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ABSTRACT
The study of events distributed over time which can be quantified as point processes
has attracted much interest over the years due to its wide range of applications. It
has recently gained new relevance due to the COVID-19 case and death processes
associated with SARS-CoV-2 case processes that characterize the COVID-19 pan-
demic and are observed across different countries. It is of interest to study the
behavior of these point processes and how they may be related to covariates such as
mobility restrictions, gross domestic product per capita, and fraction of population
of older age. As infections and deaths in a region are intrinsically events that arrive
at random times, a point process approach is natural for this setting. We adopt
techniques for conditional functional point processes that target point processes as
responses with vector covariates as predictors, and extend it to study the interac-
tion and optimal transport between case and death processes and doubling times
conditional on covariates.
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1. Introduction

The outbreak of the COVID-19 pandemic has impacted most countries around the
world due in part to the strong connectivity of the global network as well as intrinsic
characteristics of the virus, especially its infectivity, easily spreading from person to
person by day-to-day interactions, especially indoors and under conditions of prolonged
contact, and the fact that asymptomatic subjects can be highly contagious. The total
number of worldwide confirmed cases has reached around 5.4 million people with
more than 345 thousand deaths by May 24, 2020, with continuously rising numbers of
infections and deaths [19]. It is of great urgency to understand how the time evolution
of the case and death counts is associated with factors such as mitigation or social
distancing measures, wealth and age of the population of a country, among other
factors. We address this problem by a conditional point process model, which provides
a natural framework in this setting, since confirmed infections (cases) and deaths due
to COVID-19 are events which arrive at random times within each region of interest,
i.e., they come from a temporal point process mechanism [10] for each region (country).

Approaches that take into account the integer-valued character of the number of
confirmed cases and deaths have been explored in [20], where standard Poisson and
Negative Binomial Generalized Linear Models have been applied to study the effect



of covariates on the daily case counts in China. This approach takes the form of the
data as daily counts into account, but does not allow to study the effect of covariates
on the distribution of the infection events over time, as it only models the total case
counts per day, and it also does not incorporate information from different countries,
which is essential to arrive at more general conclusions. In related work, [23] applied
Poisson regression and Generalized Additive Models (GAM) to the study of the basic
reproduction number R0, which can be interpreted as the expected number of infec-
tions directly generated from one case when the entire population is at risk, while [28]
employed GAM and a quasi-Poisson approach to estimate the doubling number across
countries and [31] utilized time series analysis to forecast the worldwide number of
cases. Poisson mixture models were applied by [22] to study the time varying case
fatality rate in China, while [34] fitted a generalized logistic growth model to con-
firmed case curves. These latter approaches do not incorporate covariates, are based
on continuous approximations to case curves and ignore the point process aspects.

Our goal in this paper is to develop a point process perspective with the additional
goal to study the interaction between the case count and death count point processes.
We consider the confirmed COVID-19 infections or deaths that occur in a given country
during a time window [0, T ], T > 0, for some suitable chosen initial time t = 0 that
may be region-specific, and which we choose as the first time when a country records
80 cases of confirmed infections. We then view infections (or deaths) as events that
occur at random times T1, . . . , TNi

in the interval [0, T ] for the i-th country, which are
the data associated with the point process approach. Figure 1 shows the infection and
death point process for n = 62 countries that we consider in this study. The selection
of an initial time when 80+ cases are recorded provides for a temporal alignment of
the processes as the pandemic reaches the countries at different calendar times so that
the calendar time scale is not meaningful for the point process modeling perspective.

A key quantity of interest is the local intensity function which can be interpreted
as the expected number of events per unit time. In the context of doubly stochastic
Poisson or Cox processes [9] that we consider here, the intensity function Λ(t) is
assumed to be random and such that conditional on a realization Λ = λ, N(t) is a
non-homogeneous Poisson process with intensity λ(t). The function Λ(t) characterizes
the point process and viewing it as a random function provides the flexibility to include
various countries in the study, as each country’s underlying intensity function that
characterizes the country-specific point process can be thought of as a realization of
an underlying stochastic intensity process.

The available COVID-19 data is usually recorded at the daily level, where the total
counts per day are recorded instead of each individual event time [19]. This poses
further challenges that we address by regarding the observed data as a binned version
of the actual event times, corresponding to pre-smoothing step that is the result of
binning over each day. Such binned versions of a point process can be viewed as
exhibiting daily granularity [17]. Functional Data Analysis (FDA) [18, 33] suggests
an approach based on approximating the binned daily counts for each country (or
monotone transformations of the counts) by smooth trajectories and then applying
FDA techniques to analyze the time dynamics of accumulated case or death curves
[5]. This incorporates and pools the available information across different countries
and allows to study the main modes of variation for the curves [7], but does not reflect
the underlying monotonicity of the cumulative case and death curves, which leads to
a nonlinearity of the subspace of squared integrable functions where these curves are
assumed to live [29].

The dynamic modeling of key epidemiological quantities such as the basic repro-
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Figure 1. Infection and death point processes viewed as trajectories of cumulative cases and deaths for several

countries over a time window of 45 days since reaching 80+ cases. This alignment serves to make the temporal

evolution of the point processes comparable as the pandemic reached each country at a different calendar time.

duction number R0 or doubling time is also of great interest, where [24] adopted a
Hawkes point process approach to analyze the worldwide and country-wise time vary-
ing reproduction number R(t), the reproduction number at time t. For predicting R(t)
in Wuhan, China, [21] employed a dynamic transmission stochastic model, while [35]
proposed time varying parametric models to explain the evolution of the confirmed
cases, followed by estimating the doubling number and R(t). In a similar approach, [1]
employed SIDR models to estimate R(t) and to then forecast the spread of the virus
over time. The relation of covariates such as age, gender or mobility on the mortality
and the spread of the virus has also been explored [4, 11].

We adopt here a functional non-parametric conditional point process approach [13]
to study the association between vector covariates and the infection and death point
processes as responses, and extend it to study the relation between the arrival times
of these two paired processes in the presence of covariates along with key quantities of
interest such as the doubling time. Details about data sources can be found in Section
2.1 below.

2. Methods

2.1. Data

We obtained the infection and death information for each country from the COVID-
19 Data Repository at the Center for Systems Science and Engineering (CSSE)
at Johns Hopkins University, which is publicly available at https://github.com/

CSSEGISandData/COVID-19. This database is updated on a daily basis and contains
the cumulative number of confirmed cases and deaths for each country from Jan 22,
2020, and was accessed on Jan 6, 2021. We consider the point process of infections
or deaths per country over a time window of 45 days since the first up-crossing of 80
confirmed cases. This allows to compare countries over comparable time windows, as
the pandemic reached countries at different times and this impedes comparisons based
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on calendar time.
We further included only countries that reported at least 50 days of non-zero death

counts after the first time that 80 confirmed cases are reached and whose total death
counts are at least 40 at the end of this time window. This allows to remove right
boundary effects as explained in Section 2.2. Since for some countries the cumulative
case and death curves were not monotonically increasing due to potential data accuracy
issues at some dates, we enforced monotonicity by keeping the cumulative counts at
the same level as the previous day for those dates where it decreased. We did not
consider the countries South Korea and Thailand due to their outlying pattern in
their daily new case counts as they presented a strong decay in new daily cases from
early on. The total number of countries in the study is n = 62.

We obtained the Gross Domestic Product (GDP) per capita in 2018 for each in-
cluded country from the worldbank database, which is publicly available at https:

//data.worldbank.org. The Google mobility report [16] contains the daily percent
change of visits to different place categories such as workplace, residential, grocery,
among others, as compared to a baseline which is defined as the median value of the
corresponding day of the week during the period Jan 3 to Feb 6, 2020. The data is pub-
licly available at https://www.google.com/covid19/mobility/ and was accessed on
Jan 6, 2021. We work with the Google mobility report for workplaces since this is a
natural proxy for infection chances due to person to person interactions. Denoting by
∆i(t) the workplace mobility on day t for country i, i = 1, . . . , n, we construct the

integrated workplace mobility covariate as
∫ T

0 ∆i(t)dt, which is numerically approx-
imated and is referred to as the mobility index. Thus, higher values of the mobility
index reflect higher chances for infection. We use the R package fdapace to perform
the numerical integration [6]. The ranges of the covariates and the positioning of the
countries can be seen in Figure 6.

2.2. Local Fréchet regression for point processes as responses

Let N(t) denote a generic temporal point process that represents the number of events
that occur in a time window [0, t], where t ≤ T for some endpoint T > 0. The local
intensity function of the process N(t) is defined as

lim
∆t→0

E(N(t+ ∆t))− E(N(t))

∆t
, (1)

and can be interpreted as the rate of occurrence of events per unit time. We consider
N(t) to be a Cox process [9]. Cox processes are characterized by the existence of an
underlying stochastic positive and integrable intensity function Λ such that, condi-
tional on a realization Λ = λ, N(t) follows a non-homogeneous Poisson process with
intensity function λ(t). In practice, the function Λ(·) remains unobserved as only the
arrival times T1, . . . , TN(T ) of the point process N(t) are available. A key property that
connects the arrival times to the underlying stochastic intensity function Λ is that,
conditional on observing N(T ) = m > 0 events and a realization Λ = λ, it holds that

T1, . . . , Tm
iid∼ f , where f(t) = λ(t)/τ is a density function and τ =

∫ T
0 λ(s)ds is a

scalar [10], also referred to as intensity factor. Point process techniques have recently
also been successfully applied for bike rentals as events, aiming at the analysis of re-
peated observations of the bike rental point process [15], and the spatial distribution
of street robberies [14].
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The target is to study a notion of regression for the infinite dimensional object
Λ, which characterizes the Cox process and lies in a suitable metric space, with the
Euclidean covariates X ∈ Rp, p > 0 as predictors. For this, we employ the recently pro-
posed framework of Fréchet regression for objects that reside in general metric spaces,
which is based on the concept of conditional Fréchet means. This is a generalization of
the standard regression function E(Y |X = x) for real-valued responses Y [30] and was
extended recently to the point process setting in [13]. Denoting by (Ω, d) the metric
space of intensity functions, the Fréchet regression of the random intensity Y ∈ Ω on
the covariate X = x is defined as

Y⊕(x) := arg min
λ∈Ω

E(d2(Y, λ)|X = x). (2)

Since intensity functions Y ∈ Ω can be written uniquely as a product between the

density f(t) = Y (t)/
∫ T

0 Y (s)ds and the scalar τ =
∫ T

0 Y (s)ds, the intensity space Ω
can be viewed as a product metric space Ω = D×Ωs, where D and Ωs = (0,∞) denote
the spaces of density functions over [0, T ] and intensity factors, respectively. We utilize
the l2 type product metric d between intensities Λ1 = (f1, τ1) and Λ2 = (f2, τ2), which
is given by

d(Λ1,Λ2) =
(
d2
W (f1, f2) + d2

E(τ1, τ2)
)1/2

, (3)

where dE is the Euclidean metric and dW is the Wasserstein metric between probability
distributions, which corresponds to the L2 distance between the quantile functions
associated with the densities f1 and f2. Since we measure differences in the intensity
factor from changes in the density separately, the scale of the metrics is not relevant,
i.e. the Fréchet regression function remains the same for all weighted metrics d2 =
αd2

W + βd2
E , as long as α, β > 0 [13].

This allows to quantify differences in shapes and in the intensity factors separately
since it can be shown that the intensity regression function is given by

Y⊕(t, x) = f⊕(t, x)τ⊕(x), t ∈ [0, T ],

τ⊕(x) = max{E(τ |X = x), 0},
f⊕(·, x) = arg inf

g∈D
E(d2

W(f, g)|X = x). (4)

We refer to f⊕(·, x) as the density regression function, which measures how the shape
of the arrival times is affected by the covariate level. For the estimation of Y⊕(t, x),
we consider replications of the point process as described below.

Let Xi ∈ Rp be the covariate vector of country i, i = 1, . . . , n, where we have p = 2,
since we consider GDP per capita and the mobility index as covariates. Denote by
Ni(t) the point process of either cases or deaths for the i-th country. We consider

a replicated point process framework where (Xi,Λi, Ni)
iid∼ (X,Λ, N), i = 1, . . . , n,

are the replications of the underlying COVID-19 count process (cases or deaths). The
estimation is based on local multivariate polynomial regression methods [12], for which
we introduce the well known local weights sin(x, h) = 1

σ̂2
0
[1−ûT1 û

−1
2 (Xi−x)]Kh(Xi−x),

where ûj = n−1
∑n

i=1Kh(Xi−x)ej(Xi), with j ∈ {0, 1, 2}, e0(Xi) = 1, e1(Xi) = Xi−x
and e2(Xi) = (Xi−x)(Xi−x)T , σ̂2

0 = û0−ûT1 û
−1
2 û1, Kh(Xi−x) :=

∏p
j=1 h

−1
j K((Xij−

x)/h), with Xij being the jth coordinate of Xi. Here the kernel K is a continuous and
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symmetric density function, and the hj are a sequence of positive bandwidths. Then
the estimator of τ⊕(x) is given by

τ̂⊕(x) = max

(
0,
n−1

∑n
i=1 sin(x, h)Ni(T )

N̄(T )

)
, (5)

where the ratio by the average country-wise total counts is to ensure stability of the
estimator in an asymptotic infill point process framework [26] that allows consistent
estimation of the population quantities [13].

For the estimation of the density regression part f⊕(·, x), we start with an estimate

Q̂i of the quantile function associated with the arrival times of the process Ni. Then
an estimate f̃⊕(·, x) of f⊕(·, x) is constructed as follows: First, the empirical estimate
of the quantile function Q̃⊕(·, x) corresponding to the density f̃⊕(·, x) is obtained by
minimizing

Q̃⊕(·, x) := arg min
q∈Q

||q − n−1
n∑
i=1

sin(x, h)Q̂i||2L2([0,1]), (6)

where Q is the space of quantile functions which are (M,L) bi-Lipschitz, M,L >
0. This ensures that the underlying densities are smooth and bounded away from
zero. We numerically solve (6) by casting it as a quadratic optimization problem
along with the constraints, and utilizing very small and large constants M = 10−10

and L = M−1 [13]. Finally, f̃⊕(·, x) is obtained by mapping the quantile Q̃⊕(·, x) to
density space. We chose K as a Gaussian kernel and the bandwidths as 20% of each
covariate range which worked well to capture the underlying patterns. For several
of these steps we use the Fréchet R package [8], which is available on Github at
https://github.com/functionaldata/tFrechet.

In practice, for both the infection and death point processes, the available data does
not contain the exact time of occurrence of each event as national health institutions
and governments report the corresponding events aggregated on a daily basis. Thus,
the arrival times are not directly available in the continuum but rather as binned
data over a fine daily grid. We regard this as a form of pre-smoothing and utilize a
kernel density smoother for binned data with equally spaced bins [17] to first obtain

the estimated density function f̂i associated with each country i, i = 1, . . . , n. These
density function estimates are then mapped to quantile space to obtain Q̂i. Further
details can be found in the Supplement.

Finally, the estimated intensity regression function is given by

Ŷ⊕(t, x) = f̃⊕(·, x)τ̂⊕(x), (7)

which was shown to converge to its true counterpart up to the constant E(τ) in
an asymptotic infill framework [13], so that the relative ratios, which are of central
importance, are on target.

Since local polynomial regression techniques are utilized for the two-dimensional
predictor X, we only show the estimated regression functions over a region strictly
contained in the range of the covariates in order to avoid boundary effects, which
otherwise often dominate the estimation error [25]. Similarly, to avoid boundary effects

of the density estimator f̂i near the right endpoint, we considered an extended time
window of 50 days in the estimation step and then display the estimate over [0, 45]
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by re-normalizing the density estimates. To mitigate boundary effects near the left
endpoint, we considered the data before the first up-crossing of 80 cases which provides
information to the left of the domain starting point, thus reducing boundary effects.

2.3. Time and covariate dependent doubling time

Consider N⊕(t) to be a non-homogeneous Poisson process with intensity function
λ⊕(·, x), which corresponds to the intensity regression function at covariate level X =
x ∈ R2 for either the infection or death process. We define ϑ = ϑ(t, x) as the doubling
time of N⊕(t) at time t and predictor level x if

E[N⊕(t+ ϑ)] = 2E[N⊕(t)]. (8)

It is then of interest to study how the doubling time ϑ varies with t and the covariates
X. From the Poisson assumption on N⊕(t), it follows that (8) is equivalent to∫ t+ϑ

0
λ⊕(s, x)ds = 2

∫ t

0
λ⊕(s, x)ds. (9)

Thus, ϑ(t, x) can be found by solving (9) numerically over a smaller time window
provided that there exists a solution.

We chose the times t ∈ [1, 24] days to carry out the numerical scheme, where we
start after t = 0 due to sparseness of the death process in that region. Note that even
though the estimation of the intensity regression function can be achieved up to the
constant E(τ), this factor drops out in the previous relation, so that estimation of ϑ
can proceed as if one had a consistent estimate of the intensity factor E(τ).

2.4. Optimal transport between case and death processes

Let N c
⊕(t) and Nd

⊕(t) be the case and death regression point processes with inten-

sity function λc⊕(t, x) = f c⊕(t, x)τ c⊕(x) and λd⊕(t, x) = fd⊕(t, x)τd⊕(x), respectively, as
described in Section 2.3. Suppose that Tc and Td are random variables with density
functions f c⊕(·, x) and fd⊕(·, x), which represent random arrival times from the case or
death process conditional on X = x, respectively. The optimal transport plan in the
sense of Monge [32] from the case to the death process for a given covariate level X = x
is defined as the map ψ(t) = T⊕c→d(t, x) : [0, T ] → [0, T ] that pushes the distribution
of the case arrival times to that of the death process by minimizing the transport cost

T⊕c→d(t, x) = arginf
T⊕:[0,T ]→[0,T ]

∫ T

0
(s− T⊕(s))2f c⊕(s, x)ds, (10)

which is also known as the optimal transport between the probability measures cor-
responding to the densities f c⊕(·, x) and fd⊕(·, x) under the 2-Wasserstein metric. The

solution to (10) is well known and is given by Tc→d(t, x) = Qd⊕(F c⊕(t, x), x), where

Qd⊕(·, x) is the quantile function corresponding to the density fd⊕(·, x) and F c⊕(·, x) is
the distribution function associated with the density f c⊕(·, x).

To quantify the transport specifically for the transition from cases to deaths, we
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consider the distance measure

ρ⊕(x) =

∫ T

0
(T⊕c→d(t, x)− t)1{T⊕c→d(t,x)≥t}dt,

where x ∈ R2 is the covariate level. This quantity can be interpreted as a measure
of how farther away the deaths occur as compared to the cases when X = x, i.e., it
serves as a proxy of the underlying time lag.

We compute ρ⊕(Xi) where Xi are the covariate levels of country i, i = 1, . . . , n,
and test the joint significance of the covariates. The latter is done under a classical
multivariate linear regression setting with ρ⊕(X) as response, where we include the
main and squared covariate effects as predictors, i.e., E(ρ⊕|x1,x2) = β0 + β1x1 +
β2x2 + β3x

2
1 + β4x

2
2, where x1 and x2 denote the mobility index and GDP per capita

covariates, respectively. Thus, the effect of one covariate on ρ⊕ depends on the level
of the other as is showcased in Figure ?? in the Supplement. For more details we refer
to the Supplement.

3. Results

3.1. COVID-19 case and death point processes

3.1.1. Conditional COVID-19 point processes

We regress the case point process on the integrated Google mobility data and the Gross
Domestic Product per capita (see Data 2.1). It is of interest to study the relation of the
case intensity function with each covariate, which we address by varying one covariate
while keeping the other covariate at its mean level. Figure 2 shows that decreased levels
of the mobility index are associated with a uniformly lower intensity function over the
entire time window [0, 45] days since the first time the pandemic hits 80 or more
cases, which is likely due to less opportunity for the virus to spread through person to
person interactions as mobility decreases. A similar pattern of accelerated cases and
deaths is observed when GDP per capita increases while keeping the mobility index
at its mean level. This may indicate that there were more opportunities for infection
in richer countries during the time domain that is considered but it could also be a
consequence of differences in testing for the virus.

The intensity function increases towards a unique peak, where the location of the
peak moves to the right with increasing mobility index while it moves to the left with
increasing GDP per capita. Specifically, the density function of the case arrival times
moves to the left with increasing GDP per capita while the mobility index is kept at the
mean level, suggesting that overall, cases are more likely to occur sooner rather than
later for richer countries under a similar level of the mobility index. Moreover, higher
levels of the mobility index are seen to be associated with cases located increasingly
towards the end of the time window rather than at its beginning. This may be related
to the incubation period that follows after a person has been infected until symptoms
appear or testing is performed, all of which may lead to a time lag. Similar results are
observed for the intensity functions of the death process conditional on the covariates.
(see Figure ?? in the Supplement).

Here the integrated Google mobility index
∫ T

0 ∆(t)dt corresponds to an overall mea-
sure of mobility. Alternatively, one could consider regressing the cases or death point
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process on the entire (functional) infinite-dimensional predictor ∆(t). We found that
the latter approach is equivalent to regressing the point process on the first functional
principal component of ∆(t) as given by its Karhunen-Loève representation; details
on this are provided in the Supplement.

3.1.2. Doubling time dynamics

The propagation of the virus in time can be measured by how long it takes, on average,
to double the current number of cases at time t. We refer to this quantity as the
doubling time ϑ. (see Methods 2.3). Lower values indicate faster spread of the virus
while its rate of change measures the instantaneous severity of the disease in terms
of propagation. Figure 3 shows that decreased opportunities for infection and the
corresponding lower levels of mobility in the population are associated with increased
doubling times over an initial time window of 24 days since the initial spread of 80 or
more cases.

Moreover, for a country with a mean GDP per capita level and mobility index
around the 75% quantile, the doubling time appears to increase exponentially which
suggests the long term positive impact of containment policies. In fact, by the 15th

day since the initial spread, roughly eight more days are needed on average for the
cases to duplicate while the doubling requires more than 17 days nine days later.

Higher GDP per capita levels appear to be associated with shorter doubling times on
average and thus higher risk of propagation of the pandemic. We observe an inflection
point around t = 18 days, where the doubling time is higher for wealthier countries,
which may be explained by a lagged effect of closing borders and the change from
physical to remote business meetings. Similar results hold for the doubling time of the
death process (see Figure ?? in the Supplement).

3.2. From case to death process: An optimal transport approach

Although studying the individual relation between the case or death processes and
the covariates is important, exploring the interactions between both processes in the
presence of predictors is also of interest as they are naturally connected in that in-
fections precede deaths and the patterns of the time lag between these contributes to
our understanding of the progression of the pandemic. To study these patterns of time
delay, we employ optimal transport techniques, adapted to the bivariate point process
setting (see Methods 2.4).

We consider the case point process at covariate level x ∈ R2, which is a Poisson point
process with intensity function λc⊕(·, x). Similarly, for the death process we consider

the intensity to be λd⊕(·, x). The interaction between these paired point processes can
be measured by the optimal transport plan from the case to the death arrivals times,
which for probability distributions is defined as moving mass from one distribution
to the other under the constraint that the total transport cost is minimized (see
Methods 2.4), and which is closely connected with the Wasserstein metric between
probability distributions. The optimal transport and Wasserstein perspective has been
very successful in statistical modeling [2, 3, 27, 36].

Increased levels of GDP per capita, while keeping the mobility index at the mean,
translates into a uniformly higher optimal transport map, where transports move
further to the right, from the case to the death process, as can be seen in Figure
4. Thus, wealthier countries appear to have a much larger lag between deaths and
infections. Likely this is because wealthier countries have better infrastructure and
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Figure 2. Local Fréchet regression estimates for the intensity (top) and density (bottom) functions for the

point process of cases. The left panels show the situation of increasing the mobility index from the 25% to
75% quantiles (blue to red), i.e., increased mobility, while keeping the GDP per capita at the mean level. The

right panels display the effect of increasing GDP per capita from the 25% to 75% quantile (blue to red) while
keeping mobility at the mean level.
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Figure 3. Doubling times for the case point process under different covariate levels. The left panel shows the

estimate when the mobility index is at the 25% and 75% quantiles (blue and red, resp.) while keeping the GDP

per capita at mean level. The right panel displays the estimate when increasing GDP per capita from the 25%
to 75% quantile (blue to red) while keeping mobility at the mean level.

resources for the health system compared to countries with lower GDP per capita, and
that the availability of health care resources determines whether death of critically ill
patients can be postponed.

It is instructive to compare the density functions corresponding to the arrival times
of the case and death point processes for Chile and Norway. Both countries have
a mobility index around the mean level, but are very far apart in terms of wealth:
Norway’s GDP per capita is around five times that of Chile. The optimal transport
result predicts that the death arrival times should be much more pushed to the right
relative to the case arrival times for Norway as compared to Chile. That this is indeed
the case is seen in Figure 5, where for Norway the cases and death arrival times are
both unimodal with peaks around 19 and 30 days, respectively, while for Chile the
deaths are pushed to the right with a higher density in the time interval t ∈ [14, 38]
days as compared to the cases density.

Moreover, increases in the mobility index (more opportunities for infection) are
related to an overall lower optimal transport from cases to deaths which could be
indicative of an overloaded health system, as higher mobility translates to a larger
fraction of the population being infected and requiring medical assistance, under a sit-
uation of stretched resources. To assess the covariate effect on the interaction between
the processes, we computed the area ρ⊕(x) between the transport plan and the iden-
tity map, which is a measure of how farther away in time deaths occur as compared to
cases and thus serves as a proxy of the natural temporal lag between these; the value
is indicated for a sample of countries in Figure 5. We test for joint significance of the
two covariates in a classical multivariate linear regression setting with main effects as
well as quadratic terms for ρ⊕(x) as response (see Methods 2.4) and obtain that the
null hypothesis of no-covariate effect is rejected at p < 2.2e−16.

Figure 6 shows the positioning of all considered countries in terms of the covariates
GDP per capita and mobility index, where each country is colored according to its
ρ⊕(x) value. As explained before, wealthier countries have higher values of ρ⊕(x) which
indicate increased time lags of deaths.
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Figure 4. Optimal transport maps from case to death processes. The left panel shows the transport when

the mobility index is increased from the 25% to 75% quantile (blue to red) while keeping GDP per capita at
the mean level. The right panel displays the transport when increasing the GDP per capita covariate from the

25% to 75% quantile (blue to red) while keeping mobility at the mean level. The dashed line corresponds to

the identity function. The farther away the transport is from the identity map, the larger the lag is between
deaths and infections, on average.
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for several countries, along with their corresponding ρ⊕(x) values (see Methods 2.2).
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Figure 6. Positioning of the countries in terms of GDP per capita and Mobility index. Dashed

lines correspond to the mean covariate levels. The country positions are colored based on the scalar

ρ⊕(x) =
∫ T
0 (T⊕c→d(t, x)− t)1{T⊕

c→d
(t,x)≥t}dt, which is a measure of the lag between deaths and infections,

where this lag depends on the covariates (see Methods 2.4). Higher values indicate bigger time lags, i.e., deaths
lag further behind cases. The first and third quartiles for the mobility index are −2309 and −1627, respectively,

while 6352 and 42637 USD per person for the GDP per capita covariate.

However, there are exceptions. Japan provides an atypical example of a higher
than average GDP per capita country with a low ρ⊕(x) value, as opposed to other
countries at similar wealth levels that have larger lags. This may be explained by its
very high mobility index (more opportunities for infection) that might be associated
with lower ρ⊕(x) values (see Figure 4). In fact, the estimated fitted surface for ρ⊕(x)
on the covariates (see Figure ?? in the supplement) is clearly seen to decrease for
sufficiently large values of the mobility index while holding the GDP per capita fixed,
and moreover the decay is more pronounced for wealthier countries. Figure 5 shows
the varying values for some countries. Norway’s estimated arrival densities for the case
and death process appear to be strongly time-warped and pushed apart, reflecting its
high ρ⊕ value, while for countries with lower ρ⊕ values, such as Chile or Italy, the
densities are much closer together.
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4. Discussion

The replicated point process regression framework to analyze the COVID-19 cases
and deaths while conditioning on covariates is well suited to lead to new insights and
provide adequate modeling as it naturally takes into account the monotonicity and
integer-valued property of the underlying case and death process curves. While the
point process approach is useful for modeling the time-evolution of COVID-19 cases
and deaths, the conclusions nevertheless need to be taken with a grain of salt as the
data on both cases and deaths are subject to under-reporting and other distortions
that may be country-dependent.

The point process framework allows to analyze the relation of both the time occur-
rence and the number of infection or death events in the presence of covariates, and a
detailed analysis of the time lag of COVID-19 deaths in relation to the reported cases.
We find that both increasing GDP per capita and increasing mobility are associated
with a higher number of cases and deaths over the entire time window [0, 45] days,
with peaks around 30 and 35 days after reaching 80+ cases, respectively. Increasing
levels of GDP per capita are related to increasing timing effects in opposite directions
between the death and case arrival times: The death curve is pushed towards the end
of the time window while the opposite effect occurs for the cases.

We also see indications that increments in either GDP per capita or mobility index,
keeping the other covariate at the mean level, are related to shorter doubling times for
both case and deaths processes, and thus worse dynamics of disease spread. Increases
in the mobility index are seen to be associated with a faster spread of the virus as
more people are in contact with each others, which ultimately also leads to an increase
in deaths.
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