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Functional data analysis (FDA) is a nonparametric statistical methodology for the
modeling and analysis of data that include observations of random functions or data
that are generated by latent random functions. It aims to impose as few parametric
constraints as necessary, letting the data speak for themselves to the largest extent
possible and to provide both exploratory and inferential tools for curve data and also
longitudinal data. The field of FDA has much evolved since its theoretical beginnings
that included the theoretical concept of functional regression models for Gaussian pro-
cesses in Grenander (1950) and functional principal component analysis (FPCA) by
Kleffe (1973) with extensions by Dauxois et al. (1982), emphasizing the perspective of
data in Hilbert space.

Functional regression, basis expansions and FPCA to achieve dimension reduction
for the inherently infinite-dimensional functional data remain the key statistical tech-
niques of FDA; inference in these settings has been a more recent development. A
modern introduction to the theoretical foundations of FDA with background on op-
erators, reproducing kernel Hilbert spaces (RKHS) and random elements in Hilbert
space can be found in Hsing and Eubank (2015). Major contributions to the theory
were made by the late Peter Hall and his coauthors (Cai and Hall 2006; Hall et al.
2006; Hall and Horowitz 2007; Delaigle and Hall 2012). In addition to the theoreti-
cal developments, methodology designed for applications and accompanying software
packages (mostly in R and Matlab) have broadened the appeal of FDA considerably.
Applied FDA is now a well-established branch of data oriented nonparametric statis-
tics, and offers numerous visualizations and exploratory tools for functional data, such
as functional modes of variation.

FDA methodology evolved in the context of growth curves that provided motivation
to develop techniques for nonparametric regression and targeting derivatives and time
warping (especially via landmarks) in Theo Gasser’s group (Gasser et al. 1984; Kneip
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and Gasser 1992) and through the extension of multivariate and psychometric meth-
ods such as PCA by Jim Ramsay (who coined the term “functional data analysis”)
and collaborators (Ramsay and Dalzell 1991; Ramsay and Silverman 2005). While a
large part of FDA is based on an extension of multivariate data analysis methodology
where matrices are replaced with linear operators and inner products are interpreted in
infinite-dimensional Hilbert space (Eubank and Hsing 2008; He et al. 2018), its inher-
ent analytical and stochastic aspects entail substantial challenges (Delaigle and Hall
2010; Koudstaal and Yao 2018; Lin et al. 2018).

Other developments that broadened the appeal and applicability of FDA include the
sustained development of functional regression (Morris 2015); the incorporation of time
warping methods (Gasser and Kneip 1995; Marron et al. 2015), where one considers
additional random time distortions and is confronted with identifiability problems; the
bridge to longitudinal data, which makes it possible to use FDA methodology for this
large class of data (Staniswalis and Lee 1998; Rice and Wu 2001; Yao et al. 2005; Li and
Hsing 2010; Zhang and Wang 2016); the connections with dynamics learning, empirical
dynamics and fitting of differential equations (Ramsay et al. 2007; Dubey and Müller
2021); the case of partially observed functional data such as snippet or fragment data
(Delaigle and Hall 2013; Dawson and Müller 2018; Descary and Panaretos 2019; Lin
and Wang 2021); multivariate functional data (Zhou et al. 2008; Chiou and Müller
2014; Happ and Greven 2018); manifold-valued functional data and manifold learning
(Chen and Müller 2012; Dai and Müller 2018; Lin and Yao 2019); classification and
clustering of functional data (Chiou and Li 2007; Delaigle and Hall 2012); optimal
designs for functional and longitudinal data (Ji and Müller 2017); and functional time
series analysis (Bosq 2000; Panaretos and Tavakoli 2013), to name a few; for a review
of some of these subfields see Wang et al. (2016). FDA methodology has been applied
across the board in many areas of science and medicine, economics and finance, internet
data, all kinds of longitudinal studies, and recently to the modeling of Covid-19 cases
and deaths (Carroll et al. 2020; Boschi et al. 2021).

The field is very rich not least because it sits at the complex interface of smooth-
ing, multivariate analysis, functional analysis, stochastic processes, longitudinal data,
random effects modeling and dynamics. It is currently moving towards the study of
more complex functional structures, including spatial and other complex dependen-
cies, including connections with networks, repeatedly observed functional data, more
sophisticated functional regression models and the modeling of extremes. These recent
developments, confronting complex functional structures and data challenges are well
represented in the collection of articles for this special issue.

A largely unexplored direction with rich potential for future research will also be
the interface of FDA and random objects, i.e., metric-space valued random variables
(Müller 2016) such as networks, trees, distributions and covariance structures, with
connections to object-oriented data analysis (Marron and Alonso 2014). This inter-
face includes the study of object-valued functional data (Dubey and Müller 2020) and
distributional data (Petersen et al. 2021); a useful regression tool for random objects
is Fréchet regression for global and local fitting and its variants (Petersen and Müller
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2019; Chen and Müller 2020).
What follows is a brief overview of the papers that were included in the collection

of articles for this special issue. While functional data are characterized by data sam-
ples that contain functions (which may be fully observed, observed on a dense grid,
or partially observed, often with additional errors in the measurements) and thus has
a focus on modeling samples that contain realizations of random functions and the
underlying stochastic processes, FDA methodology relies heavily on smoothing tech-
niques, especially as observed functional data often are collected as noise-contaminated
measurements. Relevant smoothing methods include the classical approaches of ker-
nel smoothing and local weighted least squares, as well as spline smoothing, B- and
P-splines.

Applying smoothing splines to noisy data requires to choose a suitable penalty
function, and this choice will impact the smoothing result. Bayesian methodology to
achieve this difficult choice is the theme of Zhang et al. (2021). A second popular
smoothing method, local linear regression, is used in Lin et al. (2021) to obtain direct
estimates of Sharpe ratio functions in financial econometrics, where the Sharpe ratio
is a variance-adjusted measure of how much better an investment is compared to a
risk-free investment. In related situations where one works with single realizations
of a process, this process may be multivariate and it is then of interest to relate its
components to each other. This problem is addressed in Liu et al. (2021b), where
complex ordinary differential equations are fitted by a novel application of deep learning
methods. A central task for many FDA procedures is the estimation of mean and
covariance functions of the underlying stochastic process from available discrete and
noisy measurements. To address this, Cheng and Chen (2021) propose a framelet
method and characterize the phase transitions one encounters when moving from dense
to sparse sampling designs.

To enable FDA methodology for the analysis of ubiquitous longitudinal data that
often feature sparse and irregular temporal designs, the PACE approach has become
popular. It requires the estimation of mean and covariance functions as studied in
Cheng and Chen (2021), but also requires inversion of a covariance matrix (of usu-
ally low dimension and where one may to employ regularization). As an alternative
Nie et al. (2021) propose the SOAP method, aiming at a more targeted orthonormal
approximation.

Predictor selection for concurrent functional regression, which has become a central
statistical tool for many important applications, for example in longitudinal brain
imaging (Wang et al. 2018; Chen et al. 2021), is studied in Ghosal and Maity (2021).
The classical linear concurrent model is extended to allow for nonlinear relations and
predictor selection. For a functional regression model where vector predictors are
paired with functional responses, a predictor selection method is also developed in
Cai et al. (2021) based on the SCAD approach (Fan and Li 2001), including automatic
tuning parameter selection, which is often critical for good practical performance. Also
pairing vector predictors with functional responses, Mehrotra and Maity (2021) study
multicollinearity in this setting, grouping highly correlated predictors together.
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Related to functional regression, another well-studied problem is binary classifica-
tion for functional data. Many of the approaches proceed by employing projections,
for example on a number of functional principal component scores; it is well known
that this often suboptimal, as these projections do not take the responses into account.
An improved projection method for classification is proposed in Zhou and Sang (2021).
A related problem is functional clustering, which can be enhanced in the presence of
covariates, as demonstrated in Jiang et al. (2021).

The modeling of extremes in the presence of functional data is of interest and there
are many open problems in this area. Approaches to fill this gap include a RKHS model
that is proposed for modeling expectiles of scalar responses coupled with functional
predictors in Liu et al. (2021a) and a quantile approach to model extremes in a partial
functional regression model, adopting FPCA in conjunction with extrapolation tools
from extreme value theory in Zhu et al. (2021).

The challenges posed by spatial and temporal dependence of functional data have
led to the subfields of spatial FDA and functional time series analysis, which are at the
interface of FDA, spatial data analysis and time series analysis. For spatially indexed
temporal point processes, motivated by Chicago Divvy bike sharing data, log-linear
models for the intensity functions of the point processes are introduced in Gervini
(2021). Another article with a focus on FDA for spatial data is Hörmann et al. (2021),
where the problem of testing for Gaussianity is studied; this is an important problem
in FDA as many methods rely implicitly or explicit on Gaussian assumptions.

Two articles focus on functional time series, where Sidrow et al. (2021) develop
hidden Markov models for functions that are densely observed in time, with a very
interesting application to data on Orca whales. Functional versions of potentially
nonstationary fractionally integrated time series are studied in Shang (2021).

Finally, the work of co-editors Jiguo Cao, Guang Cheng and Yehua Li in handling
the submissions for this special issue is gratefully acknowledged.
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Hörmann, S., Kokoszka, P. and Kuenzer, T. (2021). Testing normality of spa-
tially indexed functional data. Canadian Journal of Statistics .

Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data
Analysis, with an Introduction to Linear Operators. John Wiley & Sons.

6



Ji, H. and Müller, H.-G. (2017). Optimal designs for longitudinal and functional
data. Journal of the Royal Statistical Society: Series B 79 859–876.

Jiang, J., Lin, H., Peng, H., Fan, G.-Z. and Li, Y. (2021). Cluster analysis
with regression of non-Gaussian functional data on covariates. Canadian Journal of
Statistics .

Kleffe, J. (1973). Principal components of random variables with values in a sepa-
rable Hilbert space. Mathematische Operationsforschung und Statistik 4 391–406.

Kneip, A. and Gasser, T. (1992). Statistical tools to analyze data representing a
sample of curves. Annals of Statistics 20 1266–1305.

Koudstaal, M. and Yao, F. (2018). From multiple Gaussian sequences to functional
data and beyond: a Stein estimation approach. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 80 319–342.

Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparametric regres-
sion and principal component analysis in functional/longitudinal data. Annals of
Statistics 38 3321–3351.

Lin, H., Tong, T., Wang, Y., Wenchao, X. and Riquan, Z. (2021). Direct local
linear estimation for Sharpe ratio function. Canadian Journal of Statistics .

Lin, Z., Müller, H.-G. and Yao, F. (2018). Mixture inner product spaces and their
application to functional data analysis. Annals of Statistics 46 370–400.

Lin, Z. and Wang, J.-L. (2021). Mean and covariance estimation for functional
snippets. Journal of the American Statistical Association, accepted for publication
xxx xx–xx.

Lin, Z. and Yao, F. (2019). Intrinsic Riemannian functional data analysis. Annals
of Statistics 47 3533–3577.

Liu, M., Pietrosanu, M., Liu, P., Jiang, B., Zhou, X. and Kong, L. (2021a).
Reproducing kernel-based functional linear expectile regression. Canadian Journal
of Statistics .

Liu, Y., Li, L. and Wang, X. (2021b). A nonlinear sparse neural ordinary differential
equation model for multiple functional processes. Canadian Journal of Statistics .

Marron, J. S. and Alonso, A. M. (2014). Overview of object oriented data analysis.
Biometrical Journal 56 732–753.

Marron, J. S., Ramsay, J. O., Sangalli, L. M. and Srivastava, A. (2015).
Functional data analysis of amplitude and phase variation. Statistical Science 30
468–484.

7



Mehrotra, S. and Maity, A. (2021). Simultaneous variable selection, clustering,
and smoothing in function-on-scalar regression. Canadian Journal of Statistics .

Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its
Application 2 321–359.

Müller, H.-G. (2016). Peter Hall, Functional Data Analysis and Random Objects.
Annals of Statistics 44 1867–1887.

Nie, Y., Yang, Y. and Cao, J. (2021). Recovering the underlying trajectory from
sparse and irregular longitudinal data. Canadian Journal of Statistics .

Panaretos, V. M. and Tavakoli, S. (2013). Fourier analysis of stationary time
series in function space. Annals of Statistics 41 568–603.

Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects
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