matrix changes as the index move through the three quantile levels.

We observe that the fits match the general pattern of the observed matrices quite well. The
Frobenius distances between the observed and the estimated matrices at q1, q2, and q3 are
1.68, 1.10, and 0.79, respectively. The fitted model reflects the trends seen in the observed
correlation matrices and illustrates the nonlinear dependence of functional connectivity on
the index value.
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TABLE 5
Covariate values for the subjects with estimated index values closest to the first three quantiles of the estimated
index when considered across all subjects, q1p15.048q, q2p16.430q, and q3p18.250q, respectively. Subject 726

has an estimated index value that is closest to q1, subject 695 closest to q2, and subject 556 closest to q3.

Subject
number

Estd.
index value

Stage of the
disease

Age Gender C score

726 15.045 2 66.10 y M 20.33
695 16.430 2 78.12 y M 14
556 18.252 1 72.55 y M 51.67
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Fig 5: Observed and fitted functional connectivity correlation matrices for different values of
the single index. The panels in the top row, from left to right, depict the observed functional
connectivity correlation matrices for those subjects for whom the estimated index values are
closest to the 25%,50%, and 75% quantile of all indices across subjects, respectively. The
bottom row shows the fitted functional connectivity correlation matrices for the same sub-
jects, (from left to right). Positive (negative) values for correlations are drawn in red (blue),
where larger circles correspond to larger absolute values.

We also studied the out-of-sample prediction performance of the proposed IFR model, for
which we used the root mean squared prediction error

RMPE “

»

–

1

Mntest

Mntest
ÿ

i“1

d2F

´

Ỹ test
l , m̂‘pX̃J

l
p

sθ,psθq

¯

fi

fl

1{2

,(5.2)

where Ỹ test
l and m̂‘pX̃J

l
p

sθq denote, respectively, the lth observed and predicted responses in
the test set, evaluated at the binned observation X̃l. Here, ntrain and ntest denote the sample
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sizes of the training and testing sets formed by randomly splitting the data. We repeated this
process 200 times, and computed RMPE for each split for the subjects separately. The tuning
parameters pb,Mq were chosen by a 5´fold cross-validation method for each replication of
the process. The prediction performance of the IFR model was compared with other applica-
ble Fréchet regression models, namely, the global Fréchet regression (GFR) model with the
three-dimensional predictor pX1,X2,X4q and two separate local linear Fréchet regression
(LFR) models, one with the single predictor X2 (age) and the other with the single predic-
tor X4 (C score). When comparing the performance of these models (Table 6), we find that

TABLE 6
Mean and sd (in parenthesis) of the root mean prediction error (RMPE) over 200 Monte Carlo simulation runs

for various object regression methods. The methods compared are index Fréchet regression (IFR); global
Fréchet Regression (GFR) with the three predictors stage of the disease, age, and ADSA score; and two local

linear Fréchet regression (LFR) models with separate one-dimensional predictors.

IFR GFR
LFR1

(Predictor Age)
LFR2

(Predictor C Score)
0.3066 (0.012) 0.5083 (0.011) 0.5076 (0.012) 0.5326 (0.013)

the out-of-sample prediction error is low for the IFR model, as compared to the global and
local Fréchet regression approaches. In fact, it is not far from the in-sample prediction error
p0.251q, calculated as the average distance between the observed training sample and the pre-
dicted objects based on the covariates in the training sets. This motivates the proposed IFR
models.

5.2. Human mortality data: Age-at-death distributions as responses. Lifetables reflect-
ing human mortality across 40 countries correspond to distributional responses, coupled with
various country-specific covariates. We implement an overall test for the regression effect for
these data. Details about this analysis are in the Supplement [5], subsection S.4.1.

5.3. Emotional well-being of unemployed workers: Compositional data as responses..
We further demonstrate the proposed IFR method for the analysis of mood compositional
data. Here the object-valued responses lie on a manifold (sphere) with positive curvature.
Thus the sufficient (but not necessary) condition for assumption (A5) that the underlying
metric space behaves like a CAT(0) space is not satisfied, however, the numerical perfor-
mance of the IFR method remains quite good; see Supplement [5], subsection S.4.2. This
suggests a certain degree of model robustness.

6. Discussion. Binning the data to reduce the effective sample size is not necessary for
the basic consistency results without rates. As discussed at the end of Section 2, the binning
method is introduced in order to invoke the uniform consistency rate for the local Fréchet
regression and the effective sample size M “ Mpnq is tied to this rate by virtue of as-
sumption (A4). To avoid confusion, we discuss the binning approach throughout. The rate
of convergence for p

sθ ´ θ̄0 is M´1{2. Since our rate results and proofs rely on the uniform
convergence rate of local Fréchet regression, this rate cannot be improved within the current
framework and overcoming these limits would require a fundamentally different approach.

The assumptions required to obtain the technical results are essentially the same as those
used before in the Fréchet regression literature, specifically in [13]. We require curvature
and entropy conditions to hold uniformly across all index values and direction parameters.
The curvature and entropy conditions can be verified for commonly observed objects such
as univariate probability distributions, positive definite matrices, or data on the surface of a
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sphere, as well as other random objects under suitable metrics. The Lipschitz condition (A2)
on the link function is standard in single-index models, while assumption (A5) reflects the
interplay between the properties of the metric and the link function. Assumption (A5) is
implied by the easier-to-interpret assumption (K1)-(K3) (see Appendix B).

The classical single index model for Euclidean responses has been recently extended to a
single index coefficient model for quantile regression [74]. This is a desirable extension for
the object case of index Fréchet regression as well. One problem to resolve in this case is to
define quantiles in the metric space where the object responses lie since there is no order. The
problem of defining quantiles is already difficult and ambiguous for multivariate Euclidean
objects. This is a potentially interesting topic for future research.

Finally, inference results for object regression are scarce. For example, the Wasserstein
F -tests proposed by [54] are exclusively aimed at univariate distribution quantiles within the
specific setting of global Fréchet regression. We provide here a general framework to obtain
inference for the case of vector predictors coupled with object responses, which includes
generalized versions of inference for model comparisons and for assessing the significance
of individual predictors.

APPENDIX A: GEODESICS AND CURVATURE

The length of a curve ϕ : r0,1s Ñ Ω connecting two distinct points x, y P Ω can be mea-
sured by taking partitions P “ tt0 ď t1 ď ¨ ¨ ¨ ď tku Ă r0,1s and finding the supremum polyg-
onal length

|ϕ| :“ sup
PPP

k
ÿ

j“1

dpϕptjq, ϕptj´1qq,

where P is any collection of subsets of r0,1s with finite cardinality. The metric space pΩ, dq

is a length space if dpx, yq “ infϕ |ϕ|, where the infimum ranges over all curves ϕ : r0,1s Ñ Ω
connecting two distinct points x and y, that is, i.e., ϕp0q “ x and ϕp1q “ y. A geodesic on
Ω connecting two distinct points x and y is the shortest path connecting the two points.
Geodesics in a metric space are analogous to straight lines in a Euclidean space.

Unlike Euclidean spaces, a general metric space may not be flat, and curvature is used to
measure the amount of deviation from being flat. The curvature of a given geodesic space
is classified by comparing the geodesic triangles on the metric space to those on the corre-
sponding reference spaces M2

κ . When κ “ 0, M2
κ “ R2 with the standard Euclidean distance

dEpx, yq “ ||x´y||E , for any x, y P R2. A geodesic triangle with vertices p, q, r in a geodesic
space Ω, denoted by △pp, q, rq, consists of three geodesic segments that connect p to q, p to
r and q to r, respectively. A comparison triangle △pp̄, q̄, r̄q in the reference space M2

k “ R2

is a geodesic triangle in R2 formed by the vertices p̄, q̄, and r̄ such that,

dpp, qq “ ||p̄ ´ q̄||E , dpq, rq “ ||q̄ ´ r̄||E , dpp, rq “ ||p̄ ´ r̄||E .(A.1)

Ω is said to have a non-positive curvature if there exists a comparison triangle △pp̄, q̄, r̄q

in the reference space R2 such that dpx, yq ď ||x̄ ´ ȳ||E for all x P pq and y P pr and their
comparison points x̄ and ȳ on △pp̄, q̄, r̄q. A geodesic space with curvature upper bounded by
0, in which every geodesic triangle △pp, q, rq satisfies the following CATp0q inequality is a
CAT(0) space,

dpx, yq ď ||x̄ ´ ȳ||E for all x P pq and y P pr and their comparison points x̄, ȳ P R2.(A.2)

Every CAT(0) space is uniquely geodesic. Examples of CAT(0) spaces include Euclidean
space, the space of symmetric positive definite matrices, Wasserstein-2 spaces, or phyloge-
netic tree spaces. For a detailed introduction to metric geometry, we refer to [9]. A compila-
tion of the most relevant facts can be found in [45].
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Fig 6: Left figure: Geodesic triangle formed by the three points u, m‘pz0q, m‘pz0 ` 2aq,
where v is the midpoint of the geodesic connecting the points m‘pz0q and m‘pz0 ` 2aq.
The red line depicts the true regression function m‘. m‘pz0 ` aq is closely approximated
by v lying on a geodesic that connects m‘pz0q with m‘pz0 ` 2aq. Right figure: Reference
triangle in R2 as an illustration of the CAT(0) inequality.

APPENDIX B: SUFFICIENT CONDITIONS FOR ASSUMPTION (A5)

We discuss here sufficient conditions under which assumption (A5) holds. For this we
consider the following assumptions:

(K1) pΩ, dq is a CAT(0) space, that is every geodesic triangle satisfies the CAT(0) inequality
in (A.2).

For any z0 P R, and u P Ω, there exists some a0 ą 0, such that for small enough a P p0, a0s,
we may consider the geodesic triangle formed by u, m‘pz0q, m‘pz0 ` 2aq for z0, z0 ` 2a P

T , for which we assume the following.

(K2) Defining the midpoint v of the geodesic path connecting m‘pz0q and m‘pz0 ` 2aq

such that

dpm‘pz0q, vq “ dpm‘pz0 ` 2aq, vq “
1

2
dpm‘pz0 ` 2aq,m‘pz0qq,(B.1)

we require

dpm‘pz0 ` aq, vq ď C˚a
2,(B.2)

where C˚ ą 0 does not depend on z0, and is such that, L2
˚ ą 2DC˚, L˚ and D being the

lower Lipschitz constant for m‘ from assumption (A2), and the diameter of the metric
space Ω, respectively.

(K3) There exist real constants L˚ ą 0 such that, for all x with norm bounded both above
and below, and for all θ̄1, θ̄2 P Θ̄,

d
`

m‘pxJθ̄1, θ̄1q,m‘pxJθ̄2, θ̄2q
˘

ě L˚}θ̄1 ´ θ̄2}.

Figure 6 illustrates the geometry of the geodesic triangles in Ω and its reference space R2.
Assumption (K2) can be verified when the link function m‘ is smooth enough for the case
of conventional Euclidean single index models. It thus provides an extension of the usual
smoothness assumption in the case of random object responses. In section S.2. of the Sup-
plement [5]. We discuss this further in the context of Euclidean responses and in the case
where the responses lie in the space of distributions equipped with Wasserstein-2 metric, and
derive assumption (A5) under the sufficient conditions (K1), (K2), and (K3).
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Assumption (K3) in conjunction with assumption (A2) implies that the link function m‘

is bi-Lipschitz. This limits the rate at which the object m‘ can change, essentially it cannot
change too fast or too slowly. A bi-Lipschitz function is an injective Lipschitz function whose
inverse function is also Lipschitz. The bi-Lipschitz condition is stronger than the common
assumption of a monotone link function in classical single index modeling with Euclidean
responses. In the special case of Ω “ R this reduces to requiring a monotone differentiable
function with strictly positive derivative almost everywhere and restricts the monotonicity to
a smaller subclass of strictly monotone functions. In the special case of Euclidean responses,
this simplifies to the assumption that the link function m‘ “ m is monotone and differen-
tiable such that m1pxq is strictly monotone with continuous derivative bounded away from
zero. Such technical assumptions are commonly used for deriving distributional results in the
existing single index literature, by virtue of a Taylor expansion of the link function m in the
Euclidean case.
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SUPPLEMENTARY MATERIAL

Supplement to Single Index Fréchet Regression
Section S.1. in the Supplement [5] includes the proofs of main and auxiliary results. Various
technical assumptions are compiled and discussed in Section S.2., while Section S.3. intro-
duces alternative sufficient conditions for assumption (A5). Section S.4. includes additional
data illustrations and simulation results.
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