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General remarks and notation. Throughout we refer to the notations introduced in the main text and

define m○ = min{m1, . . . ,mK}, mmax = max{m1, . . . ,mK}, `○ = min{`1, . . . , `K}, and `max = max{`1, . . . , `K}.

Let Jk,l(mk,ml) = Jk(mk) ∪ Jl(ml) and m○ ≤ mk,l ∶= ∣Jk,l(mk,ml)∣ ≤ mk + ml ≤ 2mmax. Define `k,l
analogously. Define λ2

k,l = nl/(nk + nl) and

Mm(k, l) = max
j∈Jk,l(mk,ml)

(λk,lSk,j/σ
τ
k,l,j − λl,kSl,j/σ

τ
k,l,j) ,

and define M̃m(k, l) and M⋆
m(k, l) analogously. Let N = ∣P∣ and suppose we enumerate the pairs in P by

(k1, l1), . . . , (kN , lN). Let m = (mk1,l1 , . . . ,mkN ,lN ). Define

Mm = max
(k,l)∈P

Mm(k, l),

and M̃m and M⋆
m analogously. In addition, define

κ = α(1 − τ).
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Lastly, the constant c > 0 used in the proofs below may vary from place to place; however, it does not depend

on K,N, p or n1, . . . , nK .

Remark. Under Assumption ??, all `k and thus all `k,l are of the same order as `○ and `max, and similarly,

all mk and mk,l are of the same order as m○ and mmax.

Remark. It is sufficient to show that the results in the theorems hold for all large values of n. The proofs

below implicitly assume p > min1≤q≤N mkq,lq (unless otherwise stated). If p ≤ min1≤q≤N mkq,lq , then p =mkq,lq

for all 1 ≤ q ≤ N , and consequently, the quantities I and III in the proof of Theorem ??, I′(X) and III′(X)

in the proof of Theorem ??, and I′′ and III′′ in the proof of Theorem ?? become exactly zero. In this case,

the related proofs are simplified to bounding II, II′(X) and II′′.

A Proof of Theorem ??

Proof. Consider the inequality

dK (L(M),L(M̃)) ≤ I + II + III,

where we define

I = dK (L(M),L(Mm)) ,

II = dK (L(Mm),L(M̃m)) ,

III = dK (L(M̃m),L(M̃)) .

Then the conclusion of the theorem follows from Propositions A.1 and A.2 below.

Proposition A.1. Under the conditions of Theorem ??, we have II ≲ n− 1
2+δ.

Proof. Let Π denote the projection onto the coordinates indexed by J = ⋃(k,l)∈P Jk,l(mk,ml). Let J = ∣J ∣.

Define the J × J diagonal matrix Dk,l = diag(σk,l,j ∶ j ∈ J ). It follows that

Mm(k, l) = max
j∈I(k,l)

e⊺jD
−τ
k,lΠ(λk,lSk − λl,kSl),

where ej ∈ RJ is the jth standard basis vector, and I(k, l) denotes the row indices involving Jk,l(mk,ml) in

the projection Π. Let C⊺k,l = λk,lD−τ
k,lΠΣ1/2

k , which is of size J × p.

Consider the QR decomposition Σ1/2
k Π⊺ = QkVk so that

Ck,l = QkVk(λk,lD
−τ
k,l) ≡ QkRk,l,

where the columns of Qk ∈ Rp×J are an orthonormal basis for the image of Ck,l and Rk,l ∈ RJ×J . Define the

2



random vectors

Z̆k = n
−1/2
k

nk

∑
i=1
Q⊺
kZk,i.

Then

D−τ
k,lΠ(λk,lSk − λl,kSl) = R

⊺
k,lZ̆k −R

⊺
l,kZ̆l.

Let R⊺ be a JN×JK block matrix with N×K blocks of size J×J such that, for q = 1, . . . ,N and k = 1, . . . ,K,

the (q, k)-block is R⊺
kq,lq

if k = kq, is −R⊺
lq,kq

if k = lq, and is 0 otherwise. Then

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D−τ
k1,l1

Π(λk1,l1Sk1 − λl1,k1Sl1)

D−τ
k2,l2

Π(λk2,l2Sk2 − λl2,k2Sl2)

⋮

D−τ
kN ,lN

Π(λkN ,lNSkN − λlN ,kNSlN )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= R⊺Z̆,

where Z̆ is the (JK) × 1 column vector obtained by stacking the vectors Z̆1, . . . , Z̆K .

It can be checked that for any fixed t ∈ R, there exists a Borel convex set At ⊂ Rr, with r = JK, such that

P(Mm ≤ t) = P(Z̆ ∈ At). By the same reasoning, we also have P(M̃m ≤ t) = γr(At), where γr is the standard

Gaussian distribution on Rr. Thus,

II ≤ sup
A∈A

∣P(Z̆ ∈ A) − γr(A)∣,

where A denotes the collection of all Borel convex subsets of Rr.

Now we apply Theorem 1.2 of (Bentkus, 2005), as follows. Let n1∶k = ∑
k
j=1 nj . Define Yi ∈ Rr in the

following way: For k = 1, . . . ,K and i′ = 1, . . . , nk, set i = n1∶k − nk + i′ and set all coordinates of Yi to zero

except that Yi,(Jk−J+1)∶(Jk) = n
−1/2
k Q⊺

kZk,i′ , i.e., the subvector of Yi at coordinates Jk − J + 1, . . . , Jk is equal

to the vector n−1/2
k Q⊺

kZk,i′ .

Then Z̆ = ∑
n
i=1 Yi, i.e., Z̆ is a sum of n = ∑

K
k=1 nk independent random vectors. We also observe

that cov(Z̆) = Ir. For n1∶k − nk + 1 ≤ i ≤ n1∶k, βi ∶= E∥{cov(Z̆)}−1Yi∥
3 = E∥Yi∥

3 = n
−3/2
k E∥Q⊺

kZk,1∥
3 ≤

n
−3/2
k [E(Z⊺

k,1QkQ
⊺
kZk,1)

2]3/4, where the inequality is due to Lyapunov’s inequality. Let vj be the jth column

of Q1. If we put ζj = Z⊺
1,1vj , then

E(Z⊺
1,1Q1Q

⊺
1Z1,1)

2
=

XXXXXXXXXXX

J

∑
j=1

ζ2
j

XXXXXXXXXXX

2

2

≤
⎛

⎝

J

∑
j=1

∥ζ2
j ∥2

⎞

⎠

2

≲ J2,

where we used the fact that ∥Z⊺
1,1vj∥

2
4 ≤ c based on Assumption ??, where c > 0 is a constant depending only

on c0 of Assumption ??. The same argument applies to the quantity E(Z⊺
k,1QkQ

⊺
kZk,1)

2 for a generic k with

the same constant c. This implies that βi ≤ cn−3/2
k J3/2 for all n1∶k −nk + 1 ≤ i ≤ n1∶k, and some constant c > 0
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not depending on n. Therefore,

II ≲ J1/4
n1+⋯+nK
∑
i=1

βi ≲ J
7/4 K

∑
k=1

n
−1/2
k ≲ N7/4m7/4

maxKn
−1/2

≲ n−1/2+δ,

where the third inequality is due to J ≤ 2Nmmax, and the last one follows from max{K,N} ≲ e
√

logn ≲ nδ

and mmax ≲ n
δ
max ≍ n

δ for any fixed δ > 0.

Proposition A.2. Under the conditions of Theorem ??, we have I ≲ n−1/2+δ and III ≲ n−1/2+δ.

Proof. We only establish the bound for I, since the same argument applies to III. For any fixed t ∈ R,

∣P(M ≤ t) − P(Mm ≤ t)∣ = P (A(t) ∩B(t)) ,

where

A(t) = { max
(k,l)∈P

max
j∈Jk,l(mk,ml)

(λk,lSk,j/σ
τ
k,l,j − λl,kSl,j/σ

τ
k,l,j) ≤ t} ,

B(t) = { max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

(λk,lSk,j/σ
τ
k,l,j − λl,kSl,j/σ

τ
k,l,j) > t} ,

and J ck,l(mk,ml) denotes the complement of Jk,l(mk,ml) in {1, . . . , p}. Also, if t1 ≤ t2, it is seen that

A(t) ∩B(t) ⊂ A(t2) ∪B(t1)

for all t ∈ R. By a union bound, we have

I ≤ P(A(t2)) + P(B(t1)).

Take

t1 = cm
−κ
○ logn

t2 = c2c○`−κmax
√

log `max

for a certain constant c > 0, where we recall that c2 ∈ (0,1) is defined in Assumption ??. Then, P(A(t2))

and P(B(t1)) are at most of order n−1/2+δ, according to Lemma A.3 below. Moreover, the inequality t1 ≤ t2
holds for all large n, due to the definitions of `max, m○, and κ, as well as the condition (1− τ)

√
logn ≳ 1.

Lemma A.3. Under the conditions of Theorem ??, there is a positive constant c, not depending on n, that

can be selected in the definition of t1 and t2, so that

P(A(t2)) ≲ n
− 1

2+δ, (S1)
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and

P(B(t1)) ≲ n
−1. (S2)

Proof of (S1). Let Ik,l be a subset of Jk,l(`k, `l) constructed in the following way: if Jk(`k)∩Jl(`l) contains

at least `○/2 elements, then Ik,l = Jk(`k) ∩Jl(`l), and otherwise, Ik,l = Jk(`k) ∩J cl (`l) when σk,(`k) ≥ σl,(`l)
and Ik,l = J ck (`k) ∩ Jl(`l) when σk,(`k) < σl,(`l). According to Proposition A.1 and the fact that Ik,l ⊂

Jk,l(mk,ml), we have

P(A(t2)) ≤ P( max
(k,l)∈P

max
j∈Jk,l(mk,ml)

(λk,lS̃k,j/σ
τ
k,l,j − λl,kS̃l,j/σ

τ
k,l,j) ≤ t2) + II

≤ P( max
(k,l)∈P

max
j∈Ik,l

(λk,lS̃k,j/σ
τ
k,l,j − λl,kS̃l,j/σ

τ
k,l,j) ≤ t2) + cn

− 1
2+δ.

As σk,l,j =
√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j ≥ λk,lσk,j and σk,(j) ≥ c○j−α for j ∈ {1, . . . ,mk}, and due to Assumption ??

with c○ ∈ (0,1) and Assumption ?? with c2 ∈ (0,1), we have στ−1
k,l,j ≤ λ

τ−1
k,l σ

τ−1
k,j ≤ cτ−1

2 `
α(1−τ)
k cτ−1

○ ≤ `κmax/(c2c○)

for j ∈ Ik,l. With an argument similar to that of Lemma B.1 of Lopes et al. (2020), we can show that

P( max
(k,l)∈P

max
j∈Ik,l

(λk,lS̃k,j/σ
τ
k,l,j − λl,kS̃l,j/σ

τ
k,l,j) ≤ t2)

≤ P( max
(k,l)∈P

max
j∈Ik,l

(λk,lS̃k,j/σk,l,j − λl,kS̃l,j/σk,l,j) ≤
√

log `max)

≤ ∑
(k,l)∈P

P(max
j∈Ik,l

(λk,lS̃k,j/σk,l,j − λl,kS̃l,j/σk,l,j) ≤
√

log `max) .

Note that the cardinality of Ik,l is at least `○/2. Based on Assumption ??, for all sufficiently large n, for all

1 ≤ k < j ≤K, we have log(`max) ≤ 1.01 log `○ ≤ 1.012 log(2∣Ik,l∣) ≤ 1.12 log ∣Ik,l∣ . Then,

P(max
j∈Ik,l

(λk,lS̃k,j/σk,l,j − λl,kS̃l,j/σk,l,j) ≤
√

log `max)

≤ P(max
j∈Ik,l

(λk,lS̃k,j/σk,l,j − λl,kS̃l,j/σk,l,j) ≤ 1.1
√

log ∣Ik,l∣) . (S3)

To apply Lemma B.2 of Lopes et al. (2020), let Q denote the correlation matrix of the random variables

{λk,lS̃k,j/σk,l,j − λl,kS̃l,j/σk,l,j ∶ 1 ≤ j ≤ p}. When Ik,l = Jk(`k) ∩ Jl(`l), for j, r ∈ Ik,l, one has

Qj,r =
λ2
k,lRk,j,r(p)σk,jσk,r + λ

2
l,kRl,j,r(p)σl,jσl,r

√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j

√
λ2
k,lσ

2
k,r + λ

2
l,kσ

2
l,r

≤ (1 − ε0)
λ2
k,lσk,jσk,r + λ

2
l,kσl,jσl,r

√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j

√
λ2
k,lσ

2
k,r + λ

2
l,kσ

2
l,k

≤ 1 − ε0,

since the construction of Ik,l implies that max{Rk,j,r,Rl,j,r} ≤ 1 − ε0. When Ik,l = Jk(`k) ∩ J cl (`l) (so that
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σk,(`k) ≥ σl,(`l)), we have

Qj,k ≤ 1 −
ε0λ

2
k,lσk,jσk,r

√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j

√
λ2
k,lσ

2
k,r + λ

2
l,kσ

2
l,r

≤ 1 − ε0
λ2
k,l

λ2
k,l + λ

2
l,k

≤ 1 − ε0,

where the first inequality is obtained by using Rk,j,r ≤ 1 − ε0 for j, r ∈ Ik,l and the inequality λ2
k,lσk,jσk,r +

λ2
l,kσl,jσl,r ≤

√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j

√
λ2
k,lσ

2
k,r + λ

2
l,kσ

2
l,r and the second is due to σk,j ≥ σk,(`k) ≥ σl,(`l) ≥ σl,j

as j ∈ Jk(`k) and j ∈ J cl (`l). A similar argument shows that the inequality Qj,k ≤ 1 − ε0 also holds when

σk,(`k) < σl,(`l), in which Ik,l = J ck (`k) ∩ Jl(`l).

To apply Lemma B.2 of Lopes et al. (2020), we note that the bound
√

log ∣Ik,l∣ is required instead of

1.1
√

log ∣Ik,l∣. However, by carefully examining the proof of Lemma B.2 of Lopes et al. (2020), we find that

the lemma is still valid for 1.1
√

log ∣Ik,l∣, potentially with constants different from C and 1
2 in (B.19) of

Lopes et al. (2020). This shows that (S3) is bounded by cn−1 for some constant c not depending on n. Then

N ≲ nδ for any δ > 0 implies (S1).

Proof of (S2). The following argument is similar to the proof for part (b) of Lemma B.1 in Lopes et al.

(2020). Define the random variable

V = max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

(λk,lSk,j/σ
τ
k,l,j − λl,kSl,j/σ

τ
k,l,j)

and let q = max{2κ−1,3, logn}. To bound ∥V ∥q, we observe that

∥V ∥
q
q = E [∣ max

(k,l)∈P
max

j∈J c
k,l
(mk,ml)

λk,lSk,j/σ
τ
k,l,j − λl,kSl,j/σ

τ
k,l,j ∣

q
]

≤ ∑
(k,l)∈P

∑
j∈J c

k,l
(mk,ml)

σ
q(1−τ)
k,l,j E∣λk,lSk,j/σk,l,j − λl,kSl,j/σk,l,j ∣

q.

Further, we have

∑
(k,l)∈P

∑
j∈J c

k,l
(mk,ml)

σ
q(1−τ)
k,l,j ≤ ∑

(k,l)∈P
∑

j∈J c
k,l
(mk,ml)

max{σk,j , σl,j}q(1−τ)

≤ ∑
(k,l)∈P

∑
j∈J c

k,l
(mk,ml)

(σ
q(1−τ)
k,j + σ

q(1−τ)
l,j )

≤ c
q(1−τ)
1 ∑

(k,l)∈P

⎛

⎝

p

∑
j=mk+1

j−αq(1−τ) +
p

∑
j=ml+1

j−αq(1−τ)
⎞

⎠

≤ c
q(1−τ)
1 ∑

(k,l)∈P
(2∫

p

m○
x−qκdx)
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≤ 2cq(1−τ)1 N
m−qκ+1
○
qκ − 1

, (S4)

where we recall κ = α(1−τ), and note that qκ ≥ 2. Then, with ∥λk,lSk,j/σk,l,j −λl,kSl,j/σk,l,j∥q ≤ cq according

to Lemma E.3, we deduce that

∥V ∥
q
q ≤ 2cq(1−τ)1 (cq)qN

m−qκ+1
○
qκ − 1

,

and with C = c
(qκ−1)1/qm

1/q
○ (2N)1/q ≲ 1 that

∥V ∥q ≤ Cqm
−κ
○ .

Also, the assumption that (1 − τ)
√

logn ≳ 1 implies that q ≲ logn. Therefore, with t = e∥V ∥q so that

t ≤ cm−κ
○ logn for some constant c > 0 not depending on n, by Chebyshev’s inequality P(V ≥ t) ≤ t−q∥V ∥qq,

we obtain that

P (V ≥ cm−κ
○ logn) ≤ P(V ≥ t) ≤ e−q ≤ n−1,

completing the proof.

B Proof of Theorem ??

Proof. Consider the inequality

dK (L(M̃),L(M⋆
∣X)) ≤ I′ + II′(X) + III′(X),

where we define

I′ = dK (L(M̃),L(M̃m)) ,

II′(X) = dK (L(M̃m),L(M⋆
m∣X)) ,

III′(X) = dK (L(M⋆
m∣X),L(M⋆

∣X)) .

The first term is equal to III in the proof of Theorem ?? and requires no further treatment. The second

term is addressed in Proposition B.2.

To derive the bound for III′(X), we partially reuse the proof of Proposition A.2. For any real numbers

t′1 ≤ t
′
2, the following bound holds

III′(X) ≤ P(A′
(t′2)∣X) + P(B′

(t′1)∣X),
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where we define the following events for any t ∈ R,

A′
(t) = { max

(k,l)∈P
max

j∈Jk,l(mk,ml)
(λk,lS

⋆
k,j/σ̂

τ
k,l,j − λl,kS

⋆
l,j/σ̂

τ
k,l,j) ≤ t} ,

B′
(t) = { max

(k,l)∈P
max

j∈J c
k,l
(mk,ml)

(λk,lS
⋆
k,j/σ̂

τ
k,l,j − λl,kS

⋆
l,j/σ̂

τ
k,l,j) > t} .

Lemma B.1 ensures that t′1 and t′2 can be chosen so that the random variables P(A′(t′2)∣X) and P(B′(t′1)∣X)

are at most cn− 1
2+δ with probability at least 1 − cn−1. Under Assumption ??, it can be checked that the

choices of t′1 and t′2 given in Lemma B.1 satisfy t′1 ≤ t′2 when n (and hence all nk) is sufficiently large.

Lemma B.1. Under the conditions of Theorem ??, there are positive constants c′1, c′2, and c, not depending

on n, for which the following statement is true: If t′1 and t′2 are chosen as

t′1 = c
′
1m

−κ
○ log3/2 n

t′2 = c
′
2`
−κ
max

√
log `max,

then the events

P(A′
(t′2)∣X) ≤ cn−

1
2+δ (S5)

and

P(B′
(t′1)∣X) ≤ n−1 (S6)

each hold with probability at least 1 − cn−1.

Proof. By the triangle inequality and the definition of Kolmogorov distance,

P(A′
(t′2)∣X) ≤ P( max

(k,l)∈P
max

j∈Jk,l(mk,ml)
(λk,lS̃k,j − λl,kS̃l,j)/σ

τ
k,l,j ≤ t

′
2) + II′(X).

Taking t′2 = t2 as in the proof of Proposition A.2, the proof of Lemma A.3 shows that the first term is of

order n−1/2+δ. Proposition B.2 shows that the second term is bounded by cn− 1
2+δ with probability at least

1 − cn−1 for some constant c > 0 not depending on n. This establishes (S5).

To deal with (S6), we define the random variable

V ⋆
= max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

(λk,lS
⋆
k,j/σ̂

τ
k,l,j − λl,kS

⋆
l,j/σ̂

τ
k,l,j),

and let q = max{2κ−1,3, logn}. We shall construct a function b(⋅) such that the following bound holds for

every realization of X,

(E[∣V ⋆
∣
q
∣X])

1/q
≤ b(X),
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and then Chebyshev’s inequality gives the following inequality for any number bn satisfying b(X) ≤ bn,

P(V ⋆
≥ ebn ∣X) ≤ e−q ≤ n−1.

We will then find bn so that the event {b(X) ≤ bn} holds with high probability. Finally, we will see that

t′1 ≍ bn.

To construct b, we adopt the same argument of the proof of Lemma B.1(b) of Lopes et al. (2020) and

show that for any realization of X,

E(∣V ⋆
∣
q
∣X) ≤ ∑

(k,l)∈P
∑

j∈J c
k,l
(mk,ml)

σ̂
q(1−τ)
k,l,j E(∣λk,lS

⋆
k,j/σ̂

τ
k,l,j − λl,kS

⋆
l,j/σ̂

τ
k,l,j ∣

q
∣X).

By Lemma E.3, for every j ∈ {1, . . . , p}, the event

E(∣λk,lS
⋆
k,j/σ̂

τ
k,l,j − λl,kS

⋆
l,j/σ̂

τ
k,l,j ∣

q
∣X) ≤ (cq)q

holds with probability 1. Consequently, if we set s = q(1 − τ) and consider the random variable

ŝ =
⎛
⎜
⎝
∑

(k,l)∈P
∑

j∈J c
k,l
(mk,ml)

σ̂sk,l,j

⎞
⎟
⎠

1/s

,

as well as

b(X) = cqŝ(1−τ),

we obtain the bound

[E(∣V ⋆
∣
q
∣X)]

1/q
≤ b(X),

with probability 1. Now, Lemma E.2 implies that

P(b(X) ≥ q
(c

√
q)1−τ

(qκ − 1)1/qm
−κ+1/q
○ (2N)

1/q
) ≤ e−q ≤ n−1

for some constant c > 0 not depending on n. By weakening this tail bound slightly, it can be simplified to

P (b(X) ≥ C ′q3/2m−κ
○ ) ≤ n−1,

where C ′ = cm1/q
○ (qκ − 1)−1/q(2N)1/q. Since C ′ ≲ 1 and (1 − τ)

√
logn ≳ 1 gives q ≍ logn, it follows that

there is a constant c′1 not depending on n, such that if bn = c′1m
−κ
○ log3/2 n, then P(b(X) ≥ bn) ≤ n

−1, which

completes the proof.

Proposition B.2. Under the conditions of Theorem ??, there is a constant c > 0, not depending on n, such

9



that the event

II′(X) ≤ cn−
1
2+δ

holds with probability at least 1 − cn−1.

Proof. Define the random variable

M̆⋆
m = max

(k,l)∈P
max

j∈Jk,l(mk,ml)
(λk,lS

⋆
k,j − λl,kS

⋆
l,j)/σ

τ
k,l,j (S7)

and consider the triangle inequality

II′(X) ≤ dK (L(M̃m),L(M̆⋆
m∣X)) + dK (L(M̆⋆

m∣X),L(M⋆
m∣X)) . (S8)

Addressing the first term of (S8). Let S be the vector obtained by stacking column vectors λk,lS⋆k,j−λl,kS⋆l,j
for (k, l) = (k1, l1), . . . , (kN , lN). As in the proof of Proposition A.1, M̆⋆

m can be expressed as coordinate-

wise maximum of ΠmR
⊺ζ with ζ ∼ N(0, S̆), where Πm denotes the projection matrix onto the superindices

I = {(k, l, j) ∶ k, l ∈ P, j ∈ Jk,l(mk,ml)}, R is a matrix, and

S̆ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΠΣ̂1Π⊺

ΠΣ̂2Π⊺

⋱

ΠΣ̂KΠ⊺

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with Π being defined in the proof of Proposition A.1. Similarly, M̃m can be expressed as coordinate-wise

maximum of ΠmR
⊺ξ, where ξ ∼ N(0,S) with

S =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΠΣ1Π⊺

ΠΣ2Π⊺

⋱

ΠΣKΠ⊺

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For C⊺k = ΠΣ1/2
k consider the singular value decomposition

Ck = UkΛkV ⊺
k ,

where rk ≲ J ≡ ∣I∣ denotes the rank of Ck. We may assume that Uk ∈ Rp×rk has orthonormal columns,

Λk ∈ Rrk×rk to be invertible, and V ⊺
k to have orthonormal rows. Define

Wk = n
−1
k

nk

∑
i=1

(Zk,i − Z̄k)(Zk,i − Z̄k)
⊺,

10



where Z̄k = n−1
k ∑

nk
i=1Zk,i, and

W =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W1

W2

⋱

WK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then S = C⊺C and S̆ = C⊺WC with

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1

C2

⋱

CK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Define rk-dimensional vectors ξ̃k = V ⊺
k ξk and ζ̃k = V ⊺

k ζk, where ξk and ζk are respectively the subvectors of ξ

and ζ corresponding to the kth sample. It can be shown that the columns of ΠΣ̂kΠ⊺ and ΠΣkΠ⊺ span the

same subspace of RJ with probability at least 1− cn−2
k (due to Lemma D.5 of Lopes et al. (2020) and noting

that the probability bound there can be strengthened to 1− cn−2). Therefore, the event E = {the columns of

S and Ŝ span the same subspace} holds with probability at least 1− c∑Kk=1 n
−2
k ≥ 1− cn−1, and furthermore,

conditionally on E, the random vector ξ lies in the column-span of V , where

V =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V1

V2

⋱

VK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

since S̆ = V Λ(U⊺WU)ΛV ⊺with

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U1

U2

⋱

UK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Λ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Λ1

Λ2

⋱

ΛK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The argument below is conditional on the event E.

Given E, the random vector ξ lies in the column-span of V almost surely, which means V ξ̃ = ξ almost

surely. The same argument applies to ζ and ζ̃. It follows that for any t ∈ R, the events {M̃m ≤ t} and {M̆⋆
m ≤ t}

can be expressed as {ξ̃ ∈ At} and {ζ̃ ∈ At}, respectively, for a convex set At. Hence dK (L(M̃m),L(M̆⋆
m∣X))

is upper-bounded by the total variation distance between L(ξ̃) and L(ζ̃), and in turn, Pinsker’s inequality

implies that this is upper-bounded by c
√
dKL(L(ζ̃),L(ξ̃)), where c > 0 is an absolute constant, and dKL

denotes the KL divergence. Since the random vectors ξ̃ ∼ N(0, V ⊺SV ) and ζ̃ ∼ N(0, V ⊺S̆V ) are Gaussian

(conditional on X), the following exact formula is available if we let H = (V ⊺SV )1/2 (so that H⊺H = V ⊺SV )
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and C̃ =H−⊺(V ⊺S̆V )H−1 − Ir,

dKL(L(ζ̃),L(ξ̃)) =
1
2
{tr(C̃) − log det(C̃ + Ir)}

=
1
2

r

∑
j=1

{θj(C̃) − log(θj(C̃) + 1)},

where r = ∑Kk=1 rk ≤ KJ and θj(C̃) denotes the eigenvalues of C̃. Note that ∥C̃∥op ≤ cKn−1/2J lognmax by

utilizing Lemma D.5 of Lopes et al. (2020) and the diagonal block structure of C̃. Using the inequality

∣x − log(x + 1)∣ ≤ x2/(1 + x) that holds for any x ∈ (−1,∞), as well as the condition ∣θj(C̃)∣ ≤ ∥C̃∥op ≤

cKn−1/2J lognmax ≤ 1/2 for sufficiently large n, we have

dKL(L(ζ̃),L(ξ̃)) ≤ cr∥C̃∥
2
op ≤ cKJ (Kn−1/2J lognmax)

2
,

for some absolute constant c > 0. Thus,

dK (L(M̃m),L(M̆⋆
m∣X)) ≤ cJ3/2K3/2n−1/2 lognmax

with probability at least 1 − cn−1. With J ≤Kmmax and observing

cJ3/2K3/2n−1/2 lognmax ≲K
3m3/2

maxn
−1/2 lognmax ≲ n

− 1
2+δ,

the first term of (S8) is bounded by cn− 1
2+δ with probability at least 1 − cn−1.

Addressing the second term of (S8). We proceed by considering the general inequality

dK(L(ξ),L(ζ)) ≤ sup
t∈R

P(∣ζ − t∣ ≤ ε) + P(∣ξ − ζ ∣ > ε),

which holds for any random variables ξ and ζ, and any real number ε > 0. We will let L(M̆⋆
m∣X) play the role

of L(ξ), and L(M⋆
m∣X) play the role of L(ζ). Thus we need to establish an anti-concentration inequality for

L(M⋆
m∣X), as well as a coupling inequality for M⋆

m and M̆⋆
m, conditionally on X.

For the coupling inequality, we put

ε = cn−1/2 log5/2 nmax

for a suitable constant c > 0 not depending on n. Then Lemma E.6 shows that the event

P (∣M̆⋆
m −M⋆

m∣ > ε ∣X) ≤ cn−1

holds with probability at least 1 − cn−1.
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For the anti-concentration inequality, we use Nazarov’s inequality (Lemma G.2, Lopes et al., 2020). Let

σ̂m = min
(k,l)∈P

min
j∈Jk,l(mk,ml)

σ̂k,l,j .

Then Nazarov’s inequality implies that the event

sup
t∈R

P (∣M⋆
m − t∣ ≤ ε∣X) ≤ cεσ̂τ−1

m

√
logm ≤ cεσ̂τ−1

m

√
log(2Nmmax)

holds with probability 1, where m = ∑(k,l)∈Pmk,l ≤ 2Nmmax. Meanwhile, we observe that

σk,l,j =
√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j ≥ max{λk,lσk,j , λl,kσl,j}

≥ c2 max{σk,j , σl,j} ≥ c2c○ max{m−α
k ,m−α

l } ≥ cm−α
max (S9)

for all (k, l) ∈ P and j ∈ Jk,l(mk,ml). Then, Lemma E.4 and Assumption ?? imply that the event

σ̂τ−1
m ≤ cmκ

max

holds with probability at least 1 −Nn−2 ≥ 1 − cn−1. Given the above, we conclude that

sup
t∈R

P (∣M⋆
m − t∣ ≤ ε ∣X) ≤ cmκ

max
√

log(2Nmmax)n
−1/2 log5/2 nmax ≤ cn

−1/2+δ

holds with probability at least 1 − cn−1, which completes the proof.

C Proof of Theorem ??

Define

M̂m = max
(k,l)∈P

M̂mk,l(k, l), (S10)

Proof. We first observe that

dK(L(M̂),L(M)) ≤ I′′ + II′′ + III′′,

where

I′′ = dK (L(M̂),L(M̂m)) ,

II′′ = dK (L(M̂m),L(Mm)) ,

III′′ = dK (L(Mm),L(M)) .

The last term III′′ requires no further consideration, as it is equal to I in the proof of Theorem ??. The
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second term is handled in Proposition C.1, while the first term is handled in Proposition C.2.

Proposition C.1. Let δ be as in Theorem ??. Under Assumptions ??–??, one has II′′ ≲ n− 1
2+δ.

Proof. We again proceed by considering the general inequality

dK(L(ξ),L(ζ)) ≤ sup
t∈R

P(∣ζ − t∣ ≤ ε) + P(∣ξ − ζ ∣ > ε),

which holds for any random variables ξ and ζ, and any real number ε > 0. We will let L(M̂m) play the role

of L(ξ), and let L(Mm) play the role of L(ζ). As before, we then need to establish an anti-concerntration

inequality for L(Mm), as well as a coupling inequality for M̂m and Mm.

For the coupling inequality, we put

ε = cn−1/2 log5/2 nmax

for a suitable constant c not depending on n. Then Lemma E.7 shows that

P (∣M̂m −Mm∣ > ε) ≲ n−1.

For the anti-concentration inequality, we utilize dK(L(Mm),L(M̃m)) ≲ n−1/2+δ, which was established in

the proof of Theorem ??, whence

sup
t∈R

P(∣Mm − t∣ ≤ ε) = sup
t∈R

{P(Mm ≤ t + ε) − P(Mm ≤ t − ε)}

= sup
t∈R

{P(M̃m ≤ t + ε) − P(M̃m ≤ t − ε)} + cn−1/2+δ.

Let

σm = min
(k,l)∈P

min
j∈Jk,l(mk,ml)

σk,l,j .

Then Nazarov’s inequality implies that

sup
t∈R

P (∣M̃m − t∣ ≤ ε) ≲ εστ−1
m

√
logm ≲ εστ−1

m

√
log(2Nmmax) ≲ εm

α(1−τ)
max

√
log(2Nmmax),

where m = ∑(k,l)∈Pmk,l, and the last inequality is due to (S9). Given the above, we conclude that

sup
t∈R

P (∣M̃m − t∣ ≤ ε) ≤ cn−1/2
(log5/2 nmax)m

α(1−τ)
max

√
log(2Nmmax) ≤ cn

−1/2+δ.

This completes the proof.

Proposition C.2. Under the conditions of Theorem ??, one has I′′ ≲ n− 1
2+δ.

14



Proof. Define

A′′
(t) = { max

(k,l)∈P
max

j∈Jk,l(mk,ml)
(λk,lSk,j/σ̂

τ
k,l,j − λl,kSl,j/σ̂

τ
k,l,j) ≤ t} ,

B′′
(t) = { max

(k,l)∈P
max

j∈J c
k,l
(mk,ml)

(λk,lSk,j/σ̂
τ
k,l,j − λl,kSl,j/σ̂

τ
k,l,j) > t} ,

where J ck,l(mk,ml) denotes the complement of Jk,l(mk,ml) in {1, . . . , p}. Also, if t′′1 ≤ t′′2 , it is seen that

A′′
(t) ∩B′′

(t) ⊂ A′′
(t′′2) ∪B

′′
(t′′1)

for all t ∈ R. By a union bound, we have

I′′ ≤ P(A′′
(t′′2)) + P(B′′

(t′′1)).

Setting

t′′1 = cm−κ
○ logn

t′′2 = c○`−κmax
√

log `max

for a constant c > 0, we proceed to show that P(A′′(t′′2)) and P(B′′(t′′1)) are bounded by cn−1/2+δ. We note

the inequality t′′1 ≤ t′′2 holds for all large n, due to the definitions of `max, m○, and κ, as well as the condition

(1 − τ)
√

logn ≳ 1. Specifically we will establish that

P(A′′
(t′′2)) ≲ n

− 1
2+δ, (S11)

and

P(B′′
(t′′1)) ≲ n

−1. (S12)

According to Propositions C.1 and A.1, we have

P(A′′
(t′′2)) ≤ P( max

(k,l)∈P
max

j∈Jk,l(mk,ml)
(λk,lSk,j/σ

τ
k,l,j − λl,kSl,j/σ

τ
k,l,j) ≤ t

′′
2) + II′′

≤ P( max
(k,l)∈P

max
j∈Jk,l(mk,ml)

(λk,lS̃k,j/σ
τ
k,l,j − λl,kS̃l,j/σ

τ
k,l,j) ≤ t

′′
2) + II + II′′

≤ P( max
(k,l)∈P

max
j∈Jk,l(mk,ml)

(λk,lS̃k,j/σ
τ
k,l,j − λl,kS̃l,j/σ

τ
k,l,j) ≤ t

′′
2) + cn

− 1
2+δ.

Then (S11) follows from a similar argument as given in the proof of Lemma A.3.

To derive (S12), consider

U = max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

λk,lSk,j − λl,kSl,j

σ̂τk,l,j
.
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For q = max{2κ−1,3, logn}, we first observe that

∥U∥
q
q ≤ ∑

(k,l)∈P,j∈J c
k,l
(mk,ml)

E
RRRRRRRRRRR

λk,lSk,j − λl,kSl,j

σ̂τk,l,j

RRRRRRRRRRR

q

≤ ∑
(k,l)∈P,j∈J c

k,l
(mk,ml)

∥Vk,l,j∥
q
2q∥Yk,l,j∥

q
2q

with

Vk,l,j =
RRRRRRRRRRR

στk,l,j

σ̂τk,l,j

RRRRRRRRRRR

,

Yk,l,j =
RRRRRRRRRRR

λk,lSk,j − λl,kSl,j

στk,l,j

RRRRRRRRRRR

.

By Lemma E.10, we further have

∥U∥
q
q ≤ c

q
∑

(k,l)∈P,j∈J c
k,l
(mk,ml)

∥Yk,l,j∥
q
2q

≤ cq ∑
(k,l)∈P,j∈J c

k,l
(mk,ml)

⎛

⎝
σ

2q(1−τ)
k,l,j E ∣

λk,lSk,j − λl,kSl,j

σk,l,j
∣

2q
⎞

⎠

1/2

≤ cq ∑
(k,l)∈P,j∈J c

k,l
(mk,ml)

σ
q(1−τ)
k,l,j

⎛

⎝
E ∣
λk,lSk,j − λl,kSl,j

σk,l,j
∣

2q
⎞

⎠

1/2

≤ (cq)q ∑
(k,l)∈P,j∈J c

k,l
(mk,ml)

σ
q(1−τ)
k,l,j

≤ (cq)qc
q(1−τ)
1 N

m−qκ+1
○
qκ − 1

,

where the last inequality is due to (S4). If we put C = c
(qκ−1)1/qm

1/q
○ N1/q ≲ 1, then

∥U∥q ≤ Cqm
−κ
○ .

Since q ≍ logn, we have

P (U ≥ ecm−κ
○ logn) ≤ e−q ≤ 1

n
,

as needed.

Remark. If Assumption ?? is replaced with the condition n−1/2 log3 p≪ 1, then (S12) can be established in

the following way. With the same notations in the proof of Proposition C.2, we first observe that

U ≤
⎛

⎝
max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

RRRRRRRRRRR

στk,l,j

σ̂τk,l,j

RRRRRRRRRRR

⎞

⎠
V

with

V = max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

RRRRRRRRRRR

λk,lSk,j − λl,kSl,j

στk,l,j

RRRRRRRRRRR

.
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Under the condition n−1/2 log3 p≪ 1,

max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

RRRRRRRRRRR

στk,l,j

σ̂τk,l,j

RRRRRRRRRRR

≍ 1

with probability at least 1− cNn−2, according to Lemma E.8. With the aid of Lemma E.3, the term V then

can be handled by an argument similar to the proof of Lemma A.3.

Remark. The above proofs relied on the condition p > m○ and this implies m○ ≥ nlog−a n and `○ ≥ log3 n.

These conditions are used in the analysis of I and III, as well as I′, III′(X), I′′ and III′′. If p ≤ m○, then

the definition of m○ implies that p =m1 = ⋯ =mK , and the quantities I, III, I′, III′(X), I′′ and III′′ become

exactly 0. In this case, the proofs of Theorems ??, ?? and ?? reduce to bounding II, II′(X) and II′′, and

these arguments can be repeated as before.

D Proof of Theorem ??

Proof. Part ?? is handled in Proposition D.1. Below we establish part ??.

Let qM∗ be the quantile of the conditional probability distribution L(M∗∣X). By Theorem ?? and ??,

the event E = {dK(L(M),L(M⋆∣X)) ≤ can} holds with probability at least 1 − cn−1, where an = n−1/2+δ.

Below we condition on the event E and observe that qM(% − can) ≤ qM⋆(%) ≤ qM(% + can) conditional on E.

In the derivation of Proposition A.2, with the notation there, we have

P(M ≤ t) = P (A(t) ∩Bc(t)) = P (A(t)) − P (A(t) ∩B(t))

≥ P (A(t)) − P (A(t2)) − P (B(t1))

≥ P (A(t)) − cn−1/2+δ.

By an argument similar to Lemma A.3, one can show that if

V = max
(k,l)∈P

max
j∈Jk,l(mk,ml)

λk,lSk,j − λl,kSl,j

στk,l,j
,

then ∥V ∥
Q
Q ≤ (cQ)QN if we define Q = max{2κ−1,3,

√
logn}. Thus,

P (A(t)) = 1 − P(V > t) ≥ 1 −
∥V ∥

Q
Q

tQ
≥ 1 − e−Q → 1

if t ≥ e∥V ∥Q. Therefore, qM(% + can) ≲ ∥V ∥Q ≲
√

logn, otherwise P(M ≤ t) → 1 > %. Similar arguments show

that qM(% − can) ≲
√

logn.

The above shows that ∣qM⋆(%)∣ ≤ c
√

logn with probability at least 1 − cn−1. Since conditional on the

data X the random variable M⋆ is the maximum of a multivariate Gaussian distribution, according to
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Nadarajah et al. (2019), the conditional distribution ofM∗ has a probability density and thus its cumulative

distribution function is continuous. This enables us to apply Theorem 2 of Xia (2019), with an appropriately

chosen t ≍
√

logn in that theorem, to conclude that ∣q̂M(%) − qM∗(%)∣ ≤ c
√

logn with probability at least

1 − e−2h2B ≥ 1 − cn−1 for all sufficiently large n when the event E holds, where h > 0 is a constant not

depending on n. To complete the proof, we should verify that the quantities ∣ϕ+F (t)∣ and ∣ϕ−F (t)∣ defined in

that theorem, with the chosen t ≍
√

logn, are bounded from below by h > 0 with probability at least 1− cn−1

for all sufficiently large n, where F is the cumulative distribution function of M⋆ conditional on the data X.

For this, set h = min{(1 − %)/4, %/4} > 0. Then replacing % with % + 2h in the inequality ∣qM⋆(%)∣ ≤ c
√

logn,

we observe that ∣qM⋆(% + 2h)∣ ≤ c
√

logn with probability at least 1 − cn−1. This means that the event

∣qM⋆(%+2h)−qM⋆(%)∣ ≤ c
√

logn occurs with probability at least 1−cn−1, and when this event holds we are able

to find an appropriate t ≍
√

logn such that ϕ+F (t) = ⌊(1−%)n⌋/n+F (qM⋆(%)+t)−1 = ⌊(1−%)n⌋/n+%+2h−1 ≥ h

for all sufficiently large n. The claim for ∣ϕ−F (t)∣ can be established in a similar fashion.

Proposition D.1. Under Assumptions ??–??, for some constant c > 0 not depending on n, one has

P( max
(k,l)∈P

max
1≤j≤p

σ̂2
k,l,j < 2σ2

max) ≥ 1 − cn−1,

where σmax = max{σk,j ∶ 1 ≤ j ≤ p,1 ≤ k ≤K}.

Proof. Define

A○
(t) = { max

(k,l)∈P
max

j∈Jk,l(n,n)
σ̂2
k,l,j > t} ,

B○
(t) = { max

(k,l)∈P
max

j∈J c
k,l
(n,n)

σ̂2
k,l,j > t} ,

where as before J ck,l(n,n) denotes the complement of Jk,l(n,n) in {1, . . . , p}. With t○ = 2σ2
max we will

establish that

P (A○
(t○)) ≲ n−1, (S13)

and when J ck,l(n,n) ≠ ∅ for some (k, l) that

P (B○
(t○)) ≲ n−1. (S14)

For (S13), we first observe that

P(σ̂2
k,l,j > t

○
) ≤ P(∣σ̂2

k,l,j − σ
2
k,l,j ∣ > t

○
− σ2

max).
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With the above inequality, by using Lemma E.5 and a union bound, we conclude that

P (A○
(t○)) ≤ ∑

(k,l)∈P
∑

j∈Jk,l(n,n)
P(∣σ̂2

k,l,j − σ
2
k,l,j ∣ > t

○
− σ2

max)

≤ cNn ⋅ n−3
≲ n−1.

To derive (S14), consider

U = max
(k,l)∈P

max
j∈J c

k,l
(mk,ml)

σ̂2
k,l,j .

For q = max{α−1,3, logn}, we first observe that

∥U∥
q
q ≤ ∑

(k,l)∈P,j∈J c
k,l
(n,n)

E ∣σ̂2
k,l,j ∣

q

By Lemma E.1, we further have

∥U∥
q
q ≤ ∑

(k,l)∈P,j∈J c
k,l
(n,n)

∥σ̂k,l,j∥
2q
2q

≤ ∑
(k,l)∈P,j∈J c

k,l
(n,n)

(cσk,l,j
√

2q)2q

≤ c(cq)q ∑
(k,l)∈P,j∈J c

k,l
(n,n)

σ2q
k,l,j

≤ c(cq)qNn−2qα+1,

where the last inequality is derived in analogy to (S4), and this implies

∥U∥q ≲ qn
−2α+1/qN1/q

≪ σ2
max.

Since q ≍ logn, we have

P(U > 2σ2
max) ≤ P (U ≥ e∥U∥q) ≤ e

−q
≤

1
n

for all sufficiently large n.

E Technical Lemmas

Lemma E.1. Suppose the conditions of Theorem ?? hold. For any fixed b > 0, if 3 ≤ q ≤ max{2κ−1,3, logb n},

there exists a constant c > 0 not depending on q, K, N , p or n1, . . . , nK , such that for any k, l ∈ {1, . . . ,K}

and j ∈ {1, . . . , p}, we have ∥σ̂k,j∥q ≤ cσk,j
√
q and ∥σ̂k,l,j∥q ≤ cσk,l,j

√
q.

Proof. According to Lemma D.1 of Lopes et al. (2020) (which still holds when q = logb n ≥ 3), we have

∥σ̂k,j∥q ≤ cσk,j
√
q. Therefore, due to σ̂k,l,j =

√
λ2
k,lσ̂

2
k,j + λ

2
l,kσ̂

2
l,j ≤ λk,lσ̂k,j + λl,kσ̂l,j , and using the fact that
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∥Y ∥2
q = ∥Y 2∥q/2 for any random variable Y , we deduce that

∥σ̂k,l,j∥
2
q = ∥σ̂2

k,l,j∥q/2 = ∥λ2
k,lσ̂

2
k,j + λ

2
l,kσ̂

2
l,j∥q/2

≤ λ2
k,l∥σ̂

2
k,j∥q/2 + λ

2
l,k∥σ̂

2
l,j∥q/2 = λ

2
k,l∥σ̂k,j∥

2
q + λ

2
l,k∥σ̂k,j∥

2
q

≤ c2q(λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j) = c

2qσ2
k,l,j .

Lemma E.2. Let q = max{2κ−1,3, logn} and s = q(1− τ). Consider the random variables ŝ and t̂ defined by

ŝ =
⎛
⎜
⎝
∑

(k,l)∈P
∑

j∈J c
k,l
(mk,ml)

σ̂sk,l,j

⎞
⎟
⎠

1/s

and

t̂ =
⎛

⎝
∑

(k,l)∈P
∑

j∈Jk,l(mk,ml)
σ̂sk,l,j

⎞

⎠

1/s
.

Under the conditions of Theorem ??, there is a constant c > 0, not depending on q, K, N , p or n1, . . . , nK ,

such that

P(ŝ ≥
c
√
q

(qκ − 1)1/sm
−α+1/s
○ (2N)

1/s
) ≤ e−q (S15)

and

P(t̂ ≥
c
√
q

(qκ − 1)1/s (2N)
1/s

) ≤ e−q. (S16)

Proof. Using Lemma E.1, this lemma follows from similar arguments as in the proof of Lemma D.2 in Lopes

et al. (2020). For further details, consider

∥ŝ∥q =

XXXXXXXXXXXX

∑
(k,l)∈P

∑
j∈J c(mk,ml)

σ̂sk,l,j

XXXXXXXXXXXX

1/s

q/s
≤
⎛

⎝
∑

(k,l)∈P
∑

j∈J c(mk,ml)
∥σ̂sk,l,j∥q/s

⎞

⎠

1/s

=
⎛

⎝
∑

(k,l)∈P
∑

j∈J c(mk,ml)
∥σ̂k,l,j∥

s
q

⎞

⎠

1/s
≤ c

√
q
⎛

⎝
∑

(k,l)∈P
∑

j∈J c(mk,ml)
σsk,l,j

⎞

⎠

1/s

≤ c
√
q
⎛

⎝
∑

(k,l)∈P
∑

j∈J c(mk,ml)
max{σk,j , σl,j}s

⎞

⎠

1/s
≤ c

√
q
⎛

⎝
∑

(k,l)∈P
∑

j∈J c(mk,ml)
(σsk,j + σ

s
l,j)

⎞

⎠

1/s

≤ c
√
q
⎛

⎝
∑

(k,l)∈P
{∫

p

mk
x−sαdx + ∫

p

ml
x−sαdx}

⎞

⎠

1/s
≤ c

√
q (2N ∫

p

m○
x−sαdx)

1/s

≤ c
√
q(2N)

1/s m
−α+1/s
○

(sα − 1)1/s ,

where for the last step, we use sα = qκ > 1. The proof for t̂ can be obtained by the same argument, except

that the bound becomes ∑j∈Jk,l(mk,ml) σ
s
k,j ≲ 1.
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Lemma E.3. Suppose the conditions of Theorem ?? hold, and for any fixed b > 0, let q = max{2κ−1, logb n,3}.

Then for a constant c > 0, not depending on q, K, N , p or n1, . . . , nK , such that for any (k, l) ∈ P and

j ∈ {1, . . . , p}, it holds that

∥
λk,lSk,j

σk,l,j
−
λl,kSl,j

σk,l,j
∥
q

≤ cq, (S17)

and the following event holds with probability 1,

(E [∣
λk,lS

⋆
k,j

σ̂k,l,j
−
λl,kS

⋆
l,j

σ̂k,l,j
∣

q

∣X])

1/q
≤ cq. (S18)

Proof. Without loss of generality, let (k, l) = (1,2), and set λ1 = λk,l, λ2 = λl,k, and σj = σk,l,j . We reuse the

notation k for some index from {1,2}, i.e., k ∈ {1,2} in what follows.

Since q > 2, by Minkowski’s inequality and Lemma G.4 of Lopes et al. (2020), we have

∥λ1S1,j/σj − λ2S2,j/σj∥q ≤∥λ1S1,j/σj∥q + ∥λ2S2,j/σj∥q

≤qmax{∥λ1S1,j/σj∥2, λ1n
−1/2+1/q
1 ∥(X1,1,j − µ1,j)/σj∥q}

+ qmax{∥λ2S2,j/σj∥2, λ2n
−1/2+1/q
2 ∥(X2,1,j − µ1,j)/σj∥q},

and furthermore

∥Sk,j∥
2
2 = var(Sk,j) = σ2

k,j .

Thus ∥λkSk,j/σj∥2 = λkσk,jσ
−1
j ≤ 1, where we note that λ2

kσ
2
k,jσ

−2
j = λ2

kσ
2
k,j/(λ

2
1σ

2
1,j + λ

2
2σ

2
2,j) ≤ 1. Also, if we

define the vector uk = σ−1
k,jΣ

1/2
k ej in Rp for standard basis e1, . . . , ep in Rp, which satisfies ∥u∥2 = 1, then

λk∥(Xk,1,j − µk,j)/σj∥q = λkσk,jσ
−1
j ∥(Xk,1,j − µk,j)/σk,j∥q ≤ ∥Z⊺

k,1u∥q ≲ q,

proving (S17). Inequality (S18) follows from the same argument, conditioning on X.

Define the correlation

ρk,l,j,j′ =
Σk,l(j, j′)
σk,l,jσk,l,j′

,

and its sample version

ρ̂k,l,j,j′ =
Σ̂k,l(j, j′)
σ̂k,l,j σ̂k,l,j′

,

for any j, j′ ∈ {1, . . . , p}.

Lemma E.4. Under Assumption ?? and ??, there is a constant c > 0, not depending on n, such that the

following events

max
j∈Jk,l(mk,ml)

∣
σ̂k,l,j

σk,l,j
− 1∣ ≤ can,
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min
j∈Jk,l(mk,ml)

σ̂1−τ
k,l,j ≥ ( min

j∈Jk,l(mk,ml)
σ1−τ
k,l,j)(1 − can),

and

max
j,j′∈j∈Jk,l(mk,ml)

∣ρ̂j,j′ − ρj,j′ ∣ ≤ can

each hold with probability at least 1 − cn−2, where an = n−1/2 lognmax.

Proof. These conclusions are direct consequences of Lemma E.5.

Lemma E.5. Suppose Assumptions ?? and ?? hold, and fix any 1 ≤ k < l ≤K and any two (possibly equal)

indices j, j′ ∈ {1, . . . , p}. Then, for any number ϑ ≥ 1, there are positive constants c and c1(ϑ), not depending

on n, such that the event

∣
Σ̂k,l(j, j′)
σk,l,jσk,l,j′

− ρk,l,j,j′ ∣ ≤ c1(ϑ)n
−1/2 lognmax

holds with probability at least 1 − cn−ϑ.

Proof. It is equivalent to showing that

∣Σ̂k,l(j, j′) −Σk,l(j, j′)∣ ≤ c1(ϑ)n
−1/2

(lognmax)σk,l,jσk,l,j′ .

Furthermore

∣Σ̂k,l(j, j′) −Σk,l(j, j′)∣ = ∣λ2
k,lΣ̂k(j, j′) − λ2

k,lΣk(j, j′) + λ2
l Σ̂l(j, j′) − λ2

l,kΣl(j, j′)∣

≤ λ2
k,l ∣Σ̂k(j, j′) −Σk(j, j′)∣ + λ2

l,k ∣Σ̂l(j, j′) −Σl(j, j′)∣

≤ c1(ϑ)(n
−1/2
k λ2

k,lσk,jσk,j′ lognk + n−1/2
l λ2

l,kσl,jσl,j′ lognl)

≤ c1(ϑ)(lognmax)n
−1/2

(λ2
k,lσk,jσk,j′ + λ

2
l,kσl,jσl,j′),

with probability at least 1 − cn−ϑk − cn−ϑl ≥ 1 − 2cn−ϑ, where the second inequality is due to Lemma D.7 of

Lopes et al. (2020). Now, by the Cauchy–Schwarz inequality,

2σk,jσk,j′σl,jσl,j′ ≤ σ2
k,jσ

2
l,j′ + σ

2
l,jσ

2
k,j′ ,

and further

λ2
k,lσk,jσk,j′ + λ

2
l,kσl,jσl,j′ =

√
(λ2
k,lσk,jσk,j′ + λ

2
l,kσl,jσl,j′)

2

≤
√

(λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j)

√
(λ2
k,lσ

2
k,j′ + λ

2
l,kσ

2
l,j′)

= σk,l,jσk,l,j′ ,

which completes the proof.
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Remark. In the above proof, we note that Lemma D.7 of Lopes et al. (2020) does not depend on Assumption

2 of Lopes et al. (2020).

Lemma E.6. Under the conditions of Theorem ??, there is a constant c > 0, not depending on n, such that

P (∣M̆⋆
m −M⋆

m∣ > rn∣X) ≤ cn−1

holds with probability at least 1 − cn−1, where M̆⋆
m is defined in (S7) and rn = cn−1/2 log5/2 nmax.

Proof. Using a similar argument as in the proof of Lemma D.8 of Lopes et al. (2020), we find that

∣M̆⋆
m −M⋆

m∣ ≤ max
(k,l)∈P

max
j∈Jk,l(mk,ml)

∣(
σ̂k,l,j

σk,l,j
)

τ

− 1∣ ⋅ max
(k,l)∈P

max
j∈Jk,l(mk,ml)

RRRRRRRRRRR

S⋆k,l,j
σ̂τk,l,j

RRRRRRRRRRR

.

It follows from Lemma E.4 that the event

max
(k,l)∈P

max
j∈Jk,l(mk,ml)

∣(
σ̂k,l,j

σk,l,j
)

τ

− 1∣ ≤ cn−1/2 lognmax

holds with probability at least 1 − cNn−2 ≥ 1 − cn−1. Now consider

U⋆
= max
(k,l)∈P

max
j∈Jk,l(mk,ml)

RRRRRRRRRRR

S⋆k,l,j
σ̂τk,l,j

RRRRRRRRRRR

.

Showing that

P (U⋆
≥ c log3/2 nmax ∣X) ≤ cn−1

holds with probability at least 1 − cn−1 will complete the proof.

Using Chebyshev’s inequality with q = {2κ−1,3, logn} gives

P (U⋆
≥ e[E(∣U⋆

∣
q
∣X)]

1/q
∣X) ≤ e−q.

Now it suffices to show that the event

[E(∣U⋆
∣
q
∣X)]

1/q
≤ c log3/2 nmax

holds with probability at least 1− cn−1. This is done by repeating the argument in Lemma B.1 with the aid

of (S16) from Lemma E.2.

Lemma E.7. Under the conditions of Theorem ??, for some constant c > 0, not depending on n, we have

P (∣M̂m −Mm∣ > rn) ≤ cn
−1,

where M̂m is defined in (S10) and rn = cn−1/2 log5/2 nmax.
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Proof. A similar argument as in the proof of Lemma D.8 of Lopes et al. (2020) leads to

∣M̂m −Mm∣ ≤ max
(k,l)∈P

max
j∈Jk,l(mk,ml)

∣(
σk,l,j

σ̂k,l,j
)

τ

− 1∣ ⋅ max
(k,l)∈P

max
j∈Jk,l(mk,ml)

RRRRRRRRRRR

λk,lSk,j − λl,kSl,j

στk,l,j

RRRRRRRRRRR

.

It follows from Lemma E.4 that the event

max
(k,l)∈P

max
j∈Jk,l(mk,ml)

∣(
σk,l,j

σ̂k,l,j
)

τ

− 1∣ ≤ cn−1/2 lognmax

holds with probability at least 1 − cNn−2 ≥ 1 − cn−1. Now consider

U = max
(k,l)∈P

max
j∈Jk,l(mk,ml)

RRRRRRRRRRR

λk,lSk,j − λl,kSl,j

στk,l,j

RRRRRRRRRRR

.

Then

P (U ≥ c log3/2 nmax) ≤ cn
−1

will complete the proof.

Using Chebyshev’s inequality with q = max{2κ−1,3, logn} gives

P (U ≥ e(E∣U ∣
q
)

1/q) ≤ e−q.

Now it suffices to show that

∥U∥q = (E∣U ∣
q
)

1/q
≲ log3/2 nmax.

Observe that

∥U∥
q
q ≤ ∑

(k,l)∈P,j∈Jk,l(mk,ml)
σ
q(1−τ)
k,l,j E∣σ−1

k,l,j(λk,lSk,j − λl,kSl,j)∣
q.

By Lemma E.3, and noting that qα(1 − τ) = qκ ≥ 2, we further have

∥U∥
q
q ≤ (cq)q ∑

(k,l)∈P,j∈Jk,l(mk,ml)
σ
q(1−τ)
k,l,j ≲ N(cq)q,

or equivalently,

∥U∥q ≲ qN
1/q

≲ log3/2 nmax,

where we use the fact that N1/q ≲ 1 given the choice of q.

Define the correlation

ρk,j,j′ =
Σk(j, j′)
σk,jσk,j′

,
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and its sample version

ρ̂k,j,j′ =
Σ̂k(j, j′)
σ̂k,j σ̂k,j′

,

for any j, j′ ∈ {1, . . . , p}.

Lemma E.8. Under Assumption ?? and ??, if n−1/2 log3 p≪ 1, then for any number θ ≥ 2, there are positive

constants c and cθ, not depending on n, such that the event

sup
1≤k≤K

sup
1≤j,j′≤p

∣
Σ̂k(j, j′)
σk,jσk,j′

− ρk,j,j′ ∣ ≤ cθ(lognmax + log3 p)n−1/2

holds with probability at least 1 − cKn−θ.

Proof. It suffices to show that

sup
1≤j,j′≤p

∣
Σ̂k(j, j′)
σk,jσk,j′

− ρk,j,j′ ∣ ≤
cθ(lognk + log3 p)

√
nk

with probability at least 1 − cnθk. Consider `2-unit vectors u = Σ1/2
k ejσ

−1
k,j and v = Σ1/2

k ej′σ
−1
k,j′ in Rp. Define

Wk = n
−1
k

nk

∑
i=1

(Zk,i − Z̄k)(Zk,i − Z̄k)
⊺,

where Z̄k = ∑nki=1Zk,i. Observe that

Σ̂k(j, j′)
σk,jσk,j′

− ρk,j,j′ = u
⊺
(Wk − Ip)v. (S19)

For each 1 ≤ i ≤ nk, define the random variable ζi,u = Z⊺
k,iu and ζi,v = Z⊺

k,iv. In this notation, the relation

(S19) becomes
Σ̂k(j, j′)
σk,jσk,j′

− ρk,j,j′ = ∆(u, v) +∆′
(u, v)

where

∆(u, v) =
1
nk

nk

∑
i=1
ζi,uζi,v − u

⊺v,

∆′
(u, v) = (

1
nk

nk

∑
i=1
ζi,u)(

1
nk

nk

∑
i=1
ζi,v) .

Note that E(ζi,uζi,v) = u
⊺v. Also, if we let q = max{θ(lognk + log3 p),3}, then

∥ζi,uζi,v − u
⊺v∥q ≤ 1 + ∥ζi,uζi,v∥q ≤ 1 + ∥ζi,u∥2q∥ζi,v∥2q ≤ cq

2,

where the second inequality is due to the Cauchy–Schwarz inequality, and the third to Assumption ??. The

constant c, although it varies from place to place, does not depend on nk or p. Then, Lemma G.4 of Lopes
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et al. (2020) gives the following bound for q > 2,

∥∆(u, v)∥q ≤ cqmax
⎧⎪⎪
⎨
⎪⎪⎩

∥∆(u, v)∥2, n
−1
k (

nk

∑
i=1

∥ζi,uζi,v − u
⊺v∥qq)

1/q⎫⎪⎪
⎬
⎪⎪⎭

≤ cqmax{n−1/2
k , n

−1+1/q
k q2

}

≤ c(lognk + log3 p)n
−1/2
k .

By the Chebyshev inequality

P (∣∆(u, v)∣ ≥ e∥∆(u, v)∥q) ≤ e
−q,

whence

P(∣∆(u, v)∣ ≥
cθ(lognk + log3 p)

√
nk

) ≤
1

nθpθ
.

Similar arguments apply to ∆′(u, v). Thus,

P(∣
Σ̂k(j, j′)
σk,jσk,j′

− ρk,j,j′ ∣ ≥
cθ(lognk + log3 p)

√
nk

) ≤
1

nθpθ

and furthermore by a union bound

P( sup
1≤j,j′≤p

∣
Σ̂k(j, j′)
σk,jσk,j′

− ρk,j,j′ ∣ ≥
cθ(lognk + log3 p)

√
nk

)

≤ ∑
1≤j,j′≤p

1
nθkp

θ
=

1
nθk

p2

pθ
≤

1
nθk
.

Observing that σk,l,j =
√
λ2
k,lσ

2
k,j + λ

2
l,kσ

2
l,j , one obtains the following corollary.

Corollary E.9. Under Assumption ?? and ??, if n−1/2 log3 p≪ 1, for any number θ ≥ 2, there are positive

constants c and cθ, not depending on n, such that the event

sup
(k,l)∈P

sup
1≤j≤p

∣
σ̂k,l,j

σk,l,j
− 1∣ ≤ cθ(lognmax + log3 p)n−1/2

holds with probability at least 1 − cNn−θ.

Lemma E.10. Suppose Assumptions ??–?? hold. Then, for any fixed θ ∈ (0,∞) and Q ≍ logn, for some

constant c, not depending on n, one has

sup
1≤k≤K,1≤j≤p

XXXXXXXXXXX

σθk,j

σ̂θk,j

XXXXXXXXXXXQ

≤ c.

Proof. Below we suppress the subscripts from σ̂k,j , µk and nk. Also, the constant c might change its value
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from place to place and depend on θ. In addition, observing that

σ2

σ̂2 =
1

n−1∑
n
i=1[{(Xi − µ) − (X − µ)}/σ]2

=
1

n−1∑
n
i=1(Yi − Y )2

with Yi = (Xi − µ)/σ and Y = ∑
n
i=1 Yi, without loss of generality, we assume EX = 0 and EX2 = 1.

Let ω = Qθ ≍ logn and c1 = 1/2. We first observe that

Eσ̂−ω = ∫

∞

0
P(σ̂−ω > t)dt = ∫

∞

0
P(σ̂2

< t−2/ω
)dt

= ∫

c
−ω/2
1

0
P(σ̂2

< t−2/ω
)dt + ∫

nω

c
−ω/2
1

P(σ̂2
< t−2/ω

)dt + ∫
∞

nω
P(σ̂2

< t−2/ω
)dt.

For the last term, we have

P(σ̂2
< t−2/ω

) = P(n−1
n

∑
i=1

(Xi −X)
2
≤ t−2/ω

)

≤ P (∀ 1 ≤ i ≤ n ∶ (Xi −X)
2
≤ nt−2/ω)

≤ P (∀ 1 ≤ i ≤ n ∶ ∣Xi −X ∣ ≤
√
nt−1/ω)

≤ P (∀ 1 ≤ i ≤ n − 1 ∶ ∣Xi −Xn∣ ≤ 2
√
nt−1/ω)

= EP (∀ 1 ≤ i ≤ n − 1 ∶ ∣Xi −Xn∣ ≤ 2
√
nt−1/ω

∣Xn)

= E{P (∣X1 −Xn∣ ≤ 2
√
nt−1/ω

∣Xn)}
n−1

≤ (c
√
nt−1/ω

)
(n−1)ν

for some universal constant c > 0 and for all sufficiently large n, where the last inequality is due to Assumption

??, and the last equality is due to the conditional independence of the random variables ∣X1−Xn∣, . . . , ∣Xn−1−

Xn∣ given Xn and that these variables have identical conditional distributions. Therefore,

∫

∞

nω
P(σ̂2

< t−2/ω
)dt ≤ (−(n − 1)ν/ω + 1)−1cν(n−1)n(n−1)ν/2t−(n−1)ν/ω+1

∣
∞
nω ≍ νcν(n−1)nω−

(n−1)ν
2 ≪ 1.

When t ≥ c−ω/21 or equivalently t−2/ω ≤ 1/2, noting that σ2 = 1 as we have assumed standardized X, one has

P(σ̂2
− 1 < t−2/ω

− 1) ≤ P(σ̂2
− 1 < −1/2)

≤ P(∣σ̂2
− 1∣ ≥ 1/2)

≤ P(∣σ̂2
− 1∣ ≥ 2n−1/2ω logn)

≤ cn−2ω,

where the last inequality is obtained by an argument identical to that in the proof of Lemma D.7 of Lopes

et al. (2020), except that the number q = max{κ log(n),3} there is replaced by q = max{2ω logn,3}. This
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implies that

∫

nω

c
−ω/2
1

P(σ̂2
< t−2/ω

)dt ≤ nω ⋅ cn−2ω
= cn−ω ≪ 1.

Note that when t ≤ c−ω/21 , we have the trivial bound P(σ̂2 < t) ≤ 1. Therefore,

Eσ̂−ω ≤ c
−ω/2
1 + cn−ω + νcν(n−1)nω−

(n−1)ν
2 ≤ cc

−ω/2
1 = c2ω/2,

or ∥σ̂−θ∥Q ≤ c.

F Additional Simulation Studies on Functional ANOVA

As observed by Zhang et al. (2019), the level of within-function correlation impacts the power of the test.

Following a suggestion of a reviewer, we assessed the effect of the within-function correlation on the proposed

method by using the simulation setup of Zhang et al. (2019). Specifically, we set µk(t) = (1 + 2.3t + 3.4t2 +

1.5t3)+θ(k−1)(1+2t+3t2+4t3)/
√

30 for k = 1,2,3 and t ∈ [0,1], and Xk(t) = µk(t)+∑
11
j=1

√
1.5ρj/2ξkjφj(t),

where φ1, φ2, . . . are Fourier basis functions defined in Section ??. Two cases are considered for the random

variables ξkj , namely, the Gaussian case ξkj iid∼ N(0,1) and the non-Gaussian case ξkj iid∼ t4/
√

2, where t4
denotes Student’s t distribution with 4 degrees of freedom. As the number m of design points has little

impact on the results (Zhang et al., 2019), we fix m = 100 as in our previous simulation setting. As in Zhang

et al. (2019), we consider ρ = 0.1,0.3,0.5,0.7,0.9, where small values of ρ correspond to strong within-function

correlation and large values signify weak correlation.

The results in Table S1 and Figure S1 show that our approach outperforms the other methods substan-

tially. This may be partially explained by the fact that the basis functions φ1, φ2, . . . used to generate data

in Zhang et al. (2019) coincide with the basis functions we use for projection in the proposed method. In

light of this, we have provided an additional comparison in a more challenging setting, where the data are

generated using a modified version of these basis functions (while our method still uses the original basis

functions). Specifically, the modified basis functions, denoted by φ̃1, φ̃2, . . . , are constructed in the following

way: We first define φ̃j(t) = φj(0.8t+0.1) for t ∈ [0,1] and j = 1,2, . . . ,11, and then apply the Gram–Schmidt

procedure to orthonormalize φ̃1, φ̃2, . . . within L2([0,1]). The results for simulation studies with these mod-

ified basis functions are shown in Table S2 and Figure S2, where the average value of the selected τ across

all settings is 0.843± 0.153 and 0.824± 0.143 for Gaussian and non-Gaussian cases, respectively. We observe

that the empirical sizes of most methods are close to the nominal level and the RP method tends to be

conservative when ρ is small. When the within-function correlation is strong, e.g., when ρ = 0.1,0.3, the

power of the proposed method is considerably larger than that of MPF and GET, which in turn is much

larger than the power of the other methods except RP; the power of RP is close to that of the proposed

method when ρ ≥ 0.3 but substantially less when ρ = 0.1. When the within-function correlation becomes

weaker, e.g., when ρ = 0.7,0.9, all tests tend to have similar power. This shows that the proposed method is
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Table S1: Empirical size of functional ANOVA in the simulation setting of Zhang et al. (2019)

ρ n proposed L2 F GPF MPF GET RP

Gaussian

0.1 50,50,50 .044 .044 .044 .044 .038 .039 .011
30,50,70 .054 .066 .060 .062 .066 .040 .017

0.3 50,50,50 .042 .060 .050 .058 .060 .042 .021
30,50,70 .046 .044 .040 .044 .048 .042 .024

0.5 50,50,50 .058 .060 .056 .062 .052 .038 .021
30,50,70 .052 .062 .062 .064 .058 .039 .037

0.7 50,50,50 .034 .040 .038 .040 .036 .047 .041
30,50,70 .060 .056 .050 .048 .060 .040 .049

0.9 50,50,50 .042 .050 .048 .050 .054 .025 .044
30,50,70 .044 .058 .054 .060 .032 .039 .051

non-Gaussian

0.1 50,50,50 .048 .060 .054 .056 .050 .030 .004
30,50,70 .052 .054 .050 .052 .064 .041 .009

0.3 50,50,50 .030 .046 .040 .044 .040 .034 .015
30,50,70 .046 .056 .050 .054 .042 .047 .030

0.5 50,50,50 .046 .076 .072 .080 .060 .032 .027
30,50,70 .036 .036 .036 .036 .024 .037 .030

0.7 50,50,50 .036 .042 .036 .044 .034 .035 .034
30,50,70 .026 .042 .040 .038 .038 .030 .037

0.9 50,50,50 .034 .064 .062 .058 .054 .036 .037
30,50,70 .044 .060 .060 .054 .056 .030 .047

preferred for ANOVA for functional data in which the within-function correlation is typically strong.

For simulation studies in the above and in Section ??, the tuning parameter τ is selected by the data-driven

procedure described in Section ??. Below we investigate the effectiveness of this procedure by comparing

it with using a fixed value of τ . Specifically, in the simulation studies of Section ??, we also compute the

empirical size and power for the proposed method by using each of the values 0,0.1, . . . ,0.9,0.99 for τ . The

results are presented in Table S3 and Figure S3, where the results for τ = 0,0.2,0.4,0.6,0.8,0.99 are provided.

We observe that values close to 1 such as τ = 0.99 yield inflated sizes for the resulting tests. For the family

(M3), all values of τ lead to similar performance. Similar observations emerge for the family (M2) except

τ = 0.99 that yields much lower power. In families (M1) and (M4), the power increases as τ . In these families,

although τ = 0.99 gives rise to the largest power, its that the empirical size also noticeably deviates from

the nominal level. In all cases, the power of the data-driven method is close to that of τ = 0.8. Overall, the

data-driven selection procedure selects a value for τ that produces competitive power while keeping the size

close to the nominal level.
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Table S2: Empirical size of functional ANOVA in the modified simulation setting of Zhang et al. (2019)

ρ n proposed L2 F GPF MPF GET RP

Gaussian

0.1 50,50,50 .053 .061 .055 .059 .049 .043 .017
30,50,70 .048 .052 .050 .050 .038 .042 .010

0.3 50,50,50 .055 .062 .057 .062 .063 .043 .020
30,50,70 .061 .056 .054 .055 .060 .034 .021

0.5 50,50,50 .055 .061 .047 .064 .039 .043 .037
30,50,70 .056 .047 .044 .048 .049 .040 .033

0.7 50,50,50 .053 .050 .047 .044 .047 .037 .035
30,50,70 .052 .059 .058 .056 .050 .026 .051

0.9 50,50,50 .057 .054 .053 .050 .053 .043 .050
30,50,70 .051 .053 .052 .045 .044 .038 .057

non-Gaussian

0.1 50,50,50 .043 .048 .045 .046 .051 .036 .009
30,50,70 .050 .049 .047 .047 .048 .057 .016

0.3 50,50,50 .052 .050 .048 .047 .043 .041 .017
30,50,70 .050 .067 .064 .063 .056 .042 .016

0.5 50,50,50 .048 .048 .043 .042 .033 .031 .018
30,50,70 .043 .045 .043 .055 .049 .038 .029

0.7 50,50,50 .042 .053 .054 .046 .053 .032 .033
30,50,70 .048 .053 .051 .054 .037 .048 .044

0.9 50,50,50 .053 .054 .050 .048 .047 .030 .040
30,50,70 .055 .036 .037 .039 .042 .031 .050

G Additional Simulation Studies on MANOVA

We complement the numerical studies in Section ?? by assessing the performance of the proposed method

in a more standard MANOVA setting, where data are sampled from continuous distributions. We consider

three groups that are represented by random vectors X1,X2,X3 ∈ Rp, such that each Xk follows an elliptical

distribution (Fang et al., 1990) with mean µk and covariance Σk. Specifically, Xk = µk + UkΣ1/2
k Zk, where

Uk is a random variable following the exponential distribution with mean 1, Zk is a p-dimensional random

vector following the standard multivariate normal distribution, and Uk is independent of Zk. Note that each

Xk is not Gaussian due to the random multiplicative factor Uk. We consider p = 25 and p = 100, and two

scenarios of µk, namely,

• the sparse case, where µk(j) = 1 + j sin(2πj/p) exp(j/p)/p + apθ(k − 1)((p − j + 1)/p)4, so that when

k ≠ l, the difference µk(j) − µl(j) between two mean vectors decays as j increases, and

• the dense case, where µk(j) = 1+j sin(2πj/p) exp(j/p)/p+apθ(k−1), so that the difference µk(j)−µl(j)

remains constant across different coordinates j,

for k = 1,2,3, j = 1,2, . . . , p and a constant ap. In these settings, θ = 0 corresponds to the null hypothesis,
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Table S3: Empirical size of functional ANOVA with different values of τ

Covariance M n
τ

0 0.2 0.4 0.6 0.8 0.99 data-driven

common

M1 50,50,50 .053 .056 .058 .060 .061 .076 .051
30,50,70 .045 .045 .045 .051 .055 .099 .053

M2 50,50,50 .048 .047 .049 .050 .056 .082 .042
30,50,70 .043 .044 .045 .046 .050 .094 .057

M3 50,50,50 .044 .044 .047 .049 .049 .086 .057
30,50,70 .073 .076 .074 .073 .074 .075 .056

M4 50,50,50 .045 .047 .046 .046 .052 .073 .046
30,50,70 .046 .045 .050 .050 .058 .084 .053

group-specific

M1 50,50,50 .056 .056 .058 .057 .060 .098 .055
30,50,70 .049 .047 .049 .049 .058 .095 .043

M2 50,50,50 .051 .050 .050 .049 .052 .095 .056
30,50,70 .061 .061 .060 .062 .068 .108 .052

M3 50,50,50 .042 .044 .044 .047 .052 .099 .051
30,50,70 .050 .051 .051 .055 .064 .091 .049

M4 50,50,50 .060 .058 .059 .056 .054 .095 .052
30,50,70 .055 .055 .056 .054 .062 .114 .050

under which the mean vectors of all groups are equal. We set ap = 0.025 in the sparse scenario, and in the

dense scenario we set ap = 0.014 if p = 25 and ap = 0.008 if p = 100; these values are chosen in the way that

the power is approximately 1 when θ = 1. We set Σk(j1, j2) = j
−1/4
1 j

−1/4
2 C((j1 − 1)/(p − 1), (j2 − 1)/(p − 1)),

where C(s, t) is the Matérn correlation function defined in (??) but with different values of parameters; here

we set σ2 = 1, η = 5 and ν = 0.1.

Similar to the study in Section ??, we compare the proposed method with the classic Lawley–Hotelling

trace test (LH), the ridge-regularized Lawley–Hotelling trace test (RRLH) (Li et al., 2020), the procedure

(S) of Schott (2007) and the data-adaptive `p-norm-based test (DALp) (Zhang et al., 2018). As mentioned

in Section ??, the method of Schott (2007) is favored for testing problems with a dense alternative, while the

method of Zhang et al. (2018) has been reported to be powerful against different patterns of alternatives. The

classic Lawley–Hotelling trace test is included as a baseline procedure. The empirical sizes in Table S4 show

that those of the proposed method, Lawley–Hotelling trace test and Schott (2007) are close to the nominal

level, while the size of Zhang et al. (2018) is inflated. This result is consistent with the observation made in

Section ??, except that the inflation in size of Zhang et al. (2018) seems more pronounced here, especially in

the settings with a dense alternative. The empirical power functions shown in Figure S4 suggest that, in the

sparse case, the proposed method consistently outperforms the others. In the dense setting, the proposed test

has almost the same power of the test of Schott (2007), and substantially outperforms the Lawley–Hotelling

trace test. With regard to the Zhang et al. (2018) test, it turns out that its type I error rate under the null is
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Table S4: Empirical size of ANOVA on multivariate Laplace data

p (n1, n2, n3) proposed S DALp LH RRLH

sparse
25 50,50,50 .056 .048 .067 .049 .032

30,50,70 .058 .049 .063 .046 .038

100 50,50,50 .053 .052 .080 .032 .054
30,50,70 .056 .046 .063 .029 .062

dense
25 50,50,50 .055 .059 .070 .036 .053

30,50,70 .057 .054 .070 .040 .054

100 50,50,50 .052 .045 .067 .026 .046
30,50,70 .054 .045 .080 .039 .044

Table S5: Empirical size of ANOVA on multivariate Laplace data with different values of τ

p (n1, n2, n3)
τ

0 0.2 0.4 0.6 0.8 0.99 data-driven

sparse
25 50,50,50 .055 .051 .047 .043 .048 .051 .056

30,50,70 .032 .033 .042 .046 .056 .063 .058

100 50,50,50 .038 .037 .039 .045 .051 .067 .053
30,50,70 .048 .046 .049 .055 .061 .075 .056

dense
25 50,50,50 .039 .040 .048 .048 .055 .061 .055

30,50,70 .048 .044 .042 .046 .049 .057 .057

100 50,50,50 .047 .045 .045 .052 .058 .076 .052
30,50,70 .042 .049 .048 .049 .056 .062 .054

substantially higher than the nominal level, which makes it difficult to compare power. We also observe that

the classic Lawley–Hotelling trace test, which is not specifically designed for the high-dimensional setting,

deteriorates considerably as the dimension becomes larger, e.g., when p = 100 in both settings, while the

regularized Lawley–Hotelling trace test (Li et al., 2020) improves upon the classic unregularized version when

the dimension is relatively large in both settings.

As in the case of functional ANOVA, below we investigate the effectiveness of the data-driven selection

procedure for τ by comparing it with using a fixed value of τ . Specifically, in the above simulation studies,

we also compute the empirical size and power for the proposed high-dimensional MANOVA by using each

of the values 0,0.1, . . . ,0.9,0.99 for τ . The results are presented in Table S5 and Figure S5, where we report

the results for τ = 0,0.2,0.4,0.6,0.8,0.99. We observe that values rather close to 1 such as τ = 0.99 result

in slightly inflated size. In the sparse setting, all values of τ and the data-driven procedure lead to similar

performance, while in the dense setting, large values of τ yield larger power, and the power of the data-driven

method is close to that of τ = 0.8. Similar to the observations in the functional ANOVA case, overall the

data-driven selection procedure is effective in selecting a near optimal value for τ .
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Figure S1: Empirical power of the proposed functional ANOVA (solid), L2 (dashed), F (dotted), GPF
(dot-dashed), MPF (dot-dash-dashed), GET (short-long-dashed) and RP (dot-dot-dashed) in the simulation
setting of Zhang et al. (2019). Rows 1 to 5 correspond to ρ = 0.1,0.3,0.5,0.7,0.9, respectively. The power
functions of L2, F and GPF are nearly indistinguishable.
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Figure S2: Empirical power of the proposed functional ANOVA (solid), L2 (dashed), F (dotted), GPF
(dot-dashed), MPF (dot-dash-dashed), GET (short-long-dashed) and RP (dot-dot-dashed) in the modified
simulation setting of Zhang et al. (2019). Rows 1 to 5 correspond to ρ = 0.1,0.3,0.5,0.7,0.9, respectively.
The power functions of L2, F and GPF are nearly indistinguishable.
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Figure S3: Empirical power of the proposed functional ANOVA with adaptively selected τ (solid), and fixed
τ at 0 (dashed), 0.2 (dotted), 0.4 (dot-dashed), 0.6 (dot-dash-dashed), 0.8 (short-long-dashed) and 0.99
(dot-dot-dashed). From left to right the panels display the empirical power functions for families (M1),
(M2), (M3) and (M4). The first two rows correspond to the “common covariance” setting and the last two
correspond to the “group-specific covariance” setting. The sample sizes are (n1, n2, n3) = (50,50,50) for the
first and third rows , and (n1, n2, n3) = (30,50,70) for the second and fourth rows.
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Figure S4: Empirical power of the proposed high-dimensional ANOVA (solid), DALp (dashed), S (dotted),
LH (dot-dashed) and RRLH (dot-dash-dashed). Top, sparse setting; bottom, dense setting.
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Figure S5: Empirical power of the proposed high-dimensional ANOVA with adaptively selected τ (solid),
and fixed τ at 0 (dashed), 0.2 (dotted), 0.4 (dot-dashed), 0.6 (dot-dash-dashed), 0.8 (short-long-dashed) and
0.99 (dot-dot-dashed).
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