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research has revealed temporally changing patterns of functional connectivity, leading to
the study of dynamic functional connectivity. This motivates new similarity measures for
pairs of random curves that reflect the dynamic features of functional similarity. Specifi-
cally, we introduce gradient synchronization measures in a general setting. These simi-
larity measures are based on the concordance and discordance of the gradients between
paired smooth random functions. Asymptotic normality of the proposed estimates is ob-
tained under regularity conditions. We illustrate the proposed synchronization measures
via simulations and an application to resting state fMRI signals from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) and they are found to improve discrimination between
subjects with different disease status.
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1. Introduction

In many applications, data are collected in the form of curves or signals over time. In the
context of functional data analysis (FDA), such curve data are modeled as realizations
of an underlying smooth stochastic process. Although a variety of approaches have been
proposed for univariate functional data (Ramsay and Dalzell, 1991; Hoover et al., 1998;
Fan and Zhang, 1999; Huang et al., 2002; Cardot et al., 2003; Yao et al., 2005; Hall
and Horowitz, 2007; Crambes et al., 2009; Shin, 2009; Cai and Yuan, 2012; Chiou and
Müller, 2014; Zhu et al., 2014; Chiou et al., 2016), the statistical modeling of dependency
between the components of multivariate functional data has received less attention.

Generally, a problem of continuing interest in functional data analysis is the con-
struction of measures of correlation and association between components of multivari-
ate random curves (He et al., 2000). A classical correlation measure is the Pearson
product-moment correlation coefficient (PC) (Pearson, 1895) which describes the linear
dependence between two random variables. It can be viewed as the cosine of the angle
between two centered vectors of a sample. The notion of an angle has been extended to
random functions in a Hilbert space (Dubin and Müller, 2005), providing a theoretically
supported dynamic functional correlation. A traditional approach to describe the corre-
lation between random vectors is canonical correlation (Hotelling, 1936), which has been
extended to multivariate time series (Brillinger, 1975) under the stationarity assump-
tion and to bivariate functional data (Leurgans et al., 1993) under the rubric functional
canonical correlation. Functional canonical correlation requires delicate regularization
as it involves inverse operators (He et al., 2003; Cupidon et al., 2008; Eubank and Hsing,
2008; He et al., 2004). To avoid the inverse problem, several alternative notions of func-
tional correlation have been proposed, including dynamic correlation (Dubin and Müller,
2005), which is an extension of Pearson correlation to the case of functional data, as it
quantifies the angle between random functions, and also a functional correlation based
on functional singular decomposition (Yang et al., 2011).

Measures of functional correlation and association are at the core of the quantitative
analysis of functional connectivity in neuroscience for time course data obtained from
functional magnetic resonance imaging (fMRI). The fMRI time courses are referred to
as blood oxygenation level dependent (BOLD) signals, where an increase in blood flow
caused by neuronal activity is thought to lead to a surplus in local blood oxygen (Pol-
drack et al., 2011), and one measures local changes in deoxyhemoglobin concentration
in the brain, which serves as a proxy for neural activity (Lindquist, 2008). Functional
connectivity as used in neuroimaging corresponds to the temporal correlation of a neuro-
physiological index measured in different brain areas (Friston et al., 1993). The temporal
PC was first applied in resting state fMRI functional connectivity studies by Biswal et al.
(1995) and remains one of the predominant tools to measure temporal correlation in the
fMRI literature. Other commonly used measures include coherence (Sun et al., 2004;
Ombao et al., 2008), which goes back to Wiener (1930), and partial coherence (Tick,
1963) to evaluate the linear relationship between fMRI time series in the frequency do-
main under various versions of stationarity. Resting state fMRI is a common method to
study brain functional connectivity when subjects are not performing an explicit task
(Greicius et al., 2003; Shehzad et al., 2009; Biswal, 2012).

As the temporal variability of signals may exhibit changes across time during the
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period of data collection, it is of interest to study association measures that can reflect
the dynamic characteristics of time courses, especially as the study of variability of
connectivity over time has become more popular in recent years (Chang and Glover,
2010; Hutchison et al., 2013; Allen et al., 2014; Lindquist et al., 2014; Patel et al.,
2006; Xue et al., 2015), leading to novel approaches to measure functional connectivity
in the context of brain diseases such as Alzheimer’s disease (van den Heuvel and Pol,
2010; Bijsterbosch et al., 2017). This motivated us to study the application of the
proposed measures of synchronization to resting state fMRI signals from Alzheimer’s
patients. While we highlight fMRI signals as a major application area, the relevance
and impact of the proposed methodology is not limited to this specific application.
Indeed, Leurgans et al. (1993) and Dubin and Müller (2005) demonstrated how their
respective versions of functional correlation led to new insights for the gait data (Ramsay
and Silverman, 2005) and multivariate physiological data in nephrology (Kaysen et al.,
2000), respectively, in addition to applications to longitudinal medical studies such as
the Baltimore Longitudinal Study of Aging (Yang et al., 2011).

To study association in the presence of complex time variability we propose new as-
sociation measures for paired functional data that emphasize dynamics and are shown
to be useful for assessing fMRI based brain connectivity. The proposed measures differ
in essential ways from the commonly-used sliding window method (Chang and Glover,
2010) for the analysis of functional connectivity, where one computes temporal Pearson
correlations over sliding windows. The proposed measures include gradient synchroniza-
tion and gradient synchronization fluctuation and are based on the sign of the product
of the derivatives of the two random functions, which is used to track time dynamic
synchronicity between two signals. We show that this concept can be interpreted as a
limit of temporal Pearson correlations that are constructed over sliding windows when
the window size shrinks to zero. Gradient synchronization provides a measure of sim-
ilarity at the individual level which is readily extended to samples by averaging across
subjects. A second measure, gradient synchronization fluctuation, is the number of
sign changes of the product of the empirical derivatives of the signals and serves as an
additional useful measure. Previous measures to describe changing patterns of connec-
tivity include a dynamic connectivity regression algorithm to detect change points in
connectivity (Cribben et al., 2012, 2013) and temporal independent component analysis
to obtain temporal functional modes (Smith et al., 2012). In an application to fMRI
signals from 11 brain regions (Andrews-Hanna et al., 2010), we find that the proposed
gradient synchronization is more closely associated with disease status than traditional
PC based measures.

The remainder of the paper is organized as follows. We define the concepts of gradient
synchronization and gradient synchronization fluctuation and the proposed estimators
in Section 2. Theoretical results that include asymptotic normality for the proposed
estimators are given in Section 3. Simulation results are presented in Section 4, followed
by an application to resting state fMRI data described in Section 5. A discussion follows
in Section 6 and the proofs can be found in Section ?? in the supplement.
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2. Gradient Synchronization

2.1. From Segmented Correlation to Gradient Synchronization
Let (X,Y ) be a pair of centered random functions on an interval D, assumed to be [0, 1]
without loss of generality. We assume that X and Y are both in the Hilbert space L2

endowed with the inner product 〈X,Y 〉 =
∫
DX(t)Y (t)dt. Then 〈X,Y 〉/(‖X‖‖Y ‖) may

be viewed as the cosine of the angle between X and Y , where ‖X‖2 = 〈X,X〉.
To introduce the proposed time-varying measure of association between pairs of ran-

dom curves, we first partition D into many small segments and then calculate the
cosine of the angles of the two centered curves on each of the segments induced by
the partition. Specifically, let P = {A1, . . . , AKP} be a collection of disjoint inter-
vals of which the union is [0, 1] and δP = max1≤k≤KP{µ(Ak)}, where µ stands for the
Lebesgue measure on R. Given a random curve X, the temporally centered curve on Ak
is X(t)−

∫
Ak
X(s)ds/µ(Ak), for t ∈ Ak, and analogously for Y . The cosine of the angle

between the centered curves on the segment Ak is then

rAk
(X,Y ) =

∫
Ak

{
X(t)− 1

µ(Ak)

∫
Ak
X(s)ds

}{
Y (t)− 1

µ(Ak)

∫
Ak
Y (s)ds

}
dt√[∫

Ak

{
X(t)− 1

µ(Ak)

∫
Ak
X(s)ds

}2
dt
] [∫

Ak

{
Y (t)− 1

µ(Ak)

∫
Ak
Y (s)ds

}2
dt
] .

(1)
We observe that rAk

is closely connected to the classical Pearson correlation for
paired data observed during the time interval Ak, which is the customary measure of
connectivity in fMRI research. To see this, approximate the integrals in (1) by Rie-
mann sums over a set of M time points, t1k < t2k < · · · < tMk, in Ak. Then the
right hand side of (1) is approximately the Pearson correlation of the M data pairs
(X(tmk), Y (tmk)), m = 1, . . . ,M. Thus, for each pair of curves (X(t), Y (t)) their simi-
larity or association can be quantified by a sequence of local similarities rAk

(X,Y ) that
quantify the similarity between X and Y along the time segments Ak. This similarity
measure is time dynamic and can be characterized by

SXY,P(t) =

KP∑
k=1

rAk
(X,Y )IAk

(t), (2)

where I is the indicator function.
Under the following standard assumption (A1),

(A1) X(·) and Y (·) are continuously differentiable on [0, 1] almost surely,

one finds that as the partition P gets finer, SXY,P(t) converges to the gradient synchro-
nization (GS) function

SXY (t) = sign{X ′(t)Y ′(t)}, (3)

where sign(u) = −1, 0, 1, if u < 0, u = 0, u > 0, respectively.

Theorem 1. Assume (A1). For any t ∈ (0, 1) with P{X ′(t)Y ′(t) = 0} = 0, SXY,P(t)
converges to SXY (t) almost surely as δP → 0.
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We refer to SXY (·) as the gradient synchronization function of X and Y since it cap-
tures the synchronization of the derivatives or gradients of X and Y . This is illustrated
in Figure 1 for a realization of the paired random functions (X,Y ) generated according
to simulations in Section 4. The oscillations of the random functions result in frequent
jumps of SXY (·) between the values 0 and 1, motivating a simple summary measure.

Y(t)

X(t)

0.00 0.25 0.50 0.75 1.00

−10

−5

0

5

−10

−5

0

5

SXY(t)

0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

Fig. 1. One randomly selected realization of the paired functions (X(t), Y (t)) and the corre-
sponding gradient synchronization function SXY (t) (3) generated according to the simulations
described in Section 4 with L = 51.

Let #A be the cardinality of a set A. For any interval I ⊆ (0, 1), we denote the
cardinalities of the random sets of zero crossings for X ′ and Y ′ by

NX′(I) = #{t ∈ I | X ′(t) = 0} and NY ′(I) = #{t ∈ I | Y ′(t) = 0}, (4)

respectively, and for I = (0, 1) write NX′ = NX′((0, 1)) and NY ′ = NY ′((0, 1)). We need
an additional assumption, which is not overly restrictive if (A1) is satisfied.

(A2) Almost surely, NX′ and NY ′ are finite.

We note that (A2) guarantees that SXY (·) is Riemann integrable almost surely (Theo-
rem 8 in Section 5.3 of Royden and Fitzpatrick, 2010). This leads to

Definition 1. The gradient synchronization (GS) R and the population GS (pGS)
ρ of random functions X and Y are defined as

R =

∫ 1

0
SXY (t)dt and ρ = E(R). (5)

Obviously, the pGS ρ is always between −1 and 1 and is a measure of similarity as
the population mean of the aggregated concordance and discordance of the gradients of
the random curves X and Y . It is positive if both trajectories tend to jointly increase
or decrease so that their derivatives have the same sign and is negative if the signals
tend to head in opposite directions. With ρ+ = E[µ{t ∈ D : X ′(t)Y ′(t) > 0}] and
ρ− = E[µ{t ∈ D : X ′(t)Y ′(t) < 0}] representing, respectively, the proportion of the time



6 Chen et al.

domain where concordance and discordance of the derivatives of X and Y occurs, under
the assumption that E[µ{t ∈ D : X ′(t)Y ′(t) = 0}] = 0, we have ρ+ + ρ− = 1, whence
ρ+ = (1+ρ)/2 and ρ− = (1−ρ)/2 follow in conjunction with ρ = ρ+−ρ−. The extreme
scenario ρ = 1 occurs when X and Y are both monotonically strictly increasing or both
monotonically strictly decreasing, and ρ = −1 occurs when one of them is monotonically
strictly increasing while the other is monotonically strictly decreasing over the entire
domain. In all other scenarios one has −1 < ρ < 1, where ρ = 0 indicates that the
aggregated areas of concordance and discordance balance each other out; that is, for
half of the time period there is concordance and for the other half there is discordance.

For a simple example, consider two random functions X(t) = −V cos(7πt/4), Y (t) =
V sin(7πt/4), t ∈ [0, 1], where V ∼ N(0, 1). Then

E
[∫ 1

0
sign{X ′(t)Y ′(t)}dt

]
=

∫ 1

0
E
[
sign{X ′(t)Y ′(t)}

]
dt

=

∫ 1

0
E
[
sign{(7πV/4)2 sin(7πt/2)/2}

]
dt

=

∫ 1

0
sign{sin(7πt/2)}dt

=

∫ 2/7

0
1dt−

∫ 4/7

2/7
1dt+

∫ 6/7

4/7
1dt−

∫ 1

6/7
1dt

= 1/7.

Thus, ρ = 1/7 and therefore ρ+ = 4/7 and ρ− = 3/7.
It is also of interest to investigate the expected number of sign changes of SXY (·) from

1 to −1 or −1 to 1 over time. These sign changes quantify the fluctuation of concordance
and discordance between the signalsX and Y and thus provide a measure for the stability
of gradient synchronization over time. For a piecewise continuous function f : [0, 1]→ R,
denote by f(t−) = lims→t− f(s) and f(t+) = lims→t+ f(s) the left and right limits,
respectively. Fluctuations in gradient synchronization can be quantified by counting the
sign changes of SXY (·), motivating the following definition of gradient synchronization
fluctuation at the population level.

Definition 2. The gradient synchronization fluctuation (GSF) Z and the population
GSF (pGSF) ζ for random functions X and Y are

Z = #{t ∈ (0, 1) | SXY (t−)SXY (t+) = −1} and ζ = E(Z). (6)

We note that the GSF Z is finite almost surely since it is bounded by NX′ +NY ′ which
is finite under (A2). To guarantee that ζ is well defined, we further require the following
regularity condition for the cardinalities NX′ and NY ′ of random sets of zero crossings
for X ′ and Y ′ as defined in (4).

(A3) E(NX′) <∞ and E(NY ′) <∞.

Assumption (A3) requires that the expectations ofNX′ andNY ′ exist and is a stronger
condition than (A2). This condition is related to the study of the expected number of



Gradient Synchronization 7

roots of a smooth random function with the Kac-Rice formula (Rice, 1944; Kac, 1948).
For a random process U(·) defined on an interval I, with NU = #{t ∈ I | U(t) = 0}, these
formulas provide certain integrals to calculate E(NU ) under regularity conditions (Azäıs
and Wschebor, 2009; Adler and Taylor, 2009). For a Gaussian random function U(·)
taking values in C1([0, 1]), a sufficient condition for E(NU ) <∞ is that the distribution
of U(t) is not degenerate for any t ∈ [0, 1] (Azäıs and Wschebor, 2009, Theorem 3.2). An

example is given by U(t) =
∑K

k=1Akφk(t), where the Ak are Gaussian random variables
and {φk(·)} is a polynomial basis or trigonometric basis. Conditions (A2) and (A3) are
satisfied if X and Y are Gaussian processes with C2([0, 1]) sample paths and X ′(t) and
Y ′(t) are non-degenerate random variables for any t ∈ [0, 1]. For non-Gaussian processes,
sufficient conditions for E(NU ) <∞ are in Theorem 3.4 of Azäıs and Wschebor (2009).

2.2. Estimation
In practice, data are only available as discrete measurements taken at a grid of time
points. For independent copies {(Xi, Yi)}ni=1 of the underlying random processes (X,Y ),
we assume that Xi(·) and Yi(·) are observed on J+1 time points 0 = t0 < t1 < · · · < tJ =
1, which form a partition J = {tj}Jj=0 of [0, 1]. For the ith subject, the corresponding
GS, as per (5), is given by

Ri =

∫ 1

0
SXiYi

(t)dt =

∫ 1

0
sign{X ′i(t)Y ′i (t)}dt. (7)

An empirical derivative for Xi and Yi can be obtained by difference quotients

X̂ ′iJ (t) =

J∑
j=1

Dj,Xi
I[tj−1,tj)(t) and Ŷ ′i J (t) =

J∑
j=1

Dj,Yi
I[tj−1,tj)(t), (8)

where Dj,Xi
= {Xi(tj)−Xi(tj−1)}/(tj − tj−1), and Dj,Yi

is defined analogously. Then a
plug-in estimate for Ri is

R̂J ,i =

J∑
j=1

(tj − tj−1)sign(Dj,Xi
Dj,Yi

). (9)

Naturally, the empirical estimate for the pGS ρ is then

ρ̂J =
1

n

n∑
i=1

R̂J ,i. (10)

The asymptotic normality of the estimate ρ̂J is provided in Theorem 2 in Section 3.
For i = 1, . . . , n, as per (6), the subject-specific GSF Zi is

Zi = #{t ∈ (0, 1) | SXiYi
(t−)SXiYi

(t+) = −1}. (11)

Since the observable time grid J = {tj}Jj=0 is often pre-determined by a measurement
device or sampling plan, a variant of the pGSF ζ (6) that reflects the time grid J is also
useful. Specifically, a grid-dependent variant ζJ of the pGSF is defined as

ζJ = E(ẐJ ,i), (12)
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where ẐJ ,i is an estimate for Zi by simply counting the sign changes in terms of whether
adjacent intervals have the same or different signs of the empirical gradients, i.e.,

ẐJ ,i = #{2 ≤ j ≤ J | Dj−1,Xi
Dj,Xi

Dj−1,Yi
Dj,Yi

< 0}
+ #{1 ≤ j ≤ J | Dj,Xi

Dj,Yi
= 0},

(13)

where Dj,Xi
and Dj,Yi

are defined as after (8). Hence, a sample estimate of ζ can be
obtained by

ζ̂J =
1

n

n∑
i=1

ẐJ ,i. (14)

We establish the asymptotic normality of ζ̂J in Theorem 3 below, where we consider the
pGSF ζ (6) and the grid-dependent variant ζJ (12) as the targets, respectively.

3. Asymptotic Properties

For the partition J of [0, 1], let δJ = max1≤j≤J{tj − tj−1}. To derive the asymptotic
properties of the proposed estimators, we assume δJ → 0 as n→∞, which requires the
grid to get denser as the sample size increases. Although the partition J = Jn depends
on the sample size n, we keep the notation J instead of Jn if no confusion arises. Based
on assumptions (A1)–(A3), we obtain the consistency and asymptotic normality of ρ̂J .

Theorem 2. (a) If (A1) and (A2) hold, then ρ̂J converges to ρ (5) in probability.

(b) If (A1) and (A3) hold and δJ = o(n−1/2), then
√
n(ρ̂J − ρ)/σ̂R,J converges in

distribution to N(0, 1), where σ̂R,J is the square root of the empirical estimate of

the variance of R, i.e., σ̂R,J = {(n− 1)−1
∑n

i=1(R̂J ,i − ρ̂J )2}1/2.

To obtain the asymptotic normality of ζ̂J , we need the following conditions.

(A4) E(N2
X′) <∞ and E(N2

Y ′) <∞.

(A5) P
(
∃t ∈ (0, 1) such that X ′(t) = Y ′(t) = 0

)
= 0.

(A6) There exist constants C > 0 and ε > 0 such that for all δJ < ε, the following
holds: (1) P(NX′(I) = k) ≤ C|I|k and P(NY ′(Ij) = k

)
≤ C|I|k, for all k ∈ N and

I ∈ {[t0, t1), [tJ−1, tJ ]}, as well as for all k ∈ N ∩ [2,∞) and I ∈ {[tj−2, tj) : j =
2, . . . , J}; (2) P(NX′(I) = 1, NY ′(I) = 1) ≤ C|I|2, for I ∈ {[t0, t1), [tJ−1, tJ ]}. Here
NX′(I) and NY ′(I) are defined in (4), and |I| denotes the length of I.

Assumption (A4) is needed to obtain the asymptotic normality of ζ̂J when the target
is the grid-dependent ζJ (12). It is a stronger condition than (A3). Fortunately, we can
tap into known results on the second moments of NU for a random process U(·). For a
Gaussian random function U(·) in C1([0, 1]), E(N2

U ) <∞ holds if the joint distribution
of (U(s), U(t)) is non-degenerate for any 0 ≤ s < t ≤ 1, see Theorem 3.2 of Azäıs and
Wschebor (2009). Thus, a sufficient condition for (A4) is that X is a Gaussian process
having C2([0, 1]) sample paths and the joint distribution (X ′(s), X ′(t)) is non-degenerate
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for any 0 ≤ s < t ≤ 1 and analogously for Y ; for non-Gaussian processes see Theorem 3.4
of Azäıs and Wschebor (2009) and chapter 11 of Adler and Taylor (2009).

Assumptions (A5) and (A6) are needed to obtain the asymptotic normality of ζ̂J
when targeting the grid-independent pGSF ζ (6). Specifically, (A5) implies that X ′ and
Y ′ cannot be zero at the same t almost surely; it does not preclude that there are times t
where X ′ or Y ′ are zero. This assumption guarantees that ẐJ ,i converges almost surely
as δJ → 0 and it holds under some regularity conditions as discussed in chapter 3 of
Azäıs and Wschebor (2009). In particular, (A5) holds if (X,Y ) is a bivariate Gaussian
process with C2([0, 1]) sample paths and X ′(t) and Y ′(t) are non-degenerate random
variables for any t ∈ [0, 1]. Assumption (A6) is a restriction on the frequency of zero
crossings of X ′ and Y ′, which implies (A4), and is needed to ensure ζJ − ζ = O(δJ )
as δJ → 0. Assumption (A6) is satisfied, for example, in the case where X and Y are
random polynomials such that the distance between any two zero crossings of X ′ and
Y ′ is at least ε, where ε > 0 is a constant.

Theorem 3. (a) If (A1) and (A4) hold, then
√
n(ζ̂J − ζJ )/σ̂Z,J converges in dis-

tribution to N(0, 1), where σ̂Z,J is the square root of the empirical estimate of the

variance of Z, i.e., σ̂Z,J = {(n− 1)−1
∑n

i=1(ẐJ ,i − ζ̂J )2}1/2.

(b) If (A1), (A5) and (A6) hold and δJ = o(n−1/2), then
√
n(ζ̂J − ζ)/σ̂Z,J converges

in distribution to N(0, 1).

The asymptotic normality of ρ̂J and ζ̂J can be utilized for inference such as the
construction of asymptotic confidence intervals for ρ and ζ. Let zα denote the upper
α-quantile of N(0, 1), i.e., P(V > zα) = α where V ∼ N(0, 1). By Theorems 2 and

3, ρ̂J ± zα/2σ̂R,J /
√
n and ζ̂J ± zα/2σ̂Z,J /

√
n are 100(1 − α)% asymptotic confidence

intervals for the pGS ρ and the pGSF ζ.

4. Simulation Studies

To demonstrate the finite sample performance of the proposed estimators, our simulation
design included M = 1000 simulation runs and n = 50, 200, and 1000 independent and
identically distributed (i.i.d.) pairs of random functions (Xi, Yi), i = 1, . . . , n. The grid
points {0 = t0 < · · · < tJ = 1} were located equidistantly on [0, 1], with the number
of grid points chosen as J = 100, 200, and 500. Paired functional data (Xi, Yi) were
generated from the trigonometric basis as follows

Xi(tj) =

L∑
l=1

Ai,lφl(tj) and Yi(tj) =

L∑
l=1

Bi,lφl(tj),

where L = 91, φ1(t) ≡ 1, φl(t) =
√

2 cos((l− 1)πt) for odd l > 1 and φl(t) =
√

2 sin(lπt)
for even l, Ai = (Ai,1, . . . , Ai,L)> are i.i.d. random vectors from N

(
0, D) with the

covariance matrix D a diagonal matrix with elements Dll = exp(−|l − 35|/50)/8 for
l = 1, . . . , L and Bi = (Bi,1, . . . , Bi,L)> = aAi + V Ci, with Ci independent copies

of Ai, V an L × L matrix with (i, j)-th entry Vij = 0.8 × 0.3|i−j|, and a such that
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0 Var{Xi(t)}dt =

∫ 1
0 Var{Yi(t)}dt, i.e.

∑L
l=1Dll = a2

∑L
l=1Dll+trace(V DV >), whence

a = 0.48414. The value of pGS is ρ = 0.34253, obtained numerically by averaging the
values for 106 paired random functions, recorded on a regular grid with increment 10−6

on [0, 1]. Similarly, the value of pGSF is ζ = 130.67 and its grid-dependent variant
ζJ equals 42.567, 77.472, and 107.67 for J = 100, 200, and 500, respectively, where J
determines the segmentation scheme.

Table 1 contains the numerical results for the estimates of pGS and Table 4 the
coverage rate of the 95% confidence interval ρ̂J ± z0.025σ̂R,J /

√
n. We find that the

proposed estimator ρ̂J converges to the true target ρ as sample size n increases and
the coverage rate of the confidence interval is close to the nominal level 95%. The
corresponding results for the estimate of pGSF are in Tables 2 and 3, where the target is
the grid-dependent variant ζJ . It can be seen that ζ̂J moves closer to ζJ for increasing
sample size and the coverage of the confidence intervals is satisfactory.

Table 1. Based on M = 1000 simulation runs, the first
row provides the bias Bias(ρ̂J ) =

∑M
m=1(ρ̂

[m]
J − ρ)/M ,

where ρ̂[m]
J is the proposed estimator of the pGS ρ for the

mth simulation run. The second row provides the variance
Var(ρ̂J ) =

∑M
m=1(ρ̂

[m]
J −M−1

∑M
m′=1 ρ̂

[m′]
J )2/M of the pro-

posed estimator. The third row shows the mean squared
error MSE(ρ̂J ) =

∑M
m=1(ρ̂

[m]
J − ρ)2/M . All values in the

table have been divided by 10−4.

J = 100 J = 200 J = 500

Bias(ρ̂J )
n = 50 11.714 4.832 3.620
n = 200 7.710 2.067 2.944
n = 1000 7.088 0.732 0.952

Var(ρ̂J )
n = 50 2.059 1.730 1.556
n = 200 0.481 0.415 0.363
n = 1000 0.102 0.084 0.076

MSE(ρ̂J )
n = 50 2.073 1.732 1.557
n = 200 0.487 0.415 0.364
n = 1000 0.107 0.084 0.076

Often the observable time grid J is pre-determined by the measurement device and
the fluctuation of the gradient synchronization inside intervals (tj−1, tj) is not detectable.

This leads to a natural bias so that ζ̂J underestimates the grid-independent pGSF ζ in
general. We demonstrate this phenomenon in simulations. Table 5 provides the bias,
variance and mean squared error of the proposed estimator ζ̂J with respect to the target
ζ. The bias decreases as the partition gets finer and the estimating error is seen to be
dominated by the bias. Bias correction will be a relevant topic for future research.

In addition, we evaluated the performance of the proposed estimators of pGS and
pGSF obtained from samples of smaller size starting from n = 1 for functions observed
on various time grids with different numbers of time points J ∈ {100, 200, 500}. As
shown in the boxplots for estimated pGS and pGSF in Figure ?? and ?? in Section ??
in the supplement, for sample sizes n as small as 25, the estimation accuracy is quite
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satisfactory.

Table 2. Based on M = 1000 simulation runs, the first
row provides the bias BiasJ (ζ̂J ) =

∑M
m=1(ζ̂

[m]
J − ζJ )/M ,

where ζ̂
[m]
J is the proposed estimator of ζ for the mth

simulation run. The second row provides the variance
Var(ζ̂J ) =

∑M
m=1(ζ̂

[m]
J − ζ̄J )2/M of the proposed estima-

tor, where ζ̄J =
∑M

m=1 ζ̂
[m]
J /M . The third row shows the

mean squared error MSEJ (ζ̂J ) =
∑M

m=1(ζ̂
[m]
J − ζJ )2/M .

J = 100 J = 200 J = 500

BiasJ (ζ̂J )

n = 50 −0.023 −0.013 −0.057
n = 200 −0.013 0.011 −0.042
n = 1000 −0.009 0.005 −0.025

Var(ζ̂J )

n = 50 0.660 1.468 1.222
n = 200 0.158 0.342 0.300
n = 1000 0.030 0.067 0.059

MSE(ζ̂J )

n = 50 0.660 1.468 1.225
n = 200 0.159 0.342 0.302
n = 1000 0.030 0.067 0.060

Table 3. Coverage rates for the 95% confi-
dence intervals ζ̂J ± z0.025σ̂Z,J /

√
n.

J = 100 J = 200 J = 500

n = 50 0.936 0.932 0.942
n = 200 0.953 0.950 0.949
n = 1000 0.956 0.957 0.948

As in reality data may be noisy, in addition we considered scenarios where the simu-
lated curves are contaminated with different levels of random noise. To study the case
of error contaminated data, we generated the observations of Xi and Yi as

Xij = Xi(tj) + εij and Yij = Yi(tj) + εij ,

where εij and εij for i = 1, . . . , n and j = 1, . . . , J are i.i.d. random noise generated from
N(0, σ2

err,X) and N(0, σ2
err,Y ), respectively. We define the signal-to-noise ratio (SNR) as

the integrated variance of the random functions divided by the noise variance, i.e.,

SNR =

√√√√∫ 1
0 Var{Xi(t)}dt

σ2
err,X

for functions X and analogously for functions Y .
This definition quantifies the contrast of the variability of signal and noise and is

also commonly used in fMRI analyses (Stephan et al., 2008; Welvaert and Rosseel, 2013;
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Frässle et al., 2017), which is sometimes referred to as contrast-to-noise ratio alterna-
tively. The signal-to-noise ratios considered were 20, 5, and 2, similar to the values
taken in simulations of fMRI studies and corresponding to three levels of contamination
in the observed data, which in what follows are referred to as low-, medium-, and high-
contamination scenarios, respectively. We also compared the estimation of pGS and
pGSF based on raw noisy data with the estimation based on band-pass filtered data.
For the latter, the band-pass filtering was applied to only preserve frequency components
between 0.01 and 0.1 Hz assuming that the recording for an entire function takes 600
seconds, mimicing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) fMRI data
in Section 5 with around 200 measurements per scan recorded with repetition time (TR)
3000 ms. As shown in Tables ??–?? in Section ?? in the supplement, pGS and pGSF are
not well estimated based on unfiltered noisy data, especially when the observed time grid
J is relatively dense (e.g., J = 200 and J = 500). Yet for the band-pass filtered data,
the performance of the proposed estimators is found to be much better—both the size
of bias and variance shrink overall and the shrinkage is more remarkable as the observed
time grid J gets denser.

Table 4. Coverage rates for 95% confidence
intervals ρ̂J ± z0.025σ̂R,J /

√
n.

J = 100 J = 200 J = 500

n = 50 0.944 0.937 0.930
n = 200 0.954 0.943 0.949
n = 1000 0.945 0.956 0.947

Table 5. Based on M = 1000 simulation runs, the first row
provides the bias Bias(ζ̂J ) =

∑M
m=1(ζ̂

[m]
J − ζ)/M , where

ζ̂
[m]
J is the proposed estimator obtained for the mth simula-

tion run. The second row provides the variance Var(ζ̂J ) =∑M
m=1(ζ̂

[m]
J − M−1

∑M
m′=1 ζ̂

[m′]
J /M)2/M of the proposed

estimator. The third row shows the mean squared error
MSE(ζ̂J ) =

∑M
m=1(ζ̂

[m]
J − ζ)2/M .

J = 100 J = 200 J = 500

Bias(ζ̂J )

n = 50 −88.130 −53.215 −23.060
n = 200 −88.120 −53.191 −23.044
n = 1000 −88.116 −53.197 −23.027

Var(ζ̂J )

n = 50 0.660 1.468 1.222
n = 200 0.158 0.342 0.300
n = 1000 0.030 0.067 0.059

MSE(ζ̂J )

n = 50 7767.515 2833.317 532.969
n = 200 7765.237 2829.607 531.344
n = 1000 7764.427 2830.023 530.322
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5. Application to Resting State fMRI Data

Resting state fMRI data consisting of blood oxygen-level dependent (BOLD) signals
while subjects relax were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu). The ADNI fMRI data have different
numbers of temporal volumes and we took those scans that have 197 time points so that
the sample size is the largest across different time points. Each subject was assigned to
one of six cognitive groups: cognitively normal (CN, 279 subjects), subjective memory
concerns (SMC, 24 subjects), early mild cognitive impairment (EMCI, 54 subjects), mild
cognitive impairment (MCI, 120 subjects), late mild cognitive impairment (LMCI, 20
subjects), and Alzheimer’s disease dementia (AD, 36 subjects). From each subject, we
considered their earliest available fMRI scans for those with repeated scans. The BOLD
signals are measured with repetition time (TR) 3000 ms.

Preprocessing of the BOLD signals followed standard procedures, including head
motion correction, slice-timing correction, coregistration, normalization, and spatial
smoothing. The first four time points were removed to eliminate non-equilibrium ef-
fects of magnetization. Subsequently, average signals of voxels within each seed region
were extracted, where linear detrending and band-pass filtering were performed to ac-
count for signal drift and global cerebral spinal fluid and white matter signals, including
only frequencies between 0.01 and 0.1 Hz, respectively. These steps were performed
in MATLAB using the Statistical Parametric Mapping (SPM12, http://www.fil.ion.
ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit V1.8 (REST1.8, http:
//restfmri.net/forum/?q=rest).

Our analysis focused on the default network, a set of regions that activate when there
is no external stimulus (Shulman et al., 1997; Mazoyer et al., 2001; Raichle et al., 2001).
Functional connectivity within the default network has been shown to be deficient in
a number of neurological diseases including Alzheimer’s (Greicius et al., 2004; Buckner
et al., 2008). Our analysis focused on the 11 regions of interest (ROIs) within the default
network identified in Andrews-Hanna et al. (2010, Table S1, replicated in Table ?? in
Section ?? in the supplement). To quantify the strength of inter-regional functional
connectivity, we considered the average signals of spherical seed regions of diameter 8
mm centered at the seed voxels of these regions. This yielded 55 paired combinations
for the 11 ROIs. To investigate the differences between cognitive groups, we carried
out Kruskal–Wallis tests and two-sample Wilcoxon rank sum tests for the equality of
the distributions for connectivity measures. Specifically, we first considered a summary
statistic of connectivity measures aggregating all 55 pairs of ROIs, the mean of the
absolute values (mean size) of pairwise connectivity measures over all 55 ROI pairs, as
a single quantity summarizing the magnitude of average hub connectivity.

We considered three connectivity measures: The proposed GS Ri (7) with an estimate

R̂J ,i (9) and the proposed GSF Zi (11) with an estimate ẐJ ,i (13), based on centered
signals, as well as the (static) temporal Pearson correlation (PC), which for the ith
subject with data (Xi, Yi) is defined as

PJ ,i =

∑J
j=1{Xi(tj)− X̄i}{Yi(tj)− Ȳi}√∑J

j=1{Xi(tj)− X̄i}2
√∑J

j=1{Yi(tj)− Ȳi}2
, (15)

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://restfmri.net/forum/?q=rest
http://restfmri.net/forum/?q=rest
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with X̄i = J−1
∑J

j=1Xi(tj) and Ȳi = J−1
∑J

j=1 Yi(tj). We note that the temporal Pear-
son correlation is the standard functional connectivity measure used in brain imaging
studies and for our analysis is computed based on all the temporal measurements dur-
ing the screening session with the first four measurement times discarded, as described
above. Results of Kruskal–Wallis tests in Table 6 demonstrate that the proposed mea-
sures GS and GSF discriminate the six cognitive groups, whereas no significant difference
is found among the six groups for temporal Pearson correlation. Furthermore, when ap-
plying two-sample Wilcoxon rank sum tests for each pair of cognitive groups (Table 7),
temporal PC does not significantly distinguish between any groups, while all pairs of
groups except for the pair (MCI, AD) are significantly distinguished by GS and all are
distinguished by GSF except for the pairs (CN, LMCI) and (SMC, MCI). When consid-
ering simultaneous pairwise comparisons between the fifteen pairs of formed by the six
groups, GSF still significantly discriminates ten pairs of groups and GS fourteen pairs.

Table 6. P -values of the Kruskal–
Wallis tests to compare mean sizes
over the 55 pairs of ROIs of (static)
temporal PC (15), GS (9) and GSF
(13) among the six cognitive groups.

PC GS GSF

0.63 2.1× 10−61 2.3× 10−36

Table 7. P -values of the two-sample Wilcoxon rank sum
tests to compare mean sizes over the 55 pairs of ROIs
of (static) temporal PC (15), GS (9) and GSF (13) be-
tween the six cognitive groups. Significance at level 0.05
for individual tests is marked by “∗” and for multiple com-
parisons after the Bonferroni correction (i.e., less than
0.05/15 ≈ 0.0033) by “∗∗”.

Pair of groups PC GS GSF

(CN, SMC) 0.65 1.3× 10−12∗∗ 0.021∗

(CN, EMCI) 0.22 1.1× 10−23∗∗ 7.0× 10−22∗∗

(CN, MCI) 0.71 1.5× 10−33∗∗ 0.027∗

(CN, LMCI) 0.41 3.2× 10−9∗∗ 0.72
(CN, AD) 0.43 3.0× 10−16∗∗ 3.3× 10−19∗∗

(SMC, EMCI) 0.22 1.6× 10−5∗∗ 3.8× 10−10∗∗

(SMC, MCI) 0.77 6.8× 10−10∗∗ 0.11
(SMC, LMCI) 0.36 3.6× 10−6∗∗ 0.0012∗∗

(SMC, AD) 0.33 2.6× 10−7∗∗ 8.1× 10−11∗∗

(EMCI, MCI) 0.18 1.7× 10−16∗∗ 1.0× 10−17∗∗

(EMCI, LMCI) 0.96 1.4× 10−8∗∗ 6.1× 10−9∗∗

(EMCI, AD) 0.80 3.4× 10−10∗∗ 1.7× 10−4∗∗

(MCI, LMCI) 0.35 9.8× 10−9∗∗ 0.047∗

(MCI, AD) 0.36 0.35 1.5× 10−16∗∗

(LMCI, AD) 0.86 1.4× 10−7∗∗ 4.0× 10−9∗∗
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Fig. 2. Kruskal–Wallis tests to compare 55 pairs of ROIs simultaneously in terms of (static)
temporal PC (15) (left), GS (9) (middle) and GSF (13) (right) among the six cognitive groups,
where significance at level 0.05 after Bonferroni adjustment is shown by colored squares and
insignificance by crosses.

Another question of interest is whether subjects in different cognitive groups exhibit
differences in connectivity among specific pairs of brain regions. To address it, we per-
formed Kruskal–Wallis tests for the 55 combinations of paired ROIs, with comparisons
based on temporal Pearson correlation and the proposed GS and GSF. To account for
multiple comparisons, p-values were adjusted by Bonferroni correction. As illustrated
in Figure 2, significant differences among the six cognitive stages were found using GS
and GSF for all 55 pairs of ROIs, while no pervasive differences were found when us-
ing temporal PC. When employing two-sample Wilcoxon rank sum tests to compare 55
pairs of ROIs simultaneously in terms of (static) temporal PC (15), GS (9) and GSF
(13) between subjects in different cognitive groups, again GSF was found to discrimi-
nate much better between the various cognitive groups than temporal PC and GS (see
Figures ??–?? in the supplement).

Beyond static functional connectivity, the proposed synchronicity measures GS and
GSF can also be leveraged for the analysis of dynamic functional connectivity. To study
the dynamics in resting-state functional connectivity, one of the most commonly used
approaches is sliding windows (Hutchison et al., 2013). Specifically, functional connec-
tivity metrics are calculated using data points falling within windows of fixed length
that are shifted across the time domain. Accordingly, we compared the performance of
the dynamic temporal PC with dynamic counterparts of the proposed GS and GSF.

The dynamic temporal PC of the pair (Xi, Yi) is defined as

P dyn
J ,i (s,∆) =

∑s+∆−1
j=s {Xi(tj)− X̄i(s,∆)}{Yi(tj)− Ȳi(s,∆)}√∑s+∆−1

j=s {Xi(tj)− X̄i(s,∆)}2
√∑s+∆−1

j=s {Yi(tj)− Ȳi(s,∆)}2
, (16)

for s = 1, . . . , J −∆ + 1, where ∆ is the window size, X̄i(s,∆) = ∆−1
∑s+∆−1

j=s Xi(tj),

and Ȳi(s,∆) = ∆−1
∑s+∆−1

j=s Yi(tj). The empirical dynamic GS R̂dyn
J ,i and dynamic GSF
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Ẑdyn
J ,i can be analogously defined over sliding windows as

R̂dyn
J ,i (s,∆) =

s+∆−1∑
j=s

(tj − tj−1)sign(Dj,Xi
Dj,Yi

),

Ẑdyn
J ,i (s,∆) = #{s+ 1 ≤ j ≤ s+ ∆− 1 | Dj−1,Xi

Dj,Xi
Dj−1,Yi

Dj,Yi
< 0}

+ #{s ≤ j ≤ s+ ∆− 1 | Dj,Xi
Dj,Yi

= 0},

(17)

where Dj,Xi
and Dj,Yi

are defined as after (8). We adopt ∆ = 15, which represents mea-
surements during a time interval of 45 seconds and quantify the variability of dynamic

functional connectivity for (Xi, Yi) by the standard deviations of P dyn
J ,i (s,∆), R̂dyn

J ,i (s,∆),

and Ẑdyn
J ,i (s,∆), over s ∈ {1, . . . , J −∆ + 1} (Hindriks et al., 2016; Choe et al., 2017).

Based on the averages over the 55 hub pairs of standard deviations of the three
dynamic functional connectivity metrics, we performed Kruskal–Wallis tests and two-
sample Wilcoxon rank sum tests to compare the various cognitive groups. Significant
differences between the six cognitive groups were found for dynamic PC and dynamic
GS as well as dynamic GSF (Table 8). Furthermore, dynamic GS and GSF distinguish
many more pairs of ROIs than dynamic PC does (Table 9).

Table 8. P -values of Kruskal–Wallis tests to
compare the averages over the 55 pairs of
the 11 ROIs in Andrews-Hanna et al. (2010)
of standard deviations of dynamic temporal PC
(16), GS and GSF (17) among the six cognitive
groups.

dynamic PC dynamic GS dynamic GSF

1.2× 10−4 5.2× 10−72 2.0× 10−60

We also performed pairwise Kruskal–Wallis tests and two-sample Wilcoxon rank sum
tests for all 55 pairs with Bonferroni correction for multiple comparisons and found
significant differences in terms of the variability of dynamic GS and GSF between the six
cognitive groups, while dynamic PC found none (Figure 3). It emerged that variability of
dynamic functional connectivity between many more pairs of ROIs differs significantly
between subjects in different cognitive groups in terms of GS and GSF but not for
temporal PC (Figures ??–?? in the supplement). We repeated this analysis for the 20
ROIs identified by Buckner et al. (2009, Table 4, replicated in Table ?? in Section ??
in the supplement), where similar findings emerged as for the analysis of the 11 ROIs in
Andrews-Hanna et al. (2010). Results are provided in Tables ??–?? and Figures ??–??
in the supplement. In addition, we constructed networks based on the proposed pGS
and pGSF; see Section ?? in the supplement.

6. Discussion

The proposed new measures, gradient synchronization (GS) and gradient synchroniza-
tion fluctuation (GSF), measured as integrals and sign changes of X ′(t)Y ′(t), comple-
ment established similarity measures such as Pearson correlation, partial correlation
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Table 9. P -values of two-sample Wilcoxon rank sum tests to com-
pare the averages over the 55 pairs of the 11 ROIs in Andrews-
Hanna et al. (2010) of standard deviations of dynamic temporal
PC (16), GS and GSF (17) between the six cognitive groups. Sig-
nificance at level 0.05 for individual tests is marked by “∗” and for
multiple comparisons after the Bonferroni correction (i.e. less than
0.05/15 ≈ 0.0033) by “∗∗”.

Pair of groups dynamic PC dynamic GS dynamic GSF

(CN, SMC) 0.50 1.1× 10−12∗∗ 2.0× 10−13∗∗

(CN, EMCI) 0.042∗ 5.3× 10−25∗∗ 1.4× 10−21∗∗

(CN, MCI) 0.032∗ 3.6× 10−37∗∗ 1.3× 10−20∗∗

(CN, LMCI) 0.089 5.2× 10−11∗∗ 4.9× 10−13∗∗

(CN, AD) 5.5× 10−6∗∗ 6.8× 10−22∗∗ 1.1× 10−20∗∗

(SMC, EMCI) 0.43 1.8× 10−8∗∗ 1.8× 10−6∗∗

(SMC, MCI) 0.70 5.5× 10−8∗∗ 6.7× 10−10∗∗

(SMC, LMCI) 0.27 3.0× 10−4∗∗ 2.7× 10−4∗∗

(SMC, AD) 0.0041∗ 5.5× 10−17∗∗ 2.5× 10−4∗∗

(EMCI, MCI) 0.70 4.3× 10−16∗∗ 1.4× 10−14∗∗

(EMCI, LMCI) 0.67 7.1× 10−7∗∗ 1.9× 10−8∗∗

(EMCI, AD) 0.016∗ 3.9× 10−14∗∗ 6.0× 10−10∗∗

(MCI, LMCI) 0.57 2.6× 10−6∗∗ 7.1× 10−11∗∗

(MCI, AD) 0.0021∗ 1.9× 10−19∗∗ 4.5× 10−17∗∗

(LMCI, AD) 0.20 8.8× 10−10∗∗ 0.011∗
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Fig. 3. Kruskal–Wallis tests to compare 55 pairs of the 11 ROIs in Andrews-Hanna et al. (2010)
simultaneously in terms of the standard deviations of dynamic temporal PC (16) (left), GS (mid-
dle) and GSF (right) (17) for the six cognitive groups, where significance at level 0.05 after
Bonferroni adjustment is shown by colored squares and insignificance by crosses.
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(e.g., Marrelec et al., 2006), mutual information and partial/conditional mutual informa-
tion (e.g., Salvador et al., 2005; Gretton et al., 2006; Salvador et al., 2007, 2010; Cassidy
et al., 2014). In brain connectivity studies, mutual and partial mutual information are
often applied in the frequency domain and hence reflect the dependence/similarity of
paired random functions across different frequencies (e.g., Salvador et al., 2005, 2007,
2010; Cassidy et al., 2014), while the proposed measures focus on the similarity of tempo-
ral dynamics. Specifically, GS captures the average aggregated concordance and discor-
dance of the change rates between random curves, while GSF provides a complementary
measure of the stability of the gradient synchronization.

Application to fMRI Data. The proposed measures were found to better distinguish dif-
ferent cognitive groups in the Alzheimer’s disease spectrum for the ADNI data compared
to standard Pearson correlation (PC) based measures. Reduced connectivity between
the posterior cingulate cortex (PCC) and the medial temporal lobe (MTL) structures
was previously found for AD patients compared to normal controls (Greicius et al.,
2004). Among the eleven regions in the default network identified in Andrews-Hanna
et al. (2010), five belong to the MTL subsystem, namely ventral MPFC (vMPFC), pos-
terior inferior parietal lobule (pIPL), retrosplenial cortex (Rsp), parahippocampal cortex
(PHC), and hippocampal formation (HF+). In contrast to temporal PC, GSF and vari-
ance of dynamic GS were found to significantly differ between PCC and MTL regions
among the six groups (Figures 2 and 3) and also between CN and other groups (Fig-
ures ??, ??, and ?? in the supplement). Reduced metabolism and perfusion in parietal
lobes, medial temporal structures and the PCC in Alzheimer’s (Matsuda, 2001; Bradley
et al., 2002) may also be related to the deficient connectivity between these regions.
Reduced connectivity between the temporal parietal junction (TPJ) and the PCC as
well as the five MTL regions is partly identified by GSF and more fully by dynamic GS,
but not by temporal PC (Figures 2 and 3; Figures ??, ??, and ?? in the supplement).

Consistency, Reliability, and Comparison of Different fMRI Measures. Following other
fMRI studies (e.g., Zhao et al., 2023), we evaluated the individual stability of the pro-
posed GS and GSF as well as temporal PC based on first two consecutive fMRI scans
taken from CN subjects such that second scans are taken within 12 months of the first
scans. To measure individual stability, we computed the intra-class correlation (ICC)
(Shrout and Fleiss, 1979). Considering a set of measures obtained from scan j and
subject i for j = 1, . . . , k and i = 1, . . . , n, denoted by {xij}, ICC is defined as

ICC =
BMS−WMS

BMS + (k − 1)WMS
.

Here, BMS =
∑n

i=1 k(x̄i·− x̄··)2/(n− 1) and WMS =
∑n

i=1

∑k
j=1(xij − x̄i·)2/{n(k− 1)},

and in our case, k = 2. Higher values of ICC imply that variability in the corresponding
measure is driven by the variation across subjects to more extent and that the measure
is more stable for each subject. We computed ICC for each of the 55 pairs of ROIs in the
default network identified in Andrews-Hanna et al. (2010) for each measure, temporal
PC (15), GS (9) and GSF (13), respectively. As seen in in Figure 4, the three measures
yield similar ICCs and hence have comparable subject stability, while the ICCs of GS
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and GSF have higher variation among pairs of ROIs. We repeated the analysis on the
190 pairs of ROIs identified in Buckner et al. (2009, Table 4) and found that subject
stability of GSF is as good as that of PC while the subject stability of GS is slightly
inferior (Figure 5). Comparing ICCs of different functional connectivity measures eval-
uated over different sets of ROIs in Figures 4 and 5, we find that, similar to Zhao et al.
(2023), within-network individual stability of PC and GS is higher than across-network
individual stability, noting that the 11 ROIs identified in Andrews-Hanna et al. (2010) all
lie in the default network while the 20 ROIs identified in Buckner et al. (2009, Table 4)
fall in multiple networks including the default network. For GSF, both within-network
and across-network individual stability are high.
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Fig. 4. Boxplots of ICCs of temporal PC (15) (left), GS (9) (middle) and GSF (13) (right) evalu-
ated over the 55 pairs of ROIs in the default network identified in Andrews-Hanna et al. (2010,
Table S1).
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Fig. 5. Boxplots of ICCs of temporal PC (15) (left), GS (9) (middle) and GSF (13) (right) evalu-
ated over the 190 pairs of ROIs identified in Buckner et al. (2009, Table 4).

General Applicability. While our approach was motivated by a study of functional con-
nectivity of the human brain and we illustrate our methods in this paper with resting
state BOLD fMRI signals, the proposed methods are broadly applicable to multivariate
functional data. Such data are increasingly encountered, for example in longitudinal
studies with densely measured multivariate outcomes. One advantage of the segmen-
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tation technique is that it keeps track of local dynamic behavior and both the average
behavior as well as the stability of synchronization over time can be quantified and stud-
ied. A noteworthy feature is that no smoothing parameter selection is required. By
exploiting the functional features of the data, we avoid assumptions of temporal sta-
tionarity that have been imposed for signals in fMRI studies. The proposed methods
are also suitable to quantify the temporal variability of signals, including changes of
synchronization patterns over time, e.g., in task-based fMRI studies.
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