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Summary: Modern data collection often entails longitudinal repeated measurements that assume values on a

Riemannian manifold. Analysing such longitudinal Riemannian data is challenging, because of both the sparsity of

the observations and the nonlinear manifold constraint. Addressing this challenge, we propose an intrinsic functional

principal component analysis for longitudinal Riemannian data. Information is pooled across subjects by estimating

the mean curve with local Fréchet regression and smoothing the covariance structure of the linearized data on tangent

spaces around the mean. Dimension reduction and imputation of the manifold-valued trajectories are achieved by

utilizing the leading principal components and applying best linear unbiased prediction. We show that the proposed

mean and covariance function estimates achieve state-of-the-art convergence rates. For illustration, we study the

development of brain connectivity in a longitudinal cohort of Alzheimer’s disease and normal participants by modeling
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the connectivity on the manifold of symmetric positive definite matrices with the affine-invariant metric. In a second

illustration for irregularly recorded longitudinal emotion compositional data for unemployed workers, we show that

the proposed method leads to nicely interpretable eigenfunctions and principal component scores. Data used in

preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Key words: Alzheimer’s disease; Functional data analysis; Longitudinal compositional data; Neuroimaging studies;

Principal component analysis; Sampling schemes; Symmetric positive definite matrices.
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1. Introduction

Functional data that assume values in an Euclidean space are typically considered as random

elements of a Hilbert space (Horvath and Kokoszka, 2012; Hsing and Eubank, 2015; Wang

et al., 2016). Specifically applicable in such linear spaces with their flat Euclidean geometry

are key techniques such as functional principal component analysis (Chen and Lei, 2015)

and functional regression (Kong et al., 2016). However, only recently has the analysis of non-

linear functional data been considered. In one strand of previous work the entire functional

trajectory is assumed to reside in a nonlinear manifold (Chen and Müller, 2012), while in

the other, the response values of the functional or longitudinal data reside in a manifold

(Yuan et al., 2012; Lin et al., 2017). The latter setting where data objects are sparsely or

densely observed random Riemannian manifold-valued functions is increasingly encountered

in practice. Examples where such data are encountered include neuroimaging (Cornea et al.,

2017) and human kinetics studies (Telschow et al., 2019).

Our work is motivated by data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), where one aims to characterize and assess the progression of Alzheimer’s disease

through collecting longitudinal neuroimaging measures, such as functional magnetic res-

onance imaging (fMRI) scans. Functional connectivity obtained from resting-state fMRI

(rs-fMRI) is known to be altered for Alzheimer’s patients (Badhwar et al., 2017) and can

be represented by the correlation matrix of brain region activation, which we model on

the constrained manifold of symmetric positive definite matrices. In spite of the relevance

for many applied studies of functional connectivity (Ginestet et al., 2017), there is no

firm statistical foundation to date for the study of the time-dynamics of data such as

longitudinally observed correlation matrices. A second motivating example concerns lon-

gitudinal mood assessment of unemployed workers, where in each longitudinal survey the

participants reported the fraction of time during which they experienced four different moods
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ranging from bad, low, mild, to good. Such longitudinal compositional data consisting of

repeated longitudinal observations of compositions that add up to one are encountered in

many important applications, e.g. repeated voting, consumer preference tracing, soil or air

composition over time, and microbiome dynamics.

It has been assumed in virtually all previous studies of manifold-valued functional data

(e.g. Anirudh et al., 2017; Dai and Müller, 2018; Lin and Yao, 2019) that we are aware of that

the recorded data consist of densely or continuously observed functions. A typical example

for this are time-varying network data where networks with a fixed number of nodes can

be characterized by their graph Laplacians, which are symmetric positive definite matrices,

and with this representation networks can be viewed as time-varying metric space-valued

objects, a connection that has been made in Dubey and Müller (2020). This connection

implies that the manifold methodology of Dai and Müller (2018); Lin and Yao (2019) is

directly applicable for fully observed network trajectories. The RPACE approach introduced

here then provides a tool to extend these previous results to longitudinal networks, which

are irregularly and sparsely observed in time. In general, for most longitudinal biomedical

and social studies data are not continuously observed in time, and more often than not the

time points at which measurements are available are irregular and sparse. Nevertheless, one

still may assume that the data for each subject result from the realization of an underlying

unobserved continuous-time stochastic process that takes values on a Riemannian manifold.

The current lack of suitable methodology for longitudinal manifold-valued data thus pro-

vides strong motivation for the development of suitable methods, including a version of

principal component analysis, for sparsely observed and potentially noise-contaminated Rie-

mannian longitudinal data. The principal components can subsequently be used to obtain

best fits for subject-specific trajectories. Methodology and theory development that is nec-

essary to achieve this goal is challenging, due to the combination of irregularity and scarcity
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of the repeated measurements that are available per subject on one hand and the inherent

nonlinearity of manifold-valued data on the other. Specifically, this development is a highly

nontrivial extension of the methodology that is available for longitudinal Euclidean functional

data (Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016).

Functional principal component analysis has emerged as an important tool for analysing

infinite-dimensional functional data. For densely observed manifold-valued functional data,

Dai and Müller (2018) studied an intrinsic Riemannian functional principal component anal-

ysis that utilizes the Fréchet mean curve defined at each observation time and Riemannian

logarithm maps, mapping the observed manifolds at each fixed time to a tangent plane

centred around the Fréchet mean of the observed manifolds at that time, and demonstrated

its advantages over extrinsic approaches that ignore the manifold structure. While this

approach utilized the ambient space in which the manifold is embedded, Lin and Yao (2019)

subsequently extended the theory and developed a fully intrinsic approach. In such intrinsic

approaches, Fréchet means (Fréchet, 1948) are used to extend the classical Euclidean mean

to data on Riemannian manifolds (Patrangenaru et al., 2018).

For sparsely observed manifold-valued longitudinal data, the Riemannian functional prin-

cipal components approach (Dai and Müller, 2018) that was specifically designed for dense

observations is inapplicable. In this work, we instead propose a Riemannian version of the

PACE approach (Yao et al., 2005), which aims to pool observations and borrow information

across all subjects. For this, we obtain the Fréchet mean curve for longitudinal Riemannian

data under a local Fréchet regression framework (Petersen and Müller, 2019), extending

both the local linear smoothing paradigm for Euclidean data (Fan and Gijbels, 1996) and

for independent Riemannian data (Yuan et al., 2012).

The main innovation and contributions of this paper are as follows: First, we develop

a functional principal component analysis for sparsely observed Riemannian longitudinal
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data. The proposed methods can also handle densely observed Riemannian functional data

contaminated with measurement errors, which existing methodology cannot. Second, a local

polynomial estimate for the mean function Riemannian longitudinal data is proposed, based

on pooling the data across subjects and taking into account the dependency of the repeated

measurements within subjects. Third, uniform rates of convergence are derived for the mean

and covariance functions for sparse and dense Riemannian functional data under a unified

framework, extending previous results for the Euclidean case (Li and Hsing, 2010; Zhang

and Wang, 2016) by adopting an M -estimation framework. Fourth, we demonstrate the

utility of our methods for longitudinal neuroimaging and social sciences data. Finally, an R

implementation RFPCA is available at https://github.com/CrossD/RFPCA.

2. Methodology

2.1 Preliminaries for Manifolds

LetM be a d-dimensional smooth, connected, and geodesically complete Riemannian man-

ifold isometrically embedded in an ambient space RD, where positive integers d 6 D are the

intrinsic and ambient dimensions, respectively. The tangent space TpM at p ∈ M is a d-

dimensional vector space consisting of all velocity vectors α′(0) where α : (−ε, ε)→M⊂ RD

is a differentiable curve with α(0) = p defined in a vicinity of 0. The tangent space is

endowed with the Riemannian metric 〈·, ·〉p induced from the inner product in the ambient

Euclidean space, defined by 〈u, v〉p = 〈u, v〉 for u, v ∈ TpM. The geodesic distance dM(p, q)

between p, q ∈M is the infimum of the length over all piecewise differentiable curves onM

joining p and q. A geodesic γ : [a, b] → R is a constant-speed curve on the manifold that is

characterized by having a vanishing projection of γ′′(t) onto Tγ(t), for t ∈ [a, b].

The Riemannian exponential map Expp : TpM→M is defined as Exppv = γv(1), where

γv : [0, 1]→M is a geodesic with initial velocity γ′v(0) = v, and the Riemannian logarithm

https://github.com/CrossD/RFPCA
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map Logp is the inverse of Expp, assuming it is well-defined; see the left panel of Figure 1.

We viewM as a smooth submanifold of the ambient Euclidean space RD. Since an isometric

embedding always exists for a suitable D due to the Nash embedding theorem (Nash, 1956),

one does not need to specify an ambient space (Lee, 1997).

2.2 Statistical Model

We defineM-valued Riemannian random processes X(t) as a D-dimensional vector-valued

random process indexed by a compact interval T ⊂ R such that X(t) ∈ M, and assume

that the process X is of second-order, i.e., for every t ∈ T , there exists p ∈ M such that

the Fréchet functional M(p, t) := E[d2
M(p,X(t))] is finite, where dM is the above defined

geodesic distance. Defining the Fréchet mean function µ : T →M as

µ(t) = arg min
p∈M

M(p, t), M(p, t) = E[d2
M(p,X(t))], t ∈ T , (1)

the following assumption is required to ensure the existence and uniqueness of the Fréchet

mean curve.

(X0) X is of second-order, and the Fréchet mean curve µ(t) exists and is unique.

Assumption (X0) holds for example if the range of the process X is contained in a geodesic

ball of sufficient small radius (Afsari, 2011). Since it is assumed that M is geodesically

complete, by the Hopf–Rinow theorem, its exponential map Expp at each p is defined on

the entire tangent space TpM at p ∈M. We define the domain Dp to be the interior of the

collection of tangent vectors v ∈ TpM such that if γ(t) = Expptv is a geodesic emanating

from p with the direction v, then γ([0, 1]) is a minimizing geodesic. On the domain Dp the

map Expp is injective with image Im(Expp). The Riemannian logarithm map at p, denoted

by Logp, is the inverse of Expp, restricted to Im(Expp); if q = Exppv for some v ∈ Dp, then

Logpq = v. The logarithm map Logp effectively provides a local linear approximation of a

neighborhood of p ∈M, mapping on the tangent TpM.
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To study the covariance structure of the random process X on tangent spaces, we require

(X1) For some constant ε0 > 0, X(t) ∈ M\{M\Im(Expµ(t))}ε0 for t ∈ T , where Aε0

denotes the set ⋃p∈A{q ∈M : dM(p, q) < ε0}.

This condition requires X(t) to stay away from the cut locus (Lee, 1997) of µ(t) uniformly

for t ∈ T , so that the logarithm map Logµ(t) is well-defined for all t. It is not needed if

Expµ(t) is injective on Tµ(t)M for all t. In the special case of a d-dimensional unit sphere

Sd, that we deal with for the special case of longitudinal compositional data, if X(t) is

continuous and the distribution of X(t) vanishes at an open set with positive volume that

containsM\Im(Expµ(t)), (X1) holds. Under (X0) and (X1), the RD-valued logarithm process

L(t) := Logµ(t)X(t) is well-defined for all t ∈ T .

An important observation (Bhattacharya and Patrangenaru, 2003) is that EL(·) = 0 and

furthermore that E‖L(t)‖2
2 = Ed2

M(µ(t), X(t)) < ∞ for every t ∈ T , where ‖ · ‖2 denotes

the Euclidean norm in RD, which makes it possible to define the covariance function of L by

Γ(s, t) = E[L(s)L(t)T], s, t ∈ T . (2)

This covariance function and its covariance operator admit the eigendecomposition

Γ(s, t) =
∞∑
k=1

λkφk(s)φT
k (t)

with orthonormal eigenfunctions φk and eigenvalues λ1 > λ2 > · · · > 0, where ∑∞k=1 λk <∞,

leading to the Karhunen–Loève representation (Grenander, 1950; Kleffe, 1973)

L(t) =
∞∑
k=1

ξkφk(t), ξk =
∫
T
L(t)Tφk(t)dt, (3)

where the ξk are the uncorrelated Riemannian functional principal component scores with

Eξk = 0 and Eξ2
k = λk. We will utilize finitely truncated versions

XK(t) := Expµ(t)LK(t), LK(t) =
K∑
k=1

ξkφk(t) (4)
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for a given integer K > 0. The eigenfunctions φk, defined on the tangent spaces, represent

the linearized modes of variation of X; see the right panel of Figure 1.

To reflect longitudinal studies, for a sample X1, . . . , Xn of aM-valued Riemannian random

process X, we assume that each Xi is only recorded at mi random time points Ti1, . . . , Timi ∈

T , where each observation Xi(Tij) is additionally corrupted by intrinsic random noise. Specif-

ically, with Dn = {(Tij, Yij) : i = 1, . . . , n; j = 1, . . . ,mi}, one records noisy measurements

Yij = Expµ(Tij)Lij, Lij = Li(Tij) + εij, (5)

where measurement times Tij are identically distributed and independent of the predictors

Xi, with Tij ∼ f for some density f supported on T . A graphical illustration of the sampling

model (5) is in the left panel of Figure 1. We require

(Y0) Conditional on {Tij : i = 1, . . . , n; j = 1, . . . ,mi}, the εij are independent and are

independent of the Xi, with isotropic variance σ2 and E(εij | Tij) ≡ 0. Furthermore,

the Fréchet mean of Yij conditional on Tij is µ(Tij).

As E(Li(Tij) | Tij) = 0, the assumption on εij implies that E(Lij | Tij) = 0. The random

noise εij, although modeled in the tangent spaces, induces random noise on the manifold

itself via Riemannian exponential maps, and could alternatively be modeled directly on the

manifold, under the centering condition that the Fréchet mean of Yij given Tij is µ(Tij),

which is the equivalent of the usual centering condition for model errors in Euclidean space.

The following condition is analogous to (X1) and is needed for Yij to stay away from the

cut locus. It imposes indirect constraints on the random noise. For example, it requires the

random noise to be bounded when the cut locus is not empty. The condition is not needed

when the underlying manifold M has nonpositive sectional curvature (Lee, 1997).

(Y1) For some constant ε1 > 0, Yij ∈ M\{M\Im(Expµ(Tij))}
ε1 for i = 1, . . . , n; j =

1, . . . ,mi.
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[Figure 1 about here.]

2.3 Estimation

To deal with the sparse and irregularly spaced observations coming from a longitudinal study,

we develop a new method for estimating the Fréchet mean function by harnessing the Fréchet

regression framework that was originally designed for the case of independent observations

(Petersen and Müller, 2019). We study an extension that is valid for dependent repeated

measurements in a unified framework that covers both sparse and dense observations.

To construct a local polynomial smoother for manifold-valued responses, we define the

local weight function at t ∈ T as

ω̂ij(t, hµ) = 1
σ̂2

0
Khµ(Tij − t){û2 − û1(Tij − t)},

where σ̂2
0(t) = û0(t)û2(t)− û2

1(t), ûk(t) = ∑n
i=1wi

∑mi
j=1Khµ(Tij − t)(Tij − t)k for k = 0, 1, 2,

wi are subject-specific weights satisfying ∑n
i=1miwi = 1, Khµ(·) = h−1

µ K(·/hµ), K(·) is a

symmetric density function, and hµ > 0 is a bandwidth. The mean µ(t) is estimated by

µ̂(t) = arg min
y∈M

Qn(y, t),

where we define the double-weighted Fréchet function as

Qn(y, t) =
n∑
i=1

wi

mi∑
j=1

ω̂ij(t, h)d2
M(Yij, y),

for y ∈ M and t ∈ T . For the special case M = RD where observations lie in a Euclidean

space, Qn coincides with the sum of squared errors loss used in Zhang and Wang (2016).

Two prominent schemes are to assign equal weight to each observation, resulting in wi =

(nm̄)−1, m̄ = n−1∑n
i=1mi (Yao et al., 2005) or to assign equal weight to each subject, i.e.,

wi = (nmi)−1 (Li and Hsing, 2010). As for the Euclidean case the former scheme was found

to work better for non-dense and the latter for ultra-dense functional data, we will adopt

the former weight scheme in our implementations for sparsely sampled data.
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To estimate the covariance structure we first map the observed data into tangent spaces,

obtaining D-dimensional column vectors Ûij = Logµ̂(Tij)Yij and then the matrix-valued

covariance function Γ by scatterplot smoothing (Yao et al., 2005) for matrix-valued data

matrices Γijl = ÛijÛ
T
il for j 6= l. This leads to the estimates Γ̂(s, t) = Â0, where

(Â0, Â1, Â2) := arg min
A0,A1,A2

n∑
i=1

vi
∑

16j 6=l6mi
KhΓ(Tij − s)KhΓ(Til − t)

‖Γijl − A0 − (Tij − s)A1 − (Til − t)A2‖2
F . (6)

Here ‖·‖F is the matrix Frobenius norm, hΓ > 0 is a bandwidth, and vi are weights satisfying∑n
i=1mi(mi−1)vi = 1, where we select vi = 1/∑n

i=1mi(mi−1) in the sparse longitudinal case;

see Zhang and Wang (2016, 2018) for other possible choices. Estimates for the eigenfunctions

φk and λk of Γ are then obtained by the eigenfunctions φ̂k and eigenvalues λ̂k of Γ̂.

In applications, one needs to choose appropriate bandwidths hµ and hΓ, as well as the

number of included components K. To select hµ for smoothing the mean function µ, we

adopt a generalized cross-validation (GCV) criterion

GCV(h) =
∑n
i=1

∑mi
j=1 d

2
M(µ̂(Tij), Yij)

(1−Kh(0)/N)2 ,

where N = ∑n
i=1mi is the total number of observations, selecting hµ as the minimizer of

GCV(h). While a similar GCV strategy can be applied to select the bandwidth hΓ for the

covariance function, we propose to employ the simpler choice hΓ = 2hµ, which we found to

be computationally efficient and to perform well in simulations. To practically determine the

number of components K included in the finite-truncated representation (4), we consider

the fraction of variation explained (FVE)

FVE(K) =
∑K
k=1 λk∑∞
j=1 λj

, F̂VE(K) =
∑K
k=1 λ̂k∑∞
j=1 λ̂j

(7)

and choose the number of included components as the smallest K such that FVE exceeds a
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specified threshold 0 < γ < 1,

K∗ = min(K : FVE(K) > γ), K̂∗ = min(K : F̂VE(K) > γ). (8)

Commonly γ is set to 0.90, 0.95, or 0.99.

2.4 Riemannian Functional Principal Component Analysis Through Conditional

Expectation

The unobserved Riemannian functional principal component scores ξik (4) need to be esti-

mated from the discrete samples {(Tij, Yij)}mij=1. Approximating the integral in (3) is infeasible

when the number of repeated measurements per curve is small, which is well known for

the Euclidean case (Yao et al., 2005). We therefore develop in the following a Riemannian

Functional Principal Analysis through Conditional Expectation (RPACE) for tangent-vector

valued processes. Throughout this subsection, expected values will be taken conditional on

the observation time points {Tij}ni=1
mi
j=1.

Applying best linear unbiased prediction of ξik, we obtain scores

ξ̃ik = B(ξik | Ui) = λkφ
T
ikΣ−1

Ui
Ui, (9)

where B denotes the best linear unbiased predictor; with the vectorization operation denoted

as Vec(·), Ui = Vec((Ui1, . . . , Uimi)) are the vectorized log-mapped noisy observations for

subject i, Ũi = Vec[(Li(Ti1), . . . , Li(Timi))], φik = Vec[(φk(Ti1), . . . , φk(Timi))], and ΣUi =

E(UiUT
i ) = E(ŨiŨT

i ) + σ2I, where I is the identity matrix. The entry of E(ŨiŨT
i ) cor-

responding to E[{Li(Tij)}l{Li(Til)}m] is {Γ(Tij, Tik)}lm, where {v}a and {A}ab denote the

ath and (a, b)th entry in a vector v and matrix A, respectively. Estimates ξ̃ik coincide with

the conditional expectations E(ξik | Ui) if the joint distribution of (ξik, Ui) is elliptically

contoured (Fang et al., 1990, Theorem 2.18) such as the Gaussian distribution.

Substituting estimates for the corresponding unknown quantities in (9), we obtain

ξ̂ik = λ̂kφ̂
T
ikΣ̂−1

Ui
Ûi, (10)
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where Σ̂Ui = Ê(ŨiŨT
i ) + σ̂2I and Ê(ŨiŨT

i ), λ̂k and φ̂ik are obtained from Γ̂, the minimizer

of (6), and σ̂2 = ∑n
i=1

∑mi
j=1(ndmi)−1tr[LijLT

ij − Γ̂(Tij, Tij)]. The K-truncated processes

LiK(t) =
K∑
k=1

ξikφk(t), XiK(t) =
K∑
k=1

Expµ(t)LiK(t) (11)

are then estimated by

L̂iK(t) =
K∑
k=1

ξ̂ikφ̂k(t), X̂iK(t) =
K∑
k=1

Expµ̂(t)L̂iK(t). (12)

If one aims to estimate the underlying processes Xi(t) or Li(t) at some fixed t ∈ T , one

can also proceed directly without estimating the scores. Best linear unbiased predictors are

obtained as

L̃i(t) = B(Li(t) | Ui) = ΣT
itΣ−1

Ui
Ui, X̃i(t) = Expµ(t)L̃i(t), (13)

with corresponding estimates

L̂i(t) = Σ̂T
itΣ̂−1

Ui
Ûi, X̂i(t) = Expµ̂(t)L̂i(t), (14)

obliviating the need for finite truncation. Here Σit = E[UiLi(t)T] = (Γ(Ti1, t)T, . . . ,Γ(Timi , t)T)T

and Σ̂it is the plug-in estimate of Σit.

3. Asymptotic Properties

To derive the asymptotic properties of the estimates in Section 2, we require the following

assumptions, in addition to conditions (X0) and (X1); see the Supplement for details.

(M0) The domain T is a compact interval and M is a bounded submanifold of RD.

(K0) The kernel function K is a Lipschitz continuous symmetric probability density

function on [−1, 1].

(X2) Almost surely, the sample paths X(·) are twice continuously differentiable.

(X3) The density f of the Tij is positive and twice continuously differentiable.
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Boundedness of the manifold as in (M0) can be replaced by compact support conditions on

the random process X(t), t ∈ T and the noisy observations Yij. Conditions (X2) and (X3)

concern the smoothness of the process and design density and are standard for the Euclidean

case (Zhang and Wang, 2016).

Let ω(s, t, h) = σ0(t)−2Kh(s−t){u2(t)−u1(t)(s−t)}, where uk(t) = E{Kh(T −t)(T −t)k},

k = 0, 1, 2, and σ2
0(t) = u0(t)u2(t) − u2

1(t) > 0, t ∈ T by the Cauchy–Schwarz inequality.

The finiteness of uk is implied by the Lipschitz continuity of the kernel function K and

the compactness of the domain T . Define Q̃h(p, t) = E(ω(T, t, h)d2
M(Y, p)) and µ̃(t) =

arg min
y∈M

Q̃h(y, t). Two additional conditions (L0) and (L1) are needed.

(L0) The Fréchet mean functions µ̃ and µ̂ exist and are unique, the latter almost surely

for all n.

Defining a real-valued function Gp(v, t) = M̃(Exppv, t), v ∈ TpM and t ∈ T , where M̃(p, t) =

E(d2
M(p, Yij) | Tij = t) for p ∈ M, TpM denotes as before the tangent space at p and

Expp : TpM→M the Riemannian exponential map, we assume

(L1) The Hessian of Gp(·, t) at v = 0 is uniformly positive definite along the mean

function, i.e., for its smallest eigenvalue λmin it holds that

inf
t∈T

λmin

{
∂2

∂v2Gµ(t)(v, t) |v=0

}
> 0.

Conditions (L0) and (L1) ensure properly defined minima and are necessary for consistent

estimation of the mean curve using M -estimation theory (Petersen and Müller, 2019). On

a Riemannian manifold M with sectional curvature at most K, (L0) and (L1) are satisfied

asymptotically if the support of the noisy observations Yij in the local time window stays

within B{µ(t), π/(2K)}, where B(p, r) is a geodesic ball with centre p ⊂ M and radius r

(Bhattacharya and Bhattacharya, 2012); this specifically holds for longitudinal compositional

data mapped to the positive orthant of a unit sphere. The next two conditions on the
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bandwidths hµ and hΓ are needed to derive the rate of convergence of the mean and

covariance estimates, respectively. For simplicity of presentation, we assume mi = m, noting

that extensions to more general cases are straightforward (Zhang and Wang, 2016).

(H1) hµ → 0 and (log n)/(nmhµ)→ 0.

(H2) hΓ → 0, (log n)/(nm2h2
Γ)→ 0, and (log n)/(nmhΓ)→ 0.

Theorem 1: Assume conditions (X0)–(X3), (Y0)–(Y1), (M0), (K0), (L0)–(L1) and (H1)

hold. Then

sup
t∈T

d2
M{µ̂(t), µ(t)} = OP

(
h4
µ + log n

nmhµ
+ log n

n

)
. (15)

Theorem 1 shows that estimate µ̂ enjoys the same uniform convergence rate as in Zhang

and Wang (2016) for the Euclidean case, so that the presence of curvature does not impact

the rate. The rate in (15) has three terms that correspond to three regimes that are char-

acterized by the growth rate of m relative to the sample size: (a) When m � (n/ log n)1/4,

the observations per curve are sparse and the optimal choice hµ � (log n/nm)1/5 yields

supt∈T dM{µ̂(t), µ(t)} = OP{(log n/nm)2/5}; (b) When m � (n/ log n)1/4, corresponding

to an intermediate case, the optimal choice hµ � (log n/n)1/4 leads to the uniform rate

OP{(log n/n)1/2} for µ̂; (c) When m � (n/ log n)1/4, the observations are dense, and any

choice hµ = o{(log n/n)1/4} gives rise to the uniform rate OP{(log n/n)1/2}.

We note that the transition from (a) to (c) is akin to a phase transition as observed in

Hall et al. (2006). Our next result concerns the uniform rate for the estimator Γ̂ of Γ, the

covariance function of the log-mapped data, extending a result of Zhang and Wang (2016)

to manifold-valued functional data.

Theorem 2: Assume conditions (X0)–(X3), (Y0)–(Y1), (M0), (K0), (L0)–(L1), (H1) and
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(H2) hold. Then

sup
s,t∈T
‖Γ̂(s, t)− Γ(s, t)‖2

F = OP

(
h4
µ + h4

Γ + log n
nmhµ

+ log n
n

+ log n
nm2h2

Γ
+ log n
nmhΓ

)
. (16)

Again, the above rate gives rise to three regimes that are determined by the growth rate of

m relative to the sample size and are discussed in Web Appendix B in the Supplement, along

with its implications for estimated eigenvalues and eigenfunctions, where corresponding rates

are obtained by applying results from perturbation theory (Bosq, 2000).

4. Data Applications

4.1 Time-evolving Functional Connectivity

The longitudinal development of brain functional connectivity, defined as the temporal

dependency of neuronal activation patterns in different brain regions, has become a focus of

recent investigations in brain imaging (Deoni et al., 2016; Dai et al., 2019) to quantify brain

development and brain aging. In such studies, brain imaging modalities that include func-

tional magnetic resonance imaging (fMRI) scans are often obtained longitudinally to quantify

the co-activation of various brain regions over time, where activation of a region is inferred

from elevated blood oxygen levels in the specified region. We focus here on quantifying the

effects of brain aging in terms of longitudinally varying functional connectivity between brain

regions, assessed using fMRI scans that are obtained from subjects in a relaxed state. Brain

connectivity is measured by calculating a correlation (Worsley et al., 2005) that essentially

corresponds to functional dynamic correlation (Dubin and Müller, 2005) between the average

signals of various brain regions. The observed correlations are frequently contaminated with

measurement errors from various sources (Laumann et al., 2017).

Recent work on longitudinal modeling of fMRI-based correlation matrices and connectivity

has focused on linear models (Hart et al., 2018) with their associated restrictions or on

graph based methods under very limited designs where just two repeated observations are
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considered per subject (Kundu et al., 2019). In contrast to these previous approaches that

are grounded in traditional Euclidean representations, we propose here a nonparametric

approach for general longitudinal data that is highly flexible and is designed for objects that

form Riemannian manifolds and where the fitted trajectories automatically stay in the same

space; a directly comparable method does not exist yet. Obtaining trajectories of correlation

matrices first, these can then be converted into time-varying dynamic connectivity measures.

The data for our analysis are from ADNI, a longitudinal study that includes repeated

resting-state fMRI (rs-fMRI) scans. Of central interest are changes in brain function for

Alzheimer’s patients after the onset of the disease. Since the time of onset is unobservable,

we chose as a proxy the time of the first scan for each subject, the first time at which the

diagnosis status is available, and for all subjects we chose this approximate onset time as

the origin of the time axis. The times Tij, j = 1, . . . ,mi, when fMRI scans were obtained for

the i-th subject, are accordingly recorded relative to the time origin at t = 0, which means

that the first scan for each subject takes place at the time Ti1 = 0. The raw rs-fMRI data

were first preprocessed by following a standard protocol that involves motion correction, slice

timing correction, coregistration, normalization, and detrending. For each scan, we obtained

the pairwise correlations between ten brain regions that were identified as relevant for brain

connectivity in Buckner et al. (2009). The resulting 10 × 10 correlation matrices constitute

the manifold-valued responses Yij, i = 1, . . . , n, j = 1, . . . ,mi, at each scan time Tij. For each

subject, one thus has a random number of correlation matrices that are sparsely observed in

time and may be noise-contaminated.

It is of interest to determine and compare the continuously interpolated mean trajectories

for both Alzheimer’s and normal subjects, for which we apply the proposed RPACE. The

correlation matrices Yij are modeled on the Riemannian manifold of symmetric positive

definite matrices M = SPD(10) = {Σ ∈ R10×10 : Σ is symmetric positive definite}, for
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which the tangent space TPM for a P ∈ M is represented by the collection of 10 × 10

symmetric matrices. We employ the affine-invariant Riemannian metric on M (Pennec

et al., 2006), which can be defined through 〈U, V 〉 = tr(UV ) for U, V ∈ TPM. While

the representation of tangent spaces does not depend on the selected P , the Riemannian

metric, exponential maps, and logarithm maps depend on P , as follows. For a symmetric

positive definite P ∈ M, the Riemannian exponential map ExpP maps a symmetric matrix

V ∈ TPM to a symmetric positive definite matrix via ExpPV = P 1/2 expm(V )P 1/2, and the

Riemannian logarithm map LogP maps a symmetric positive definite Q ∈M to a symmetric

matrix on TPM via LogPQ = logm(P−1/2QP−1/2), where expm(·) and logm(·) are the matrix

exponential and logarithm. The geodesic distance is dM(P,Q) =
∥∥∥logm(P−1/2QP−1/2)

∥∥∥
F

,

where ‖A‖F = (∑i,j a
2
ij)1/2 denotes the Frobenius norm of a matrix A = (aij). The proposed

methods guarantee that the fitted objects lie on the M and are always SPD matrices,

which can then be converted to correlation matrices. This is an important feature that

distinguishes the proposed geometric approach from classical Euclidean methods, where

there is no such guarantee. The affine-invariant metric endowsM with globally nonpositive

curvature (Pennec et al., 2006), which ensures that Fréchet mean, exponential map, and

logarithm map are always well-defined.

The time window of interest in the longitudinal connectivity analysis is T = [0, 1.1]

years after the initial visit at t = 0, where the time domain is chosen so as to allow at

least one full year of observations. After removing subjects with outlying signals or no

repeated rs-fMRI measurements within 1.1 years of the initial visit, the sample consisted

of 64 subjects, of whom 26 had a diagnosis of Alzheimer’s disease and 38 were cognitively

normal. A total number of 215 scans were available with 2 to 4 repeated measurements per

subject. The sparsity and irregularity of these data poses difficulties for classical analyses,

prevents the application of presmoothing, and renders previous approaches (Dai and Müller,
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2018) infeasible. The proposed RPACE method is geared towards such sparse and irregularly

sampled manifold-valued functional data and guarantees consistent estimation.

The raw correlation matrices Yij for three randomly selected subjects are displayed in the

first row of each panel in Figure 2. The large heterogeneity in the raw correlations suggests

the presence of substantial measurement errors. The eigenvalues decay slowly in this example,

motivating the application of (14) to obtain noise-filtered fitted trajectories X̂i(t) without

resorting to finite-dimensional truncation. The fitted correlations with hµ = hΓ = 0.3 and the

Gaussian kernel, displayed in the second row of each panel in Figure 2, are clearly smoother

and less noisy compared to the raw correlations, which helps to delineate underlying trends.

To further demonstrate the application of our methodology for comparisons of SPD(10)-

valued connectivity matrices, we focus on the initial visit time t = 0, where a noisy raw

correlation matrix Yi1 is available for each subject, as well as the value of the noise-filtered

fitted trajectory X̂i(0). For a simple-minded approach one could also consider the average

connectivity matrix X̄i, defined as the Fréchet mean of all correlation matrices observed at

random times for the ith subject. For each of the raw, fitted, and average correlation matrices

available per subject, we compare the correlation matrices of the subjects with Alzheimer’s

with those of the cognitively normal group. We apply the Fréchet analysis of variance test

of Dubey and Müller (2019) for the two sample comparison of the correlation matrices,

where we refer to this paper for further details about the test. The p-values obtained with

the bootstrap version of the test are p = 0.03 when using the fitted correlation matrices

X̂i(0), p = 0.37 when using the raw correlation matrices at the first visit Yi1, and p = 0.47

when using the subject-specific correlation matrix averages X̄i. This suggests that the noise

reduction achieved by the proposed fitting procedure leads to more powerful inference.
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4.2 Emotional Well-Being for Unemployed Workers

In this second data example we analyze data from the Survey of Unemployed Workers in

New Jersey (Krueger and Mueller, 2011) conducted in the fall of 2009 and the beginning of

2010, during which the unemployment rate in the U.S. peaked at 10% after the 2007–2008

financial crisis. The data are from a stratified random sample of unemployed workers, who

were surveyed weekly for up to 12 weeks. Questionnaires included an entry survey, which

assessed baseline characteristics such as household income, and weekly follow-ups regarding

job search activities and emotional well-being. In each follow-up questionnaire, participants

were asked to report the percentage of time they spent in each of four different moods.

We consider a sample of n = 4771 unemployed workers enrolled in the study who were not

offered a job during the survey period. Times Tij at which subject i responded to the jth

survey were recorded as days since the start of the study which falls within T = [0, 84]. The

overall weekly response rate was around 40% and the number of responses mi per subject

ranged from 1 to 12, with 25% of all subjects having only one response recorded. Thus these

data are a mixture of very sparse and somewhat sparse longitudinal observations. As subjects

responded at different days of the week, the times Tij at which the compositional mood vector

was recorded are not only sparse but also irregularly spaced. At each Tij, compositional data

Zij = (Zij1, . . . , Zij4), j = 1, . . . ,mi, are observed, where Zijl is the reported and assumed

to be noise-contaminated proportion of time subject i spent in the lth mood in the previous

week, l = 1, . . . , 4 corresponding to bad, low/irritable, mildly pleasant, and good moods.

The Zij reflect an underlying mood composition process Wi(t) = {Wi1(t), . . . ,Wi4(t)}, where

Wil(t) is the proportion of time a subject spent in the lth mood in the week preceding day t.

The proposed RPACE method was applied to the square-root transformed compositional

data Yij and compositional process Xi, defined as

Yij = (
√
Zij1, . . . ,

√
Zij4), Xi(t) = (

√
Wi1(t), . . . ,

√
Wi4(t)),
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both lying on the sphere S3 for t ∈ [0, 84], as compositional data are non-negative and sum

to 1 (Scealy and Welsh, 2011; Dai and Müller, 2018). Two geometries might be considered as

alternatives to the proposed spherical geometry, the Aitchison geometry (Aitchison, 1986)

obtained through applying a log-ratio transformation and the Euclidean geometry for the

unaltered original compositions. The Aitchison geometry faces an immediate problem in

this data application because a substantial proportion of mood compositions is zero, leaving

the log-ratio undefined; this poses no problems for the proposed square-root transformation

approach. Though the compositional simplex can be identically embedded into the Euclidean

space and endowed with the Euclidean geometry, this approach yields a geodesic distance

that equally emphasizes the differences in the entries with large or small magnitude. In many

applications it is more sensible to attach higher importance to the small entries, and this is

effectively achieved by the square-root transformation and also by the log transformation.

Bandwidths were selected by GCV as hµ = 17.9 and hΓ = 35.8 days with the Epanechnikov

kernel. The fitted mood composition trajectories are displayed in the left panel of Figure 3

for four randomly selected subjects, where the solid dots denote the reported moods and are

slightly jittered vertically if they overlap, and dashed curves denote the fitted trajectories.

The fits are obtained with K = 8 components, selected according to the FVE criterion (8)

with threshold γ = 0.99, which is a reasonable choice in view of the large sample size. As the

self-reported moods contain substantial aberrations from smooth trajectories that we view as

noise, the fitted trajectories do not go through the raw observations. The mean trajectory is

displayed in the right panel of Figure 3, indicating that the emotional well-being of subjects

tends to deteriorate as the period of unemployment lengthens, with an overall increase in

the proportion of bad mood and a decrease in the proportion of good mood.

The first four eigenfunctions for mood composition trajectories are shown in Figure 4, where

the first eigenfunction corresponds to the overall contrast between neutral-to-positive mood
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(good and mild) and negative moods (low and bad); the second eigenfunction represents

emotional stability, which is a contrast between more neutral moods and extreme emotions

(good and bad); the third eigenfunction corresponds to a shift of mood compositions to more

positive moods, namely from bad to low and from mild to good; the fourth eigenfunction

encodes an increase of positive feelings and a decrease of negative ones over time. Here it is

important to note that the sign of the eigenfunctions is arbitrary and could be reversed. The

first four eigenfunctions together explain 95% of the total variation.

To demonstrate that the scores obtained from the proposed approach are useful for down-

stream tasks such as regression, we explored the association between the second Riemannian

principal component score ξi2, corresponding to the proportion of extreme moods, and annual

household income in 2008, a measure of financial stability. Collecting these scores for all

subjects, we constructed kernel density estimates for the ξi2 within each income category; see

Figure 5. Participants with higher household income before losing their job and thus higher

financial stability tend to have higher emotion stability, as demonstrated by the right-shifted

distributions of ξi2 and larger means (colored dots). The relationship between prior income

and emotional stability appears to be nonlinear, especially for lower income groups.

5. Simulation Studies

We studied the finite sample performance of the RPACE method for scenarios with varying

sample size, sparsity, and manifold structure, choosingM = S2 orM = SO(3). Here S2 is the

2-sphere and SO(3) is the special orthogonal group consisting of the 3×3 orthogonal matrices

with determinant 1. For each random trajectory Xi(t) on M, i = 1, . . . , n, we sampled

mi observations (Tij, Yij), j = 1, . . . ,mi, where the observation times Tij are uniformly

distributed on T = [0, 1] and the number of observations mi follows a discrete uniform

distribution on {1, . . . ,mmax }, mmax denoting the maximum number of observations per

curve, chosen specifically for each scenario.
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Sparse response observations on the manifold M were generated according to Yij =

Expµ(Tij)(Li(Tij) + εij). Here the Li(t) = ∑20
k=1 ξikφk(t), t ∈ T are the logarithm processes

defined on the tangent spaces with manifold-specific mean function µ(t) and eigenfunctions

φk(t); the ξik are independent Gaussian distributed scores with mean zero and variance λk =

0.05k/3, for k = 1, . . . , 20; and the εij are independent Gaussian errors defined on the tangent

spaces Tµ(Tij)M with mean 0 and isotropic variance σ2 = 0.01. The cumulative fractions

of variance explained for the first K = 1, . . . , 6 components, defined as ∑K
j=1 λj/

∑∞
k=1 λk,

are 63.2%, 86.4%, 95.0%, 98.15%, 99.3%, and 99.8%, respectively. ForM = S2, we set µ(t) =

Expp{ν(t)} = (2t sin(‖ν(t)‖)/(21/2‖ν(t)‖), 0.3π sin(πt) sin(‖ν(t)‖)/‖ν(t)‖, cos(‖ν(t)‖))T where

p = (0, 0, 1)T, ν(t) = (2t/21/2, 0.3π sin(πt), 0)T and ‖ν(t)‖ = (2t2 + 0.32π2 sin2(πt))1/2;

eigenfunctions φk(t) = 2−1/2Rt(ζk(t/2), ζk((t+ 1)/2), 0)T, with Rt being the rotation matrix

from p to µ(t), and {ζk}20
k=1 the orthonormal cosine basis on [0, 1]. For M = SO(3),

µ(t) =


1− (1−cos(at))(4t2+0.09π2 sin2(πt))

a2
t

−2t sin(at)
at

−0.3π sin(πt) sin(at)
at

2t sin(at)
at

1− 4t2(1−cos(at))
a2
t

−0.6πt(1−cos(at)) sin(πt)
a2
t

0.3π sin(πt) sin(at)
at

−0.6πt(1−cos(at)) sin(πt)
a2
t

1− 0.09π2(1−cos(at)) sin2(πt)
a2
t


and φk(t) = 3−1/2ι(ζk(t/3), ζk{(t+ 1)/3}, ζk{(t+ 2)/3}), where at = (4t2 + 0.32π2 sin2(πt))1/2

and ι : R3 → R3×3 maps a vector v to a skew-symmetric matrix with v being the elements

in the lower triangle ordered by column.

We investigated three settings with varying sparsity and sample sizes: Scenario 1 (baseline):

n = 100, mmax = 20; Scenario 2 (sparse): n = 100, mmax = 5; and Scenario 3 (small

n): n = 50, mmax = 20. Three different principal component approaches were evaluated

for each of these scenarios, including two existing extrinsic methods, functional principal

component analysis for multivariate functional data (Chiou et al., 2014) and multivariate

componentwise functional principal component analysis (Happ and Greven, 2018), and the

proposed intrinsic RPACE method. The two previously proposed extrinsic approaches are
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geared towards Euclidean vector data and are applied to the sparse manifold-valued data that

we generated for the simulation by treating these data as longitudinal vector-valued data in

the ambient Euclidean space. For sample trajectories with small variation around the mean,

these methods are linear approximations of the proposed RPACE approach. For smoothing,

we use the Epanechnikov kernel, with bandwidth hµ selected by GCV and hΓ = 2hµ. All

methods were evaluated for different choices of the number of included components K.

For M = 200 Monte Carlo trials, we report in Table 1 the average of mean integrated

squared errors for the fitted trajectories,

MISE = 1
n

n∑
i=1

∫ 1

0
dM(X̂iK(t), Xi(t))2dt,

for K = 1, . . . , 6. Since the fitted trajectories for the two extrinsic methods lie in the ambient

space but not on M, we project them back to the manifold by normalizing X̂K(t) in terms

of norm on M = S2 or eigenvalues on M = SO(3). The Riemannian sparse approach is

seen to be the overall best performer across the various scenarios, especially for the more

parsimonious models. Scenario 2 (sparse) presents a considerably more difficult challenge for

estimation compared to Scenario 1.

6. Concluding Remarks

While the proposed RPACE approach has been found to perform very well in the data

examples and simulation, and will provide a valuable tool for longitudinal studies with

complex data, its utility finds limits for extremely sparse longitudinal designs with an average

of around two measurements per subject. Such extremely sparse designs do occur in practical

applications (Dai et al., 2019). In such cases mean and linearized covariance functions can

still be reasonably estimated if the number of subjects is large, but the recovery of individual

trajectories is unstable. Further limitations are encountered for manifolds with high curvature
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where local linear approximations work less well and for stratified or infinite-dimensional

manifolds. To address and overcome these limits will be left for future research.

Data Availability Statement The data that support the findings of this study are publicly
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Figure 1. Left: Illustration of the tangent space at µ(Tij), Xi(Tij), the value of a process
on the manifold M at observation time Tij, the process Li(Tij) that is obtained after
applying the logarithm map and lies on the tangent space, and the actually observed value
Yij with noise and its version Lij on the tangent space after applying the logarithm map,
illustrating the observation model (5). Specifically, Li(Tij) = Expµ(Tij)Xi(Tij) ∈ Tµ(Tij)M,
Lij = Li(Tij)+εij ∈ Tµ(Tij)M for some random noise εij ∈ Tµ(Tij)M, and Yij = Expµ(Tij)Lij ∈
M. The dashed ellipse in the tangent space Tµ(Tij)M represents the boundary of the domain
D(µ(Tij)). Right: At each time t ∈ T , the value of the eigenfunction φk(t), denoted by
arrows, lies on the tangent space Tµ(t) at the mean µ(t), a point on the central black curve.
The value of the eigenfunction at the first and last time points are bolded and are shown to
lie on different tangent spaces. The solid and dotted blue are curves lying on the manifold
that represent the mode of variation of µ along the direction of φk, the k−th eigenfunction,
which are defined by Expµ(t)(φk(t)) and Expµ(t)(−φk(t)), t ∈ T , respectively.
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Figure 2. Longitudinal functional connectivity of three randomly selected subjects, re-
flected by 10 × 10 correlation matrices for ten brain regions, where the subject in the left
upper panel is cognitively normal and has two available measurements and the subjects in
the right upper and lower panels have been diagnosed with Alzheimer’s and have three,
respectively four, available measurements, with times of the measurements in years as
indicated in the panels. Each panel includes observed (top row) and fitted (bottom row)
correlation matrices.
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Figure 3. Left: Longitudinal mood compositional data for four randomly selected unem-
ployed workers, with raw observations shown as dots and fitted trajectories by the proposed
method shown as solid curves, using 8 eigencomponents. Overlapping dots were slightly
jittered vertically. Right: The overall mean function. All functions are shown in the square
root transformation scale.
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Figure 4. The first four eigenfunctions for the longitudinal mood composition data in the
square root transformation scale, with fraction of variation explained (FVE) displayed in the
panel subtitles.
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Figure 5. The distributions of the second Riemannian principal component score, encoding
emotion stability, visualized as densities in dependence on the annual household income in
2008. Colored dots indicate the mean of this score for each income group.
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Table 1
Average mean integrated squared errors for fitted trajectories in a simulation study. The largest standard error
among all cases is 3× 10−3, where XE is the extrinsic multivariate approach (Chiou et al., 2014); XC is the

extrinsic componentwise approach (Happ and Greven, 2018); and XR is the proposed RPACE approach.
Scenario 1 (baseline) Scenario 2 (sparse) Scenario 3 (small n)

M = S2 M = SO(3) M = S2 M = SO(3) M = S2 M = SO(3)
K XE XC XR XE XC XR XE XC XR XE XC XR XE XC XR XE XC XR

1 0.23 0.23 0.21 0.24 0.24 0.22 0.26 0.27 0.24 0.26 0.27 0.24 0.23 0.23 0.21 0.24 0.23 0.21
2 0.12 0.12 0.09 0.12 0.12 0.09 0.16 0.17 0.14 0.15 0.16 0.12 0.12 0.12 0.09 0.12 0.12 0.09
3 0.08 0.09 0.05 0.08 0.08 0.04 0.13 0.15 0.11 0.11 0.13 0.08 0.08 0.08 0.05 0.08 0.08 0.04
4 0.05 0.06 0.04 0.05 0.05 0.03 0.11 0.14 0.10 0.09 0.11 0.07 0.05 0.06 0.04 0.05 0.05 0.03
5 0.05 0.05 0.04 0.04 0.04 0.02 0.10 0.13 0.10 0.08 0.10 0.07 0.05 0.05 0.04 0.04 0.04 0.02
6 0.04 0.05 0.04 0.03 0.04 0.02 0.10 0.13 0.10 0.08 0.10 0.07 0.04 0.05 0.04 0.03 0.04 0.02
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