
© 2020 Royal Statistical Society 1369–7412/20/82000

J. R. Statist. Soc. B (2020)

Functional models for time-varying random objects

Paromita Dubey and Hans-Georg Müller

University of California, Davis, USA

[Read before The Royal Statistical Society at a meeting organized by the Research Sec-
tion on Wednesday, October 16th, 2019 , Professor A. Doucet in the Chair ]

Summary. Functional data analysis provides a popular toolbox of functional models for the
analysis of samples of random functions that are real valued. In recent years, samples of time-
varying object data such as time-varying networks that are not in a vector space have been
increasingly collected. These data can be viewed as elements of a general metric space that
lacks local or global linear structure and therefore common approaches that have been used
with great success for the analysis of functional data, such as functional principal component
analysis, cannot be applied. We propose metric covariance, a novel association measure for
paired object data lying in a metric space .Ω, d/ that we use to define a metric autocovariance
function for a sample of random Ω-valued curves, where Ω generally will not have a vector
space or manifold structure. The proposed metric autocovariance function is non-negative def-
inite when the squared semimetric d2 is of negative type. Then the eigenfunctions of the linear
operator with the autocovariance function as kernel can be used as building blocks for an ob-
ject functional principal component analysis for Ω-valued functional data, including time-varying
probability distributions, covariance matrices and time dynamic networks. Analogues of func-
tional principal components for time-varying objects are obtained by applying Fréchet means
and projections of distance functions of the random object trajectories in the directions of the
eigenfunctions, leading to real-valued Fréchet scores. Using the notion of generalized Fréchet
integrals, we construct object functional principal components that lie in the metric space Ω.
We establish asymptotic consistency of the sample-based estimators for the corresponding
population targets under mild metric entropy conditions on Ω and continuity of the Ω-valued
random curves.These concepts are illustrated with samples of time-varying probability distribu-
tions for human mortality, time-varying covariance matrices derived from trading patterns and
time-varying networks that arise from New York taxi trips.
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1. Introduction

Time-varying data where one collects an independent and identically distributed sample of
random functions, which take values in a general object space that does not have a linear
structure, are increasingly common, whereas the statistical methodology for the analysis of
such data has been lagging behind. We aim to introduce techniques that will help to fill this gap.
For the case where observations consist of samples of random trajectories that take values in
Rp, the methodology of choice is often functional data analysis (FDA) (Ramsay and Silverman,
2005; Horvath and Kokoszka, 2012; Wang et al., 2016), where methodology for one-dimensional
.p = 1/ functional data is readily available. Models for functional data that consist of vector-
valued processes .p > 1/ have been studied more recently (Zhou et al., 2008; Berrendero et al.,
2011; Chiou et al., 2014; Claeskens et al., 2014; Verbeke et al., 2014; Chiou et al., 2016) as well as
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the case where at each time point one records a random function, i.e. function-valued stochastic
processes (Park and Staicu, 2015; Chen and Müller, 2012; Chen et al., 2017). In these models, the
responses are in a linear space, either the Euclidean space Rp or the Hilbert space L2. Functions
of objects in spaces that can be locally approximated by linear spaces such as Riemannian
manifolds including spheres have also been considered more recently (Lin et al., 2017; Dai and
Müller, 2018). The major objective of this paper is to overcome the global or local linearity
assumptions that are inherent in these previous approaches. The challenge is that existing FDA
methodology relies on vector operations and inner products, which are no longer available.

Functional principal component analysis (FPCA) (Kleffe, 1973; Dauxois et al., 1982) has
emerged as the method of choice to represent and interpret samples of random functions that
take values in linear spaces. It also provides dimension reduction by expanding an underlying
random process into the basis functions given by the eigenfunctions of the autocovariance
operator and then truncating this expansion at a finite number of expansion terms. A related tool
is the modes of variation, which enable exploration of the effects of single eigendirections (Castro
et al., 1986; Jones and Rice, 1992) and are useful in practical applications (Dong et al., 2018).
FPCA also provides a starting point for many theoretical investigations and FDA techniques
such as functional clustering (Chiou and Li, 2007; Jacques and Preda, 2014; Suarez and Ghosal,
2016) or regression and classification (Yao et al., 2005a; Dai et al., 2017).

As we enter the era of ‘big data’, it has become increasingly common to observe more complex,
often non-Euclidean, data on a time grid. Technological advances have made it possible to record
and store efficiently time courses of image, network, sensor or other complex data. For example,
neuroscientists are interested in dynamic functional connectivity, where one essentially observes
samples of time-varying covariance or correlation matrices obtained from functional magnetic
resonance imaging data for each subject in a sample. Time-varying network data arise in various
forms, e.g. road or Internet traffic networks or time evolving social networks, and it is of interest
to extract structure and patterns from such data.

To obtain efficient and interpretable summaries of the information that is contained in sam-
ples of complex observations is a major task in modern statistics that has led for example to the
development of methods such as geodesic principal component analysis in the space of probabil-
ity distributions on R (Bigot et al., 2017) and on more general Hilbert spaces (Seguy and Cuturi,
2015) that utilize optimal transport geometry and geodesic curves under the Wasserstein metric.
These approaches utilize geodesics to connect the random distributions with the Wasserstein
barycentres. We aim here at identifying dominant directions of variation in a sample of time-
varying random object trajectories, where the random objects are indexed by time and are in a
general metric space. The time-varying aspect provides for a novel and little-explored setting,
and to develop tools that are supported by theory and are useful for the further exploration and
analysis of such data is the main motivation for this paper.

Although FPCA for samples of functions taking values in smooth Riemannian manifolds has
been studied both practically and theoretically (Anirudh et al., 2017; Dai and Müller, 2018),
these approaches critically depend on the local Euclidean property of Riemannian manifolds and
cannot be extended to functional data objects that take values in more general metric spaces that
do not have a tractable and relatively simple Riemannian geometry. FPCA for doubly functional
data, where the observations at each time point are functions rather than scalars (Chen et al.,
2017), is based on a tensor product representation of the underlying function-valued stochastic
process. The functions need to be Hilbert space valued, so this approach cannot be applied to
non-Hilbertian data. Because of the lack of linear structure, developing a form of FPCA for
random functions taking values in a metric space, which we refer to as functional random objects,
is a major challenge.
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Consider a totally bounded separable metric space .Ω, d/ and a random sample of fully
observed Ω-valued functional data. Aiming to extend key tools of FDA to cover such data, we
first revisit the well-established FPCA for the case of real-valued functional data. The essence
of FPCA is contained in the autocovariance structure of the underlying random functions, i.e.
their covariance at different time points. This leads to the question how to quantify correlation
between random objects in general metric spaces that correspond to the values of the random
function at different time points. An example for such an extension of Pearson correlation to
the case of multivariate data is the RV-coefficient (Robert and Escoufier, 1976), which is 0 if all
the vector components are uncorrelated and is strictly positive otherwise.

In this paper we introduce metric covariance, which is a novel association measure for paired
data in general metric spaces. Metric covariance differs in key aspects from distance correlation,
which is another measure of dependence between metric space data (Lyons, 2013; Székely and
Rizzo, 2017), the latter being primarily suited to measure probabilistic independence rather
than for quantifying the strength of ‘positive’ or ‘negative’ association, which is the primary
goal of the former. Unlike distance covariance, the magnitude of metric covariance quantifies the
degree of association between paired data objects. The key objective of FPCA is to decompose
the variation in a sample of trajectories into orthogonal directions. An important difference
between metric covariance and distance covariance, which is specifically relevant in this context,
arises when considering the associated notion of variance. In contrast with distance correlation,
metric covariance of a random object with itself leads to an interpretable notion of variance for
data objects, as we shall demonstrate below. We also show that metric covariance is symmetric
and non-negative definite whenever the squared distance d2 is a semimetric of negative type
(Sejdinovic et al., 2013; Lyons, 2013; Schoenberg, 1938). The notion of metric correlation can
then be easily derived from metric covariance and random objects will be considered to be
uncorrelated if they have a metric correlation of size 0.

In FPCA for R-valued functional data, once the autocovariance function has been deter-
mined, one defines a linear Hilbert–Schmidt operator whose eigenfunctions represent the or-
thonormal directions of variance for the functional data in the Hilbert space L2. The correspond-
ing eigenvalues represent the fraction of variance explained by the respective FPCs, which are
the lengths of the projections of the functional data in the direction of each eigenfunction.
How can we extend these ideas to object-valued functional data, where we do not have a linear
structure or inner product? We proceed by constructing a linear Hilbert–Schmidt operator by
using the proposed metric covariance as its kernel and utilize its eigenfunctions and eigenval-
ues. For real-valued functional data, we obtain the FPCs by the Karhunen–Loève expansion of
centred functional data in the eigenbasis, where the FPCs are the inner products of the centred
functional data with respect to the eigenfunctions. Unfortunately it is not possible to ‘centre’
object functional data living in general metric spaces and also we do not have an inner product.
In the case of FDA in the Hilbert space L2, the inner products can be expressed as integrals.
Although due to the lack of linear structure there is no integral for functional random objects,
the interpretation of inner products as integrals nevertheless provides a way forward that we
develop in this paper. We propose two approaches for obtaining FPCs for object functional
data: one in which the FPCs are scalar irrespective of the nature of the metric space in which
the random objects live, and an alternative approach in which the FPCs themselves are random
objects, i.e. Ω valued.

To obtain FPCs in object space, we introduce the notion of a generalized Fréchet integral
of an Ω-valued curve with respect to a real-valued function, where this integral resides in Ω.
Generalized Fréchet integrals depend on the underlying metric d in Ω and are defined under the
constraint that the real-valued function in the integrand integrates to 1. We draw inspiration
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from the covariance integral for multivariate functional data that was previously introduced as
a Fréchet integral (Petersen and Müller, 2016a). This previous integral is a special case of the
generalized Fréchet integral that is introduced here; it corresponds to the special case where Ω
is the space of covariance matrices and the real-valued function in the integrand is the constant
function 1. We demonstrate that the resulting object FPCs, which reside in Ω, provide useful
insights about the structure of the underlying functional random objects.

For an alternative scalar approach, we extract relatively simple characteristics from the object
functional data. A first step is to define a ‘mean’ function by using the notion of Fréchet means
(Fréchet, 1948). This mean function resides in the object function space and serves as a ‘central’
trajectory for the object functional data. To obtain a representative scalar FPC for a specific
random object trajectory and eigenfunction, we utilize projections of the distance function
between the specific random object trajectory and the Fréchet mean trajectory on each of the
eigenfunctions. The resulting Fréchet scores encapsulate variation in the departures of functional
random objects from the Fréchet mean trajectory. As we illustrate in simulations and data
analysis, plotting these Fréchet scores against each other often illustrates meaningful patterns
in the sample of object functional data that are generally difficult to capture visually, because
of their complexity and non-linearity. For example, such plots can aid in detecting the presence
of clusters or outliers in functional random objects.

In this paper, we have three major objectives. First, we lay out a framework for extending
FPCA to general metric-space-valued functional data. The population target parameters are the
metric autocovariance operator, its eigenvalues and eigenfunctions and the population Fréchet
mean function, which are introduced in Section 2; additionally, the object FPCs, which are
generalized Fréchet integrals and the Fréchet scores (Section 3). Second, we provide sample-
based estimators of these population targets and establish their asymptotic properties under
mild restrictions on the metric entropy of the metric space Ω and the continuity of the object
functional data (Section 4). Proofs of all results are in section S1 of the on-line supplement. Third,
we illustrate our results through simulations (Section 5) and various data examples (Section
6), which include samples of time-varying probability distributions of age at death obtained
from human mortality data of 32 countries, time-varying yellow taxi trip networks of different
regions in Manhattan observed daily during the year 2016, and of changing trade patterns
between countries that can be represented as time-varying covariance matrices, followed by a
brief discussion (Section 7).

2. Metric covariance

2.1. Covariance and correlation for random objects
We consider a totally bounded separable metric space .Ω, d/ where d is a metric and an Ω-
valued stochastic process X={X.t/}t∈[0,1] on the interval [0, 1]. With P denoting the probability
measure of the random process X, we are given a sample {Xi = .Xi.t//t∈[0,1] : i = 1, 2, : : : , n}
of random Ω-valued functions on [0, 1] generated by P . The simplest case is Ω = R with the
intrinsic Euclidean metric, where {X1, X2, : : : , Xn} is a sample of real-valued functional data.
For general metric spaces Ω, we refer to {X1, X2, : : : , Xn} as a sample of functional random
objects. Inspired by the approach to obtain FPCA for real-valued functional data, our first goal
is to quantify the association between random objects X.s/ and X.t/ in Ω, where s and t are two
arbitrary points in the domain [0, 1].

For motivation, consider first the case of real random variables .U, V/ with finite covariance.
Imagine for a moment that we cannot add, subtract or multiply these random variables and
are restricted to compute their distances dE.U, V/ = |U − V |. As is well known, we then can
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write the variance of U by using an independent and identically distributed copy U ′ of U by
var.U/= 1

2 E{d2
E.U, U ′/}.

Interestingly, this non-algebraic construction can be extended to the covariance of U, V :
let .U ′, V ′/ be an independent and identically distributed copy of .U, V/. We then obtain an
alternative formulation of cov.U, V/ in terms of pairwise distances as follows:

cov.U, V/=E{.U −E.U//.V −E.V//}
= 1

4 E{d2
E.U, V ′/+d2

E.U ′, V/−2d2
E.U, V/}:

If .U, V/ are Rd-valued random variables with dE.·, ·/ denoting the Euclidean distance in Rd , a
simple calculation shows that, in this case,

1
4 E{d2

E.U, V ′/+d2
E.U ′, V/−2d2

E.U, V/}=E{.U −E.U//T.V −E.V//},

which is the inner product in the Hilbert space of Rd-valued random variables with finite
E.UTU/. Next consider the case where .U, V/ are H-valued random variables, where H is a
Hilbert space and dE.·, ·/ is replaced by dH.U, V/=‖U −V‖H, the metric that arises from the
inner product 〈·, ·〉H of the Hilbert space. If the metric dH.·, ·/ is bounded then E.‖U‖2

H/<∞.
One can show with some simple algebra and utilizing the Riesz representation theorem that

1
4 E{d2

H.U, V ′/+d2
H.U ′, V/−2d2

H.U, V/}=E{〈U −E.U/, V −E.V/〉H}, .1/

which is the inner product in L2.H/: the Hilbert space of H-valued random variables U such
that E.‖U‖2

H/<∞.
What happens if .U, V/ are Ω-valued random variables and we replace dH by d where .Ω, d/

is a general metric space with no vector space structure to rely on? Or, for which spaces does
the function 1

4 E{d2.U, V ′/ + d2.U ′, V/ − 2d2.U, V/} retain desirable properties? Proposition 3
of Sejdinovic et al. (2013) implies that, whenever d2 is a semimetric of negative type, there is a
Hilbert space H and an injective map, say f :Ω→H, with

d2.U, V/=‖f.U/−f.V/‖2
H, .2/

and therefore it follows from equation (1) that, for some ‘remote’ Hilbert space H and the
unknown map f.·/,

1
4 E{d2.U, V ′/+d2.U ′, V/−2d2.U, V/}=E[〈f.U/−E{f.U/}, f.V/−E{f.V/}〉H]: .3/

Here a space .Z, ρ/ with a semimetric ρ is of negative type if, for all n�2, z1, z2, : : : , zn ∈Z and
α1, α2, : : : , αn ∈R with Σn

i=1αi =0 we have

n∑
i=1

n∑
j=1

αiαjρ.zi, zj/�0:

These considerations motivate the following definition of a generalized version of covariance
covΩ.U, V/ for paired random objects .U, V/ that take values in Ω×Ω, where .Ω, d/ is a separable
metric space:

covΩ.U, V/= 1
4 E{d2.U, V ′/+d2.U ′, V/−2d2.U, V/}, .4/

where as above .U ′, V ′/ is an independent and identically distributed copy of .U, V/. We refer
to covΩ.U, V/ as the metric covariance of U and V . The metric covariance is always finite if



6 P. Dubey and H.-G. Müller

the underlying metric space is bounded and coincides with the usual notion of covariance in
Euclidean spaces.

We also define the metric correlation between two Ω-valued random variables as

ρΩ.U, V/= covΩ.U, V/√{covΩ.U, U/covΩ.V , V/} :

By the Cauchy–Schwarz inequality we have −1 � ρΩ.U, V/ � 1. Metric covariance or metric
correlation depends on the choice of the metric d and different choices of d might reveal different
aspects of association between random objects, depending on the underlying geometry of the
metric.

2.2. Metric autocovariance operators
As in the real-valued Euclidean case, we define the metric autocovariance function C.s, t/ for
functional random objects {X1, X2, : : : , Xn}∈Ω as

C.s, t/= covΩ{X.s/, X.t/},

for all .s, t/∈ [0, 1]× [0, 1]. Obviously, C.s, t/ is a symmetric kernel and therefore has real eigen-
values when used as the kernel of a linear Hilbert–Schmidt operator. The following result shows
that, for metric spaces .Ω, d/ for which the squared distance function d2 is of negative type, the
metric autocovariance operator is positive semidefinite.

Proposition 1. If Ω is separable and d2 is of negative type, then C.s, t/ is a non-negative
definite kernel.

By proposition 3 in Sejdinovic et al. (2013) and equation (3), covΩ.U, V/ = 0 implies that
there is an abstract Hilbert space H and an injective map f :Ω→H such that f.U/ and f.V/ are
orthogonal in L2.H/. Note that varΩ.U/= covΩ.U, U/= 1

2 E{d2.U, U ′/}, which for real-valued
random variables equals var.U/.

Formally, we can define the metric autocovariance operator as a linear Hilbert–Schmidt inte-
gral operator TC that operates on functions g ∈L2.[0, 1]/ and utilizes the metric autocovariance
kernel,

.TCg/.s/=
∫ 1

0
C.s, t/g.t/dt:

We note that for example theorem 4.6.4 of Hsing and Eubank (2015) implies the non-negative
definiteness of the kernel C.s, t/, in the sense that 〈TCf , f 〉�0 for all f .

By Mercer’s theorem there is an orthonormal basis {φi}∞
i=1 of L2.[0, 1]/ consisting of eigen-

functions of TC such that the corresponding sequence of eigenvalues {λi}∞
i=1, which are ordered

in declining order, is non-negative, since C.s, t/ is positive semidefinite. The eigenfunctions cor-
responding to non-zero eigenvalues are continuous on [0, 1] and C has the representation

C.s, t/=
∞∑

j=1
λjφj.s/φj.t/,

where the convergence is absolute and uniform; see, for example, lemma 4.6.1 and theorems
4.5.2, 4.6.2, 4.6.5 and 4.6.7 of Hsing and Eubank (2015).

We have thus accomplished the first step of extending FPCA from Euclidean-valued func-
tional data to general metric space-valued functional data. The eigenfunctions {φj}∞

j=1 can
be interpreted as principal directions of variation of the functional object process and will be
ordered according to the size of the associated eigenvalues. We can view the eigenvalues as
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representing a metric version of the ‘fraction of variance explained’, which is their common in-
terpretation in the real-valued case. The only requirement for this extension is that the squared
metric d2 is of negative type but this is not a severe restriction and in the light of proposition 3
of Sejdinovic et al. (2013) is true for the following examples:

(a) .Ω, d/ where Ω is the space of univariate probability distributions on a common compact
support in T ⊂R—choices of d include the popular 2-Wasserstein metric or the L2-metric;

(b) .Ω, d/ where Ω is the space of correlation matrices of a fixed dimension r, where the choice
of metrics includes the Frobenius metric, log-Frobenius metric, power Frobenius metric
and Procrustes metric (Dryden et al., 2009; Pigoli et al., 2014; Tavakoli et al., 2019);

(c) .Ω, d/ where Ω is the space of networks with a fixed number, say r, of nodes—one can view
networks as adjacency matrices or graph Laplacians equipped with the Frobenius metric
(Ginestet et al., 2017) or as resistance matrices equipped with the resistance perturbation
metric (Monnig and Meyer, 2018).

We conclude that in most cases of interest the autocovariance operator and its eigenfunctions
will be well defined.

2.3. Interpretation of metric covariance
When X and Y are real valued, classical Pearson correlation captures the strength and sign of
linear (also monotone) associations between X and Y . From a geometrical perspective, Pearson
correlation can be interpreted as the cosine of the angle between X and Y . In Rd , angles between
vectors are defined by using inner products, which can also be used for data in Hilbert space
to characterize dependence. Specifically, for random functions in the metric space L2 this idea
leads to the notion of ‘dynamic correlation’ in FDA (Dubin and Müller, 2005), which was found
to be useful for data analysis in genetics (Opgen-Rhein and Strimmer, 2006) and psychology
(Liu et al., 2016). Dynamic correlation turns out to be equivalent to metric covariance when the
random objects are in the Hilbert space L2.[0, 1]/, equipped with the usual L2-metric. Metric
covariance then provides a generalization beyond Hilbert spaces.

For general metric spaces, under the weak assumption that the squared metric is of negative
type, the map f from object to Hilbert space in equation (2) implies that metric covariance can
be derived from the inner product in an abstract Hilbert space, whereas metric correlation is
obtained by standardizing metric covariance and is thus tied to the notion of an angle in an
abstract space. Hence its magnitude can be interpreted as the strength of association between
random objects. Although we use the existence of a map f and an associated abstract Hilbert
space, we do not require knowledge about f . Metric covariance is thus a natural extension of
Pearson covariance to general metric spaces.

In recent work (Petersen and Müller, 2019a), Wasserstein covariance for pairs of univariate
probability distributions was introduced and was shown to have an appealing interpretation as an
expected value of an inner product of optimal transport maps. More specifically, if f1 and f2 are
the components of a random bivariate density process and F−1

1 .·/ and F−1
2 .·/ the corresponding

random quantile functions, the squared Wasserstein distance between f1 and f2 is given by

d2
W.f1, f2/=

∫ 1

0
{Q1.t/−Q2.t/}2dt

and the Wasserstein covariance between f1 and f2 was introduced as

covW.f1, f2/=E

(∫ 1

0
[Q1.t/−E{Q1.t/}][Q2.t/−E{Q2.t/}]dt

)
:
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Wasserstein covariance is then easily seen to be a special case of metric covariance when the
metric-space-valued random objects are probability distributions and the Wasserstein metric
is used. This Wasserstein version of metric covariance was found to quantify the degree of
synchronization of the movement of probability mass from the marginal Fréchet means of
the probability distributions to the random components of a multivariate density process. In
applications to functional magnetic resonance imaging data, this Wasserstein version led to
new findings and insights about differences in brain connectivity of normal versus Alzheimer
disease patients, which is a topic of special interest in neuroimaging (Petersen and Müller,
2019a). The examples of dynamic correlation for Hilbert-space-valued random variables in
FDA and of Wasserstein covariance or Wasserstein correlation demonstrate the utility of metric
covariance or metric correlation in non-standard spaces and its interpretability in applications.
This provides evidence that metric covariance and metric correlation are indeed useful tools for
data analysis in general metric spaces.

A word of caution is in order. Although metric covariance can be universally applied and in
the space of distributions with the Wasserstein metric has an interpretation as an inner product
of transport maps, such interpretations hinge on the specific metric space in which the random
objects are located and may not be available for all spaces. In practice, interpretations for specific
scenarios can be important. The choice of the metric also matters and should be considered
carefully, as it will affect the interpretation of metric covariance.

Apart from the interpretation of covariance as the expectation of an inner product, the di-
agonal elements of the metric autocovariance surface reflect a natural notion of variance of
metric-space-valued objects, as

varΩ = 1
2 E{d2.U, U ′/}, .5/

where U ′ is an independent copy of U. This provides a variation measure that is tied to the average
squared distance of objects that are independently sampled from the underlying population,
which is a natural and interpretable measure of spread that is well known to coincide with
conventional variance in the Euclidean case.

Since it is sensible to define variance for metric-space-valued random objects as

1
2 E{d2.U, U ′/}= 1

2 E{d2.U, U ′/−d2.U, U/},

it is then natural to extend this to a covariance measure between random objects .U, V/ that re-
flects the difference between squared distances when sampling independently from the marginal
distributions of U and V and when sampling from the joint distribution of .U, V/. This simple
idea provides another avenue to suggest

c̃ovΩ.U, V/=E{d2.U, V ′/−d2.U, V/}:

Symmetrizing this expression and adding the factor 0.25 to match the usual definition of co-
variance in the Euclidean case then leads to formula (4). These arguments also lead to an
interpretation of the total variance that corresponds to the trace of the proposed metric covari-
ance operator C.s, t/, as an integrated squared distance between the functional random objects
X and an independent copy X′,

∞∑
j=1

λj =
∫ 1

0
covΩ{X.t/, X.t/}dt = 1

2

∫ 1

0
E[d2{X.t/, X′.t/}]dt: .6/

We find in our examples and applications that the eigenfunctions that are derived from metric
covariance lead to useful and often well interpretable modes of variation of the time-varying
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metric random objects in the sense of Jones and Rice (1992), adding to the practical appeal of
metric covariance for the analysis of functional random objects.

To conclude this discussion, we note that metric covariance differs substantially from distance
correlation (Székely et al., 2007; Lyons, 2013). A distinguishing feature of distance correlation is
that it is equivalent to probabilistic independence between the distributions of U and V when it
is 0, but we find that it is not suitable as a covariance or correlation measure for random objects
in the situations that we study here. Specifically, the autocovariance operator that it generates is
not useful for our purposes. For further details on this, see section S2 in the on-line supplement.

3. Functional principal components: generalized Fréchet integrals and Fréchet
scores

3.1. Generalized Fréchet integrals and object functional principal components
FPCs in the case of real-valued functional data are projections of the centred process onto the
directions of the eigenfunctions and therefore summarize how a function differs from the mean
function along orthonormal eigenfunction directions. Formally the FPC of the ith process Xi.t/

and the kth eigenfunction φk.t/ is

ξik =
∫ 1

0
{Xi.t/−μ.t/}φk.t/dt,

where μ.·/ is the mean process. The part of the score contributing to the variability of the
functional data is

∫ 1
0 Xi.t/φk.t/dt, which is just a horizontal shift of the actual scores, so centring

is not needed when our goal is to decompose the variability of the random processes X, which is
fortuitous as one cannot ‘centre’ object data to obtain an analogue of X.t/−μ.t/, as algebraic
operations such as subtraction are not feasible in metric spaces.

In the Euclidean case for any function φ on [0, 1], whenever
∫ 1

0 φ.t/dt �= 0, we can obtain a
scaled version of the integral of X with respect to φ as follows:∫ 1

0
X.t/

φ.t/∫ 1
0 φ.t/dt

dt =arg inf
ω∈R

∫ 1

0
d2

E{ω, X.t/} φ.t/∫ 1
0 φ.t/dt

dt:

This suggests defining an integral of an Ω-valued function S with respect to a real-valued func-
tion φ which integrates to 1. For any real-valued function φ with

∫ 1
0 φ.t/dt = 1, we define the

generalized Fréchet integral of S with respect to φ as∫
⊕

S.t/φ.t/dt =arg inf
ω∈Ω

∫ 1

0
d2{ω, S.t/}φ.t/dt, .7/

provided that the integral
∫ 1

0 d2{ω, S.t/}φ.t/dt exists as a limit of Riemann sums for all ω ∈Ω
and the minimizer of the integrals over ω ∈Ω exists and is unique. A special case of the integral
in equation (7) was introduced as the Fréchet integral in Petersen and Müller (2016a), where an
integral for the space of covariance matrices was constructed for φ≡1.

The Fréchet integrals that are defined here are far more general. Generalized Fréchet integrals
can be interpreted as an extension of weighted Fréchet means (Fréchet, 1948). We omit the
additional term ‘generalized’ in what follows and note that Fréchet integrals can be interpreted
as projections of functional random objects onto functions φ, by weighting the elements S.t/

according to the value of φ.t/, in direct analogy to projections in the linear function space L2.
This feature motivates us to employ Fréchet integrals to obtain object FPCs.

For fixed ω ∈Ω consider the Fréchet integral function
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I.ω/=
∫ 1

0
d2{ω, S.t/}φ.t/dt,

which, if it exists, is the limit of Riemann sums. A sufficient condition for its existence is that
d2{ω, S.t/}φ.t/ is a continuous function of t ∈ [0, 1]. If the metric is bounded and S and φ are
continuous for t ∈ [0, 1], the function d2{ω, S.t/}φ.t/ is a continuous function of t ∈ [0, 1] and
the integral I.ω/ exists for all ω. Note that, for any ω ∈Ω, I.ω/ is finite by the Cauchy–Schwarz
inequality whenever the metric space is bounded and the L2-norm of the function φ.·/ is finite.

If the integrals I.ω/ exist as limits of Riemann sums, the question arises under which con-
ditions the minimizers of the Riemann sums converge and whether the limit of the minimizers
coincides with the Fréchet integral

∫
⊕ S.t/φ.t/dt. Proposition 2 below addresses this question.

Let 0 = x0 < x1 < x2 < : : : < xk = 1 be a partition P of [0, 1], where the [xj, xj+1] are the sub-
intervals of the partition and the length of the jth subinterval is Δj =xj+1 −xj. The mesh size
εP of the partition is given by εP = maxj Δj. We select t0, t1, : : : , tk−1 such that, for each j,
tj ∈ [xj, xj+1]. For each ω ∈Ω, the Riemann sum IP .ω/ corresponding to the partition P and
t0, t1, : : : , tk−1 is given by

IP .ω/=
k−1∑
j=0

d2{ω, S.tj/}φ.tj/Δj

and the Riemann integral I.ω/ is obtained as a limit of Riemann sums as the partition becomes
finer. Formally, I.ω/= limεP→0 IP .ω/.

We shall invoke the following assumptions for the integral function I.ω/. For ease of notation,
we suppress t in

∫
⊕ S.t/φ.t/dt, writing

∫
⊕ Sφ in what follows.

Assumption (i). The integrand function H.ω, t/=d2{ω, S.t/}φ.t/ is uniformly equicontinuous
in t ∈ [0, 1] and ω ∈Ω.

Assumption (ii).
∫
⊕ Sφ = arg minω∈Ω I.ω/ exists and is unique, and infd.ω,

∫
⊕ Sφ/>δ I.ω/ >

I.
∫
⊕ Sφ/ for all δ > 0.

Assumption (iii). There are constants β > 0, ν > 0 and C> 0 such that

I.ω/− I

(∫
⊕

Sφ

)
�Cdβ

(
ω,

∫
⊕

Sφ

)

whenever d.ω,
∫
⊕ Sφ/<ν.

Define ΣP ,⊕Sφ=arg minω∈Ω IP .ω/.

Proposition 2.

(a) Under assumption (i), IP .ω/ converges to I.ω/ uniformly in ω as εP →0.
(b) Under assumptions (i) and (ii), limεP→0 d.ΣP ,⊕Sφ,

∫
⊕ Sφ/=0.

(c) If limεP→0 h.εP / supω∈Ω |IP .ω/−I.ω/|=0 for a function h with h.δ/→∞ as δ→0, then,
under assumption (iii), limεP→0 h1=β.εP /d.ΣP ,⊕Sφ,

∫
⊕ Sφ/=0.

As a continuous function on a compact interval is uniformly continuous, whenever S.·/ is
continuous and φ.·/ is bounded and continuous, assumption (i) holds since, for D=diam.Ω/,

|H.ω, t1/−H.ω, t2/|= |d2{ω, S.t1/}φ.t1/−d2{ω, S.t2/}φ.t1/+d2{ω, S.t2/}φ.t1/

−d2{ω, S.t2/}φ.t2/|
�2D d{S.t1/, S.t2/}|φ.t1/|+D2|φ.t1/−φ.t2/|:
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Assumption (i) is sufficient to guarantee that the Fréchet integrals are well defined, whereas
Assumption (iii) is a restriction on the curvature of the function I.ω/ near its minimizer, implying
convergence rates of the approximations of the Fréchet integrals. A few examples of spaces that
satisfy assumptions (ii) and (iii) are as follows.

(a) Let .Ω, dW/ be the space of univariate probability distributions on a common support T ⊂
R. For any ω ∈Ω, denote the corresponding random distribution and quantile functions
by Q.ω/. The squared 2-Wasserstein metric between distributions ω1 and ω2 is

d2
W.ω1, ω2/=d2

L2{Q.ω1/, Q.ω2/}=
∫ 1

0
{Q.ω1/.u/−Q.ω2/.u/}2du:

For any S.t/ taking values in Ω, where we view Q{S.t/} as the quantile function of the
distribution at time t ∈ [0, 1], writing Q{S.t/}.u/ for the uth quantile of the distribution
at time t, define QÅ.u/ = ∫ 1

0 Q{S.t/}.u/φ.t/dt. Since
∫ 1

0 φ.t/dt = 1, a simple calculation
shows that, for any ω ∈Ω,

arg inf
ω∈Ω

I.ω/=arg inf
ω∈Ω

d2
L2{Q.ω/, QÅ};

therefore the minimizer exists and is unique by the convexity of the space of univariate
quantile functions. By the orthogonal projection theorem the minimizer ω̃ is uniquely
characterized by

〈QÅ −Q.ω̃/, Q.ω/−Q.ω̃/〉L2 �0,

for all ω ∈Ω, and therefore it is enough to choose ν =C =1 and β =2 in assumption (iii).
(b) Consider the space of graph Laplacians or graph adjacency matrices of connected, undi-

rected and simple graphs with a fixed number r of nodes .Ω, dF/, equipped with the
Frobenius metric dF. For any ω ∈Ω,

d2
F.ω1, ω2/=

r∑
j=1

r∑
k=1

.ω1,jk −ω2,jk/2:

For any S.t/ taking values in Ω, let Sjk.t/ be the .j, k/th entry of the graph Laplacian or the
graph adjacency matrix. Define SÅ

jk = ∫ 1
0 Sjk.t/φ.t/dt. Since

∫ 1
0 φ.t/dt =1, it can be easily

seen that, for any ω ∈Ω,

arg inf
ω∈Ω

I.ω/=arg inf
ω∈Ω

d2
F.ω, SÅ/,

and so the minimizer exists and is unique by the convexity of the space of graph Laplacians
(Ginestet et al., 2017) and the space of graph adjacency matrices. Again, by the orthogonal
projection theorem, the minimizer ω̃ is uniquely characterized by

r∑
j=1

r∑
k=1

.ω̃jk −SÅ
jk/.ω̃jk −ωjk/�0,

for all ω ∈Ω and therefore it is enough to choose ν =C =1 and β =2 in assumption (iii).
(c) The same arguments also imply that .Ω, dF/ satisfies assumptions (ii) and (iii) when Ω is

the space of correlation matrices of a fixed dimension r.

As we have seen, for general metric spaces Ω, under mild assumptions on the boundedness of
the metric and continuity of the functions S.·/ and φ.·/, the Fréchet integral has nice properties
if it exists and is unique. Moreover, when Ω is bounded and

∫ 1
0 |φ.t/|dt<∞,
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|I.ω1/− I.ω2/|�2Dd.ω1, ω2/

∫ 1

0
|φ.t/|dt,

and therefore I.ω/ is a continuous function of ω ∈ Ω. This ensures that the Fréchet integral
always exists when Ω is compact.

We now define the FPCs corresponding to the bounded continuous eigenfunctions φk of
the metric autocovariance operator in the object space by using Fréchet integrals. For this, we
assume that all trajectories {Xi.t/}t∈[0,1] have continuous sample paths almost surely and the
metric space Ω is bounded, and furthermore that the following assumptions hold.

Assumption 1.
∫ 1

0 φk.t/dt �=0.

Assumption 2.
∫
⊕ Xiφ

Å
k exists and is unique almost surely for all i = 1, : : : , n, where φÅ

k .t/ =
φ.t/=

∫ 1
0 φ.t/dt.

Then object FPCs for Xi and φk are defined as the Fréchet integrals

ψik
⊕ =

∫
⊕

Xiφ
Å
k , .8/

which are random objects in Ω. Similarly to ordinary FPCA we can choose various basis func-
tions aiming to explain a desired percentage of variation in the data utilizing the eigenvalues of
the metric autocovariance operator. If Ω= R, the object FPCs correspond to a location- and
scale-shifted version of the ordinary FPCs.

3.2. Fréchet scores
Exploratory data analysis such as checking for clusters or outliers often benefits from plotting
the FPCs against each other for the case of real-valued functional data. FPCs defined by us-
ing Fréchet integrals live in the object space Ω and therefore visualizing them is non-trivial.
One approach is to obtain their projections to a lower dimensional real space by using multi-
dimensional scaling or its variants (Kruskal, 1964; Belkin and Niyogi, 2002) and then visualizing
the projections. Here we propose another approach for obtaining a scalar version of object FPCs.
The resulting scalar FPCs are interpretable and can be plotted against each other and are thus
useful for exploratory data analysis.

In the real-valued case, one obtains projections of the deviations of the observed random
curves from the mean curve onto dominant eigenfunctions. Although the concept of a mean
function can be generalized to object functional data by using Fréchet means (Fréchet, 1948),
one cannot centre object data and does not have directional information. Nevertheless, it is
possible to study how distances of sample curves from the mean curve project onto a few
dominant eigenfunctions, in analogy to the real-valued case. Formally, given a random object
process {X.t/}t∈[0,1], the population Fréchet mean function is

μ⊕.t/=arg min
ω∈Ω

E[d2{ω, X.t/}],

where we assume existence and uniqueness of the minimizer. For real-valued functional data
under the Euclidean metric the Fréchet mean function coincides with the usual pointwise mean
function. Defining distance functions

Di.t/=d{Xi.t/, μ⊕.t/}
for sample trajectories Xi, we represent the scalar functions Di in the eigenbasis of the metric
autocovariance operator, obtaining the coefficients
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βik =
∫ 1

0
Di.t/φk.t/dt =

∫ 1

0
d{Xi.t/, μ⊕.t/}φk.t/dt: .9/

We refer to the scalars βik as the Fréchet scores.
The Fréchet scores can be interpreted as decomposition of the departures of the sample

elements from the ‘central’ Fréchet mean curve in predominant directions of variation. They
can be plotted against each other and have the potential to provide interesting insights, as we
shall illustrate in the data applications. Considering the existence of the Fréchet scores, with D

denoting as before the diameter of the totally bounded metric space Ω, continuity of the Fréchet
mean function implies that, for any t1, t2 ∈ [0, 1],

|d2{Xi.t1/, μ⊕.t1/}−d2{Xi.t2/, μ⊕.t2/}|= |d2{Xi.t1/, μ⊕.t1/}−d2{Xi.t1/, μ⊕.t2/}
+d2{Xi.t1/, μ⊕.t2/}−d2{Xi.t2/, μ⊕.t2/}|

�2D [d{μ⊕.t1/, μ⊕.t2/}+d{Xi.t1/, Xi.t2/}]:

Thus, for a continuous eigenfunction φk, the function d2{Xi.t/, μ⊕.t/}φk.t/ is a continuous
function of t ∈ [0, 1] almost surely and therefore the Fréchet scores will exist. Proposition 3
shows that under the following assumption 3 the Fréchet mean function is indeed continuous.

Assumption 3. For each t ∈ [0, 1], the pointwise Fréchet mean μ⊕.t/ exists and is unique, and

inf
d{ω,μ⊕.t/}>γ

E[d2{ω, X.t/}] >E[d2{μ⊕.t/, X.t/}]

for any γ > 0.

Proposition 3. If the random object process {X.t/}t∈[0,1] has almost surely continuous paths,
then μ⊕.·/ is continuous under assumption 3.

Assumption 3 is satisfied for the space .Ω, dW/ of univariate probability distributions with the
2-Wasserstein metric and also for the space .Ω, dF/, where Ω is the space of covariance matrices
or alternatively graph Laplacians of fixed dimension with the Frobenius metric dF (Dubey and
Müller, 2019; Petersen and Müller, 2019b).

4. Estimation and theory

Having defined suitable population targets, our goal now is to construct appropriate estimators,
starting with a sample of functional random objects. An empirical estimator of the metric
autocovariance operator C.s, t/ as defined in Section 2 is given by

Ĉ.s, t/= 1
4n.n−1/

∑
i�=j

fs,t.Xi, Xj/, .10/

where

fs,t.Xi, Xj/=d2{Xi.s/, Xj.t/}+d2{Xj.s/, Xi.t/}−d2{Xi.s/, Xi.t/}−d2{Xj.s/, Xj.t/}:

Observe that, for each s, t ∈ [0, 1], Ĉ.s, t/ is a U-statistic and the class {Ĉ.s, t/ : s, t ∈ [0, 1]} is a
family of U-statistics.

Noting that Ĉ.s, t/ can be viewed as a stochastic process indexed by the function class F =
{fs,t.·, ·/ : s, t ∈ [0, 1]}, where

fs,t.x, y/=d2{x.s/, y.t/}+d2{y.s/, x.t/}−d2{x.s/, x.t/}−d2{y.s/, y.t/},
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enables us to apply the theory of U-processes (Nolan and Pollard, 1987, 1988; Arcones and
Giné, 1993) for weak convergence (Billingsley, 1968; van der Vaart and Wellner, 1996). For the
uniform convergence of {Ĉ.s, t/ : s, t ∈ [0, 1]}, we need an assumption on the rate of continuity
of the functional random objects.

Assumption 4. The process X.·/ is almost surely α Hölder continuous for some 0 < α� 1,
where the Hölder constant has a finite second moment, i.e. for some non-negative function G.X/

we have

d{X.s/, X.t/}�G.X/|s− t|α,

where E{G.X/}2 <∞.

Theorem 1. Under assumption 4, the sequence of stochastic processes

Un.s, t/=√
n{Ĉ.s, t/−C.s, t/}

converges weakly to a Gaussian process with mean 0 and covariance function

R.s,t/,.u,v/ = cov{fs,t.X, X′/, fu,v.X, X′/}:

where X′ is an independent and identically distributed copy of X.

Writing λ̂j and φ̂j for the eigenvalues and eigenfunctions of Ĉ.s, t/, uniform convergence
and rates of convergence of these estimates of the eigenvalues and eigenfunctions of the metric
autocovariance operator to their targets are obtained as a direct consequence of proposition 1
under the following assumption on the spacings of the eigenvalues.

Assumption 5. For each j � 1, the eigenvalue λj has multiplicity 1, i.e it holds that δj > 0,
where δj =min1�l�j.λl −λl+1/.

Corollary 1 (Bosq, 2000). Under assumptions 4 and 5,

|λ̂j −λj|=OP.1=
√

n/:

sup
s∈[0,1]

|φ̂j.s/−φj.s/|=OP{1=.δj
√

n/}:

As in classical FDA, the eigenfunctions φj are uniquely identifiable only up to a sign change.
For theoretical considerations such as the convergence in corollary 1, we may always assume that
true and estimated eigenfunctions are aligned in the sense that 〈φ̂j, φj〉�0. Our next objective
is to obtain sample estimators for the object FPCs (8) that were defined in Section 3.1. For each
j, consider the following estimators of φÅ

j .t/:

φ̂
Å
j .t/= φ̂j.t/∫ 1

0 φ̂j.t/dt
:

A natural estimator for the Fréchet integral ψik⊕ is then

ψ̂
ik

⊕ =
∫

⊕
Xiφ̂

Å
j =arg min

ω∈Ω

∫ 1

0
d2{ω, Xi.t/}φ̂

Å
j .t/dt: .11/

To obtain convergence of ψ̂
ik

⊕ to its population target, we make the following assumptions.

Assumption 6. For every i and k, ψik⊕ and ψ̂
ik

⊕ exist and are unique almost surely. Moreover, for
any "> 0, c" = infd.ω,ψik⊕/>"[

∫ 1
0 d2{ω, Xi.t/}φÅ.t/dt −∫ 1

0 d2{ψik⊕ , Xi.t/}φÅ.t/dt] > 0 almost surely.
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Assumption 7. There are constants β1 > 1, ν ′ > 0 and C′ > 0 such that, almost surely,[∫ 1

0
d2{ω, Xi.t/}φÅ.t/dt −

∫ 1

0
d2{ψik

⊕ , Xi.t/}φÅ.t/dt

]
�C′dβ1.ω, ψik

⊕/,

whenever d.ω, ψik⊕/<ν ′.

Assumption 6 on the existence and uniqueness of the Fréchet integrals is used to establish
consistency. Assumption 7 is a restriction on the local behaviour of the integrals around the
minimizer and determines the rate of convergence.

Theorem 2. Under assumptions 1, 2, 4 and 6,

d.ψ̂
ik

⊕, ψik
⊕/=oP.1/:

If additionally assumption 7 holds, then

d.ψ̂
ik

⊕, ψik
⊕/=OP.n−1=.2β1//:

Here we choose φ̂j to be such that 〈φ̂j, φj〉�0 which ensures matching signs for the true and
estimated eigenfunctions in the computation of ψ̂

ik

⊕ and ψik⊕ .
Next we provide estimates of the Fréchet scores and study their asymptotics. The starting

point is the following estimator of the population Fréchet mean function:

μ̂⊕.t/=arg min
ω∈Ω

1
n

n∑
i=1

d2{Xi.t/, ω}: .12/

We need the following assumptions.

Assumption 8. The Fréchet mean function estimate μ̂⊕.t/ exists and is unique almost surely
for all t ∈ [0, 1]. Additionally, for every "> 0, there exists τ ."/> 0 such that

lim
n→∞ P

(
inf

s∈[0,1]
inf

d{ω, μ̂⊕.s/}>"

1
n

n∑
l=1

[d2{Xi.s/, ω}−d2{Xi.s/, μ̂⊕.s/}]� τ ."/

)
=1:

Assumption 9. There are small δ > 0 and constants 0 < νδ � 1 and Hδ > 0, such that for
all Ω-valued functions ω.·/ with d∞.ω, μ⊕/ < δ, where d∞.ω, μ⊕/= sups∈[0,1] d∞{ω.s/, μ⊕.s/},
the functions ω.·/ are νδ Hölder continuous with Hölder constant bounded above by Hδ, i.e.

d{ω.s/, ω.t/}�Hδ|s− t|νδ :

Assumption 10. For I.δ/ = ∫ 1
0 sups∈[0,1]

√
log.N[A"δ, Bδ{μ⊕.s/}, d]/d", it holds that I.δ/ =

O.1/ as δ →0 for all sufficiently small δ > 0 and for any constant A> 0. Here Bδ{μ⊕.s/}={ω ∈
Ω : d{ω, μ⊕.s/}< δ} is the δ-ball around μ⊕.s/ and N[", Bδ{μ⊕.s/}, d] is the covering number,
i.e. the minimum number of balls of radius " required to cover Bδ{μ⊕.s/} (van der Vaart and
Wellner, 1996).

Assumption 11. There are α> 0, D> 0 and β2 > 1 such that

inf
s∈[0,1]

inf
d{ω,μ⊕.s/}<α

.E[d2{X.s/, ω}]−E[d2{X.s/, μ⊕.s/}]−Ddβ2{ω, μ⊕.s/}/�0:

Proposition 4. Under assumptions 3 and 8,
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sup
t∈[0,1]

d{μ̂⊕.t/, μ⊕.t/}=oP.1/:

Assumptions 4 and 9–11 are required to obtain an entropy condition for the space of func-
tional random objects (lemma 1 below), which is used to establish the rate of convergence of
the sample Fréchet mean function. We note that assumption 9, where we assume that in a suffi-
ciently close neighbourhood of the true Fréchet mean function μ⊕.t/ all object functions have a
common rate of Hölder continuity and a common Hölder constant, is weaker than assumptions
that have been required in classical FDA (see for example Müller et al. (2006)), where one deals
with real-valued random functions. Assumption 10 is a bound on the covering number of the
object metric space and is satisfied by common instances for random objects that include the
examples that were discussed at the end of Section 3.2.

We write ω.·/ for Ω-valued functions [0, 1]→Ω and define

Vn.ω, s/= 1
n

n∑
i=1

[d2{Xi.s/, ω.s/}−d2{Xi.s/, μ⊕.s/}],

V.ω, s/=E[d2{X.s/, ω.s/}−d2{X.s/, μ⊕.s/}]:

Here μ̂⊕.·/ is the minimizer of Vn.ω, s/ and μ⊕.·/ is the minimizer of V.ω, s/. We refer to μ̂⊕.·/,
μ⊕.·/ and ω.·/ as μ̂⊕, μ⊕ and ω in what follows. To derive the rate of convergence of μ̂⊕, we
first obtain a bound for E{sups∈[0,1] supd∞.ω,μ⊕/<δ |Vn.ω, s/ − V.ω, s/|} for small δ > 0, where
d∞.ω, μ⊕/= sups∈[0,1] d{ω.s/, μ⊕.s/}. For this, we define function classes

Fδ ={fω,s.x/=d2{x.s/, ω.s/}−d2{x.s/, μ⊕.s/} : s∈ [0, 1], d∞.ω, μ⊕/< δ}: .13/

It is easy to see that an envelope function for this class is the constant function F.x/=2Mδ,
where M is the diameter of Ω. The L2-norm of this envelope function is ‖F‖2 =2Mδ. By theorem
2.14.2 of van der Vaart and Wellner (1996) we have

E

{
sup

s∈[0,1]
sup

d∞.ω,μ⊕/<δ
|Vn.ω, s/−V.ω, s/|

}
� 2Mδ J[]{1, Fδ, L2.P/}√

n
, .14/

where J[]{1, Fδ, L2.P/} is the bracketing integral of the function class Fδ:

J[]{1, Fδ, L2.P/}=
∫ 1

0

√
.1+ log[N{"‖F‖2, Fδ, L2.P/}]/d":

Here N{"‖F‖2, Fδ, L2.P/} is the minimum number of balls of radius "‖F‖2 required to cover
the function class Fδ under the L2.P/ norm. Lemma 1 provides the behaviour of the bracketing
integral of the function class Fδ: a key step for the proof of theorem 3.

Lemma 1. Under assumptions 4, 9 and 10, it holds for the function class Fδ as defined in
expression (13) that J[]{1, Fδ, L2.P/}=O{√

log.1=δ/} as δ →0.

Theorem 3. Under assumptions 3, 4 and 8–11,

sup
s∈[0,1]

d{μ̂⊕.s/, μ⊕.s/}=OP

[{√
log .n/

n

}1=β2
]
:

Setting D̂i.t/ = d{Xi.t/, μ̂⊕.t/}, an application is the convergence of the estimated Fréchet
scores
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β̂ik =
∫ 1

0
D̂i.t/φ̂k.t/dt: .15/

Corollary 2. Under assumptions 3–5 and 8–11,

|β̂ik −βik|=OP

[
n−1=2 +

{√
log .n/

n

}1=β2
]
:

Following the widely adopted convention, we assume throughout that true and estimated
eigenfunctions are aligned in the sense that 〈φ̂j, φj〉�0, as the scores are identifiable only up to
a change in sign.

5. Simulations

We illustrate the utility of the proposed methods through simulations for two settings. In the
first setting, the space Ω consists of univariate probability distributions equipped with the 2-
Wasserstein metric and, in the second setting, Ω consists of networks with fixed number of
nodes, represented as graph adjacency matrices and equipped with the Frobenius metric.

5.1. Time-varying probability distributions
We generated random samples of sizes n = 25, 50, 100 of ‘distribution’-valued curves on the
domain [0, 1], where, for each t ∈ [0, 1], Xi.t/ is a normal distribution with mean μi.t/ and
variance σ2

i .t/ with

μi.t/=1+Uiφ1.t/+Viφ3.t/, Ui ∼N.0, 12/, Vi ∼N.0, 1/,

σi.t/=3+Wiφ2.t/+Ziφ3.t/, Wi ∼√
72U.0, 1/, Zi ∼√

9U.0, 1/,

with φ1.t/ = .t2 − 0:5/=0:3416, φ2.t/ = √
3t and φ3.t/ = .t3 − 0:3571t2 − 0:6t + 0:1786/=0:0895,

where φ1, φ2 and φ3 are orthonormal on [0, 1]. We use the 2-Wasserstein metric for the distri-
bution space Ω. For these specifications, the metric autocovariance function is

C.s, t/=12φ1.s/φ1.t/+6φ2.s/φ2.t/+1:75φ3.s/φ3.t/, .16/

and φ1.·/, φ2.·/ and φ3.·/ are the first three eigenfunctions.
We applied the proposed method to estimate the metric autocovariance operator to the sim-

ulated data and obtained its eigenvalues and eigenfunctions. Denoting the estimated metric
autocovariance surface and the estimated jth eigenvalue and eigenfunction obtained at the kth
simulation run respectively by Ĉk.s, t/ λ̂j,k and φ̂j,k, we computed mean integrated squared
errors (MISE)

MISE.C/= 1
100

100∑
k=1

∫ 1

0

∫ 1

0
{Ĉk.s, t/−C.s, t/}2dsdt,

MISE.φj/= 1
100

100∑
k=1

∫ 1

0
{φ̂j,k.s/−φj.s/}2ds,

MISE.λj/= 1
100

100∑
k=1

.λ̂j,k −λj/2:
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Fig. 1 shows the true and estimated metric autocovariance surfaces and their eigenfunctions for
one randomly chosen simulation run for n=25 and n=100. We find that the method proposed
has negligible bias as the sample size increases. The MISEs are reported in Table 1 and are seen
to decrease with increasing sample sizes.

To illustrate the nature of the simulated random density trajectories, four density-valued
random functions that are part of a sample of density-valued random functions as generated
in one Monte Carlo run are displayed in Fig. 2, reflecting variation in means and variances of
the Gaussian distributions as a function of time for the four selected subjects. The estimated
object FPCs, i.e. the Fréchet integrals of the object curves along the first two eigenfunctions for
a Monte Carlo run are in Fig. 3 for sample size 50. Here the first object FPCs reflect variation
in location of the distributions and the second object FPCs variation in the variance of the
distributions, which is what we expect in view of how these data were generated. The object
FPCs are found to be useful for discovering the underlying modes of variation for distributions
as functional random objects.

5.2. Time-varying networks
In each iteration, we generated random samples of sizes n=25, 50, 100 of time-varying random
networks with 10 nodes each in the time interval [0, 1]. For generating the edge weights, we
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Fig. 1. (a) True and (c) .n D 25/, (d) .n D 100/ estimated metric autocovariance contour plots (10) for
simulation with distributions as functional random objects: (b) , , , first eigenfunction;

, , , second eigenfunction; , , , third eigenfunction, depicting true
( , , ) and estimated ( , , , n D 25; , , , n D 100)
eigenfunctions
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Table 1. MISEs for the estimators of the metric autocovariance kernel C
and the eigenfunctions φ1 and φ2 in dependence on sample size when the
functional random objects are distributions

n C φ1 φ2 φ3 λ1 λ2 λ3

25 12.2709 1.2841 1.5351 1.5202 10.8634 7.8471 3.5798
50 8.6598 0.0504 0.0201 0.0030 0.9748 0.6482 0.3680

100 4.0697 0.0158 0.0084 0.0047 0.1239 0.0607 0.0314

Fig. 2. Four randomly chosen observations of density-valued trajectories, selected from the sample of
distributions generated by one of the Monte Carlo runs: the densities are plotted as a function of time

followed the model that is described below. We assumed that the network has two communities:
the first five nodes belonging to one community and the second five nodes to the other. For each
fixed time t, the edge weights within each community and also those between the communities
are the same, where the latter are smaller than the within-community edge weights. Formally,
if p1,i.t/, p2,i.t/ and p12,i.t/ denote the edge weight at time t ∈ [0, 1] for the first community, the
second community and between communities, for the ith network-valued curve we generated

p1,i.t/=0:5+Uiφ1.t/+Viφ3.t/,

p2,i.t/=0:5+Wiφ2.t/+Ziφ3.t/,

p12,i.t/=0:1:

⎫⎪⎬
⎪⎭ .17/

Here the Ui, Vi, Wi and Zi were generated from the uniform distributions U.0, 0:4/, U.0, 0:1/,
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Fig. 3. Estimated Fréchet integrals (11) for the first ( ) and second ( ) eigenfunction for the
sample elements, for simulated time-varying probability distributions

Table 2. MISEs for the estimators of the metric autocovariance kernel
C and eigenfunctions–eigenvalues φj ,λj , j D 1, 2, 3, in dependence on
sample size for samples of functional random objects that correspond to
time-varying networks

n C φ1 φ2 φ3 λ1 λ2 λ3

25 0.0039 0.0039 0.0017 0.0007 0.0025 0.0010 0.0007
50 0.0017 0.0093 0.0046 0.0021 0.0007 0.0003 0.0001

100 0.0010 0.0130 0.0063 0.0028 0.0001 0.0001 0.0001

U.0, 0:3/ and U.0, 0:1/ respectively. The functions φ1.t/, φ2.t/ and φ3.t/ are orthonormal polyno-
mials derived from Jacobi polynomials P

.α,β/
n .x/ (Totik, 2005), which are classical orthogonal

polynomials for α, β > 1. They are orthogonal with respect to the basis .1 + x/β.1 − x/α on
[−1, 1]. With a suitable change of basis, one can obtain a version of the Jacobi polynomials on
[0, 1] which are orthonormal with respect to the weight function xβ.1−x/α on [0, 1]. We selected
φ1.t/, φ2.t/ and φ3.t/ as

φj.t/= P
.4,3/
2j .2t −1/t1:5.1− t/2

[
∫ 1

0{P
.4,3/
2j .2t −1/}2t1:5.1− t/2dt]1=2

for j =1, 2, 3:

The weighted networks are represented as graph adjacency matrices with the Frobenius metric.
Here the true metric autocovariance function is

C.s, t/=0:266φ1.s/φ1.t/+0:15φ2.s/φ2.t/+0:0417φ3.s/φ3.t/, .18/

and φ1.·/, φ2.·/ and φ3.·/ are the first three eigenfunctions.
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Fig. 4. (a) True and (c) .n D 25/, (d) .n D 100/ estimated metric autocovariance contour plots (10) for sim-
ulation with networks as functional random objects: (b) , , , first eigenfunction; ,

, , second eigenfunction; , , , third eigenfunction, depicting true ( ,
, ) and estimated ( , , , n D 25; , , , n D 100) eigenfunc-

tions

We estimated the metric autocovariance operator from the simulated data and obtained its
eigenfunctions for different sample sizes. Fig. 4 displays the true and estimated metric auto-
covariance surfaces and corresponding eigenfunctions for one randomly chosen simulation run
for n = 25 and n = 100. The MISEs were computed as described for the previous simulation
setting and are reported in Table 2. They decrease with increasing sample sizes. The method
proposed is seen to work very well.

The object FPCs were obtained by using Fréchet integrals (11). For visualization they are
presented as ‘networks.mov’ in the on-line supplementary materials. In the movie the leftmost
plot corresponds to Fréchet integrals for the first eigenfunction which, as expected because of
the true model, shows variation only in the edge weights of the first community. The middle plot
corresponds to Fréchet integrals for the second eigenfunction and indicates variation only in
the edge weights of the second community. The rightmost plot corresponds to Fréchet integrals
for the third eigenfunction where variation in both the first and the second community edge
weights can be discerned.

6. Data applications

6.1. Mortality data
The human mortality database provides life table data differentiated by gender and is avail-
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able from www.mortality.org. Currently the mortality database contains life table data
for 37 countries spanning over five decades. One can obtain histograms from life tables and
smooth these with local least squares to obtain estimated probability density functions for age
at death. We carried this out for the age interval [0, 80] years. The mortality data can then
be viewed as samples of time-varying univariate probability distributions, for a sample of 32
countries, where the time axis corresponds to calendar years between 1960 and 2009 and the
observation that is made at each calendar year for each country corresponds to the age-at-
death distribution for that year. We included the 32 countries which had complete records
over the entire calendar period. For each country and year, we used the Hades package that is
available from https://stat.ucdavis.edu/hades/ for smoothing the histograms and
used bandwidth=2 to obtain the age-at-death densities. For illustration, the time-varying age-
at-death distributions represented as density functions for the age interval [0, 80] years and
indexed by calendar year are displayed for four selected countries, the USA, Ukraine, Russia
and Portugal, for males in Fig. 5 and for females in Fig. 6.

Choosing the 2-Wasserstein metric for the probability distributions space, the estimated metric
autocovariance surfaces for males and females can be inspected in Fig. 7 and the eigenfunctions
of the corresponding autocovariance operators in Fig. 8. The autocovariance functions and
eigenfunctions indicate that there are systematic differences between males and females.

The resulting object FPCs, i.e. the Fréchet integrals, are illustrated in Fig. 9 for the first
two eigenfunctions. The object FPCs are distributions that are represented as densities for
males and females. The eastern European countries that are included in the database, namely

(a) (b)

(c) (d)

Fig. 5. Time-varying age-at-death density functions for the age interval [0, 80] years for males in (a) the
USA, (b) Ukraine, (c) Russia and (d) Portugal

http://www.mortality.org
https://stat.ucdavis.edu/hades/
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(a) (b)

(c) (d)

Fig. 6. Time-varying age-at-death density functions for the age interval [0, 80] years for females in (a) the
USA, (b) Ukraine, (c) Russia and (d) Portugal

Belarus, Bulgaria, the Czech Republic, Hungary, Latvia, Lithuania, Poland, Slovakia, Ukraine,
Russia and Estonia, underwent major political upheaval due to the end of Communist rule in
these regions during the period between the late 1980s and early 1990. This is reflected in clear
distinctions between the eastern European countries (red) and the rest (blue) in the Fréchet
integrals for the males but much less so for the females, which indicates that particularly male
mortality was affected by the political upheavals.

The sample Fréchet mean function at a particular calendar year corresponds to the sample
average of the quantile functions of the various countries at that calendar year and is illustrated in
the movies ‘mean males.mov’ and ‘mean females.mov’ in the on-line supplementary materials.
Fig. 10 illustrates the scalar FPCs, i.e. the Fréchet scores for the second eigenfunction plotted
against the Fréchet scores for the first eigenfunction for males and females. Russia is an outlier
for the first eigenfunction for males and Portugal is an outlier for the second eigenfunction, even
though it does not belong to the above list of eastern European countries. One could speculate
that this might be related to the fact that Portugal in 1974 moved to a democratic government
after four decades of authoritarian dictatorship. Figs 5 and 6 suggest higher infant mortality for
both males and females in Portugal during the earlier era. Another interesting observation is that
the order of outliers is reversed for females, as Russia turns out to be an outlier for females for
the second eigenfunction and Portugal for the first. The plots of the Fréchet scores against each
other indicate there are clear distinctions between the two groups of countries and Portugal.

6.2. Time-varying networks for NewYork taxi data
The New York City Taxi and Limousine Commission provides records on pick-up and drop-
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Fig. 7. Estimated metric autocovariance surfaces (10) for (a) males and (b) females for densities as func-
tional random objects, as obtained for the mortality data

off dates and times, pick-up and drop-off locations, trip distances, itemized fares, rate types,
payment types and driver-reported passenger counts for yellow and green taxis which are avail-
able from http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.
The time resolution of these data is of the order of seconds. Of interest are networks which rep-
resent how many people travelled between places of interest and the evolution of these networks
during a typical day. To study this, we constructed samples of time-varying networks where the
sample elements are the recordings for each day in the year 2016. Three days (January 23rd and
24th and March 13th) were excluded from the study because of incomplete records.

http://www.nyc.gov/html/tlc/html/about/trip record data.shtml
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Fig. 8. Eigenfunctions of the estimated metric autocovariance surface for (a) males ( , 78.32%;
, 16.06%; , 3.47%) and for (b) females ( , 65.17%; , 23.03%; , 7.92%) for

the mortality data

We focus on the Manhattan area, which has the highest traffic, and split the area according to
the provided location shape files into 10 zones, which form the regions of interest. Details about
the zones are in section S6.1 of the on-line supplement. Yellow taxis provide the predominant
taxi service in Manhattan. We divided each day into 20-min intervals, and for each interval
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Fig. 10. Fréchet scores (15) for the first and the second eigenfunctions plotted against each other for (a)
males and for (b) females for the mortality data: , Portugal; , eastern European countries, namely Belarus,
Bulgaria, the Czech Republic, Hungary, Latvia, Lithuania, Poland, Slovakia, Ukraine, Russia and Estonia; ,
the other countries

constructed a network with nodes corresponding to the 10 selected zones and edge weights
representing the number of people who travelled between the zones connecting the edges within
the 20-min interval. The edge weights were normalized by the maximum edge weight for each
day so that they lie in [0, 1]. We thus have a time-varying network for each of the 363 days in 2016
for which complete records are available, where the time points at which the network-valued
functions are evaluated correspond to the 20-min intervals of a 24-h day. The observations at
each time point correspond to a 10-dimensional graph adjacency matrix which characterizes
the network between the 10 zones of Manhattan for the particular 20-min interval.

We choose the Frobenius metric as metric between the graph adjacency matrices. The sam-
ple Fréchet mean function at a particular time point therefore corresponds to the sample av-
erage of the graph adjacency matrices of 363 networks corresponding to different days for
that time point. It is illustrated in the movie ‘mean NY.mov’ in the on-line supplementary
materials. Fig. 11 illustrates the estimated autocovariance function and associated eigenfunc-
tions. The plots of the Fréchet scores for the second, third and fourth eigenfunction against
the scores for the first eigenfunction can be found in Fig. 12, where the blue dots correspond
to Mondays–Thursdays, the green dots to Fridays and the red dots to Saturdays and Sun-
days. Several interesting patterns emerge: weekdays and weekends form clearly distinguish-
able clusters. Special holidays show similar patterns to those of weekends. Several outliers can
be identified by using the projection scores for the eigenfunctions, which turn out to be spe-
cial days: for the first eigenfunction, the outliers correspond to New Year’s day and Novem-
ber 6th, 2016, which is the day when daylight saving ends. March 13th, 2016, is the day on
which the daylight saving begins but was excluded as it did not have complete records. For
the second eigenfunction, an outlying point is Independence Day, July 4th, 2016, and, for the
third eigenfunction, February 14th, 2016, which is Valentine’s day. Another day that stands
out is September 18th, 2016. On further investigation it was found that between September
17th and 19th, 2016, three bombs exploded and several unexploded bombs were found in
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Fig. 11. (a) Estimated metric autocovariance surface (10) and (b) the corresponding eigenfunctions for
the New York taxi data, viewed as time-varying networks: , 44.7%; , 32.72%; , 10.56%;

, 8.42%

the New York metropolitan area (https://en.wikipedia.org/wiki/2016 New York
and New Jersey bombings).

We then repeated the analysis separately for three groups of days, namely the weekdays
Monday–Thursday (group 1), Fridays and weekends (group 2) and holidays (group 3). We
present the results in Fig. 17 (in the on-line supplement) and in several movies whose descriptions
can be found in sections S3 and S5 of the on-line supplement.

6.3. World trade data
The Center for International Data at the University of California, Davis (http://cid.econ.
ucdavis.edu/nberus.html), provides detailed documentation of United Nations trade

https://en.wikipedia.org/wiki/2016NewYorkandNewJerseybombings
https://en.wikipedia.org/wiki/2016NewYorkandNewJerseybombings
http://cid.econ.ucdavis.edu/nberus.html
http://cid.econ.ucdavis.edu/nberus.html
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Fig. 12. Fréchet scores (15) for (a) the second, (b) third and (c) fourth eigenfunctions on the y-axis plotted
against Fréchet scores for the first eigenfunction on the x-axis, for the New York taxi data: , Mondays–
Thursdays; , Fridays; , Saturdays and Sundays

data for the years 1962–2000. The data set, which is publicly available from www.nber.org,
contains bilateral trade data during this time period for several commodities and countries. We
studied the time period 1970–1999 for 46 actively trading countries and the 26 most common
types of commodity. The list of chosen countries and commodities can be found in section S6.2
of the on-line supplement. For each country, commodity and year, we represent current trade
as the ratio of the amount of total trade, i.e. import–export value (in thousands of US dollars),
to the amount of total trade recorded for the same commodity and country in the year 2000,
yielding a 26-dimensional vector of trade ratios.

Viewing the countries as sampling units, we obtain for each country and calendar year t

http://www.nber.org
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Fig. 13. (a) Estimated metric autocovariance surface and (b) corresponding first four eigenfunctions for the
trade data: , 47.95%; , 20.67%; , 15.64%; , 6.79%

a .26 × 26/-dimensional raw covariance matrix of commodities trade ratios as Σ̃.t/ = .Q.t/ −
Q̄.t//.Q.t/ − Q̄.t//T, where Q.t/ is the country-specific 26-dimensional vector of commodities
trade ratios for year t and the mean vector Q̄ is obtained as a cross-sectional average over all 46
countries. These raw time-varying raw covariances were then smoothed by using local Fréchet
regression with a Gaussian kernel (Petersen and Müller, 2019b; Petersen et al., 2019) to obtain
samples of smooth time-varying 26-dimensional covariance matrices between the components
of commodities trade for each of the 46 countries over the time period 1970–2000, yielding
time-varying covariance matrices over the time period 1970–2000 as functional random objects.

When adopting the Frobenius metric, the sample Fréchet mean function at calendar year t

corresponds to the sample average of the smoothed covariance across 46 countries for year t. Fig.
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Fig. 14. Fréchet scores for various eigenfunctions plotted against each other for the trade data

13(a) illustrates the estimated metric autocovariance function and Fig. 13(b) its eigenfunctions.
The metric autocovariance and its eigenfunctions provide insights about world trade patterns
over the time period 1970–1999. The first eigenfunction represents increased variability due
to overall expansion in world trade over the years from 1970 to 1999. The slope of the first
eigenfunction is more gradual before 1985 but increases sharply starting from 1985, stagnates a
little around 1990 and then again picks up. This can be connected to the boom in world trade
towards the last decade of the new millennium. The second eigenfunction corresponds to a
contrast before 1990 and after 1990. The peak in the second eigenfunction between 1980 and 1985
could be related to a major economic downturn caused by recession affecting several countries in
the data set during the early 1980s. The recession began in the USA in 1981 and continued until
1982 and affected many of the developed western countries. The third eigenfunction captures
effects of the early 1990s recession, which compared with the 1980s recession was much milder.

In Fig. 14, the Fréchet scores for the first four eigenfunctions are plotted against each other.
Thailand and Egypt have high Fréchet scores for the first eigenfunction and Saudi Arabia ranks
the highest for the second eigenfunction. Chile, Israel, Hong Kong and Bulgaria turn out to
figure prominently in the third eigenfunction. Further visualization can be found in section
S4 of the on-line supplement, including a movie that is described in section S5 of the on-line
supplement that demonstrates the object FPCs.

7. Discussion

We propose an extension of functional data methods to the case of functional random objects.
The basis of our approach is metric covariance: a novel covariance measure for paired metric-
space-valued data. Eigenfunctions of the metric covariance operator for time-varying object
data aid in creating a version of object FPCA, where the object FPCs in the metric space Ω are
obtained as Fréchet integrals, which are a general and versatile concept. Alternatively, compo-
nents of variation can be quantified by Fréchet scores, which are real numbers. For the precursor
problem, where we have non-functional time-varying object data, i.e. we have observations for
just one random object function over time, methods for metric-space-valued regression have
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been considered previously (Steinke et al., 2010; Faraway, 2014; Petersen and Müller, 2019b),
often under the special assumption that the regression responses are on a Riemannian manifold
(Shi et al., 2009; Fletcher, 2013; Hinkle et al., 2012; Su et al., 2012; Yuan et al., 2012; Cornea
et al., 2017). However, the more general object function case, which is characterized by samples
of random functions that are object valued, is considerably more challenging, as the absence of
a linear structure in the object space both globally and locally imposes serious limitations on
the methods that can be applied.

The tools that we propose here for functional random objects, namely metric covariance, the
metric autocovariance operator and its eigenfunctions, the Fréchet integrals and the Fréchet
scores, make it possible to obtain compact summaries, visualizations and interpretations of
the observed samples of time-varying object data that in themselves are highly complex and
difficult to quantify. These tools can provide insights into the patterns of variability of the
object trajectories, as we demonstrated in the simulations and data examples. The quantification
of functional random objects can also be used for other tasks. For example the object FPCs
that we introduce reside in the object space and can serve as responses for a regression model,
where predictors are Euclidean vectors and responses are random object trajectories, which are
summarized by these object FPCs. Implementing such a regression approach is analogous to the
principal component approach for function-to-function regression (Yao et al., 2005b). Various
regression models can then be implemented through Fréchet regression (Petersen and Müller,
2019b). For the case where functional random objects feature as predictors in a regression setting,
one can employ the vector of Fréchet scores that summarize each random object trajectory as
predictors. The ensuing regression, classification and clustering models will be interesting topics
for future research.

A core challenge that one faces when modelling and analysing samples of random object
trajectories is that, in contrast with the situation for real-valued processes, we cannot expect to
represent object-valued processes in terms of an analogue to the Karhunen–Loève expansion,
because of the lack of a linear structure in the object space Ω. In some special cases such
expansions are possible, e.g. through a transformation method, whenever random objects can
be transformed to a linear space, as exemplified for the case of objects that are probability
distributions (Petersen and Müller, 2016b) or for the case of Riemannian manifold-valued
objects (Dai and Müller, 2018). Apart from such special cases, it is an open problem whether
more general useful representations of functional random objects can be found. Another open
problem is inference for such data, e.g. comparing two groups or testing for structural features
of autocovariance. Here the metric autocovariance operator that we introduce in this paper
and also the Fréchet mean function could prove useful for the extension of tests that have been
considered for real-valued functional data (for some recent examples, see Aston et al. (2017),
Constantinou et al. (2017), Chen and Lynch (2018) and Choi and Reimherr (2018)). These and
many other open problems in this area indicate that there is ample potential for future research.
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Petersen, A. and Müller, H.-G. (2016a) Fréchet integration and adaptive metric selection for interpretable covari-
ances of multivariate functional data. Biometrika, 103, 103–120.

Petersen, A. and Müller, H.-G. (2016b) Functional data analysis for density functions by transformation to a
Hilbert space. Ann. Statist., 44, 183–218.

Petersen, A. and Müller, H.-G. (2019a) Wasserstein covariance for multiple random densities. Biometrika, to be
published.
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Discussion on the paper by Dubey and Müller

Shahin Tavakoli (University of Warwick, Coventry)

Overview
I congratulate Dr Dubey and Professor Müller for their inspiring and thought-provoking paper. The paper
considers time-varying random objects, which fall into the remit of functional data analysis (FDA). FDA
is interested in the analysis of data points that are complex, such as curves, images, shapes, trees, movies,
spectra, sounds or covariance matrices or operators (e.g. Lu et al. (2014)). The space Ω (following the
paper’s notation) in which such data points lie falls (roughly) into four categories.

(a) Ω is a (separable) Hilbert space: distances between points, moving along specific directions and
inner products are defined globally.

(b) Ω is a connected Riemannian manifold: distances between points are defined globally, but moving
along specific directions and inner products are defined only locally.

(c) Ω is a Banach space: distances between points and moving along a specific direction are defined
globally, but there is no inner product.

(d) Ω is a metric space: only distances between points are defined.

The backbone of FDA is functional principal component analysis (FPCA) (Hsing and Eubank, 2015),
which is analogous to principal component (PC) analysis: if X∈H is a random element of a real Hilbert
space H with inner product ‘〈·, ·〉’, norm ‘‖ · ‖’, E‖X‖2 < ∞, and, assuming that E.X/ = 0 for simplicity,
FPCA solves the following iterative problem. For k =1, 2, : : : , solve

vk ∈arg max
v∈H :‖v‖=1

var.〈v, X〉/ .19/

such that cov.〈vk, X〉, 〈vj , X〉/=0, j =1, : : : , k −1, .20/

where the covariance constraint is omitted for k = 1. The vks are in the same space as X .vk ∈ H/ and
are called PC loadings hereafter. The PC scores ξk =〈vkX〉, which are sometimes just called PCs or just
scores, are real valued. Defining u ⊗ v by .u ⊗ v/f =〈f , v〉u, for u, v, f ∈ H , letting C = E[X ⊗ X] be the
covariance operator of X , and writing its spectral decomposition as C =Σk�1λkϕk ⊗ϕk, where the ϕks
are orthonormal eigenvectors of C, with associated eigenvalues λ1 �λ2 � : : :�0, a standard result (Hsing
and Eubank, 2015) is that the PC loadings satisfy vk =ϕk, ∀ k: Furthermore,

X= ∑
k�1

ξkϕk, .21/

with convergence in expected squared norm. Keeping only the first K terms in the sum in equation (21)
yields ΣK

k=1ξkϕk, which is the solution to the problem of finding a subspace of dimension K onto which
the orthogonal projection of X has maximal expected squared norm, or the best approximation of X in
expected squared norm. An important special case is H =L2.[0, 1], R/, the Hilbert space of square inte-
grable functions on [0, 1], and X.·/ ∈ L2.[0, 1], R/ is mean square continuous (continuity is key here: this
assumption seems to have been omitted in the paper), then equation (21) and the spectral decomposition of
C hold with stronger conditions (e.g. t �→ϕk.t/s are continuous), and they are called the Karhunen–Loève
expansion of X and Mercer’s theorem respectively. FPCA is popular because the PC scores can be plotted
(e.g. pairs plots) for exploratory data analysis, and the PC loadings provide interpretation of PC scores
(or of the modes of variations of X ), and typically X≈ΣK

k=1ξkϕk is very good for K =2, 3.
In all of the data categories (a)–(d) mentioned above, we can compute distances between any two points.

If ‘moving along a specific direction’ and inner products are (locally) defined, then we can perform (lo-
cal) FPCA. However, in the absence of an inner product, FPCA is not an option, as it hinges on linear

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Online supplement for “Functional models for time-varying random objects”’.
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projections. Even if we are given ϕks, equation (21) is meaningless if moving along a direction is not defined.
Hence, for data points in a general metric space, it is not clear how to obtain PC scores, nor what ‘modes
of variations’ means.

The major contribution of the paper is to propose an answer to these problems if data points are time-
varying random objects, i.e. X.t/∈Ω for t ∈ [0, 1], where .Ω, d/ is a bounded metric space. To construct an
alternative to FPCA, which hinges on the definition of covariance (which is not available in this set-up), the
key observation of the paper is that, for random variables U, V ∈R (and U ′, V ′ independent and identically
distributed copies),

cov.U, V/=E[.U −E[U]/.V −E[V ]/]
= 1

4 E[d2
E.U, V ′/+d2

E.U ′, V/−2d2
E.U, V/],

where dE.U, V/ = |U − V |. Based on this, if U, V are a random object in metric space (Ω, d), the paper
introduces the metric covariance covΩ.U, V/ between U and V , defined as

covΩ.U, V/ := 1
4 E[d2.U, V ′/+d2.U ′, V/−2d2.U, V/],

and defines the metric autocovariance kernel c.s, t/ := covΩ{X.s/, X.t/} ∈ R, which summarizes the co-
variations of X.·/. This kernel is symmetric but not non-negative definite (unlike ‘standard’ covariance
kernels); however, if the metric (Ω, d) is of negative type (see the definition in the paper), then there is an
abstract Hilbert space (H , 〈·〉) and an injective mapping h :Ω→H such that

d.U, V/=〈h.U/−h.V/, h.U/−h.V/〉;
hence covΩ.U, V/ = E[〈h.U/ − E[h.U/], h.V/ − E[h.V/]〉], which implies that c.s, t/ is non-negative defi-
nite. Mercer’s theorem is now in force provided that c.s, t/ is continuous, and the eigenfunction φk.·/ ∈
L2.[0, 1], R/ of the integral operator induced by c.·, ·/ is continuous, and they can be interpreted as the
modes of variation of X. A decomposition such as equation (21) is still not possible (and note that φk is
not a function [0, 1]→Ω), but the paper proposes two versions of PC scores.

(a) Object FPCs: summarize X.·/ by ψk
⊕ ∈Ω, k ∈{1, : : : , K} (scores in the metric space Ω).

(b) Fréchet scores: summarize X.·/ by βk ∈R, k ∈{1, : : : , K} (scores are real valued).

Typically one hopes that K =2, 3 provides reasonable summaries of X. These hinge on computing Fréchet
integrals and Fréchet means, which are minimizers of some functional (described in the paper). This
requires that Ω is a complete metric space (an assumption that seems to have been omitted in the paper).
These new ‘scores’ enable summarizing each time-varying object by a few objects FPCs (in Ω), or by a few
Fréchet scores (in R), which helps exploratory analysis. The φks, object FPCs and Fréchet scores are, in
my opinion, the major contribution of the paper. Sample versions of them are proposed, and are backed
up with consistency results.

Some critical thoughts
Going back to the second page of the paper, it is written that

‘We aim here at identifying dominant directions of variation ... where the random objects are indexed
by time and in a general metric space’.

So the goal was

(a) to deal with general metric spaces and
(b) to obtain dominant modes of variation (which hinges on measuring co-variations and maximum

variations).

However, all the examples that were considered in the paper (Ω is a space of densities, networks or
covariances) have a structure that is much richer than a metric space. If only a metric is available, covΩ.s, t/
and its eigenfunctions can be computed; however, object FPCs or Fréchet scores will not be (easily)
computable because they require solving minimization problems in the metric space Ω.

Regarding (b), note crucially that, for random elements U, V ∈H with finite expected square norm,

covΩ.U, V/=E[〈U −E[U], V −E[V ]〉]= tr{cov.U, V/} �= cov.U, V/,
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where cov.U, V/ is the cross-covariance operator between U and V (a trace class operator on H). Although
the trace is a good measure of magnitude for self-adjoint non-negative definite operators, it is not a good
measure for general operators. Here is a toy example to illustrate this: let U.t/∈R, t ∈ [0, 1

2 ], be random
with mean 0 and cov{U.t/, U.t/}=1, and define

X.t/=

{(
U.t/

0

)
, t ∈ [0, 1

2 ],
(

0
U.t − 1

2 /

)
, t ∈ . 1

2 , 1]:

We have that covΩ{X.t/, X.t + 1
2 /}=0 for t ∈ [0, 1

2 ], but the true covariance matrix is

cov{X.t/, X.t + 1
2 /}=

(
0 1
1 0

)

and is non-zero. Hence metric covariance fails to measure the perfect linear association between X.t/ and
X.t + 1

2 /.
Let us now compare the usual PC loading in the case where Ω= H , a separable Hilbert space. Then

X : [0, 1]→H , assuming that
∫ 1

0 E‖X.t/‖2dt <∞ and glossing over measurability issues and other techni-
calities, the first PC loading of FPCA is the H-valued function ϕ : [0, 1] → H with

∫ 1
0 ‖ϕ.t/‖2dt = 1 that

maximizes

var.〈ϕ, X〉/=
∫ 1

0
〈cov{X.s/, X.t/}︸ ︷︷ ︸

operator on H

ϕ.t/, ϕ.s/〉ds dt,

where we emphasize that H can be any separable Hilbert space, and cov{X.s/, X.t/} is an operator on H
for each fixed s, t ∈ [0, 1].

The first eigenfunction of the metric autocovariance is the function φ : [0, 1]→R with
∫ 1

0 φ2.t/dt =1 that
maximizes ∫

c.s, t/φ.s/φ.t/ds dt =
∫

φ.s/φ.t/tr[cov{X.s/, X.t/}]ds dt:

So, unless H =R, the variance maximization interpretation of FPCA is lost with object FPCA.
Let us now look at the Fréchet scores for the case Ω=R. We directly obtain

βk :=
∫

d{X.t/, μ⊕.t/}φk.t/ dt =
∫

|X.t/−μ.t/|φk.t/ dt;

hence Fréchet scores are not directly comparable with usual PC scores if X∈L2.[0, 1], R/.
Having said that, the methods that are proposed in the paper are universally applicable off-the-shelf

methods, without the need to think about tailoring FPCA to each specific Ω.

Possible extensions
I propose two suggestions for extensions in addition to those mentioned in the paper.

(a) t ∈ [0, 1] could be generalized to t ∈ E. For instance, we could have E = Great Britain, X.t/ is a
covariance matrix at location t ∈E and E is equipped with a non-Euclidean metric, as in Tavakoli
et al. (2019).

(b) The implicit injection h : Ω → H into an abstract Hilbert space H to work with full covariance
operator C :=E[{h.U/−E[h.U/]}⊗{h.V/−E[h.V/]}] on H , which is related to the metric covariance
by

covΩ.U, V/= tr.C/:

It is, however, unclear how to work with C since h is defined only implicitly.
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To conclude, I believe that this is a great paper: it proposes novel and universally applicable approaches
for exploratory data analysis for cases where FPCA is not directly applicable. It is an inspiring paper, and
I am glad to propose the vote of thanks.

Dino Sejdinovic (University of Oxford)
I congratulate Dubey and Müller on several substantial conceptual and theoretical contributions which
promise to lead to a widely applicable methodology. One of them is a new association measure between
paired random objects in a metric space, termed metric covariance. I shall focus my discussion on this
notion and on its relationship with other similar concepts which have previously appeared in the literature,
including distance covariance (Székely et al., 2007, 2009; Lyons, 2013) as well as its generalizations which
rely on the formalism of reproducing kernel Hilbert spaces (RKHSs) (Sejdinovic et al., 2013).

If (Ω, d) is a metric space such that d2 is of negative type, then metric covariance takes the form

covΩ.X, Y/= 1
4 EXY [EX′Y ′{d2.X, Y ′/+d2.X′, Y/−2d2.X, Y/}]:

A negative type of d2 implies that we can find a Hilbert space H and a feature map φ :Ω→H such that

d2.X, Y/=‖φ.X/−φ.Y/‖2
H,

and hence

covΩ.X, Y/=EXY [〈φ.X/−EX{φ.X/}, φ.Y/−EY{φ.Y/}〉H]
=EXY{〈φ.X/, φ.Y/〉H}−EXY ′{〈φ.x/, φ.Y ′/〉H},

corresponding to the discrepancy between expected inner products of features of X and Y under the joint
and under the product of the marginals, measuring whether X and Y are on average more similar (as
measured by feature maps) in the coupled or in the uncoupled regime. Importantly, metric covariance can
take both positive and negative values.

In contrast, distance covariance takes the form

Ξ.X, Y/=EXY [EX′Y ′ρX {.X, X′/ρY.Y , Y ′/}]
+EX[EX′{ρX .X, X′/}]EY [E′

Y{ρY.Y , Y ′/}]
−2EXY{EX′ρX .X, X′/EY ′ρY.Y , Y ′/},

where (X , ρX ) and (Y , ρY ) are two semimetric spaces of negative type (we allow random objects X and
Y to take values in different domains) and semimetrics ρX and ρY take the role of d2. This expression
appears less intuitive and without an obvious link to metric covariance.

An alternative way to introduce distance covariance, however, is through the lens of RKHSs. Consider
random objects X and Y taking values on X and Y respectively, and any two positive definite kernel
functions k : X × X → R and l : Y × Y → R which are associated with RKHSs Hk and Hl. Define the
cross-covariance operator ΣYX :Hk →Hl such that

〈g, ΣYXf 〉Hl
= cov{f.X/, g.Y/}, ∀ f ∈Hk, g ∈Hl:

The Hilbert–Schmidt independence criterion (HSIC), which is a notion (up to a constant factor) that is
equivalent to distance covariance (Sejdinovic, 2013), is given by

Ξ.X, Y/=‖ΣYX‖2
HS, .22/

i.e. it is simply the squared Hilbert–Schmidt norm of feature space cross-covariance. For a broad class
of choices of k and l—in particular, characteristic kernels (Sriperumbudur et al., 2011)—the HSIC fully
characterizes statistical dependence. These kernels include a widely used Gaussian kernel k.x, x′/ =
exp.−{1=.2σ2/}‖x − x′‖2

2/ and the Matérn family. Distance covariance can be recovered from the HSIC
by considering ‘distance’

d2
X .x, x′/=k.x, x/+k.x′, x′/−2k.x, x′/ .23/

on X and similarly for Y . Conversely, given any d2 of negative type, we can construct the corresponding
kernel
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k.x, x′/= 1
2 {d2.x, w/+d2.x′, w/−d2.x, x′/} .24/

where w is an arbitrary anchor point.
Is there also an RKHS interpretation of metric covariance? Recall that the domains of X and Y in this

context coincide and are given by a metric space (Ω, d) with d2 of negative type. We associate with it a
positive definite kernel in equation (24) with RKHS Hk and define the cross-covariance operator ΣYX. We
claim that covΩ.X, Y/= tr.ΣYX/. Indeed,

tr.ΣYX/= tr[EXY{k.·, X/}⊗k.·, Y/−EXY{k.·, X/⊗k.·, Y ′/}]

=EXY [tr{k.·, X/⊗k.·, Y/}]−EXY ′ [tr{k.·, X/⊗k.·, Y ′/}]

=EXY{〈k.·, X/, k.·, Y/〉Hk
}−EXY ′{〈k.·, X/, k.·, Y ′/〉Hk

}
=EXY{k.X, Y/}−EXY ′{k.X, Y ′/}
= 1

2 [EXY ′{d2.X, Y ′/}−EXY{d2.X, Y/}]:

Recall that HSIC or distance covariance can be understood as

Ξ.X, Y/=‖ΣYX‖2
HS = tr.ΣYXΣXY /,

so indeed the two notions are closely related. To interpret the connection further, we can take a Mercer
basis {√

λjej}j∈J of Hk. Then

covΩ.X, Y/= ∑
j∈J

λj〈ej , ΣYXej〉Hk
= ∑

j∈J

λjcov{ej.X/, ej.Y/},

i.e. metric covariance considers how evaluations at the same basis function covary and it can be zero if
positive and negative covariances between basis function evaluations ‘cancel out’. In contrast, the HSIC
or distance covariance considers covariances of all pairs of basis function evaluations:

Ξ.X, Y/=∑
i∈J

∑
j∈J

λiλjcov{ei.X/, ej.Y/}2:

We shall now consider some cases where the metric covariance is zero even though the variables are
dependent. A straightforward example is to consider the case where there is dependence between X and
Y but their feature representations live in orthogonal subspaces, e.g. if we take a linear kernel on R2 and
X = .Z, 0/, Y = .0, Z/. A perhaps more interesting example, also in R2, is as follows: take Z ∼ Bern. 1

2 /,
and

X∼
{

N .[−1, 1], σ2I/, if Z =0,
N .[1, −1], σ2I/, if Z =1,

Y ∼
{

N .[−1, −1], σ2I/, if Z =0,
N .[1, 1], σ2I/, if Z =1:

We have here coupled the ‘mixing variable’ so that X1 and Y1 are positively correlated, whereas X2 and
Y2 are negatively correlated. It is readily shown, however, that ‖X − Y‖ =d ‖X − Y ′‖. Hence, metric co-
variance computed with any radial kernel, i.e. where k.x, y/ depends on x and y through ‖x − y‖ only,
which includes Gaussian and Matérn families known to be characteristic, will not be able to detect such
dependence between X and Y . To be able to detect dependence we would require looking into individual
dimensions, which may become impractical for higher dimensional problems.

In summary, although the authors demonstrate that distance covariance or the HSIC is not suitable
for use in the developed framework of object functional principal component analysis, it is worth noting
that metric covariance is a strictly weaker statistical dependence measure and it is possible that it misses
certain types of multivariate associations. For a generic choice of metric, the corresponding feature map
φ is defined implicitly and may not be straightforward to interpret whereas which forms of dependence
are captured by metric covariance does depend on the form of φ and hence on the associated kernel k.
Finally, we believe that the RKHS interpretation that is described here may give rise to different estimation
methods of metric covariance and to its novel uses.

The vote of thanks was passed by acclamation.



40 Discussion on the Paper by Dubey and Müller

Wicher Bergsma (London School of Economics and Political Science)
In an inspiring paper Dubey and Müller (DM) extend principal component analysis (PCA) to the case that
observations are metric-valued functions. As an alternative, we develop a kernel PCA (KPCA) (Schölkopf
et al., 1998) approach, which we show is closely related to the DM approach. Whereas kernel principal
components (KPCs) are simply defined, DM require added complexity in the form of ‘object FPCs’ and
‘Fréchet scores’.

Kernel principal component analysis
Suppose that observations X1, : : : , Xn take values in an arbitrary set X . Let H be a Hilbert space and
consider an embedding function e : X → H. KPCA is essentially PCA on the embedded observations
e.X1/, : : : , e.Xn/, whose sample covariance kernel is

C = 1
n

n∑
i=1

{e.Xi/− ē}⊗{e.Xi/− ē}∈H⊗H, .25/

where ē=n−1Σe.Xi/. With ϕk the kth eigenvector of C, the kth KPC of x∈X is

〈ϕk, e.x/〉H: .26/

The embedding function need not be computed explicitly as the KPCs of the observations are given by
the eigenvectors of the n×n kernel matrix with elements

KX .Xi, Xj/=〈e.Xi/− ē, e.Xj/− ē〉H:

Kernel principal component analysis for observations that are metric-valued functions
If .X , dX / is a metric space of negative type, an isometry e : X →H exists, and a corresponding unique
centred kernel

KX .x, x′/=〈e.x/− ē, e.x′/− ē〉H

= 1
2n2

n∑
i=1

n∑
j=1

{‖e.x/− e.Xi/‖2
H +‖e.x′/− e.Xj/‖H −‖e.x/− e.x′/‖2

H −‖e.Xi/
2 − e.Xj/‖2

H}

= 1
2n2

n∑
i=1

n∑
j=1

{d2
X .x, Xi/+d2

X .x′, Xj/−d2
X .x, x′/−d2

X .Xi, Xj/}:

Let .Ω, dΩ/ be a metric space of negative type and let X be the space of Ω-valued functions over an index
set T for which

d2
X .x, x′/=

∫
T

d2
Ω{x.t/, x′.t/}dt

is finite. Then .X , dX / is also of negative type, with corresponding kernel

KX .x, x′/= 1
2n2

n∑
i=1

n∑
j=1

{d2
X .x, Xi/+d2

X .x′, Xj/−d2
X .x, x′/−d2

X .Xi, Xj/}

=1
2

∫
T

[d2
Ω{x.t/, Xi.t/}+d2

Ω{x′.t/, Xj.t/}−d2
Ω{x.t/, x′.t/}−d2

Ω{Xi.t/, Xj.t/}]dt

=
∫

T
KΩ{x.t/, x′.t/}dt:

We reanalysed the mortality data (Human Mortality Database, 2019) using L2-distance between mor-
tality cumulative distribution functions. Fig. 15 shows the first two KPCs for both males and females
(explained variances around 40% and 12% respectively in both cases). The separation between eastern
European countries and others is clearer than in Fig. 10 of the authors’ paper, which displays Fréchet
scores.

Comparison between kernel principal component analysis and Dubey–Müller method
Let eΩ :Ω→HΩ be an isometry of .Ω, dΩ/ into a Hilbert space HΩ. Assume that H consists of HΩ-valued
functions over T and



Discussion on the Paper by Dubey and Müller 41

aus

aut

blr

bulg

belg

can

switz

cze
e–gmy

w–gmy

dnk

esp

est

fracnp

gbr

hun

irl

isl

ita

jpn
ltu

lux

latv
neth

nor

nzl

pol

port

slov

swe

ukr

usa

–0.3 –0.2 –0.1 0.0 0.1 0.2
–0.3

–0.2

–0.1

0.0

S
ec

on
d 

ke
rn

el
 p

rin
ci

pa
l c

om
po

ne
nt

First kernel principal component

First kernel principal component

S
ec

on
d 

ke
rn

el
 p

rin
ci

pa
l c

om
po

ne
nt

0.1

0.2

0.3

0.4

bulg: Eastern Europe
neth: other

(a)

(b)

aus

aut

blr

bulg

belg

can

cze

e–gmy

w–gmy

dnk espest

fin
gbr

hun

irl

isl

ita

jpn

ltu

lux

latv neth

nzl

pol

port

rus

slov

ukr

usa

–0.3 –0.2 –0.1 0.0 0.1 0.2

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4
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e.x/.t/= eΩ{x.t/}, ∀ t ∈T , x∈X :

Then C given by equation (25) is a kernel-valued kernel over T ×T , given for s, t ∈T by

C.s, t/= 1
n

n∑
i=1

{e.Xi/.s/− ē.s/}⊗{e.Xi/.t/− ē.t/}

= 1
n

n∑
i=1

[eΩ{Xi.s/}− ē.s/]⊗ [eΩ{Xi.t/}− ē.t/]:

Instead, the DM method is based on the metric covariance kernel CDM :T ×T →R:

CDM.s, t/= 1
n

n∑
i=1

〈eΩ{Xi.s/}− ē.s/, eΩ{Xi.t/}− ē.t/〉:

We immediately have

CDM.s, t/= tr{C.s, t/},

i.e. CDM entails some information loss relative to C.
The eigenvectors of C are in the ‘correct’ space of HΩ-valued functions over T and KPCs are naturally

defined by equation (26). However, the eigenvectors of CDM are in the ‘wrong’ space of real-valued functions
over T , and it is not obvious how metric-valued functional observations load on an eigenvector of CDM.
For this reason, DM needed to add some complexity with the new concepts named object FPCs and
Fréchet scores, which can be avoided with our approach.

Yoav Zemel (University of Cambridge)
I congratulate Dubey and Müller for their thought-provoking contribution. The problem that is considered
in this paper interweaves two challenging facets: firstly, the inherent infinite dimensionality of functional
data; secondly, the non-linearity of the underlying object space.

One aspect that distinguishes functional data is the possible effect of time warping. For example, in the
mortality data one clearly notices that the changes in the distribution are more rapid in Portugal than in
the USA, so it seems that each country has its own timescale. Ignoring this so-called phase variation of
the data is known to degrade the estimation of the covariance structure, and this may be the reason for
the multimodal nature of the covariance surface in Fig. 7.

Another issue that deserves attention is the problem of discrete measurements. In practice, the data
would only be observed on a grid, and some sort of smoothing needs to be performed, either at the level
of the curves themselves or through smoothing of the covariance operator. The latter approach seems
particularly appealing here, as the metric covariance can be estimated from the potentially sparse data.

I was also wondering about the negative-type assumption on the squared metric. For a given metric
(e.g. sphere, shape space or Wasserstein metric on R2), is there a recipe to check whether this assumption
holds? Some of the examples given on the seventh page are already Hilbertian, and the same is true for
the simulations and the data analysis. The authors also mention the Procrustes metric, which has an
interpretation of a Wasserstein distance in finite or infinite dimensions (Masarotto et al., 2019).

Another instance of a problem combining phase variation and discrete measurements on infinite di-
mensional and non-linear spaces is the registration of spatial point processes (Zemel and Panaretos, 2019).
The context is rather different, however: there, the data are elements on an infinite dimensional non-linear
space .Ω, d/, whereas in the present paper the data are functions from [0, 1] to the metric space .Ω, d/.

Lastly, I would like to point out that the abstract Hilbert space H is not latent: it is simply the reproducing
kernel Hilbert space of the kernel

1
2 {d2.x, w0/+d2.y, w0/−d2.x, y/}, x, y ∈Ω,

for some fixed w0 ∈Ω (Berg et al. (1984), page 84). One reason that the construction of Dubey and Müller is
neat is that, although H is not unique (it depends on the arbitrary w0), their definitions of metric covariance
and Fréchet scores are intrinsic to .Ω, d/ and do not depend on the embedding space.

Xiongtao Dai (Iowa State University, Ames)
Dubey and Müller should be congratulated for their timely contribution to the methodology for analysing
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time-varying object data. The proposed object-valued functional principal component analysis models are
commendable in their general applicability to metric spaces which may not even have a co-ordinate frame.
The main ingredient is a new metric covariance that measures the association between two random objects,
which furthers the concept of total variation (Mardia et al., 1979) and dynamic correlation (Dubin and
Müller, 2005) defined for Euclidean and Hilbert space-valued random elements. The proposed generalized
Fréchet integrals and Fréchet scores offer new perspectives for analysing time-varying random objects and
are distinct from the analogous versions in a classical functional principal component analysis even when
specialized to the case of Euclidean-valued functional data.

To illustrate the difference between the metric covariance and the Fréchet variance, consider the case
when Ω is a Riemannian manifold, e.g. the p-dimensional sphere Sp (Dai and Müller, 2018) with positive
curvature, regarded as a metric space with the geodesic distance d. Let U be a random object that takes
values in Ω= Sp, p � 2, and assume that the Fréchet mean μ= arg minω∈Ω E{d2.ω, U/} of U exists and
is unique. With an independent copy U ′ of U, the metric covariance covΩ.U, U/ = E{d2.U, U ′/}=2 �
E{d2.μ, U/}, where the rightmost term is referred to as the Fréchet variance (Dubey and Müller, 2019)
and the last inequality is due to the positive curvature of the sphere. The inequality is strict if U does not
concentrate on a great circle. The metric covariance may thus be interpreted as measuring the association
as seen from pairwise disparities, whereas the Fréchet variance measures the variation from the central μ.

For exploratory analysis, real-valued Fréchet scores are demonstrated to be useful in the application
to the mortality, taxi networks and world trade data. The Fréchet scores that are produced by projecting
the distance function from the object trajectory to the Fréchet mean trajectory on the eigenfunctions
summarize deviation in terms of distance from the mean. As there might be additional variation such as
rotation around the mean function that is not reflected in the distance to the centre, the Fréchet scores
could be complemented by, for example, the multi-dimensional scaling co-ordinates that are produced
with distance measure ρ.x, y/=∫ 1

0 d{x.t/, y.t/}dt between time-varying objects x, y : [0, 1]→Ω.

The following contributions were received in writing after the meeting.

Rajendra Bhansali (Imperial College London and University of Liverpool)
Dubey and Müller are to be congratulated on the originality of thinking shown in this impressive paper,
especially for combining novel mathematical techniques with pertinent real life data analysis. I have two
comments. It was interesting to see that, although the authors are dealing with highly non-Gaussian data,
they have introduced ‘linear’ notions such as the autocovariance function, albeit a ‘metric’ function. It
would be useful to have analogous, but ‘robust’ notions such as the median and upper and lower quartiles, as
applicable to the type of data that are considered in the paper. An example of a situation where such notions
are needed is given in Bhansali (1997), where the robustness of the auto-regressive spectral estimate for
linear processes with infinite variance is demonstrated. In the simulations reported there, the median, upper
and lower quartiles of the curves of the estimated spectra are shown. However, as such notions are not well
defined, the approach taken was simply to evaluate each relevant summary statistic pointwise, individually
at all frequencies, for which the spectra were estimated and then to draw a curve connecting these points.
An obvious difficulty with such an approach is that the ‘median’ curve, for example, may not actually
have been observed! Secondly, for the class of Gaussian stationary processes, the Hilbert space of random
variables is known to be isomorphic to the space of complex exponentials. Although this isomorphism does
not extend to the class of linear processes with infinite variance that was considered in Bhansali (1997), it
turns out that the standard Gaussian estimates, such as the auto-correlation function, may still be defined
for this class, as these estimates still reside on the space of complex exponentials. As a consequence, it is
possible to examine the behaviour of such estimates in the latter space of complex exponentials. Bhansali
(1988) showed, for example, that the standard Akaike information criterion provides a consistent estimator
of the order of a finite auto-regressive process with stable innovations. It would analogously be useful to
find a ‘convenient’ Hilbert space which is isomorphic to the Hilbert space that was introduced by the
authors in Section 2.

Pedro Delicado (Universitat Politècnica de Catalunya, Barcelona)
I congratulate Dubey and Müller for this magnificent paper. I am sure that the metric covariance they
define will have great influence in the future, as well as the object functional principal component analysis
derived from it.

Taking into account that multi-dimensional scaling (MDS) is a powerful tool to deal with random objects
in metric spaces (see, for example, Delicado (2011) and Boj et al. (2016)), reading Dubey and Müller’s
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paper suggested to me an MDS-based alternative approach to analyse time-varying random objects (not
so elegant as theirs!).

Let {Xi = .Xi.t//t∈[0,1] : i = 1, : : : , n}, be a sample. Assume that X1, : : : , Xn have been observed at the
same dense subset {t1, : : : , tm}⊂ [0, 1]. Let Xi.tj/, j =1, : : : , m, i=1, : : : , n, be the nm objects that we have
actually observed. Proceed as follows.

Step 1: compute MDS from the nm observed objects to obtain K principal directions. Let ξk
i .tj/ be the

score of the object Xi.tj/ at the kth principal direction. (In Chen et al. (2017) an analogous approach
was taken.)
Step 2: for k = 1, : : : , K, apply functional principal component analysis (FPCA) to {ξk

i = .ξk
i .t//t∈[0,1] :

i=1, : : : , n}, using the available observations ξk
i .tj/, J =1, : : : , m, i=1, : : : , n, to obtain eigenfunctions

ψk
h.t/, h=1, : : : , Hk.

My conjecture is that these eigenfunctions are related to those obtained following Dubey and Müller’s
methodology, as the following example indicates.

Time-varying normal distributions
Consider the example in Section 5.1 of the paper. The random objects Xi.t/ are univariate normal distri-
butions N{μi.t/, σ2

i .t/} and the 2-Wasserstein metric dW is used. It is known (Dowson and Landau, 1982;
Olkin and Pukelsheim, 1982) that

d2
W{N.μ1, σ2

1/, N.μ2, σ2
2/}= .μ1 −μ2/

2 + .σ1 −σ2/
2:

Therefore the nm×2 matrix with generic row .μi.tj/, σi.tj// is an MDS solution. So, step 1 leads to K =2,
ξ1

i .tj/=μi.tj/ and ξ2
i .tj/=σi.tj/. In step 2 the FPCA of ξ1

i .tj/=μi.tj/ reveals that, by the definition of μi.t/,
the principal functions are φ1.t/ and φ3.t/ (defined in the paper). Analogously, the principal functions
obtained by FPCA of ξ2

i .tj/=σi.tj/ are φ2.t/ and φ3.t/. So in this example we obtain the eigenfunctions
φ1.t/, φ2.t/ and φ3.t/ given by Dubey and Müller’s methodology.

Amira Elayouty, Marian Scott and Claire Miller (University of Glasgow)
The paper proposes a novel metric autocovariance function that can measure the association for paired
random object data lying in a metric space .Ω, d/, where Ω does not necessarily have a vector space or
manifold structure. The eigenfunctions of the linear operator associated with the autocovariance function
proposed are then used to obtain object functional principal components for Ω-valued functional data,
including time-varying probability distributions, covariance matrices and time dynamic networks. In the
context of high frequency environmental time series (Elayouty et al., 2016) functional principal components
have been used often to reduce the dimensionality of the data. These can be extended to dynamic functional
principal components introduced by Hörmann et al. (2015) and updated by Elayouty et al. (2018) for
non-stationary functional time series. These dynamic functional principal components are obtained in
the frequency domain, to account for the serial dependence between the functional data, through the
eigendecomposition of the spectral density function that contains full information on the autocovariance
functions at the different time lags. Elayouty et al. (2018) adapted them to allow smooth changes with the
changes in the autocovariance structure between the functional data.

The object functional principal components proposed by Dubey and Müller though they bring useful
insights about the structure of the underlying functional random objects may miss the time dependence
between those objects. This is because the autocovariance function proposed measures the association
between Ω-valued functional data only at lag 0, ignoring the cross-correlations at the different time lags.
Therefore, an extension of the proposed metric autocovariance function to accommodate the full infor-
mation on the autocovariances at the different time lags may prove useful.

Young Kyung Lee (Kangwon National University, Chuncheon) and Byeong U. Park (Seoul National
University)
The major hurdle in the analysis of functional data taking values in a general metric space is the lack
of vector operation. Dubey and Müller are to be congratulated on making a pioneering step forward
to solving the difficulty. They extend functional principal component analysis (FPCA) for real-valued
random functions to the case of functional random objects by introducing an autocovariance operator
acting on the space of real-valued functions. We wish to comment on the so-called metric autocovariance
operator on which the associated eigenfunctions and the functional principal components are based.

The extension of FPCA to Hilbert-space-valued functional data is quite straightforward. Let H be a
separable Hilbert space with an inner product ‘〈·, ·〉’ and the corresponding norm ‘‖ · ‖’. Let LH

2 denote
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the space of Hilbertian functions f : [0, 1]→H such that
∫ 1

0 ‖f.t/‖2dt <∞. We endow LH
2 with the inner

product 〈·, ·〉2 defined by 〈f , g〉2 = ∫ 1
0 〈.f.t/, g.t/〉dt. Assume that E.X/ = 0 for simplicity and E‖X‖2

2 =
E{

∫ 1
0 ‖X.t/‖2dt}<∞. Then, we may define a covariance operator CX : LH

2 →LH
2 by

CX.f/=E{〈X, f 〉2 �X.·/}=E

{∫ 1

0
〈X.t/, f.t/〉dt �X.·/

}
,

where ‘�’ is scalar multiplication for H. The operator CX is non-negative definite and admits an eigen-
decomposition and a Karhunen–Loève expansion. We note that the eigenfunctions of CX lie in the space
LH

2 where the data objects reside.
The above construction of CX relies on an inner product and vector operations. Dubey and Müller

present a thought-provoking approach to FPCA without making use of them to deal with general metric-
space-valued random functions. An immediate extension that comes to our minds is for multivariate
functional random objects X = .X1, : : : , Xd/ with each Xj being an Ωj-valued stochastic process and Ωj

having a metric dj . A direct application of TC to the induced metric d.X, Y/=Σd
j=1dj.Xj , Yj/ does not seem

to accommodate the cross-covariances covΩj ,Ωk
{Xj.s/, Xk.t/} for 1 � j �= k � d. Instead, the covariance

matrix C.s, t/ = .covΩj ,Ωk
{Xj.s/, Xk.t/}/ and the metric covariance operator TC : LRd

2 → LRd

2 defined by
.TCf/.s/=∫ 1

0 C.s, t/f.t/dt, f ∈LRd

2 , would work. Another possible, but much more difficult, extension that
arises in comparison with CX would be to design a covariance operator whose eigenfunctions reside in
the same space as the data objects. We wonder whether the existence of a Hilbert space H and a distance
preserving injective map ι :Ω→H is of any help in solving this challenging problem.

Jorge Mateu (University Jaume I, Castellón)
Now that we have already entered the era of ‘big data’, we can record such large amounts of information
that was basically impossible a few years ago. It is now common to observe complex data in a variety of
supports (thus many of them non-Euclidean, as stated by Dubey and Müller) in the form of temporal
evolution of images or networks. It is thus my pleasure to congratulate the authors on this interesting,
timely and certainly attractive paper full of ideas for the coming future. The statistical treatment and
analysis of complex data living on networks, for example, is necessary and essential in the field of data
science and data analytics. In particular, when we come into the field of spatial statistics we face problems
along the lines of what the authors have introduced in this paper. Among all the open ideas and problems
that this paper poses, I am particularly interested in, and focus the next comments on, problems related
to time-varying network data.

New technological advances in the field of urban planning science enable us to report trajectories of
people moving around the city in combination with trajectories of individual vehicles (taxis, as in the
example in the paper) and/or public transport. These trajectories live in a network support. which can
be considered a directed graph, and very well fit the methodological approach presented in the paper
as they can be considered time-varying random objects. We note that we can also treat trajectories as
random functions defining a functional mark over a spatial point pattern defined as the locations of
events at particular time instants (see Ghorbani et al. (2019)). Following Muller et al. (2019) we can use
a transform–transport metric that generalizes the Wasserstein metric to obtain barycentres for spatially
distributed point patterns, and it would be nice to compute the metric covariance under this new metric.

In this context, and in connection with the authors’ approach, it would be nice to develop Fréchet regres-
sion techniques where the responses can be barycentres of point patterns, or random object trajectories,
and also to perform analysis of variance where the entries come from random trajectories and the levels
of a potential factor could be human, public transport and private vehicles trajectories. Group testing and
inference in this new context would be a welcome contribution for modern statistical analysis.

Katie E. Severn, Ian L. Dryden and Simon P. Preston (University of Nottingham)
This interesting paper provides an approach to study covariance properties of general data objects and
includes several useful methodological and practical developments. In object-oriented data analysis (Wang
and Marron, 2007; Marron and Alonso, 2014) a first question to ask is what are the data objects? As a
focus we consider the New York City taxi network data. Should we consider the networks as points
on a manifold, or network-valued functions on a time interval or network-valued functions on a circle
representing a day, week or year? The representation of the data objects and the methods for analysis will
differ in each case. Second, what covariance model is appropriate for the data objects?

Methodology for the analysis of samples of networks as graph Laplacian manifold-valued data has
been developed by Severn et al. (2019) using Euclidean power metrics, which are of negative type, and
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a Procrustes metric. Estimation of extrinsic mean networks and tangent space covariance structure of
networks is carried out, together with inference for regression models and interpretation of network prin-
cipal components (PCs). The mean network of Severn et al. (2019) is a common mean μ (either extrinsic
or Fréchet) and the covariance structure is then estimated in the tangent space at μ. Another alternative
is to consider a time-varying mean function μ.t/ which one can estimate by using a Nadaraya–Watson
estimator (Severn, 2019) or a Riemannian smoothing spline (Kim et al., 2019) and unwrap and unroll the
data to a base tangent space.

If v is the pT -vector of p-dimensional tangent co-ordinates observed over T times, then some candidate
covariance models for v are

.a/ Ip ⊗ΣT ,

.b/Σp ⊗ IT ,

.c/Σp ⊗ΣT and

.d/ΣpT

where IM is the M ×M identity matrix, ΣM is an M ×M symmetric positive semidefinite covariance matrix
and ‘⊗’ is the Kronecker product. The eigenvectors of Σp are the network PCs, the eigenvectors of ΣT are
temporal PCs and the eigenvectors of ΣpT are network temporal PCs. The covariance structure implied
in the methods in Dubey and Müller’s paper is analogous to model (a). The uncorrected time model (b)
is that of Severn et al. (2019) and the factored PCs in model (c) can be estimated by using an alternating
algorithm (Dutilleul, 1999; Dryden et al., 2009, 2017). It would be interesting to fit models (a)–(d) to the
New York City taxi network data, and with different length time intervals, to examine the resulting cluster
analyses. Realistically we might expect different network covariance structures at different times, as in
model (d), and it would be good to explore this issue.

Han Lin Shang (Australian National University, Canberra)
This is a nicely written paper on an interesting and popular topic. Dubey and Müller are to be congratulated
on their achievement. Many powerful ideas are developed, but I shall comment on only the following aspect
of this work.

Random objects, such as density functions, often have a constrained integral and thus do not consti-
tute a vector space. Implementation of established functional modelling techniques, such as functional
principal component analysis, is therefore problematic for such non-linear data. In some special cases,
through a transformation method such as log-quantile transformation or compositional data analysis,
random objects can be transformed to linear space, as exemplified for the case of objects that are prob-
ability distributions (Petersen and Müller, 2016; Kokoszka et al., 2019). It seems natural not to perform
any transformation for modelling random objects. However, what could be the disadvantages of the trans-
formation methods?

Through the Wasserstein covariance, the authors quantify a covariance measure for random objects
and study functional principal component decomposition under Fréchet integrals. Other dimension re-
duction techniques, such as the maximum auto-correlation function, can be extended, and a finite sample
comparison may be desirable.

Throughout the paper, the authors consider the 2-Wasserstein distance with the usual Euclidean norm
as the distance function. Do the results hold for other norms, such as absolute and supremum norms?

In the human mortality data example, the authors consider age-at-death distributions for 32 countries.
The analysis was carried out for ages [0, 80] years. Using a histogram, the authors reconstruct a time
series of probability density functions. Instead of estimating probability density functions, the authors
may consider life table death counts for all available age groups. In the life table death counts, the age
interval is from 0 to 109 years in a single year of age, and the last age group from 110 years and older. The
life table death count at each year starts from customarily 100000 at infant age and ends at 0 at the last
age group 110 years and older. The data themselves naturally present a probability distribution function
without any smoothing.

It will, of course, be interesting to see whether these random thoughts could be implemented in practice
and, if yes, how good or bad they will perform.

Again, the authors are to be congratulated on such a thought-provoking paper.

Lingxuan Shao and Fang Yao (Peking University, Beijing)
Dubey and Müller are to be congratulated on this fine piece of work that laid a fundamental framework for
analysing time-varying random objects from the perspective of functional data. Given rapidly emerging



Discussion on the Paper by Dubey and Müller 47

applications involving non-Euclidean data types, the ideas and methods proposed are timely and impor-
tant. A main advantage in the framework is to define variance and covariance operators that rely only
on the metric, not requiring any linear structure or local Euclidean structure. Moreover, the definition of
autocovariance as well as the eigenpairs and object principal components do not rely on the Fréchet mean
μ, and so nor do their estimators.

To guarantee that the autocovariance is a non-negative definite kernel, the authors assume that the
square metric d2 is of negative type. According to proposition 3 in Sejdinovic et al. (2013), the negative-
type metric space can be embedded in a Hilbert space, i.e. it can be considered as a subset of a Hilbert space
mathematically. This indicates that the space that this paper deals with is not a general metric space, but a
subset of a Hilbert space. To be precise, it is better to say that this paper unifies many existing and important
research areas, including the L2-space, 2-Wasserstein space, Riemannian manifolds and others listed in the
paper. Although the negative-type metric space can be embedded in a Hilbert space, the information of the
injective map is not necessary in the development of estimation and theory, which is a main advantage. In
Euclidean space, principal component analysis is mainly a decomposition X.ω/=Σkβk.ω/φk. It seems that
the generalized eigenfunctions and scores defined here do not satisfy this decomposition or other type of
extensions. Some discussion on this would be appreciated. Lastly, assumptions 6 and 8 in the paper impose
requirements on φ̂ and μ̂. We wonder whether one can make assumptions on the original distributions of
samples but not the samples or the estimators.

The authors replied later, in writing, as follows.

We thank the discussants for their contributions and insightful thoughts and are pleased to see that there
is general agreement on the importance of developing methodology and theory for time-varying random
objects. For brevity, we apologize that we cannot address all the issues raised by the discussants. In what
follows, we briefly reply to some of the key points.

Metric covariance: trace of cross-covariance operator and assumptions
As pointed out by Tavakoli and also Sejdinovic and Bergsma, the proposed metric covariance between
two random vectors U and V in Rp summarizes the information contained in the cross-covariance matrix
by only reflecting its trace. Unless we have an orthonormal basis in the setting of Hilbert-valued ran-
dom variables or develop a case-specific custom analysis utilizing the richer structure of a space when
available, it seems, however, not possible in general metric spaces to obtain a finer resolution of the
dependence structure. Metric covariance quantifies the overall magnitude of association along with a
direction of the association, which in the case of random vectors U and V gives an idea about their overall
alignment.

Considering the toy examples that were provided by Tavakoli and Sejdinovic, where we have random
vectors X= .Z, 0/ and Y = .0, Z/ with covΩ.X, Y/=0, while X and Y are dependent in the classical sense,
we emphasize that metric covariance being zero does not indicate independence in analogy with classical
covariance. In the special situation of the example, X and Y are contained in orthogonal subspaces: an
aspect that is crucial for any principal component analysis (PCA) type of orthogonalization approach.
This orthogonal support feature implies that metric covariance is zero in these examples. This may be a
desirable feature in some contexts. Although one cannot recover the true cross-covariance structure without
additional structural assumptions on Ω, metric covariance reveals the orthogonality of the vectors in the
toy example.

Tavakoli also mentions that a requirement for the spectral decomposition of C, which is crucial to
obtain the eigenfunctions, is the continuity of the functions X.·/. In this regard, we have assumed in the
paper that the stochastic processes X.·/ are α-Hölder continuous in assumption 4, which then implies
the required continuity. Shao and Yao point out that assumptions 6 and 8 impose restrictions on the
behaviour of the estimates μ̂. It is not difficult to replace these assumptions by stronger requirements
on the underlying space, which then will imply them. For spaces with non-positive sectional curvature,
these assumptions are always true. They are also true for spaces of non-negative curvature under certain
conditions (Ahidar-Coutrix et al., 2019).

Can one check the assumption that the space is of negative type? This is a requirement for our approach
to work and is mentioned by both Shang and Zemel. In case the objects are a subset of a Hilbert space,
they are automatically of negative type as then the injective transformation can play the role of the map
f . A semimetric ρ is of negative type if exp.−λρ/ is a positive definite kernel (Schoenberg, 1938). For any
space and metric one can check whether this holds case by case; it is satisfied for the spaces that we consider
but it seems to be an open question whether there is a more general characterization.
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Metric covariance: reproducing kernel Hilbert space representation
We are grateful to Sejdinovic for pointing out the interesting correspondence of metric covariance and
the trace of the kernel cross-covariance operator, whereas distance covariance, which is equivalent to the
Hilbert–Schmidt independence criterion, corresponds to the Hilbert–Schmidt norm of the same kernel
cross-covariance operator. For a broad class of kernels, the Hilbert–Schmidt independence criterion or
distance covariance when evaluated by using the metric derived from the kernel characterizes probabilistic
independence between random objects. This is different from the target of metric covariance, which is not
probabilistic independence or dependence, but rather aims to quantify the extent of alignment between
random objects. That being said, the connections between metric covariance and its reproducing kernel
Hilbert space (RKHS) representation pointed out by Sejdinovic are enlightening and open up avenues for
future research by taking advantage of the kernel representations.

Bergsma suggests an alternative in the form of kernel PCA which embeds objects into a latent feature
space. In this approach one does not need to know the latent feature space as the kernel principal com-
ponents (PCs) can be recovered from the eigenvectors of the kernel matrix and may serve as an effective
summary in applications, as illustrated for the mortality data example. When using this method, the time
dynamics that are inherent in the eigenfunctions of the metric autocovariance between functional random
objects cannot, however, be recovered without further knowledge of the embedding. When obtaining the
scores for the mortality data example, the distances between the time trajectories are integrated over time.
This has the undesirable consequence that we lose details of the time dynamics of the underlying behaviour
of the distance trajectories. A common issue for data analysis with kernel approaches is that the kernels
rely on additional tuning parameters, for example, through scaling of the distances in Gaussian kernels,
or through starting points like w0 as mentioned by Zemel. In our experience, these tuning parameters can
have a major effect on the conclusions, as kernel methods are often highly sensitive to their choice.

Fréchet integrals and scores: variance decomposition
If one works with random objects in a metric space, one does not have available the classical and convenient
decomposition of functional variation into orthonormal components that makes functional PCA (FPCA)
in Hilbert spaces so immensely useful as a tool for dimension reduction and data analysis. When Ω is such
that d2 is of negative type and

∫ 1
0 φ.t/dt �=0, with φ̃=φ=

∫
φ as defined in the paper, there is an additional

interpretation of the Fréchet integrals through the map f that maps Ω to the latent Hilbert space H.
Namely, the projection of X.t/ onto the function φ̃ as quantified by the Fréchet integral is∫

⊕
Xφ̃=arg min

ω∈Ω

∥∥∥∥f.ω/−
∫ 1

0
f{X.t/} φ̃.t/ dt

∥∥∥∥
H

:

Accordingly,
∫

⊕ Xφ̃ can be interpreted as the element ω in Ω that minimizes the distance between
f.ω/ and the usual linear projection

∫ 1
0 f{X.t/}φ̃.t/ dt of f{X.t/} onto φ̃.t/ and this implies a variance

decomposition in H. However, this variance decomposition is primarily of theoretical interest and provides
only a partial answer to the issues that were raised by Shao and Yao, since in general neither H nor the
map f is known.

This is also related to the suggestion by Tavakoli to consider more fully the cross-covariance operator
in H, which can be done according to the above if we know the map f . But, even then, for spaces such as
networks this could lead to computationally difficult optimization problems. This is why the problem of
obtaining an eigenbasis in the space of longitudinal random objects or at least in the latent Hilbert space
with a known isomorphic map is challenging.

Following up on the discussion of Lee, Park and Shang, there are a few special cases where an iso-
morphism with a Hilbert space can indeed be explicitly constructed. An instance for this are random
distributions, where under mild conditions classes of isomorphic maps to the Hilbert space L2 can be
constructed, such as the log-quantile-density transformation, which is advocated by Shang. Once this or a
similar transformation has been applied, variance decomposition can be carried out in this Hilbert space,
and mapping back can provide meaningful modes of variation in the original distribution space (Petersen
and Müller, 2016).

Fréchet integrals are simple extensions of weighted Fréchet means, do not require knowledge of the map
f and can usually be computed without difficulties for any space Ω for which we have an efficient algorithm
to compute Fréchet means. Fréchet integrals provide substitutes for projections of trajectories of random
objects not only on eigenfunctions but more generally on any function ψ with

∫
ψ �= 0. For example,

suppose that we are interested to project the observed random object trajectories on linear functions,
which in the real case could be done by fitting simple least squares lines to the data of each subject. For
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longitudinally observed random objects one can obtain the equivalent to a fitted line L.t/ at predictor time
t as Fréchet integral

L.t/=arg min
ω∈Ω

∫
d2{X.u/, ω}ψt .u/ du:

These Fréchet integrals project trajectories X.u/ onto the functions ψt .u/ = s.u, t/, where the functions
s.·, ·/ are as defined in equation (2.6) on page 695 in Petersen and Müller (2019) and correspond to those
used for linear Fréchet regression. Here we have

∫
ψt .u/du= 1 for all t. Similarly, one can project on the

equivalent of polynomial functions and other function spaces.
Although the scalar-valued eigenfunctions of the metric autocovariance operator, similar to the metric

autocovariance itself, do not reflect fine details of the cross-covariance operator, this information com-
pression is to some extent mitigated by the application of Fréchet integrals that take values in the same
space as the time-varying random objects and serve as substitutes for the scalar PCs that one obtains
by using approaches like the kernel PCA discussed by Bergsma. For instance, if we have time-varying
networks like the New York taxi data, the Fréchet integrals are networks themselves that can uncover the
nodes in the network that contribute to the dominant modes of variation in the direction of the dominant
eigenfunctions of metric autocovariance; some illustrations are provided in the movies that accompany the
paper. In the same way as functional principal components (FPCs), the Fréchet integrals can be used in
subsequent statistical analysis in various ways, as mentioned by Mateu. For example, if we are interested
in the effect of baseline covariates on the trajectories of random objects, we can first construct the Fréchet
integrals for all subjects, and then use these as responses in a Fréchet regression or in a Fréchet analysis
of variance.

Time warping and time series case
Zemel pointed out the possible effect of time warping, which is also often referred to as curve registration
or alignment in the context of functional data (Marron et al., 2015; Wagner and Kneip, 2019). This leads to
an interesting research problem. Some members of our University of California, Davis, research team have
been working on such an approach in on-going research. One can actually use ideas of pairwise warping
from functional data analysis (Tang and Müller, 2008), which, it turns out, can be adapted to distance-
based pairwise comparisons, extending the corresponding functional approach to the time warping of
random object trajectories.

Prompted by the comments of Elayouty, Scott and Miller, we reiterate that our approaches rely on
obtaining consistent estimates of the metric autocovariance operator from observed data. For this one
needs to have available an independent and identically distributed sample of functional random objects,
which is not so in the time series case where one typically works with only one realization of an underlying
process. Similarly to the time series case, the metric autocovariance operator indeed includes lags as it
quantifies covΩ{X.t/, X.s/} for any s and t and specifically does not require an analogue of stationarity.

Multivariate functional random objects and visualization
The case of multivariate functional random objects has practical relevance; for example one might consider
the joint development of left brain and right brain connectivity networks in neurodevelopment studies.
At some level it is quite straightforward to extend the proposed methodology to this case, as suggested
by Lee and Park, who propose the metric d.X, Y/=Σd

j=1dj.Xj , Yj/, which provides a flexible choice. The
multivariate scenario presents interesting open areas for future research, including the construction of
joint models for vectors of different types of object data that might reside in different spaces and might
also have different temporal domains.

One of the challenges when working with object-valued PCs is visualization, where in classical FPCA
plotting the FPCs against each other often provides useful information about the structure of the data.
Instead of the object-valued Fréchet integrals, one could resort to the scalar-valued Fréchet scores and
employ them in pairwise plots. As pointed out by Tavakoli, the Fréchet scores are, however, not equivalent
to the FPC scores as obtained in classical FPCA. They reflect the decomposition of the individual variance
trajectories d{X.t/, μ⊕.t/} into the dominant directions obtained from the metric autocovariance operator
and their interpretation is related to temporal patterns of distance of individual trajectories from the mean
trajectory. Further quantifications of such distances and the corresponding scores could be a topic for
future research.

An alternative for visualization is to work with multi-dimensional scaling co-ordinates as proposed by
both Dai and Delicado. It would be interesting to compare these representations with those provided
by the Fréchet scores. The two-step algorithm proposed by Delicado uses multi-dimensional scaling co-
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ordinates as the starting point for collapsing the information that is contained in time-varying objects into
time-varying functional data. This is an attractive proposal that deserves further study.

Flexibility through metric selection
The metric covariance proposed can lead to vastly different analyses of longitudinal object data if different
metrics are chosen. Metric selection is thus a crucial first step before starting the analysis. It will often be
based on practical considerations such as the feasibility of computations and the interpretability of results.
For example, in the case of distributional data, the Wasserstein metric has emerged as a favourite when
working with one-dimensional distributions (Bolstad et al., 2003; Zhang and Müller, 2011; Panaretos
and Zemel, 2019; Bigot, 2019); however it is not clear that it is the universally best choice for samples of
trajectories of random distributions.

For multivariate distributions, the situation is much more complex and there are major computational
and interpretational difficulties when using the Wasserstein metric. Optimal transport that underpins the
Wasserstein metric is a mathematically nice optimization target but might not always be a good criterion
from a data analysis perspective. If the random objects are covariance matrices or graph Laplacians, a
multitude of metrics are available and the choice may depend on a trade-off between simplicity, where
the simplest choice would be the Frobenius metric, and avoiding undesirable features such as the swelling
effect (Lin, 2019).

For the case of time-varying networks, Mateu suggests treating the trajectories of the New York taxi data
as random functions defining a functional mark over a spatial point pattern equipped with the transport–
transform metric. This provides a promising perspective for future research. Mateu also considers a very
interesting class of random objects which are point patterns. Shang observes that, in the mortality data
example, instead of dealing with smooth probability distributions of age at death, one might instead
consider the life table counts directly with an appropriate metric. Another alternative would be to transform
the densities to log-hazard functions which are in L2 (Petersen and Müller, 2016) and where one can connect
the analysis to previous approaches that focused on log-hazard functions (Chiou and Müller, 2009).

Riemannian manifold approach
Severn, Dryden and Preston mention that, with regard to time-varying networks, alternative approaches
can be devised by using graph Laplacians and exploiting tangent plane representations and extrinsic metrics
for some of the space–metric combinations. Such manifold representations can also be applied in other
special cases of random objects, where local linearizations can be used to advantage. In the tangent spaces,
linear methods can be applied, though often with limitations; in the case of manifold-valued trajectories
one can still take advantage of Karhunen–Loève expansions (Dai and Müller, 2018). However, for space–
metric combinations of interest it may be tedious to compute the logarithmic and exponential maps; such
maps may not exist or not be invertible, or underlying manifolds may not be Riemannian or may be infinite
dimensional, which can lead to additional complications. If the ambient data space is high dimensional,
manifold approaches can also be affected by the curse of dimensionality, which then may require invoking
sparsity assumptions (Ginestet et al., 2017), adding to the complexity of these approaches.

On the plus side, the manifold approach can provide illuminating complementary insights to those which
we may obtain with the proposed metric approach and may also yield interpretable visualizations. In the
end, it will be beneficial to have a rich toolbox with multiple available approaches for analysing functional
random objects, which would include the manifold approach, where applicable, and the proposed metric
approach as a generic method with a wide range of applicability. We agree with Severn, Dryden and
Preston that it would be of substantial interest to compare the different available approaches for time-
varying networks by using one standard data set, say the New York taxi data. Expanding on a suggestion
by Shang, a similar comparison of transformation, compositional and metric approaches would be of
interest for time-varying distributions.

Open problems
Since the modelling of trajectories of random objects has been motivated by recent new types of complex
time-varying data, there are still a large number of open problems in this area, some of which have been
already mentioned. In addition to the exploration of the connections of metric covariance with RKHS
approaches and kernel PCA as suggested in the discussions of Sejdinovic and Bergsma, interesting problems
that are currently open and have been brought to the fore by the stimulating contributions by the discussants
include the following problems.

Robustness and quantiles. An interesting direction for future research is robustness, as proposed by
Bhansali, and includes even simple notions that can serve as building blocks for robust procedures, such as
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medians. Quantiles for random objects remain a largely open problem. Case-by-case analysis that utilizes
the finer structural features of Ω, where available, may lead to sensible solutions. Nevertheless, quantiles and
robust options are difficult when the underlying metric space has moderate to high dimension, as even for
the simpler multivariate case the notion of multivariate quantiles remains far from settled (Chernozhukov
et al., 2017). An alternative perspective could be to use MDS co-ordinate summaries such as those proposed
by Dai and Delicado to obtain representations in Rp.

Random object time series. As already mentioned, our methods do not cover time series, where one has
only one trajectory and time is discrete, whereas we consider samples of trajectories that are recorded
in continuous time. This motivates us to consider random object time series methodology, where one
investigates object-valued time series. These are of interest for many applications, whereas time series
analysis to date has by and large been limited to multivariate high dimensional and functional data.

Incompletely observed trajectories. We assumed that the time courses of the random objects are fully
observed; however, in principle, they are only observed on a grid, as Zemel mentioned, and therefore
appropriate extensions are needed to cover this case. (Pre)smoothing of objects can be carried out with
local Fréchet regression (Petersen and Müller, 2019) in analogy with presmoothing for traditional scalar-
valued functional data that are observed on a discrete grid (Müller et al., 2006).

In this vein, we may also need to deal with the issue that the observations made on grid points are
contaminated with errors. Modelling errors for random objects is not straightforward since we cannot
add zero-mean finite variance errors to random objects in the way that we would usually model error
contamination for functional data. Error contamination may require a case-by-case analysis; typically one
will assume that conditional Fréchet means are on target. For the error-contaminated observed random
objects X̃.t/ at a grid point t a reasonable assumption is

arg min
ω∈Ω

E[d2{X̃.t/, ω}|X.t/]=X.t/, .27/

where such contaminations have been implemented for the case of distributions (Petersen and Müller,
2016). In some situations, the time grid on which observations are available may differ across subjects and
in some cases it is sparse (Li and Hsing, 2010; Zhang and Wang, 2016, 2018).

Incompletely observed random objects. Another issue that requires further investigation is the fact that
often objects are not fully observed but must be estimated from a random sample that is generated by the
object, where one assumes that these within-object samples are independent from the functional random
objects. This estimation step induces another error that will typically not satisfy assumption (27) but these
errors will vanish as the within-object samples become larger and so under reasonable assumptions can be
ignored in the asymptotic analysis; this kind of estimation error has been analysed in detail for the case of
distributions (Panaretos and Zemel, 2016; Petersen and Müller, 2016), where the distributions are usually
not known but must be estimated from samples.

Random objects indexed by sets other than (time) intervals. Spatially indexed objects are of interest for
various applications as pointed out by Tavakoli. We wholeheartedly agree; this includes not only geographi-
cal domains (Tavakoli et al., 2019), but also spheres (the Earth) and brain voxels or brain regions indexed
by subsets of R3.
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Boj, E., Caballé, A., Delicado, P., Esteve, A. and Fortiana, J. (2016) Global and local distance-based generalized

linear models. TEST, 25, 170–195.
Bolstad, B. M., Irizarry, R.,

�

Astrand, M. and Speed, T. (2003) A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.



52 Discussion on the Paper by Dubey and Müller

Chen, K., Delicado, P. and Müller, H.-G. (2017) Modelling function-valued stochastic processes, with applications
to fertility dynamics. J. R. Statist. Soc. B, 79, 177–196.

Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017) Monge–Kantorovich depths, quantiles, ranks
and signs. Ann. Statist., 45, 223–256.

Chiou, J.-M. and Müller, H.-G. (2009) Modeling hazard rates as functional data for the analysis of cohort lifetables
and mortality forecasting. J. Am. Statist. Ass., 104, 572–585.

Dai, X. and Müller, H.-G. (2018) Principal component analysis for functional data on Riemannian manifolds
and spheres. Ann. Statist., 46, 3334–3361.

Delicado, P. (2011) Dimensionality reduction when data are density functions. Computnl Statist. Data Anal., 55,
401–420.
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