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S1. Proofs

Proof of Proposition 1

It is clear that C(s, t) is a symmetric function. To prove that it is nonnegative definite

we need to show that for any positive integer k,

k∑
i=1

k∑
j=1

aiajC(si, sj) ≥ 0,

for any a1, a2, . . . , ak in R and s1, s2, . . . , sk in [0, 1]. Since d2 is a semimetric of negative

type, by Proposition 3 in Sejdinovic et al. (2013) there exists a Hilbert space H and an

injective map f : Ω → H such that d2(ω1, ω2) = ‖f(ω1) − f(ω2)‖2H. We therefore have

that for x, x′, y, y′ ∈ Ω,

d2(x, y′) + d2(x′, y)− 2d2(x, y)

=‖f(x)− f(y′)‖2H + ‖f(x′)− f(y)‖2H − 2‖f(x)− f(y)‖2H

=‖f(y′)‖2H + ‖f(x′)‖2H − ‖f(y)‖2H − ‖f(x)‖2H + 4 〈f(x), f(y)〉H

− 2
〈
f(x), f(y′)

〉
H − 2

〈
f(x′), f(y)

〉
H ,

which implies that for i.i.d copies (X,Y ) and (X ′, Y ′)

C(X,Y ) =
1

4
E
(
4 〈f(X), f(Y )〉H − 2

〈
f(X), f(Y ′)

〉
H − 2

〈
f(X ′), f(Y )

〉
H
)
.

Let Hi = f(X(si)) and H ′i = f(X ′(si)) for i = 1, 2, . . . , k where X ′ is an i.i.d copy of X.

Then

C(si, sj) =
1

4
E
(

4 〈Hi, Hj〉H − 2
〈
Hi, H

′
j

〉
H − 2

〈
H ′i, Hj

〉
H

)
,
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which leads to

k∑
i=1

k∑
j=1

aiajC(si, sj)

=
1

4
E

4

〈
k∑
i=1

aiHi,

k∑
j=1

ajHj

〉
H

− 2

〈
k∑
i=1

aiHi,

k∑
j=1

ajH
′
j

〉
H

− 2

〈
k∑
i=1

aiH
′
i,

k∑
i=1

ajHj

〉
H


≥ 1

4
E

(
4‖

k∑
i=1

aiHi‖2H

)
− 2E

(
‖
k∑
i=1

aiHi‖H

)
E

‖ k∑
j=1

ajH
′
j‖H


− 2E

(
‖
k∑
i=1

aiH
′
i‖H

)
E

‖ k∑
j=1

ajHj‖H


= Var

(
‖
k∑
i=1

aiHi‖H

)
.

The last step follows from the Cauchy-Schwarz inequality. This completes the proof.

Proof of Proposition 2

(a) For any γ > 0, by (I1) there exists δ > 0 such that, whenever |t1 − t2| < δ,

sup
ω∈Ω
|H(ω, t1)−H(ω, t2)| < γ.

For any partition P as described above such that εP < δ we find

sup
ω∈Ω
|IP(ω)− I(ω)|

= sup
ω∈Ω
|
k−1∑
j=0

H(ω, tj)∆j −
∫ 1

0
H(ω, t)dt|

= sup
ω∈Ω
|
k−1∑
j=0

∫ xj+1

xj

{H(ω, tj)−H(ω, t)}dt|

=

k−1∑
j=0

∫ xj+1

xj

sup
ω∈Ω
|H(ω, tj)−H(ω, t)|dt < γ,

which completes the proof for part (a).
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(b) Observe that

|I(
∑
P,⊕

Sφ)− I(

∫
⊕
Sφ)|

≤ |I(
∑
P,⊕

Sφ)− IP(
∑
P,⊕

Sφ) + IP(
∑
P,⊕

Sφ)− I(

∫
⊕
Sφ)|

≤ sup
ω∈Ω
|I(ω)− IP(ω)|+ |min

ω∈Ω
IP(ω)−min

ω∈Ω
I(ω)|

≤ 2 sup
ω∈Ω
|I(ω)− IP(ω)|,

and therefore by part (a), |I(
∑
P,⊕ Sφ)− I(

∫
⊕ Sφ)| → 0 as εP → 0.

Now assume that limεP→0 d(
∑
P,⊕ Sφ,

∫
⊕ Sφ) 6= 0. Then there must exist a sequence

of partitions {Pn} and a γ > 0 such that εPn → 0 but d(
∑
Pn,⊕ Sφ,

∫
⊕ Sφ) ≥ γ. For

this sequence of partitions we observe that,

|I(
∑
Pn,⊕

Sφ)− I(

∫
⊕
Sφ)| ≥ | inf

d(ω,
∫
⊕ Sφ)>γ

I(ω)− I(

∫
⊕
Sφ)| > 0

and therefore limεPn→0|I(
∑
Pn,⊕ Sφ)−I(

∫
⊕ Sφ)| ≥ |infd(ω,

∫
⊕ Sφ)>γ I(ω)−I(

∫
⊕ Sφ)| >

0 by (I2), which is a contradiction to part (a). Therefore the assumption that

limεP→0 d(
∑
P,⊕ Sφ,

∫
⊕ Sφ) 6= 0 cannot be true, which completes the proof for

part(b).

(c) Let δ > 0 be such that whenever εP < δ, it holds that d(
∑
P,⊕ Sφ,

∫
⊕ Sφ) < ν.

Assume that limεP→0 h
1/β(εP)d(

∑
P,⊕ Sφ,

∫
⊕ Sφ) 6= 0. Then there exists a sequence

of partitions {Pn} and a γ > 0 such that εPn < δ, while d(
∑
Pn,⊕ Sφ,

∫
⊕ Sφ) ≥

γ
h1/β(εP) . For this sequence of partitions we observe that

h(εPn)|I(
∑
Pn,⊕

Sφ)− I(

∫
⊕
Sφ)|

≥ h(εPn)| inf
γ

h1/β(εPn )
≤d(ω,

∫
⊕ Sφ)<ν

I(ω)− I(

∫
⊕
Sφ)|

≥ Ch(εPn)γβ

h(εPn)

by (I3). Therefore limεPn→0 h(εPn)|I(
∑
Pn,⊕ Sφ) − I(

∫
⊕ Sφ)| ≥ Cγβ > 0, which

results in a contradiction and completes the proof for part (c).

Proof of Lemma 3

Consider t ∈ [0, 1] and a sequence {tn} ∈ [0, 1] such that tn → t. We aim to show that

d(µ⊕(tn), µ⊕(t))→ 0.
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Observe that almost surely continuous sample curves on the compact interval [0, 1] are

uniformly continuous and since Ω is bounded, by bounded convergence, for all t ∈ [0, 1]

and sequences {tn} ∈ [0, 1] such that tn → t, there exists a δ > 0 for every ε > 0 such

that whenever |tn− t| < δ, it holds that E(d(X(tn), X(t)) < ε for all but finitely many n.

For processes E(d2(ω,X(t))),

|E(d2(ω,X(tn)))− E(d2(ω,X(t)))| ≤ 2D E(d(X(tn), X(t)),

and therefore, given any ε > 0, there exists a δ > 0 such that whenever |tn − t| < δ, one

has supω∈Ω|E(d2(ω,X(tn)))− E(d2(ω,X(t)))| < ε. This implies that

|E(d2(µ⊕(tn), X(t)))− E(d2(µ⊕(t), X(t)))|

≤ |E(d2(µ⊕(tn), X(t)))− E(d2(µ⊕(tn), X(tn)))

+ E(d2(µ⊕(tn), X(tn)))− E(d2(µ⊕(t), X(t)))|

≤ sup
ω∈Ω
|E(d2(ω,X(tn)))− E(d2(ω,X(t)))|+ |min

ω∈Ω
E(d2(ω,X(tn)))−min

ω∈Ω
E(d2(ω,X(t)))|

≤ 2 sup
ω∈Ω
|E(d2(ω,X(tn)))− E(d2(ω,X(t)))| < 2ε.

Assume d(µ⊕(tn), µ⊕(t)) 9 0. Then one can find an η > 0 such that for any δ > 0,

there exists a subsequence {tnk} of {tn} for which |tnk − t| < δ but d(µ⊕(tnk), µ⊕(t)) ≥ η.

Then by (A3),

|E(d2(µ⊕(tnk), X(t)))− E(d2(µ⊕(t), X(t)))|

≥ | inf
d(ω,µ⊕(t))>η

E(d2(ω,X(t)))− E(d2(µ⊕(t), X(t)))|

> 0.

This leads to a contradiction for ε = |infd(ω,µ⊕(t))>η E(d2(ω,X(t)))− E(d2(µ⊕(t), X(t)))|/2,

thus completing the proof.

Proof of Theorem 1

Denoting the usual L2 norm by || · ||2, observe that for s1, t1, s2, t2 ∈ [0, 1], one has

|fs1,t1(x, y)− fs2,t2(x, y)|

≤ 4M{d(x(s1), x(s2)) + d(x(t1), x(t2)) + d(y(s1), y(s2)) + d(y(t1), y(t2))}

≤ 4M (G(x) +G(y)) (|s1 − s2|α + |t1 − t2|α),

implying

||fs1,t1 − fs2,t2 ||2 ≤ 8M ||G||2(|s1 − s2|α + |t1 − t2|α).
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Observe that for any 0 < u < 1, if we take |s1 − s2| <
(
u
16

) 1

α and |t1 − t2| <
(
u
16

) 1

α ,

then ||fs1,t1(X)− fs2,t2(Y )||2 ≤Mu||G||2. Therefore, with s1, s2, . . . , sK and t1, t2, . . . , tL

forming
(
u
4

) 1

α -nets for [0, 1] with metric | · |, the brackets [fsi,tj ±Mu||G||2] cover the

function class F (Van der Vaart and Wellner, 1996) and are of length 2Mu||G||2. This

implies

N[](2Mu||G||2,F , L2(P ⊗ P )) ≤ N
((u

4

) 1

α

, [0, 1], | · |
)2

,

where N[](ε,F , L2(P )) is the bracketing number, which is the minimum number of ε-

brackets needed to cover F , where an ε-bracket is composed of pairs of functions [l, u]

such that ||l − u||2 < ε, and N is the covering number. Hence for any ε > 0, for some

constant K > 0,

N[](ε,F , L2(P ⊗ P )) ≤ Kε−2/α <∞.

The result now follows from Theorem 4.10 of Arcones and Giné (1993), observing∫ 1

0

√
logN[](ε,F , L2(P ⊗ P ))dε

≤ ε
√

logK +

∫ 1

0

√
− 2

α
log εdε

= ε
√

logK +

√
2

α
Γ

(
3

2

)
<∞.

Proof of Corollary 1

For any fixed j, Lemma 4.3 in Bosq (2000) gives |λ̂j − λj | ≤ sups,t∈[0,1]

∣∣∣Ĉ(s, t)− C(s, t)
∣∣∣.

Uniform mapping then implies

|λ̂j − λj | = OP (1/
√
n).

Under assumption (A5), sups∈[0,1]

∣∣∣φ̂j(s)− φj(s)∣∣∣ ≤ 2
√

2δ−1
j sups,t∈[0,1]

∣∣∣Ĉ(s, t)− C(s, t)
∣∣∣,

and therefore

sup
s∈[0,1]

∣∣∣φ̂j(s)− φj(s)∣∣∣ = OP (1/
√
n),

which completes the proof.

Proof of Theorem 2

Since ∣∣∣∣∫ 1

0
φ̂(t)dt−

∫ 1

0
φ(t)dt

∣∣∣∣ ≤ sup
s∈[0,1]

∣∣∣φ̂(s)− φ(s)
∣∣∣ = OP (1/

√
n), (1)
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for all sufficiently large n,
∣∣∣∫ 1

0 φ̂(t)dt
∣∣∣ ≥ ∣∣∣∫ 1

0 φ(t)dt
∣∣∣/2, and since

∣∣∣∫ 1
0 φ(t)dt

∣∣∣ 6= 0,

sup
s∈[0,1]

|φ̂∗(s)− φ∗(s)|

≤ 2
sups∈[0,1]

∣∣∣ ˆφ(s)
∣∣∣ ∣∣∣∫ 1

0 φ̂(t)dt−
∫ 1

0 φ(t)dt
∣∣∣+
∣∣∣∫ 1

0 φ̂(t)dt
∣∣∣ sups∈[0,1]

∣∣∣φ̂(s)− φ(s)
∣∣∣∣∣∣∫ 1

0 φ(t)dt
∣∣∣2

= OP (1/
√
n).

As a direct consequence,

sup
ω∈Ω

∣∣∣∣∫ 1

0
d2(ω,Xi(t))φ̂

∗(t)dt−
∫ 1

0
d2(ω,Xi(t))φ

∗(t)dt

∣∣∣∣
≤M2 sup

s∈[0,1]
|φ̂∗(s)− φ∗(s)| = OP (1/

√
n), (2)

whence

P
(
d(ψ̂ik⊕ , ψ

ik
⊕ ) > ε

)
≤ P

(∣∣∣∣∫ 1

0
d2(ψ̂ik⊕ , Xi(t))φ

∗(t)dt−
∫ 1

0
d2(ψik⊕ , Xi(t))φ

∗(t)dt

∣∣∣∣ > cε

)
(3)

≤ P
(

sup
ω∈Ω

∣∣∣∣∫ 1

0
d2(ω,Xi(t))φ̂

∗(t)dt−
∫ 1

0
d2(ω,Xi(t))φ

∗(t)dt

∣∣∣∣ > cε
2

)
, (4)

which implies that d(ψ̂ik⊕ , ψ
ik
⊕ ) = oP (1) by equation (2). Here (4) follows from (3) using

the fact that ∣∣∣∣∫ 1

0
d2(ψ̂ik⊕ , Xi(t))φ

∗(t)dt−
∫ 1

0
d2(ψik⊕ , Xi(t))φ

∗(t)dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0
d2(ψ̂ik⊕ , Xi(t))

(
φ∗(t)− φ̂∗(t)

)
dt

∣∣∣∣
+

∣∣∣∣ inf
ω∈Ω

∫ 1

0
d2(ω,Xi(t))φ̂

∗(t)dt− inf
ω∈Ω

∫ 1

0
d2(ω,Xi(t))φ

∗(t)dt

∣∣∣∣
≤ 2 sup

ω∈Ω

∣∣∣∣∫ 1

0
d2(ω,Xi(t))φ̂

∗(t)dt−
∫ 1

0
d2(ω,Xi(t))φ

∗(t)dt

∣∣∣∣ .
From assumption (A7),

P
(
n1/(2β1)d(ψ̂ik⊕ , ψ

ik
⊕ ) > 2L

)
≤ P

(
2L

n1/(2β1)
< d(ψ̂ik⊕ , ψ

ik
⊕ ) < ν ′

)
+ P

(
d(ψ̂ik⊕ , ψ

ik
⊕ ) ≥ ν ′

)
= P

(
sup
ω∈Ω

∣∣∣∣∫ 1

0
d2(ω,Xi(t))φ̂

∗(t)dt−
∫ 1

0
d2(ω,Xi(t))φ

∗(t)dt

∣∣∣∣ > 2β1L

n1/2

)
+ P

(
d(ψ̂ik⊕ , ψ

ik
⊕ ) ≥ ν ′

)
≤P

(
√
n sup
s∈[0,1]

|φ̂∗(s)− φ∗(s)| > 2β1L

M2

)
+ P

(
d(ψ̂ik⊕ , ψ

ik
⊕ ) ≥ ν ′

)
.
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Therefore P
(
n1/2β1d(ψ̂ik⊕ , ψ

ik
⊕ ) > 2L

)
can be made as small as possible by choosing suf-

ficiently large n and L, using equation (2) and the fact that d(ψ̂ik⊕ , ψ
ik
⊕ ) = oP (1), thus

completing the proof.

Proof of Proposition 4

By Theorem 1.5.4 in Van der Vaart and Wellner (1996), it suffices to show asymptotic

equicontinuity of the processes Zn(s) = d(µ̂⊕(s), µ⊕(s)), i.e. for any θ > 0,

lim
δ→0

lim sup
n→∞

P

(
sup
|s−t|<δ

|Zn(s)− Zn(t)| > 2θ

)
= 0, (5)

in addition to the pointwise convergence of Zn(s), i.e. for all s ∈ [0, 1] it holds that

Zn(s) = oP (1). (6)

We observe that equation (6) follows from Theorem 1 in Petersen and Müller (2019a).

To establish equation (5), by Lemma 3 and as |Zn(s)− Zn(t)| ≤ d(µ⊕(s), µ⊕(t)) +

d(µ̂⊕(s), µ̂⊕(t)), it suffices to show that

lim
δ→0

lim sup
n→∞

P

(
sup
|s−t|<δ

d(µ̂⊕((s), µ̂⊕((t)) > θ

)
= 0. (7)

To show equation (7), suppose that d(µ̂⊕(s), µ̂⊕(t)) > θ with s, t ∈ [0, 1].

Step 1. Since the functions are continuous and the domain is compact, it holds that almost

surely sup|s−t|<δ d(X(t), X(s))→ 0 as δ → 0. By the boundedness of the metric and

dominated convergence,

lim
δ→0

E( sup
|s−t|<δ

d(X(t)), X(s)))→ 0. (8)

Now (8) implies that for any a > 0,

P

(
sup
|s−t|<δ

sup
ω∈Ω

∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(t), ω)− 1

n

n∑
i=1

d2(Xi(s), ω)

∣∣∣∣∣ > a

)

≤
2M E

(
sup|s−t|<δ

1
n

∑n
i=1 d(Xi(t), Xi(s))

)
a

≤
2M E(sup|s−t|<δ d(X(t)), X(s)))

a
→ 0 as δ → 0,

where M = diam(Ω).
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Step 2. We observe that∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(t), µ̂⊕(s))− 1

n

n∑
i=1

d2(Xi(t), µ̂⊕(t))

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(t), µ̂⊕(s))− 1

n

n∑
i=1

d2(Xi(s), µ̂⊕(s))

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(s), µ̂⊕(s))− 1

n

n∑
i=1

d2(Xi(t), µ̂⊕(t))

∣∣∣∣∣
≤ 2 sup

ω∈Ω

∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(t), ω)− 1

n

n∑
i=1

d2(Xi(s), ω)

∣∣∣∣∣ .
Step 3. Now we find

P

(
sup
|s−t|<δ

d(µ̂⊕(s), µ̂⊕(t)) > θ

)
≤ P (B ∩An) + P

(
B ∩ACn

)
(9)

≤ P

(
sup
|s−t|<δ

2 sup
ω∈Ω

∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(t), ω)− 1

n

n∑
i=1

d2(Xi(s), ω)

∣∣∣∣∣ ≥ τ(S)

)
+ P

(
B ∩ACn

)
.

where An = {sup|s−t|<δ
∣∣ 1
n

∑n
i=1 d

2(Xi(t), µ̂⊕(s))− 1
n

∑n
i=1 d

2(Xi(t), µ̂⊕(t))
∣∣ ≥ τ(S)},

B = {sup|s−t|<δ d(µ̂⊕(s), µ̂⊕(t)) > S} in (9) with τ(S) as defined in (A8). The last

step follows from (9) using Step 2. From Step 1, choosing a = τ(S)
2 ,

lim
δ→0

P

(
sup
|s−t|<δ

2 sup
ω∈Ω

∣∣∣∣∣ 1n
n∑
i=1

d2(Xi(t), ω)− 1

n

n∑
i=1

d2(Xi(s), ω)

∣∣∣∣∣ ≥ τ(S)

)
= 0

for any n, and from (A1), limn→∞ P
(
B ∩ACn

)
= 0. This completes the proof.

Proof of Lemma 1

Define functions fω,s(x) = d2(x(s), ω(s))− d2(x(s), µ⊕(s)). We find

|fω1,s1(x)− fω2,s2(x)|

≤ |fω1,s1(x)− fω1,s2(x)|+ |fω1,s2(x)− fω2,s2(x)|

≤ 2M (2d(x(s1), x(s2)) + d(µ⊕(s1), µ⊕(s2)) + d(ω1(s1), ω1(s2)) + d(ω1(s2), ω2(s2))) .

Note that d(ω1(s2), ω2(s2)) ≤ d(ω1(s2), µ2(s2)) + d(ω1(s2), µ2(s2)). By assumptions (A4)

and (A9), it holds that almost surely,

|fω1,s1(X)− fω2,s2(X)| ≤ 4M [G(X)|s1 − s2|α +Hδ|s1 − s2|νδ ]

+ 4M [d(ω1(s2), µ2(s2)) + d(ω1(s2), µ2(s2))] ,
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which implies that

||fω1,s1 − fω2,s2 ||2

≤ 4M [||G||2|s1 − s2|α +Hδ|s1 − s2|νδ + d(ω1(s2), µ2(s2)) + d(ω1(s2), µ2(s2))] .

It follows that for some 0 < u < 1, if we take |s1 − s2| <
(
u
4

) 1

V with V = min(α, νδ) and

ω1, ω2 such that d∞(ω1, µ) < u
8 and d∞(ω2, µ) < u

8 , then ||fω1,s1 − fω2,s2 ||2 < Mu(||G||2 +

Hδ+1). Therefore if s1, s2, . . . , sK is a
(
u
4

) 1

V -net for [0, 1] with metric |·| and ω1, ω2, . . . , ωL

is a u
8 -net for Bδ(µ(·)) with metric d∞, the brackets [fsi,ωj ±Mu(||G||2 +Hδ + 1)] cover

the function class Fδ and are of length 2Mu(||G||2 +Hδ + 1). We conclude that

N[](2Mu(||G||2 +Hδ + 1),Fδ, L2(P )) ≤ N
((u

4

) 1

V

, [0, 1], | · |
)
N
(u

8
, Bδ(µ⊕(·)), d∞

)
.

Applying Van der Vaart and Wellner (1996) (page 84), for any function class F and for

any r,

N(ε,F , Lr(P )) ≤ N[](2ε,F , Lr(P )),

so that for appropriate constants K1,K2, C > 0,

logN(2Mδε,Fδ, L2(P ))

≤ logN
(
K1(εδ)1/V , [0, 1], | · |

)
+ logN (K2εδ,Bδ(µ⊕(·)), d∞)

≤ log

(
C

(
1

εδ

)1/V
)

+ logN (K2εδ,Bδ(µ⊕(·)), d∞) .

Observe that logN (K2εδ,Bδ(µ⊕(·)), d∞) ≤ sups∈[0,1] logN (K2εδ,Bδ(µ⊕(s)), d) because

d∞(ω1, ω2) = sups∈[0,1] d(ω1(s), ω2(s)) and d(ω1(s), ω2(s)) is a uniformly continuous func-

tion in s so that the supremum is attained. Therefore, d∞(ω1, ω2) = d(ω1(s∗), ω2(s∗)) for

some s∗ ∈ [0, 1]. Finally we observe that∫ 1

0

√
1 + logN(ε||F ||2,Fδ, L2(P ))dε

=

∫ 1

0

√
1 + logN(2Mδε,Fδ, L2(P ))dε

≤
√

log(C) +

∫ 1

0

√
− 1

V
log(εδ)dε+

∫ 1

0
sup
s∈[0,1]

√
logN (K2εδ,Bδ(µ⊕(s)), d)dε

≤
√

log(C) +
1√
V

∫ 1

0

√
− log(εδ)dε+

∫ 1

0
sup
s∈[0,1]

√
logN (K2εδ,Bδ(µ⊕(s)), d)dε.

Assumption (A10) then implies J[](1,Fδ, L2(P )) = O(
√
− log δ) as δ → 0, which completes

the proof.
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Proof of Theorem 3

For a sequence {qn} define the sets

Sj,n(x) = {ω(·) : 2j−1 < qnd
β2/2
∞ (ω, µ⊕) ≤ 2j}.

Choose α > 0 to satisfy (A11) and also small enough such that (A3) and (A4) hold for

all δ < α and choose α̃ = αβ2/2. For any integer L,

P
(
qnd

β2/2
∞ (µ̂⊕, µ⊕) > 2L

)
≤ P (d∞(µ̂⊕, µ⊕) ≥ α) +

∑
j≥L,2j≤qnα̃

P (µ̂⊕ ∈ Sj,n)

≤ P (d∞(µ̂⊕, µ⊕) ≥ α) +
∑

j≥L,2j≤qnα̃
P

(
sup
ω∈Sj,n

|Vn(ω, s)− V (ω, s)| ≥ D22(j−1)

q2
n

,

)
(10)

where (10) follows by observing

sup
ω∈Sj,n

|Vn(ω, s)− V (ω, s)| ≥
∣∣∣∣ inf
ω∈Sj,n

Vn(ω, s)− inf
ω∈Sj,n

V (ω, s)

∣∣∣∣ ≥ D22(j−1)

q2
n

.

The first term in (10) goes to zero by Proposition 4 and for each j in the second term it

holds that d∞(ω, µ⊕) ≤ α. By Lemma 1, J[](1,Fδ, L2(P )) = O(
√

log 1/δ), and therefore is

bounded above by J
√

log 1/δ for all small enough δ > 0, where J > 0 is a constant. Using

equation (14), Lemma 1 and the Markov inequality, the second term is upper bounded

up to a constant by ∑
j≥L,2j≤qnα̃

2MJ2j

n

√
log n/2j+1

q2
n

D22(j−1)
. (11)

Since
√

log n/2j+1 is dominated by
√

log n/2, setting qn =
√
n

(logn)1/4 , the series in (11) is

upper bounded by 8MJ
D

∑
j≥L,2j≤qnα̃

1
2j , which converges and can be made sufficiently

small by choosing L and n large. This proves the desired result that d∞(µ̂⊕, µ⊕) =

OP (q
−2/β2
n ) = OP

((
n√

logn

)−1/β2

)
.

Proof of Corollary 2

Observing that∣∣∣β̂ik − βik∣∣∣
≤
∣∣∣∣∫ 1

0
d(Xi(t), µ̂⊕(t))

(
φ̂k(t)− φk(t)

)
dt

∣∣∣∣+

∣∣∣∣∫ 1

0
φ(t) (d(Xi(t), µ̂⊕(t))− d(Xi(t), µ⊕(t))) dt

∣∣∣∣
≤M sup

s∈[0,1]

∣∣∣φ̂k(s)− φk(s)∣∣∣+

∫ 1

0
|φ(t)|dt sup

s∈[0,1]
d(µ̂⊕(s), µ⊕(s)),

the result follows from Corollary 1 and Theorem 3.
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S2. Comparison of Metric Covariance with Distance Covariance

For two random variables X and Y with marginal probability measures PX and PY and

joint probability measure PXY , testing for probabilistic dependence corresponds to testing

H0 : PXY = PXPY versus H1 : PXY 6= PXPY . (12)

Implementation of these tests is usually based on a metric in the space of probability

measures. As shown in Lyons (2013), distance correlation (Székely et al., 2007; Székely

and Rizzo, 2017) provides a suitable metric for this purpose, provided X and Y take

values in metric spaces which are of “strong negative type” (Lyons, 2013) and include

Euclidean spaces and separable Hilbert spaces. Then independence of X and Y is equiva-

lent to the distance correlation being 0. While it is often of interest to determine whether

distance correlation is zero, which then implies independence of X and Y , the magnitude

of distance correlation if not zero is hard to interpret. This fact is emphasized for example

in Jakobsen (2017) (page 61) where distance covariance is characterized to be useful to

test for independence (12) but much less so to measure degree of dependence between

random variables X and Y in general metric spaces.

As a concrete example, we compare distance correlation/covariance with metric

correlation/covariance for the case of distribution spaces with the Wasserstein metric.

Writing Q1, Q2 for the quantile function functions corresponding to distributions F1, F2,

the distance covariance dCov(F1, F2) between F1 and F2 is found to correspond to

dCov(F1, F2) = E

[∫ 1

0
{Q1(t)−Q′1(t)}2dt

∫ 1

0
{Q2(t)−Q′2(t)}2dt

]1/2

+E

[∫ 1

0
{Q1(t)−Q′1(t)}2dt

]1/2

E

[∫ 1

0
{Q2(t)−Q′2(t)}2dt

]1/2

− 2E

[∫ 1

0
{Q1(t)−Q′1(t)}2dt

∫ 1

0
{Q2(t)− Q̃2(t)}2dt

]1/2

,

where F ′1 is an independent copy of F1 and F ′2, F̃2 are two independent copies of F2. This

expression for distance covariance is rather unintuitive, and it is hard to interpret as a

measure for the strength of covariation between F1 and F2.

A numerical comparison provides further illumination. We implemented distance

covariance as an alternative covariance/correlation for functional random objects in a

simulation study, where we compared the utility of the proposed metric covariance with

that of distance covariance (Székely and Rizzo, 2017; Lyons, 2013) for carrying out FPCA

of regular scalar-valued functional data. We consider a simple setting as in classical FDA

where the time-varying random objects X(s) are real valued for s ∈ [0, 1]. In the following,
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Fig. 1: Metric covariance surface (left) and distance covariance surface (right) for func-

tional data generated according to model in (13).

we take Ui, Vi and Yi to be distributed as N(0, 3), N(0, 1) and N(0, 0.25), respectively.

As described in the simulation setting for time varying networks in Section 5.2, we take

φ1(t), φ2(t) and φ3(t) to be orthonormal polynomials derived from the Jacobi polynomials

P
(α,β)
n (x) (Totik, 2005), which are classical orthogonal polynomials for α, β > 1. The

expressions for φ1(t), φ2(t) and φ3(t) are

φ1(t) =
(P

(1,0.5)
3 (2t− 1))t0.25(1− t)0.5

[
∫ 1

0 (P
(1,0.5)
3 (2t− 1))2t0.5(1− t)dt]1/2

φ2(t) =
(P

(1,0.5)
4 (2t− 1))t0.25(1− t)0.5

[
∫ 1

0 (P
(1,0.5)
4 (2t− 1))2t0.5(1− t)dt]1/2

φ3(t) =
P

(1,0.5)
5 (2t− 1))t0.25(1− t)0.5

[
∫ 1

0 (P
(1,0.5)
5 (2t− 1))2t0.5(1− t)dt]1/2

.

We generated 1000 i.i.d. realizations Xi(s) as follows on a fine grid of [0, 1],

Xi(s) = Uiφ1(t) + Viφ2(t) + Yiφ3(t). (13)

It is clear from the construction of Xi that in model (13), the first, second and third

eigenfunctions are given by φ1(t), φ2(t) and φ3(t) respectively. We evaluated the estimated

metric covariance and distance covariance surfaces on a fine grid, which led to the surfaces

depicted in Figure 1, and then obtained the first three eigenfunctions using these surfaces

as covariance kernels. The resulting eigenfunctions are presented in Figure 2. As can be

seen from Figures 1 and 2, metric covariance delivers the eigenfunctions that one would

expect for functional principal component analysis, while distance covariance as an alter-
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Fig. 2: Eigenfunctions obtained from using metric covariance based (left panel) and dis-

tance covariance based (middle panel) kernel for simulated functional data, generated

according to model (13). Also shown are the true underlying eigenfunctions (right panel).

The blue curves correspond to the first, the red curves to the second and the yellow curves

to the third eigenfunction.

nate notion of covariance leads to seemingly arbitrary and uninterpretable eigenfunctions,

so is clearly not suitable in this context.

In classical FPCA one aims to identify dominant modes of variation of functional

data that are derived from the eigenfunctions of the auto-covariance operator. The in-

terpretation of these modes of variation provides valuable insights in many applications,

and this is why interpretability of the eigenfunctions is important. Another major goal

is to decompose the variation of functional data in a parsimonious and interpretable way

into orthogonal directions. As illustrated in the simulation above, the lack of clear in-

terpretation of the eigenfunctions associated with the distance covariance operator is a

big hurdle for this program. When using distance correlation, the corresponding distance

variance and also the total variation have an unintuitive and complex form that makes

distance covariance rather unsuitable for our purposes. In contrast, the proposed metric

covariance (5) works well for quantifying the variation and co-variation of random objects.

It gives rise to the total variation measure (6) for functional random objects and emerges

as a bona fide extension of the proven and successful FPCA for scalar-valued functional

data.
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S3. Metric auto-covariance surfaces and eigenfunctions for New York taxi data

We repeated the analysis of the time-varying networks generated by the New York taxi

data separately for three groups of days, namely the weekdays Monday-Thursday (group

1), Fridays and weekends (group 2) and holidays (group 3). The results are visualized in

Figure 3. This figure clearly indicates that the metric covariance structure and the eigen-

functions differ across the groups. The Fréchet integrals for the dominant eigenfunctions

reveal different aspects of variation, both within and between daily networks in three

groups and are presented in the movies “week.mov”, “friday.mov” and “Hol.mov” which

are included in the supplementary materials. In the movie frames, the top left panels

correspond to the FPCs for the first eigenfunction, the top right panels to those of the

second, the bottom left panels to those of the third and the bottom right panels to those

of the fourth eigenfunction. The edge weights in the graphs are proportional to their line

widths.
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Fig. 3: Estimated metric auto-covariance surface (10) (left) and associated eigenfunctions

(right), for the New York taxi data, viewed as time-varying networks, separated by groups

of days.
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S4. Additional Visualization for the World Trade Data analysis

We selected USA, Saudi Arabia, Hong Kong and Thailand and display their time evolving

inter-commodity trade correlations as obtained from the fitted model for the years 1970,

1982, 1992, 1999 (bottom to top) in Figure 4.

We also computed the Fréchet integral covariance matrices for the first four eigen-

functions. For visualization of commodities trade similarities these Fréchet integral co-

variance matrices were converted to correlation matrices that can be viewed in the movie

“trade.mov”, available in the online supplement. In the movie frames, the FPCs for the

first, second, third and fourth eigenfunctions are at the top left, top right, bottom left

and bottom right, respectively.
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Fig. 4: International commodity trade correlation matrices for 1970 (first slice from bot-

tom), 1982 (second slice from bottom), 1992 (third slice from bottom) and 1999 (top slice)

for four contries.
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S5. Description of Movies

The following is a list of the movies that have been included as supplementary materials

and a brief discussion of their content.

Filename Content Description

networks.mov Object FPCs obtained as Fréchet integrals (11) for one randomly

chosen simulation run for n = 50, using the model in (17) for

time-varying networks in section 5.2.

mean males.mov Estimated Fréchet mean function for males represented as density

functions indexed by year, derived from the yearly sample average

of the quantile functions of the countries included in the mortality

data in section 6.1 for each calendar year.

mean females.mov Estimated Fréchet mean function for females. The description is

the same as for males.

mean NY.mov Estimated Fréchet mean function represented as time varying net-

work adjacency matrices, obtained for each 20 minute time inter-

val by averaging the network adjacency matrices over 363 daily

networks for the New York taxi data as described in section 6.2.

week.mov Fréchet integrals represented as network adjacency matrices for

the dominant eigenfunctions, obtained from the analysis of the

New York taxi data as described in section S3 of the supplement,

for weekdays.

friday.mov Same as previous, for Fridays.

Hol.mov Same as previous, for weekends and special holidays.

trade.mov Fréchet integrals represented as covariance matrices for the dom-

inant eigenfunctions for the trade dataset as described in section

6.3.
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S6. Data Descriptions

S6.1 Zones in Manhattan, New York

New York City Taxi and Limousine Commission (NYC TLC) provides records on pick-up

and drop-off dates/times, pick-up and drop-off latitudes and longitudes, trip distances,

itemized fares, rate types, payment types, and driver-reported passenger counts for yellow

and green taxis. The data are available at http://www.nyc.gov/html/tlc/html/about/

trip_record_data.shtml. The polygon shape files available at this website represent the

boundaries zones for taxi pickups as delimited by the New York City Taxi and Limousine

Commission (TLC). The latitudes and longitudes in New York are split into 6 boroughs:

Bronx, Brooklyn, Newark Liberty International Airport, Manhattan, Queens and Staten

Island. Since yellow taxis operate predominantly in Manhattan, we consider so-called

towns in Manhattan which are further grouped into 10 zones as described in the following

Table. We excluded the islands from our study. For a description of towns, we refer to

Figure 5.

Zone Towns

1 Inwood, Fort George, Washington Heights, Hamilton Heights, Harlem, East Harlem

2 Upper West Side, Morningside Heights, Central Park

3 Yorkville, Lenox Hill, Upper East Side

4 Lincoln Square, Clinton, Chelsea, Hell’s Kitchen

5 Garment District, Theater District

6 Midtown

7 Midtown South

8 Turtle Bay, Murray Hill, Kips Bay, Gramecy Park, Sutton, Tudor, Medical City,

Stuy Town

9 Meat packing district, Greenwich Village, West Village, Soho, Little Italy, China-

Town, Civic center, Noho

10 Lower East Side, East Village, ABC Park, Bowery, Two Bridges, Southern tip,

White Hall, Tribecca, Wall Street

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml


Online Supplement for “Functional Models for Time-Varying Random Objects” 19

Fig. 5: Towns in Manhattan, New York.
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S6.2 Trade Data

The countries chosen for the analysis were Morocco, Tunisia, Egypt, Canada, USA, Ar-

gentina, Brazil, Chile, Mexico, Venezuela, Dominican Republic, Israel, Japan, Cyprus,

Lebanon, Saudi Arabia, United Arab Emirates, Turkey, Hong Kong, Indonesia, Korea Re-

public, Malaysia, Philippines, Singapore, Thailand, Taiwan, China, Belgium-Luxemburg,

Denmark, France, Greece, Ireland, Italy, Netherlands, Portugal, Spain, UK, Austria, Fin-

land, Norway, Sweden, Switzerland, Malta, Bulgaria, Australia and New Zealand. A list

of the traded commodities can be found in the following table,
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Number Products

1 Sugar, Honey

2 Road Vehicles

3 Fruits and Vegetables

4 Non metallic Minerals Manufactures

5 Coffee, Tea, Cocoa, Spices

6 Tobacco and Tobacco Manufactures

7 Textiles, Yarns, Fabrics

8 Printed Books, Maps, Charts, Paper, Stationery

9 Beverages

10 Chemical Materials, Products

11 Machineries

12 Transport Equipments

13 Rubber

14 General Industrial Machinery

15 Dairy Products, Eggs

16 Fish and Seafood

17 Cereals

18 Petroleum

19 Dye

20 Medicines

21 Oil, Perfumes, Toilet, Cleansing

22 Paper, Paper Board, Articles

23 Iron and Steel

24 Manufacture of Metals

25 Power Generating Machinery

26 Telecommunications, Sound Recording, Reproducing Equip-

ments


