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FRÉCHET CHANGE-POINT DETECTION

BY PAROMITA DUBEY* AND HANS-GEORG MÜLLER†

Department of Statistics, University of California, Davis, *pdubey@ucdavis.edu; †hgmueller@ucdavis.edu

We propose a method to infer the presence and location of change-points
in the distribution of a sequence of independent data taking values in a general
metric space, where change-points are viewed as locations at which the dis-
tribution of the data sequence changes abruptly in terms of either its Fréchet
mean, Fréchet variance or both. The proposed method is based on compar-
isons of Fréchet variances before and after putative change-point locations
and does not require a tuning parameter, except for the specification of cut-off
intervals near the endpoints where change-points are assumed not to occur.
Our results include theoretical guarantees for consistency of the test under
contiguous alternatives when a change-point exists and also for consistency
of the estimated location of the change-point, if it exists, where, under the
null hypothesis of no change-point, the limit distribution of the proposed scan
function is the square of a standardized Brownian bridge. These consistency
results are applicable for a broad class of metric spaces under mild entropy
conditions. Examples include the space of univariate probability distributions
and the space of graph Laplacians for networks. Simulation studies demon-
strate the effectiveness of the proposed methods, both for inferring the pres-
ence of a change-point and estimating its location. We also develop theory
that justifies bootstrap-based inference and illustrate the new approach with
sequences of maternal fertility distributions and communication networks.

1. Introduction. Change-point detection has become a popular tool for identifying lo-
cations in a data sequence where an abrupt change occurs in the data distribution. A data
sequence {Y1, Y2, . . . , Yn} has a change-point at n0 if Y1, . . . , Yn0 comes from a distribution
P1, while Yn0+1, . . . , Yn comes from a different distribution P2. In the classical framework
{Y1, . . . , Yn} assume values in R. Change-point detection is an important task in many areas
and has been studied thoroughly for univariate data (Carlstein, Müller and Siegmund (1994),
Niu, Hao and Zhang (2016)).

The multivariate setting, where the {Y1, Y2, . . . , Yn} take values in R
d , presents additional

challenges over the univariate case and can be considered a precursor of the even more chal-
lenging case of metric-space valued objects that we study here; in both cases the Yi cannot
be ordered. Change-point detection in multivariate settings has been studied both using para-
metric (Srivastava and Worsley (1986), James, James and Siegmund (1987, 1992), Chen and
Gupta (2012), Csörgő and Horváth (1997)) and nonparametric (Jirak (2015), Lung-Yut-Fong,
Lévy-Leduc and Cappé (2015), Matteson and James (2014), Wang and Samworth (2018)) ap-
proaches in various settings.

With modern statistical applications moving toward the study of more complex phenom-
ena, statistical analysts increasingly encounter data that correspond to random objects in gen-
eral spaces that cannot be characterized as univariate or multivariate data. Often such data
objects do not even reside in Euclidean spaces, for example, when one deals with observa-
tions that correspond to sequences of networks such as brain networks or communication
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networks. Other types of such random objects include covariance matrices as encountered
in brain connectivity in neuroscience (Ginestet et al. (2017)) and in the analysis of spoken
language (Tavakoli et al. (2019)) as well as sequences of random probability distributions,
which are quite common (Cazelles et al. (2018), Petersen and Müller (2019a)). We refer to
such data as random objects which are random variables that take values in a general metric
space, generalizing the notion of random vectors. The challenge when dealing with such data
is that vector space operations are not available, and one does not have much more to go by
than pairwise distances between the objects.

Existing results on change-point detection for the case when the data sequence takes values
in a general metric space are quite limited. Parametric approaches exist for change detection
in a sequence of networks (De Ridder, Vandermarliere and Ryckebusch (2016), Peel and
Clauset (2015), Wang, Yu and Rinaldo (2018)). These approaches have been developed for
special cases and are not applicable more generally. There are very few approaches that are
more generally applicable to metric space valued random objects, and they include kernel
based (Arlot, Celisse and Harchaoui (2012), Garreau and Arlot (2018)) and graph based
(Chen and Zhang (2015), Chu and Chen (2019)) methods. A major disadvantage of the kernel
based methods is that they heavily depend on the choice of the kernel function and its tuning
parameters. Graph based methods are applicable in general metric spaces. However, their
starting point is a similarity/dissimilarity graph of the data sequence, which then plays the
role of a tuning parameter that critically impacts the resulting inference. Graph based methods
also lack theoretical guarantees for the consistency of the estimated change-point when there
is a true change-point in the data sequence; furthermore, inference for the presence of a
change-point has not yet been developed.

In this paper, we introduce a tuning-free (except for the choice of the size of small intervals
at the end-points where change-points are assumed not to occur) method for change-point
detection and inference in a sequence of data objects taking values in a general metric space.
We provide a test for the presence of a change-point in the sequence, obtain its consistency
under contiguous alternatives, and derive a consistency result for the estimated change-point
location. We consider the offline approach, where the entire sequence of data is available to
conduct inference and assume that the data objects Yi are independent and ordered with some
meaningful ordering. The starting point of the proposed method is similar in spirit to classical
analysis of variance and builds upon a recently proposed two sample test for random objects
(Dubey and Müller (2019)), aiming at inference for the presence of differences in Fréchet
means (Fréchet (1948)) and Fréchet variances for samples of random objects.

Fréchet means and variances provide a generalization of center and spread for metric space
valued random variables. Our goal in this paper is to develop a method for the detection
and, specifically, a test for the presence of a change-point in terms of Fréchet means and/or
Fréchet variances of the distributions of the data sequence taking values in a general metric
space. The needed assumptions are relatively weak and apply to a broad class of metric
spaces, including the space of univariate probability distributions and the space of networks,
under suitable metrics. We provide theoretical guarantees for type I error control under the
null hypothesis of no change-point by deriving a distribution free limiting distribution of
the proposed test statistic under the null, where we show that the proposed scan function
converges weakly to the square of a standardized Brownian bridge (Theorem 1). When there
is a change-point, we show that the proposed estimate of the location of the change-point is
consistent (Proposition 1 and Theorem 2) and demonstrate that the proposed test is consistent
and gains power under contiguous alternatives for increasing sample sizes (Theorem 3). We
also provide theoretical support for bootstrap versions of the proposed test (Theorem 4).

The organization of the paper is as follows. In Section 2 we describe and explore the pro-
posed test statistic and motivate the proposed estimate of the location of the change-point,
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starting from an improved version of the two-sample version of the Fréchet test for random
objects (Dubey and Müller (2019)). Theoretical results on the behavior of the proposed test
under the null hypothesis of no change-point and the alternative that a change-point is present
and on the estimated location of the change-point, if it is present, are in Section 3, while Sec-
tion 4 is devoted to a study of the finite sample performance of the proposed test statistic under
several simulation settings. The proposed inference method for change-points is illustrated
in Section 5 with an analysis of Finnish fertility data that reflect the evolution of maternal
age distributions over calendar years and also with change-point detection in dynamic net-
works for the Enron e-mail network data, where in both cases we find strong evidence for the
presence of change-points.

2. Methodology.

2.1. Model. Let Y1, Y2, . . . , Yn be a sequence of independent random objects taking val-
ues in a metric space (�,d) that is totally bounded, that is, for any ε > 0 there is a finite
number of open ε-balls, the union of which covers �. Given different probability measures
P1 and P2 on (�,d), we are interested to test the null hypothesis,

(2.1) H0 : Y1, Y2, . . . , Yn ∼ P1,

against the single change-point alternative,

(2.2) H1 : there exists 0 < τ < 1 such that

{
Y1, Y2, . . . , Y[nτ ] ∼ P1

Y[nτ ]+1, Y[nτ ]+2, . . . , Yn ∼ P2,

where τ denotes the change-point. In most practical situations, differences in distributions
arise either in location or in scale. Fréchet means and variances (Fréchet (1948)) provide
a generalization of the notion of location and scale for probability measures on Euclidean
spaces to the case of general metric spaces.

Our goal is to detect differences in Fréchet means or Fréchet variances of the distributions
P1 and P2. Fréchet means μ1 and μ2 of P1 and P2, respectively, are defined as

μ1 = argmin
ω∈�

E1
(
d2(Y,ω)

)
where Y ∼ P1 and

μ2 = argmin
ω∈�

E2
(
d2(Y,ω)

)
where Y ∼ P2,

and the corresponding Fréchet variances as

V1 = min
ω∈�

E1
(
d2(Y,ω)

)
where Y ∼ P1 and

V2 = min
ω∈�

E2
(
d2(Y,ω)

)
where Y ∼ P2.

Our assumptions below will ensure that these notions are well defined when we employ
them in the following. Here, E1(·) and E2(·) denote expectations taken with respect to P1
and P2, respectively, and we will use this notation throughout in what follows, which then
implicitly specifies the assumed distribution of the generic random object Y . Under the null
hypothesis H0 of no change-point, we have P1 = P2 = P and use the notations μ = μ1 = μ2
and V = V1 = V2 to denote the Fréchet mean and Fréchet variance of P . While the alternative
space is the entire complement, our methods and power analysis aim at alternatives H1 for
which at least one of μ1 �= μ2 or V1 �= V2 applies, that is, alternatives that entail changes in
mean or scale.

It is easy to see that, for real valued random variables, Fréchet means and variances are the
same as the expectation and variance of the distributions P1 and P2. For Rd valued random
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variables, the Fréchet mean is the ordinary mean vector of the distribution and the Fréchet
variance corresponds to the trace of the covariance matrix which captures the total variabil-
ity of the data. For more general spaces, for example, the space of networks or the space of
probability distributions, Fréchet means provide a notion of center of the probability distri-
bution generating the random data objects, and the Fréchet variance measures the spread of
the random objects around the Fréchet mean. However, the Fréchet mean lives in the object
space and, therefore, is not amenable to operations like addition and multiplication, while
the Fréchet variance as a scalar is easier to handle. Classical analysis of variance can provide
intuition on how to harness Fréchet variances to determine whether data segments differ or
not, which is essential when testing for the presence of change-points.

Like other change-point detection techniques, we partition the data sequence into two
segments and then maximize differences between these segments to develop inference and
change-point estimation. Both segments need to contain a minimum number of observations
in order to represent their Fréchet means and variance adequately; hence, we assume that
τ lies in a compact interval Ic = [c,1 − c] ⊂ [0,1] for some c > 0, an assumption that is
commonly adopted in the Euclidean case.

2.2. Test statistic for a single change-point alternative. Here, we describe how we con-
struct the new test statistic for testing the null hypothesis H0 (2.1) of no change-point vs. the
alternative H1 (2.2). Our approach is inspired by a recent two-sample test for detecting dif-
ferences in Fréchet means or Fréchet variances of metric space valued data samples (Dubey
and Müller (2019)). Each u ∈ Ic could be a possible value of τ under the alternative. For each
u ∈ Ic, we consider two data segments: A first segment consisting of all observations that are
located before [nu] and a second segment consisting of the observations located after [nu].

Let μ̂[0,u] and V̂[0,u] denote the estimated Fréchet mean and variance of all observations
coming before [nu],

μ̂[0,u] = argmin
ω∈�

1

[nu]
[nu]∑
i=1

d2(Yi,ω),

V̂[0,u] = 1

[nu]
[nu]∑
i=1

d2(Yi, μ̂[0,u]),

and, analogously, for observations coming after [nu]; set

μ̂[u,1] = argmin
ω∈�

1

(n − [nu])
n∑

[nu]+1

d2(Yi,ω),

V̂[u,1] = argmin
ω∈�

1

(n − [nu])
n∑

[nu]+1

d2(Yi, μ̂[u,1]).

Next, we define “contaminated” versions of Fréchet variances of the data segments, obtained
by plugging in the Fréchet mean from the complementary data segment,

(2.3) V̂ C[0,u] = 1

[nu]
[nu]∑
i=1

d2(Yi, μ̂[u,1]) and V̂ C[u,1] = 1

n − [nu]
n∑

[nu]+1

d2(Yi, μ̂[0,u]).

By definition, the contaminated Fréchet variances of the data segments are at least as large as
the correct Fréchet variances.

Intuitively, under H0 the population Fréchet means and variances of observations do not
depend on u, and, therefore, we expect μ̂[u,1] to be close to μ̂[0,u], which in turn implies
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that, under H0, the differences V̂ C[0,u] − V̂[0,u] and V̂ C[u,1] − V̂[u,1] are small. Moreover, since
the Fréchet variances of the two data segments are also the same under H0, we expect the
absolute difference |V̂[0,u] − V̂[u,1]| to be small.

It is instructive to consider the special case � = R. Without loss of generality, assume
u > τ , and let Ȳ0,τ denote the mean of all observations before [nτ ], Ȳτ,u the mean of all
observations coming after [nτ ] but before [nu] and Ȳu,1 the mean of all observations coming
after [nu]. It is easy to see that

μ̂[0,u] ≈ τ

u
Ȳ0,τ + (u − τ)

u
Ȳτ,u and μ̂[u,1] = Ȳu,1,

and a simple calculation leads to the approximation

V̂ C[0,u] − V̂[0,u] = V̂ C[u,1] − V̂[u,1] ≈
(

τ

u
Ȳ0,τ + (u − τ)

u
Ȳτ,u − Ȳu,1

)2
.

If μ1 �= μ2, one expects that, for large n, Ȳ0,τ is close to μ1, and Ȳτ,u and Ȳu,1 are close
to μ2 which implies that ( τ

u
Ȳ0,τ + (u−τ)

u
Ȳτ,u − Ȳu,1)

2 is close to ( τ
u
(μ1 − μ2))

2. The latter

is maximized when u = τ . Here, one can view the terms V̂ C[0,u] − V̂[0,u] and V̂ C[u,1] − V̂[u,1] as
the between group variance of the two data segments, the size of which is expected to reflect
differences in the means.

Comparing the within group variances of the data segments, let V̂0,τ denote the variance
of the observations located before [nτ ], V̂τ,u the variance of the observations located after
[nτ ] but before [nu] and V̂u,1 the variance of the observations located after [nu]. Again, by a
simple calculation

V̂[0,u] ≈ τ

u
V̂0,τ + u − τ

u
V̂τ,u + τ

u

u − τ

u
(Ȳ0,u − Ȳτ,u)

2 and V̂[u,1] = V̂u,1.

If μ1 = μ2 and V1 �= V2, then, for large n, (V̂[0,u] − V̂[u,1])2 is approximately equal to ( τ
u
(V1 −

V2))
2 and is maximized at u = τ . The term (V̂[0,u] − V̂[u,1])2 can be related to between group

variances of the data segments and is expected to account for variance differences between
the two groups in the absence of a mean difference. It can be shown with a few steps of
calculation that, when both μ1 �= μ2 and V1 �= V2, the term (V̂[0,u] − V̂[u,1])2 + (V̂ C[0,u] −
V̂[0,u] + V̂ C[u,1] − V̂[u,1])2 is also maximized at u = τ .

Now, considering the general case where the data sequence takes values in a general metric
space, the term (V̂ C[0,u] − V̂[0,u] + V̂ C[u,1] − V̂[u,1])2 reflects differences in Fréchet means of the

data segments and the term (V̂[0,u] − V̂[u,1])2 differences in Fréchet variances. For a fixed
u ∈ Ic, it can be shown that a central limit theorem for Fréchet variances (Dubey and Müller
(2019)) implies that

√
u(1 − u)(

√
n/σ)(V̂[0,u] − V̂[u,1]) has an asymptotic standard normal

distribution under H0, where σ is the asymptotic variance of the empirical Fréchet variance.
Another key result, which holds under H0 and for which we refer to Theorem 1 below and
its proof in Appendix B in the online Supplementary Material (Dubey and Müller (2020)), is
that, under some regularity assumptions and if μ1 = μ2,

sup
u∈Ic

(
V̂ C[0,u] − V̂[0,u] + V̂ C[u,1] − V̂[u,1]

)2 = oP (1/n).

We also require an estimate of σ 2, for which we use

σ̂ 2 = 1

n

n∑
i=1

d4(Yi, μ̂) − V̂ 2,
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an estimator that is known to be consistent under H0 (Dubey and Müller (2019)), where

(2.4) μ̂ = argmin
ω∈�

1

n

n∑
i=1

d2(Yi,ω) and V̂ = 1

n

n∑
i=1

d2(Yi, μ̂).

The above considerations motivate the proposed statistics

(2.5) Tn(u) = u(1 − u)

σ̂ 2

{
(V̂[0,u] − V̂[u,1])2 + (

V̂ C[0,u] − V̂[0,u] + V̂ C[u,1] − V̂[u,1]
)2}

for u ∈ Ic. We refer to Tn(·) when considered as a function of u as the scan function.
We will show in Theorem 1 in Section 3 that, under mild regularity conditions, {nTn(u) :

u ∈ Ic} converges weakly to the square of a tight standardized Brownian bridge on the interval
Ic under H0, which is a stochastic process given by

(2.6) G =
{ B(u)√

u(1 − u)
: u ∈ Ic

}
,

where {B(u) : u ∈ Ic} is a tight Brownian bridge on Ic, that is, a tight Gaussian process
indexed by Ic with zero mean and covariance structure given by K(s, t) = min(s, t)− st . For
the role of tightness in this connection, we refer to Section 2.1.2 of van der Vaart and Wellner
(1996). Other versions of the Brownian bridge have surfaced in the context of the asymptotics
of change-point detection in various previous studies (Chernoff and Zacks (1964), Csörgő and
Horváth (1997), MacNeill (1974), Siegmund (1988)).

Specifically, for testing H0 versus H1, we use the statistic

(2.7) sup
u∈Ic

nTn(u) = max[nc]≤k≤n−[nc]nTn

(
k

n

)
.

Let q1−α be the (1 − α)th quantile of supu∈Ic
G2(u). Under H0 and the regularity conditions

described in Section 3, by Theorem 1 and the continuous mapping theorem, one obtains weak
convergence (denoted here and in all of the following by ⇒),

sup
u∈Ic

nTn(u) ⇒ sup
u∈Ic

G2(u).

A level α significance test is then characterized by the rejection region

(2.8) Rn,α =
{

sup
u∈Ic

nTn(u) > q1−α

}
.

In Section 3.3 we describe how to obtain asymptotic and bootstrap critical values under
H0. We will show in Section 3 that, under H1, when a change-point is present at τ ∈ Ic, the
process Tn(u) converges uniformly in probability to a limit process T (u), which has a unique
maximizer at u = τ , that is,

τ = argmax
u∈Ic

T (u).

It is then natural to estimate the location of the change-point τ by

(2.9) τ̂ = argmax
u∈Ic

Tn(u) = argmax
[nc]≤k≤n−[nc]

Tn

(
k

n

)
.
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2.3. Population limit of the test statistic under H1. To obtain the limit T (u) of the process
Tn(u) (2.5) under H1 (2.2), we first derive the pointwise limits of the sample based estimators
which form the components of Tn(u). Starting with the Fréchet mean μ̂[0,u] (2.3), we observe
that if u ≤ τ , μ̂[0,u] converges to μ1 in probability pointwise in u, which is a consequence of
results in Dubey and Müller (2019). If u > τ , we have

μ̂[0,u] = argmin
ω∈�

{ [nτ ]
[nu]

1

[nτ ]
[nτ ]∑
i=1

d2(Yi,ω) + ([nu] − [nτ ])
[nu]

1

([nu] − [nτ ])
[nu]∑

[nτ ]+1]
d2(Yi,ω)

}
,

which intuitively implies that the pointwise limit of μ̂[0,u] for u > τ is

argmin
ω∈�

{
τ

u
E1

(
d2(Y,ω)

) + u − τ

u
E2

(
d2(Y,ω)

)}
.

We will show that the pointwise limit μ[0,u] of μ̂[0,u] is indeed

(2.10) μ[0,u] =
⎧⎪⎨
⎪⎩

μ1 u ≤ τ,

argmin
ω∈�

{
τ

u
E1

(
d2(Y,ω)

) + u − τ

u
E2

(
d2(Y,ω)

)}
u > τ

and that, likewise, the pointwise limit μ[u,1] of μ̂[u,1] (2.3) is

μ[u,1] =
⎧⎪⎨
⎪⎩

argmin
ω∈�

{
τ − u

1 − u
E1

(
d2(Y,ω)

) + 1 − τ

1 − u
E2

(
d2(Y,ω)

)}
u ≤ τ,

μ2 u > τ.

We denote the pointwise limits of the Fréchet variances V̂[0,u] (2.3) and V̂[u,1] (2.3) by
V[0,u] and V[u,1], respectively. They are given by

V[0,u] =
⎧⎨
⎩

V1 u ≤ τ,
τ

u
E1

(
d2(Y,μ[0,u])

) + u − τ

u
E2

(
d2(Y,μ[0,u])

)
u > τ ;

V[u,1] =
⎧⎨
⎩

τ − u

1 − u
E1

(
d2(Y,μ[u,1])

) + 1 − τ

1 − u
E2

(
d2(Y,μ[u,1])

)
u ≤ τ,

V2, u > τ.

Similarly, the pointwise limits of the contaminated Fréchet variances V̂ C[0,u] and V̂ C[u,1] (2.3),

denoted by V C[0,u] and V C[0,1], are given by

V C[0,u] =
⎧⎨
⎩

E1
(
d2(Y,μ[u,1])

)
u ≤ τ,

τ

u
E1

(
d2(Y,μ2)

) + u − τ

u
E2

(
d2(Y,μ2)

)
u > τ ;

V C[u,1] =
⎧⎨
⎩

τ − u

1 − u
E1

(
d2(Y,μ1)

) + 1 − τ

1 − u
E2

(
d2(Y,μ1)

)
u ≤ τ,

E2
(
d2(Y,μ[0,u])

)
u > τ.

Under H1, the pooled sample Fréchet mean μ̂ (2.4) and Fréchet variance V̂ have the point-
wise limits

μ̃ = argmin
ω∈�

τE1
(
d2(Y,ω)

) + (1 − τ)E2
(
d2(Y,ω)

);
Ṽ = τE1

(
d2(Y, μ̃)

) + (1 − τ)E2
(
d2(Y, μ̃)

)
.
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Key steps are that, under H1, σ̂ 2 converges in probability to

σ 2 = τE1
(
d4(Y, μ̃)

) + (1 − τ)E2
(
d4(Y, μ̃)

) − Ṽ 2,

while under H0, where P1 = P2 and, therefore, E1 = E2, the limit is σ 2 = E(d4(Y, μ̃))− Ṽ 2

and that, under regularity conditions and H1, Tn(u) converges uniformly in probability to

(2.11) T (u) = u(1 − u)

σ 2

{
(V[0,u] − V[u,1])2 + (

V C[0,u] − V[0,u] + V C[u,1] − V[u,1]
)2}

,

as stated in Theorem 2 below, with detailed arguments provided in the proof in Appendix B.
At u = τ we have with

�1 = E1
(
d2(Y,μ2)

) − E1
(
d2(Y,μ1)

)
, �2 = E2

(
d2(Y,μ1)

) − E2
(
d2(Y,μ2)

)
that

T (τ) = τ(1 − τ)

σ 2

{
(V1 − V2)

2 + (�1 + �2)
2}

.

Note that, under the assumption of uniqueness of Fréchet means of the two populations
under H1, �1 ≥ 0 and �1 = 0 if and only if μ1 = μ2. Similarly, �2 ≥ 0 and �2 = 0 if and
only if μ1 = μ2. This implies that T (τ) = 0 if and only if either V1 = V2 or μ1 = μ2. Hence,
T (τ) quantifies the divergence between P1 and P2, where the term (V1 − V2)

2 accounts for
scale differences and the term (�1 + �2)

2 accounts for location differences. Formally, we
will show in Proposition 1 in Section 3 that, under H1 and mild assumptions on existence and
uniqueness of Fréchet means, T (u) is maximized uniquely at u = τ , that is,

T (τ) = sup
u∈Ic

T (u)

which is the justification for the proposed estimate of τ in (2.9).

3. Theory.

3.1. Assumptions. For any α = {α1, α2, . . . , αn : 0 ≤ αi < 1,
∑n

i=1 αi = 1}, let

(3.1) Rn(ω,α) =
n∑

i=1

αid
2(Yi,ω) and μ̂α = argmin

ω∈�

Rn(ω,α).

Furthermore, for any 0 ≤ γ ≤ 1, let

(3.2) S(ω,γ ) = γE1
(
d2(Y,ω)

) + (1 − γ )E2
(
d2(Y,ω)

)
and μγ = argmin

ω∈�

S(ω,γ ).

We need the following assumptions, which are assumed to hold irrespective of whether
H0 is true, and we show that this is possible for various salient examples, as discussed below
after the listing of the assumptions.

(A1) For any 0 ≤ γ ≤ 1, μγ exists and is unique. Additionally, there exists ζ > 0 and
C > 0 such that

inf
0≤γ≤1

inf
d(ω,μγ )<ζ

{
S(ω,γ ) − S(μγ , γ ) − Cd2(ω,μγ )

} ≥ 0.

Note that this implies that under H0,

(3.3) inf
d(ω,μ)<ζ

{
E

(
d2(Y,ω)

) − E
(
d2(Y,μ)

) − Cd2(ω,μ)
} ≥ 0.
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(A2) For any α = {α1, α2, . . . , αn : 0 ≤ αi ≤ 1,
∑n

i=1 αi = 1}, μ̂α exists and is unique
almost surely. Additionally, for any ε > 0, there exists κ0 = κ0(ε) > 0 such that as n → ∞,

P
(
inf
α

inf
d(ω,μ̂α)>ε

{
Rn(ω,α) − Rn(μ̂α,α)

} ≥ κ0

)
→ 1.

(A3) Let Bδ(ω) ⊂ � be a ball of radius δ centered at ω, which is any arbitrary element in
�, and let N(ε,Bδ(ω), d) be its covering number which is defined as the minimum number
of balls of radius ε > 0 needed to cover Bδ(ω) (see Section 2.1.1 of van der Vaart and Wellner
(1996) for the definition and further details). Then, for any ω ∈ �,∫ 1

0

√
logN

(
εδ,Bδ(ω), d

)
dε = O(1) as δ → 0.

Moreover, there exist constants K > 0 and 0 < β < 2 such that the covering number of �

satisfies that for any ε > 0,

(3.4) logN(ε,�,d) ≤ K

εβ
.

(A4) There exist δ > 0 and C > 0 such that for all ω ∈ Bδ(μj ) one has

E1
(
d2(Y,ω)

) − E1
(
d2(Y,μ1)

) = Cd2(ω,μ1) + O
(
δ2)

as δ → 0,

and, analogously, for all ω ∈ Bδ(μ2),

E2
(
d2(Y,ω)

) − E2
(
d2(Y,μ2)

) = Cd2(ω,μ2) + O
(
δ2)

as δ → 0.

We note that the existence and uniqueness of the minimizers in (A1) and (A2) is guar-
anteed for the case of Hadamard spaces; the curvature of which is bounded above by zero
(Sturm (2003, 2006)). However, for positively curved manifolds, such as spheres, the exis-
tence of minimizers depends intrinsically on the probability distribution on the space and is
not guaranteed; see Ahidar-Coutrix, Gouic and Paris (2018) where the authors study condi-
tions on probability distributions in positively curved metric spaces which imply existence
and uniqueness of Fréchet means along with the condition in (3.3). Therefore, a case by case
analysis is inevitable to ascertain whether these assumptions are satisfied. In the following we
provide examples of spaces that satisfy assumptions (A1)–(A4) and that we use in simulations
and real data applications; see, also, Petersen and Müller (2019b):

1. Let � be the set of univariate probability distributions F defined on R such that∫
R

x2 dF(x) ≤ M for all F ∈ � and some M > 0 equipped with the 2-Wasserstein metric
dW . For two univariate probability distributions with quantile functions G1(·) and G2(·), the
metric dW is

(3.5) d2
W(G1,G2) =

∫ 1

0

(
G1(t) − G2(t)

)2
dt.

2. Let � be the set of covariance matrices of a fixed dimension r , with bounded vari-
ances (uniformly bounded diagonals) equipped with the Frobenius metric dF . For two r × r

matrices �1 and �2,

(3.6) d2
F (�1,�2) = trace(�1 − �2)

′(�1 − �2).

3. Let � be the space of network adjacency matrices or graph Laplacians of a fixed dimen-
sion r of undirected weighted graphs with bounded edge weights equipped with the Frobenius
metric dF . The space of graph Laplacians of simple graphs can be used to characterize the
space of networks (Ginestet et al. (2017)).
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More details on these spaces and proofs that they satisfy (A1)–(A4) are provided in Ap-
pendix C in the Supplementary Material, specifically in Propositions C.1 and C.2. Assump-
tions (A1) and (A2) are commonly used to establish consistency of M-estimators, such
as μ̂[0,u] and μ̂[u,1], for u ∈ Ic; see Chapter 3.2 in van der Vaart and Wellner (1996).
In particular, one needs to ensure weak convergence of processes 1

[nu]
∑[nu]

i=1 d2(Yi,ω) and
1

n−[nu]
∑n[nu]+1 d2(Yi,ω) to their population counterparts under H0 (2.1) and H1 (2.2) in or-

der to obtain convergence of their minimizers.
Assumption (A3) is a restriction on the metric entropy of � and δ-balls in � which controls

the complexity of �; in our case it controls uniform bracketing entropy integrals that are
used to provide tail bounds as in Theorem 2.14.2 in van der Vaart and Wellner (1996). It is
common to assume that the uniform bracketing entropy integral is bounded; for more details
see Section 3.2.2 in van der Vaart and Wellner (1996). The condition in (3.4) is satisfied by
a wide class of metric spaces, including the three examples discussed above, where β = 1
for the space of distributions with the 2-Wasserstein metric, since it can be represented as
a special case of the space of monotone functions from R to a compact subset of R (van
der Vaart and Wellner (1996)). For the other two examples, the condition in (3.4) is satisfied
for any β > 0 since these spaces are subsets of a bounded Euclidean space. Other examples
include the space of all Lipschitz functions of degree 1/2 < γ ≤ 1 on the unit interval [0,1]
with the L2 metric, where β = 1

γ
, as well as the class of bounded convex functions on a

compact, convex subset of Rd under certain restrictions, where β = d/2 (Guntuboyina and
Sen (2013)).

Assumption (A4) appears in empirical process theory when one deals with approximate
M-estimators (Arcones (1998)). It ensures that, under H0, the contaminated Fréchet variances
V̂ C[0,u] and V̂ C[u,1] are sufficiently close to the correct Fréchet variances V̂[0,u] and V̂[u,1].

For the special case of Rd with the Euclidean metric, assumptions (A1)–(A4) are satisfied
for bounded convex subsets of Rd . The proof follows the exact line of arguments as in the
proof of Proposition C.2 in Appendix C of the online Supplementary Material. The required
entropy condition (3.4) in assumption (A3) and some of the other proof techniques do not
continue to hold for unbounded subsets of R

d under the Euclidean metric. Extensions to
unbounded convex subsets of R might be possible in special cases. For nonconvex subsets of
R

d , existence and uniqueness of Fréchet means is not guaranteed.

3.2. Main results. In this section we state the main results, including the asymptotic limit
distribution of the proposed test statistic under H0 (2.1), consistency of the test under con-
tiguous alternatives and consistency of the estimated location of the change-point. Detailed
proofs for all results can be found in the Appendix in the online Supplementary Material.
We start with consistency of the estimated Fréchet means and variances to their population
targets under H0 using tools from Montgomery-Smith and Pruss (2001) and van der Vaart
and Wellner (1996). Note that, under H0, μ = μ1 = μ2 and V = V1 = V2.

LEMMA 1. Under H0 (2.1) and assumptions (A1)–(A3),
√

n sup
u∈Ic

d(μ̂[0,u],μ) = OP (1),
√

n sup
u∈Ic

d(μ̂[u,1],μ) = OP (1)

and
∣∣σ̂ 2 − σ 2∣∣ = oP (1).
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The proof of this and of most of the following results uses empirical process theory. To
obtain the first statement of the lemma, we introduce processes

Mn(ω,u) = 1

[nu]
[nu]∑
i=1

d2(Yi,ω) and M(ω) = E
(
d2(Y,ω)

)

and show the weak convergence of the process {Mn(ω,u)−M(ω,u) : ω ∈ �} to zero and the
asymptotic equicontinuity of the processes {d(μ̂[0,u],μ)}u∈Ic , which then implies uniform
convergence. To obtain the rate of uniform convergence, we find deviation bounds over slices
Sj,n = {ω ∈ � : 2j ≤ √

nd(ω,μ) < 2j+1}. Details are in the Supplementary Material.
Observe that Fréchet variances are sums of dependent random variables, because each

summand contains the Fréchet mean, which is estimated using all other data objects. A key
step in obtaining the limiting distribution of the test statistic in (2.7) under H0 is to replace
the estimated Fréchet means in the estimated Fréchet variances with the true mean μ under
H0, for which the following lemma is instrumental. Let

Ṽ[0,u] = 1

[nu]
[nu]∑
i=1

d2(Yi,μ) and Ṽ[u,1] = 1

n − [nu]
n∑

i=[nu]+1

d2(Yi,μ),

where μ is the true Fréchet mean of the data sequence under H0. Note that Ṽ[0,u] and Ṽ[u,1]
are sums of independent random variables and can be thought of as oracle versions of V̂[0,u]
and V̂[u,1] with the true Fréchet means plugged in.

LEMMA 2. Under H0 (2.1) and assumptions (A1)–(A3),

sup
u∈Ic

√
n|V̂[0,u] − Ṽ[0,u]| = oP (1) and sup

u∈Ic

√
n|V̂[u,1] − Ṽ[u,1]| = oP (1).

The following result states that the contaminated Fréchet variances of the data segments
are close to the correct Fréchet variances of the data segments under H0.

LEMMA 3. Under H0 (2.1) and assumptions (A1)–(A4),

sup
u∈Ic

√
n
∣∣V̂ C[0,u] − V̂[0,u]

∣∣ = oP (1) and sup
u∈Ic

√
n
∣∣V̂ C[u,1] − V̂[u,1]

∣∣ = oP (1).

Recalling that G = {B(u)/
√

u(1 − u) : u ∈ Ic} is a standardized Brownian bridge process
on Ic, where {B(u) : u ∈ Ic} is a tight Brownian bridge process on Ic, Theorem 1 gives the
weak convergence of the scan function Tn(·) in the absence of a change-point and provides
the asymptotic justification of the proposed test. The weak convergence is in l∞([c,1 − c]),
the set of all uniformly bounded real functions on [c,1 − c].

THEOREM 1. Under H0 (2.1) and assumptions (A1)–(A4),{
nTn(u) : u ∈ Ic

} ⇒ {
G2(u) : u ∈ Ic

}
,

where the covariance function C(u, v) of G is C(u, v) = [u(1 − v)/v(1 − u)]1/2 for u ≤ v.

For the proof of this key result, we decompose Tn(u) = T I
n (u) + T II

n (u), where

T I
n (u) = (V̂[0,u] − V̂[u,1])2

σ̂ 2(1/u + 1/(1 − u))
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and

T II
n (u) = (V̂ C[0,u] − V̂[0,u]) + V̂ C[u,1] − V̂[u,1])2

σ̂ 2(1/u + 1/(1 − u))
.

We then show that nT I
n = {nT I

n (u) : u ∈ Ic} converges weakly to G2 and nT II
n = {nT II

n (u) :
u ∈ Ic} converges weakly to zero. Once the weak convergence of nTn is established, the
continuous mapping theorem implies

max
u∈Ic

nTn(u) ⇒ max
u∈Ic

G2(u).

Next, we move away from assuming the null hypothesis H0 (2.1) of no change-point and
establish the convergence of μ̂[0,u], μ̂[u,1] and σ̂ 2 in Lemma 4 and the convergence of the cor-
rect and the contaminated Fréchet variances of the data segments to their population targets
in Lemma 5, using results from Ossiander (1987). Note that many of the following results are
only valid under H1, as the change-point location τ is defined only under H1 but not under
H0. Two relevant results are as follows:

LEMMA 4. Under assumptions (A1)–(A3) and with β as in assumption (A3),

sup
u∈Ic

d(μ̂[0,u],μ[0,u]) = OP

(
n

− 1
2+β

)
, sup

u∈Ic

d(μ̂[u,1],μ[u,1]) = OP

(
n

− 1
2+β

)
and ∣∣σ̂ 2 − σ 2∣∣ = oP (1).

LEMMA 5. Under assumptions (A1)–(A3) and with β as in assumption (A3),

sup
u∈Ic

|V̂[0,u] − V[0,u]| = OP

(
1√
n

)
and sup

u∈Ic

|V̂[u,1] − V[u,1]| = OP

(
1√
n

)
,(3.7)

sup
u∈Ic

∣∣V̂ C[0,u] − V C[0,u]
∣∣ = OP

(
n

− 1
2+β

)
and sup

u∈Ic

∣∣V̂ C[u,1] − V C[u,1]
∣∣ = OP

(
n

− 1
2+β

)
.(3.8)

Using these results, we show in the following proposition that the limit process T (u) (2.11)
of Tn(u) (2.5) indeed has its maximum at u = τ .

PROPOSITION 1. Assume μγ (3.2) exists and is unique for any 0 ≤ γ ≤ 1. Then, one has
under H1 that

T (τ) = sup
u∈Ic

T (u)

and T (τ) > T (u) when u �= τ .

Consistency of the estimated location of the change-point is a consequence of the uniform
convergence of the process Tn(u) to the limit process T (u) under H1 and the argmax theorem
which guarantees convergence of the maximizers.

THEOREM 2. Under H1 (2.2) and assumptions (A1)–(A3),

sup
u∈Ic

∣∣Tn(u) − T (u)
∣∣ = oP (1) and |τ̂ − τ | = oP (1).
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In order to show consistency of the test (2.8) in a neighborhood of H0, we construct a
sequence of local alternatives

(3.9) H1,n = {
d2(μ1,μ2) = an, |V1 − V2| = bn : an > 0 or bn > 0

}
.

When an → 0 and bn → 0 as n → ∞, {H1,n}n≥1 is a sequence of contiguous alternatives.
Let ψn be the power function for the test (2.8) when H1,n holds, that is,

(3.10) ψn = P(Rn,α),

where Rn,α , as defined in equation (2.8), is the rejection region for a level α test. The follow-
ing result demonstrates the consistency of the test under contiguous alternatives H1,n:

THEOREM 3. Under H1 (2.2) and assumptions (A1)–(A3), it holds for sequences an →
0 and bn → 0, as in (3.9), that

ψn → 1

as n → ∞, if either
√

nan → ∞ or
√

nbn → ∞.

3.3. Approximation of critical values by bootstrap. For obtaining a level α asymptotic
test as defined in (2.8), one needs to approximate the critical value q1−α . This can be done
in practice by taking a large number of Monte Carlo simulations of G2(·) on the interval
[[nc], [n(1 − c)]], computing sup[nc]≤k≤[n(1−c)] G2( k

n
) in each simulation and then finding

the (1 − α)th quantile across all simulations.
The testing procedure described above is based on the weak convergence of the maximum

of a scan function to the maximum of a squared standardized Brownian bridge as established
in Theorem 1. It is well known that the speed of convergence in limit theorems of this type
is often slow, and the problem is magnified when the dimension of the data is moderate to
high. Consequently, the approximation of the level of the test may not be accurate for finite
sample sizes. This is borne out in simulations that we report in Section 4. In such situations
it may be preferable to obtain critical values using a bootstrap approximation to ensure the
accuracy of the test. We find that the bootstrap test, implemented according to the following
specifications, tends to have larger critical values, compared with the asymptotic test, and
is thus more conservative. While it typically has a level that is very close to the nominal
level, this also means that the bootstrap test also often has lower power against alternatives,
especially those that are close to the null.

A scheme for approximating q1−α with the bootstrap distribution of the test statistic con-
ditional on the observations instead of the asymptotic distribution is as follows:

Bootstrap Scheme:
Step I. Obtain a random sample of size m, Y �

1 , Y �
2 , . . . , Y �

m with replacement from the
observations Y1, Y2, . . . , Yn.

Step II. For u ∈ Ic, define the bootstrap quantities

μ�[0,u] = argmin
ω∈�

1

[mu]
[mu]∑
j=1

d2(
Y �

j ,ω
)
, μ�[u,1] = argmin

ω∈�

1

(m − [mu])
m∑

j=[mu]+1

d2(
Y �

j ,ω
)
,

V �[0,u] = 1

[mu]
[mu]∑
j=1

d2(
Y �

j ,μ�[0,u]
)
, V �[u,1] = 1

(m − [mu])
m∑

j=[mu]+1

d2(
Y �

j ,μ�[u,1]
)
,

V
C,�
[0,u] = 1

[mu]
[mu]∑
j=1

d2(
Y �

j ,μ�[u,1]
)
, V

C,�
[u,1] = 1

(m − [mu])
m∑

j=[mu]+1

d2(
Y �

j ,μ�[0,u]
)
,

μ� = argmin
ω∈�

1

m

m∑
j=1

d2(
Y �

j ,ω
)
,

(
σ�)2 = 1

m

m∑
j=1

d4(
Y �

j ,μ�) −
(

1

m

m∑
j=1

d2(
Y �

j ,μ�))2
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and

T �
m,n(u) = u(1 − u)

(σ �)2

{(
V �[0,u] − V �[u,1]

)2 + (
V

C,�
[0,u] − V �[0,u] + V

C,�
[u,1] − V �[u,1]

)2}
.

Step III. Calculate T̃ �
m,n = supu∈Ic

mT �
m,n(u) = max[mc]≤k≤[m(1−c)] mT �

m,n(
k
m

).
We iterate Steps I–III B times. For each iteration, indexed by b, we obtain a bootstrap

version T̃ �,b
m,n of T̃ �

m,n for b = 1,2, . . . ,B . The following result shows that, under very mild
assumptions, the distribution of supu∈Ic

nTn(u) under H0 can be approximated in probability
by the conditional distribution of supu∈Ic

mT �
m,n(u), given the observations Y1, Y2, . . . , Yn.

This implies that the conditional distribution of the bootstrap statistics is consistent under H0.
We can then use Monte Carlo approximations as described in Steps I–III for approximating
the conditional distribution by the empirical distribution of T̃ �,b

m,n, b = 1,2, . . . ,B , where q1−α

is approximated as the empirical quantile of T̃ �,b
m,n, b = 1,2, . . . ,B .

Let Y � ∼ P|Y , which denotes the measure generated by resampling from Y1, Y2, . . . , Yn

uniformly with replacement. The following Theorem 4 provides the asymptotic consistency
of the bootstrap distribution of the test statistic. Its proof in the Supplementary Material makes
use of key results of Jirak (2015):

THEOREM 4. Under H0 and assumptions (A1)–(A4), as m → ∞ and n → ∞,

(3.11) sup
x

∣∣∣P|Y
(

sup
u∈Ic

mT �
m,n(u) ≤ x

)
− P

(
sup
u∈Ic

G2(u) ≤ x
)∣∣∣ = oP (1).

We note that, in principle, one could also use analytic approximations of the asymptotic
distribution of the test statistics under the null hypothesis, which has some tradition in change-
point analysis, with recent examples provided in Chen and Zhang (2015), Chu and Chen
(2019). However, given that the bootstrap approximation can be theoretically justified and is
seen to work well in practice, such approximations are less relevant for our purposes.

4. Simulations. In order to study the power of the test (2.8) and the accuracy of the
estimated change-point location, we report here the results of simulations for various set-
tings. The random objects we consider in simulations are univariate probability distributions
equipped with the 2-Wasserstein metric, graph Laplacians of scale free networks from the
Barabási–Albert model (Barabási and Albert (1999)) with the Frobenius metric and multi-
variate data with the usual Euclidean metric.

It is usually harder to detect change-points that are located close to the endpoints of a data
sequence. Each data sequence in the simulation is of length 300 and is generated such that
the first and the second segments contain 100 and 200 data objects, respectively, under the
alternative where a change-point is present. Hence, the change-point is placed at one-third of
the data sequence under the alternative, that is, τ = 1/3 under H1 (2.2). We select the interval
Ic as [0.1,0.9].

We construct power functions of the proposed test with certain parameters that we use to
generate the data as argument, and we also quantify the accuracy of the estimated change-
point location. We compare the results for the new test with the generalized edge count scan
function in Chu and Chen (2019) which was shown in this previous work to dominate other
graph based change-point detection approaches. For the graph based test we used these au-
thors’ implementation in the R package gSeg and constructed similarity graphs of the data
sequences by constructing a 5-MST (minimal spanning tree) graph from the pooled pairwise
distance matrix, following the suggestion in Chen and Friedman (2017). Here, a k-MST is
the union of the 1st, . . . , kth MSTs, where a kth MST is a spanning tree connecting all obser-
vations that minimizes the sum of distances across edges, subject to the constraint that this
spanning tree does not contain any edge in the 1st, . . . , (k − 1)th MST.
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In the simulations we explored not only location differences but also differences in shape
and scale of the population segments. We carried out all tests at level α = 0.05. Under both
H0 and H1, the power of the tests was computed by finding the proportion of rejections from
1000 runs of the simulation. The critical value for rejection of the test (2.8) was obtained from
the bootstrap scheme as described in Section 3.3. We quantified the accuracy of the estimated
change-point location by mean absolute deviation (MAE) which was computed as follows:
Denoting by τ̂i the estimated change-point in the ith simulation run,

MAE = 1

1000

1000∑
i=1

|τ̂i − τ |,

where lower values of MAE indicate greater accuracy in the estimate of the change-point.
The first type of data objects we study are random samples of univariate probability dis-

tributions. Each datum is a N(μ,1) distribution, where μ is random. As distance between
two probability distributions, we choose the 2-Wasserstein metric. For investigating loca-
tion differences, for the first data segment we generated μ as a truncated normal distribution
N(δ,0.75), constrained to lie in [−10,10] and for the second data segment as N(0,0.75),
truncated within [−10,10] and then computed the empirical power function of the test and
MAE for the estimated change point for 0 ≤ δ ≤ 1, where δ = 0 represents H0 (2.1). For in-
vestigating scale differences, μ was drawn randomly from N(0, δ) for the first data segment
and from N(0,1) for the second data segment, truncated within [−10,10] in both cases; em-
pirical power and MAE for the estimated change point were evaluated for 0.4 ≤ δ ≤ 1, where
in this case δ = 1 represents H0. The results are presented in Figures 1 and 2. It is seen that
the proposed test outperforms the graph based test in both cases, both in terms of power and
accuracy of change-point detection.

Next, we consider sequences where the data objects are graph Laplacians of scale free net-
works from the Barabási–Albert model with the Frobenius metric. These popular networks
have power law degree distributions and are commonly used for networks related to the world
wide web, social networks and brain connectivity networks. For scale-free networks the frac-
tion P(c) of nodes in the network having c connections to other nodes for large values of
c is approximately c−γ , with γ typically in the range 1 ≤ γ ≤ 3. Specifically, we used the

FIG. 1. Empirical power as function of δ for N(μ,1) probability distributions with μ generated from a truncated
N(δ,0.75) distributions for observations before τ = 1/3 and truncated N(0,0.75) distributions for observations
after τ (left panel) and empirical power as function of δ for N(μ,1) probability distributions with μ generated
from truncated N(0, δ) for observations before τ and from truncated N(0,1) distributions for observations after
τ (right panel). The solid black curves correspond to the proposed test (2.8) and the dashed blue curves to the
generalized scan function graph based test (Chu and Chen (2019)). The line parallel to the x axis indicates the
level of the tests, which is 0.05.
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FIG. 2. MAE as function of δ for N(μ,1) probability distributions, which are generated as described in Fig-
ure 1, with Fréchet mean change (left panel) and Fréchet variance change (right panel). The solid black curves
correspond to the new estimates (2.9) and the dashed blue curves to those proposed in Chu and Chen (2019).

Barabási–Albert algorithm to generate samples of scale-free networks with 10 nodes. For the
first segment of 100 observations, we set γ = 3, and for the second segment of 200 observa-
tions we varied γ in the interval 1 ≤ γ ≤ 3 with γ = 3 representing H0. We computed the
empirical power and MAE as a function of γ . The left panel in Figure 3 indicates that in this
scenario the proposed test has better power behavior than the graph-based test. The graph-
based test has a high false positive rate near and at H0. The right panel in Figure 3 shows
that, in terms of accuracy of the estimated change-point, the proposed test in most parts of
the alternative outperforms the graph-based test.

For the multivariate case we assume a Gaussian setting. We consider � = [−10,10]50.
Let δ̃ = (δ, δ, δ,0,0, . . . ,0) be the random vector whose first three components are δ; the
remaining components are all 0. Let Id be the d × d identity matrix and Jd be a d × d matrix
with all entries equal to one. For location alternatives we generated the first segment of the
data sequence from N(0, I50), truncated to lie in [−10,10]50, and the second segment from
N(δ̃, I50). To study the power of the test and MAE of change-point estimates, we varied δ

between 0 ≤ δ ≤ 1, where δ = 0 represents H0. For scale alternatives we generated the first
segment of the data sequence from N(0, δI50), truncated to lie in [−10,10]50, and the second
segment from N(0, I50) and varied δ between 0.75 ≤ δ ≤ 1, where δ = 1 represents H0.

FIG. 3. Empirical power (left panel) and MAE (right panel) as a function of γ for scale-free networks from the
Barabási–Albert model, with γ = 3 for the first data segment and 1 ≤ γ ≤ 3 for the second data segment. The
solid black curve corresponds to the proposed approach (2.8) (2.9) and the blue dashed curve to the graph based
approach.
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FIG. 4. Empirical power as function of δ: (a) when the data segment is generated from truncated N(0, I50)

for observations before τ = 1/3 and truncated N(δ̃, I50) for observations after τ (left panel); (b) for truncated
N(0, δI50) for observations before τ = 1/3 and truncated N(0, I50) for observations after τ (middle panel);
(c) for N(0,0.9I50 + δ2J50) for observations before τ = 1/3 and truncated N(0,0.9I50 + 0.92J50) for obser-
vations after τ (right panel). The solid black curves correspond to the proposed test (2.8) and the dashed blue
curves to the graph based test.

For detecting change-points in data correlation, we generated the first segment of the data
sequence from N(0,0.9I50 + δ2J50), truncated to lie in [−10,10]50, and the second segment
from N(0,0.9I50 + 0.92J50) and varied δ as 0.3 ≤ δ ≤ 0.9 for studying power and MAE,
where δ = 0.9 represents H0. Figure 4 illustrates that in terms of power performance the pro-
posed approach outperforms the graph-based approach for scale alternatives and has similar
performance for location alternatives.

From Figure 5 we find that, for location alternatives, the proposed method has larger MAE
closer to H0, but when moving away from H0, the proposed method has lower MAE than the
graph based-approach. For scale alternatives the proposed method outperforms the graph-
based approach. We also present a scenario in the multivariate Gaussian setting where the
change in the vectors at the change-point is not reflected in mean or shape changes, and
the proposed test, as expected, has no power and is outperformed by the graph-based test
which still performs reasonably well. We provide the details in Appendix D in the online
Supplementary Material. Interestingly, when choosing a different metric where the change is
reflected in scale change, both tests perform equally well.

FIG. 5. MAE as function of δ when the data are generated from the settings (a) (left panel), (b) (middle panel)
and (c) (right panel) as described in Figure 4. In each panel the solid black curve corresponds to the proposed
estimates (2.9) and the dashed blue curve to those for the graph based method.
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FIG. 6. Yearly maternal age distributions represented as density functions for the age interval [12,55] during
the time period 1960 to 2010 for the Finnish fertility data.

5. Data examples.

5.1. Finnish fertility data. The Human Fertility Database provides cohort fertility data
for various countries and calendar years which are available at www.humanfertility.org. These
data facilitate research on the evolution and intercountry differences in fertility over a period
spanning more than 30 calendar years. For any country and year, the raw data consist of
age-specific total live birth counts, aggregated per year. We treat these data as histograms
of maternal age when giving birth, with bins representing age of birth, bin widths one year
and the bin frequencies being equal to the total live births corresponding to that age. These
histograms are then smoothed (for which we employ local least squares smoothing using
the Hades package available at https://stat.ucdavis.edu/hades/) to obtain smooth probability
density functions for maternal age, where we consider the age interval [12,55].

Figure 6 displays the evolving densities for Finland over a period spanning 51 years from
1960 to 2010. One can see that the mode of the distribution of maternal age shows a shift
between the early and later years with more abrupt changes taking place near the end of
the 1970s and beginning of the 1980s. These changes likely are attributable to increasingly
delayed childbearing age, a phenomenon that has been observed since the 1960s in many Eu-
ropean countries and has been much studied in demography (Hellstrand et al. (2019), Kohler,
Billari and Ortega (2002, 2006)), where improved contraception, more women opting for
higher education and increased labor force participation of women are discussed as possi-
ble causes. We chose the 2-Wasserstein metric as distance between probability distributions,
which has proved to be well suited for many applications (Bolstad et al. (2003)) and applied
the proposed Fréchet variance based change-point detection method, with calendar year serv-
ing as index for the sequence of fertility distributions. Figure 7 supports the intuition that there
is a change-point in the data. The estimated location of the change-point is the year 1982. The
test (2.8) for the presence of a change-point rejects the null hypothesis of no change-point
in the sequence with a bootstrap p-value indistinguishable from zero. Figure 8 shows clear
differences between the estimated Fréchet mean distributions before and after 1982. We see
that the mode of the pre-1982 Fréchet mean distributions is before age 25 which shifts rapidly
around 1982 to after age 25, indicating significant changes in the pattern of fertility.

http://www.humanfertility.org
https://stat.ucdavis.edu/hades/
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FIG. 7. Scan function Tn(u) during the time period 1970 to 2000 for the Finnish fertility data. The dotted
line indicates the location of the estimated change-point in the year 1982. The proposed test for the presence of a
change-point has a bootstrap p-value that is indistinguishable from zero for the null hypothesis of no change-point.

5.2. Enron e-mail network data. Enron Corporation was an American energy company
which became notorious in 2001 for accounting fraud that eventually led to the company’s
bankruptcy. During the investigation after the company’s collapse, data containing e-mail ex-
changes of the company’s employees were made public by the Federal Energy Regulatory
Commission. One of the versions is available at http://www.cis.jhu.edu/~parky/Enron/. We
study whether changes in e-mail patterns reflect important events in the timeline of the com-
pany’s downfall. In our analysis we consider the time period between November 1998 to June
2002. The weekly total e-mail activity between the 150 employees of the company during this
time period is displayed in Figure 9. Peel and Clauset (2015) previously analyzed the Enron
e-mail network data and identified a total of 16 change-points corresponding to 25 events of
interest during the three year timeline.

The Enron e-mail network includes 184 e-mail addresses. Since the time period of three
years is quite long, we break it into weekly intervals and then generate a network data se-
quence of length 183 corresponding to the 183 weeks between November 1998 to June 2002,
where the 184 e-mail addresses were treated as nodes. For week i, from-to pairs extracted
from the e-mails are used to calculate the total number of e-mails exchanged between the

FIG. 8. Estimated Fréchet mean distributions of maternal age, represented as densities, before the estimated
change-point in 1982 (blue) and after (red) for the Finnish fertility data.

http://www.cis.jhu.edu/~parky/Enron/
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FIG. 9. Weekly cumulative e-mail activity of Enron employees from November 5,1998 to June 23, 2002. Some
relevant weeks are indicated on the x-axis by their mid-week dates.

e-mail addresses j and k which then is considered the edge weight in the network adjacency
matrix for that week. We used the Frobenius metric between network adjacency matrices and
applied the proposed method to this sequence of networks.

The scan function in the left panel of Figure 10 indicates that a change-point might
be present in week 88 with mid-week date August 17, 2000. The bootstrap version of
the proposed test confirms the significance with a p-value of p ≈ 0. This date is located
just before an important event in the timeline of Enron when its stock prices hit an all
time high on August 23, 2000; for more details on the overall timeline of events we refer
to http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html. The Fréchet mean net-
works also show clear distinctions before and after week 88, as illustrated in subfigures (a)
and (b) of Figure 11.

FIG. 10. Weekly scan function Tn(u) for the entire network data sequence between January 4, 1999 to April 11,
2002 (left panel) and the network data sequence after the first change-point (week 88 with midpoint August 17,
2000, as detected in the left panel) between August 17, 2000 to April 11, 2002 (right panel) for the Enron e-mail
data. In the right panel a change-point is located on December 20, 2000. Dotted lines indicate the location of the
estimated change-points. The test for the presence of a change-point has a bootstrap p-value indistinguishable
from zero for both panels, indicating the significance of the presence of these change-points.

http://www.agsm.edu.au/bobm/teaching/BE/Enron/timeline.html
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FIG. 11. Estimated Fréchet means of weekly network adjacency matrices for the time periods as indicated.

On December 2, 2001, Enron filed for Chapter 11 bankruptcy protection, and on January
9, 2002, it was confirmed that a criminal investigation was started against the company. We
separately analyzed the network sequence starting from week 89 to week 183, which is the
period starting right after week 88 which we detected to be a change-point, as discussed
above. The right panel of Figure 10 shows that the proposed test discovered a change-point
in week 158, which is is the week December 17 to December 23, 2001, with mid-week
date December 20, 2001. This is shortly after Enron filed for bankruptcy and just before the
criminal investigation began. The Fréchet mean networks are again seen to clearly differ, as
illustrated in the subfigures of Figure 11. When testing for change points in the above time
intervals with the proposed test (2.2), the null hypothesis of no change-point is rejected at
significance level 0.05 with bootstrap p-values indistinguishable from zero.

To investigate whether there are any additional relevant change-points, we carried out a
binary segmentation approach and identified the following weeks to be candidates for po-
tential change-points: July 12 to 18, 1999 (bootstrap p value = 0.04), December 20 to 26,
1999 (bootstrap p-value = 0) and June 12 to 18, 2000 (bootstrap p-value = 0). The first of
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these corresponds to the period right after June 28, 1999, which is when Enron’s CFO was
allowed to run a private equity fund LJM1 which later became one of Enron’s key tools to
maintain a public balance sheet; for details see http://www.agsm.edu.au/bobm/teaching/BE/
Enron/timeline.html. The second of these weeks is sandwiched between the launch of Enron
Online in December 1999, and the launch of Enron Broadband Services (EBS) in January
1999; the third week with a change-point is right before a partnership was launched between
EBS and Blockbuster to provide video on demand.

6. Discussion. Change-point detection is challenging for data sequences that take values
in a general metric space. Existing approaches like Chen and Zhang (2015), Chu and Chen
(2019) address this challenge by considering similarity/dissimilarity graphs between the data
objects as the starting point. In this approach the choice of the graph is a tuning parameter that
affects the conclusions; generally, the presence of a tuning parameter is undesirable in infer-
ence problems. Both the graph based and the proposed methods require a cut-off parameter
to determine intervals near both left and right endpoints where a change-point cannot occur.
This could be potentially circumvented by introducing a suitable weight function, as pointed
out by a reviewer; however, the power of the test will invariably suffer if a change-point oc-
curs close to the endpoints. Neither the proposed test for the presence of a change-point nor
the proposed estimate of the location of the change-point require additional tuning parame-
ters. They possess several additional desirable features that are not available for alternative
approaches for change-point detection in general metric spaces, including consistency of the
test for the presence of a change-point and consistency of the estimated change-point loca-
tion.

The proposed test does not always work well; in Appendix D in the Supplementary Ma-
terial, we present a situation where a change in distribution occurs and consider the analysis
under two metrics. For the first of these metrics the change in distributions is not reflected
in terms of mean or scale differences; for the second metric the change in distributions is
associated with a scale difference. This has the consequence that, under the first metric, the
proposed test is unable to detect the alternative, whereas the graph-based test of Chen and
Zhang (2015) performs well. Under the second metric the same differences in distributions
are reflected in a scale change. Under this second metric both tests perform equally well.
This demonstrates that in some situations the choice of the metric can play a critical role for
inference with random objects.

Overall, it is an advantage of the proposed test statistic that, in spite of the complexity of
metric space valued objects, it has an intuitive interpretation as it mimics change-points that
feature location-scale alternatives. The theoretical guarantees for the consistency of the test
under contiguous alternatives with such features (3.9) within small departures from H0 (2.1)
and the consistency of the estimated change-point location under H1 (2.2) are distinguishing
features of the proposed methods. Simulations and applications demonstrate that the proposed
theoretically justified bootstrap version is very helpful to obtain improved inference in finite
sample situations.

Lastly, the proposed approach is applicable for a wide class of random objects, as the
necessary assumptions are satisfied by various metric spaces of interest. There are many
open problems in this area, including sequential versions of the test or metric selection.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Fréchet change-point detection” (DOI: 10.1214/19-
AOS1930SUPP; .pdf). The supplementary material contain all proofs of the main results
and also various additional auxiliary lemmas and their proofs. It also features a discussion
of spaces (�,d), which satisfy assumptions (A1) to (A4) in the paper, with formal results
stated as Proposition C.1 and C.2 in Appendix C, and also additional simulation results in
Appendix D.
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