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Abstract
Modeling conditional distributions for functional data
extends the concept of a mean response in functional
regression settings, where vector predictors are paired
with functional responses. This extension is challenging
because of the nonexistence of well-defined densities,
cumulative distributions, or quantile functions in the
Hilbert space where the response functions are located.
To address this challenge, we simplify the problem by
assuming that the response functions are Gaussian pro-
cesses, which means that the conditional distribution
of the responses is determined by conditional mean
and conditional covariance. We demonstrate that these
quantities can be obtained by applying global and local
Fréchet regression, where the local version is more flex-
ible and applicable when the covariate dimension is
low and covariates are continuous, while the global ver-
sion is not subject to these restrictions but is based on
the assumption of a more restrictive regression rela-
tion. Convergence rates for the proposed estimates are
obtained under the framework of M-estimation. The
corresponding estimation of conditional distributions
is illustrated with simulations and an application to
bike-sharing data, where predictors include weather
characteristics and responses are bike rental profiles. We
also show that our methods are applicable to the chal-
lenging problem to study functional fragments. Such

© 2021 Board of the Foundation of the Scandinavian Journal of Statistics

502 wileyonlinelibrary.com/journal/sjos Scand J Statist. 2022;49:502–524.

https://orcid.org/0000-0002-1277-9096


FAN and MÜLLER 503

data are observed in accelerated longitudinal studies
and correspond to functional data observed over short
domain segments. We demonstrate the utility of con-
ditional distributions in this context by using the time
(age) at which a subject enters the domain of a frag-
ment in addition to other covariates as predictor and the
function observed over the domain of the fragment as
response.
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1 INTRODUCTION

In functional data analysis, regression models for the case where predictors are vectors and
responses are functions have been well developed and there are multiple approaches available
for this function-on-vector regression setting. A widely used model is functional linear regres-
sion (Chiou et al., 2003, 2004; Faraway, 1997; Ramsay & Dalzell, 1991). Research to date has
mainly focused on the mean regression E(Y |X = x). For the case of scalar responses Y it is
well known that often relevant information can be obtained by studying and modeling con-
ditional distributions P(Y ≤ y|X = x) or the equivalent quantile regression (Koenker & Bassett
Jr, 1978), rather than just considering the first conditional moment E(Y |X = x). It is a challenge to
extend these notions to the case where responses are functions, as quantiles cannot be naturally
defined in the infinite-dimensional Hilbert space L2, where functional responses are typically
assumed to live. We demonstrate that one can gain more information in functional regression set-
tings by moving beyond mean regression to conditional distribution modeling when responses
are random functions, and develop an approach that is supported by theory and can be easily
implemented.

Specifically, we consider pairs of random variables (X , Y ) of functional responses Y ∈ L2( ),
where the domain  is an interval, and vector predictors X ∈ p and assume that data sam-
ples are available from the joint distribution (X , Y )∼F. The object of interest is the conditional
distribution (Y |X). For scalar responses, when Y ∈ , (Y |X) can be quantified as a condi-
tional quantile function or a conditional cumulative distribution function (CDF). This problem
has been studied widely, even for the case of functional or time-varying predictors (Chen &
Müller, 2012; Ding et al., 2018; Kato, 2012; Wang et al., 2009; Yao et al., 2017). However, the
case of functional responses is much more challenging, as it is more complex than the related
problem of finding conditional distributions for multivariate responses, due to the fact that
the dimension of the function space is infinity. It is therefore not surprising that for func-
tional Y the modeling and study of conditional distributions (Y |X) has remained largely
unexplored.

When Y is functional, the modeling of conditional spatial depth, which is related to con-
ditional spatial distributions, has been investigated by Chowdhury and Chaudhuri (2016), but
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the only previous work that directly addresses the conditional distribution problem that we are
aware of is Chen and Müller (2014), where an estimator was introduced under the assumption
that (Y |X) is Gaussian, the functional principal components of Y are assumed to be con-
ditionally uncorrelated, that is, Cov(𝜉k, 𝜉l|X) = 0 and the eigenfunctions 𝜓k of the conditional
covariance operator do not depend on the predictor X . While this estimator was heuristi-
cally motivated and worked well in an application to traffic data, no supporting theory was
provided.

Assuming that the conditional distribution of interest (Y |X) is Gaussian, it is determined
by the conditional mean function and the conditional covariance surface. While conditional
mean modeling for functional responses has been well studied (Chiou et al., 2004; Faraway, 1997;
Morris, 2015; Ramsay, 2006; Wang et al., 2016), considering nonnegative definite covariance sur-
faces as responses is a novel challenge that has not been well studied before, in contrast to the
case of covariance matrices as responses (Petersen et al., 2019). For example, when considering
linear models, the nonlinear constraints inherent in covariance surfaces are generally not sat-
isfied for the fitted responses. In previous work, kernel-type methods have been considered for
estimating conditional covariance surfaces when predictors are scalar or vectors (Cardot, 2007;
Chiou & Müller, 2009; Jiang & Wang, 2010). Such methods can realistically only be applied when
the dimension of the predictors is small due to the curse of dimensionality and do not ensure
nonnegative definiteness of the covariance surface estimates.

We avoid these problems by applying local and global versions of Fréchet regression (Petersen
& Müller, 2019). When choosing the Frobenius metric for the case of covariance surfaces, the
target coincides with the usual conditional covariance surface Cov(Y (s), Y (t) |X). Local Fréchet
regression is a flexible approach when the predictors X are low dimensional and the regression
relation is smooth, while global Fréchet regression does not require a tuning parameter and is
applicable for multivariate predictors.

In addition to conditional distributions of bike rental daily profiles in response to weather
and other conditions, which we report in Section 5, an intriguing application of our approach is
to the functional fragment problem. This challenging problem arises in accelerated longitudinal
studies, where only segments or snippets of functional data are observed over time domains that
are short relative to the entire time domain, which is a consequence of the short time span over
which such studies are conducted. At issue are the conclusions that can be reasonably drawn from
such sparse data, where covariance operators cannot be reliably estimated and thus eigenanalysis
of the functional data is not feasible. For instance, in an accelerated study of growth one might
observe body length for each subject only during a randomly located fixed length time period for
each child, such as a period of a few years, instead of observing the child over the entire time
domain of 20 years of growth. We propose a new approach to deal with functional fragments
by using the time (age) at entry into the domain of a fragment and possibly other covariates as
predictors and the function observed over the time domain of the fragment as response. We can
then determine the time-varying conditional distribution of the functional fragments to describe
the time-evolution of the functional fragments.

The article is organized as follows. In Section 2 global and local versions of Fréchet regres-
sion are reviewed with a view toward conditional mean and covariance estimation. We then
demonstrate the modeling of conditional functional distributions and derive simultaneous pre-
diction bands. In Section 3 we study the asymptotic properties of the estimates. Details of
implementation and simulation results are in Section 4, while data analysis illustrations can
be found in Section 5. Proofs and auxiliary results are collected in the Appendix (Online
Supplement).
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2 CONDITIONAL MEAN AND COVARIANCE ESTIMATION

2.1 Background on Fréchet regression

Since the space of nonnegative definite covariance surfaces is not a linear space, traditional regres-
sion models are not directly extendable to this case. Fréchet regression is a generalization of
Fréchet means that were introduced by Fréchet (1948) as an extension of the notion of a mean to
a general metric space. The global and local models in Fréchet regression are extensions of lin-
ear and local linear regression. In fact, when the metric space is a Hilbert space, these models
are equivalent to linear and local linear regression, as demonstrated in the conditional mean esti-
mation section below. For more details about some of the developments that are briefly reviewed
below we refer to Petersen and Müller (2019). For random objects Z taking values in a bounded
metric space Ω with metric d, Fréchet means are defined as

𝜔⊕ = arg min
𝜔∈Ω

E(d2(Z, 𝜔)),

where their existence and uniqueness depends on structural properties of the underlying metric
space.

Considering (X , Z)∼F, where X and Z take values in Rp and Ω, respectively, assume that the
mean 𝜇 = E(X), the covariance matrix Σ = Var(X) of X and the conditional distributions (X|Z)
and (Z|X) are well defined. The Fréchet regression of Z, given X = x, targets

m⊕(x) = arg min
𝜔∈Ω

M⊕(𝜔, x), M⊕(⋅, x) = E(d2(Z, ⋅)|X = x),

where we assume existence and uniqueness of these quantities.
The global Fréchet regression model is defined as

m̃⊕(x) = arg min
𝜔∈Ω

M̃⊕(𝜔, x), M̃⊕(⋅, x) = E[wG(x;X)d2(Z, ⋅)],

where the weight function wG is given by wG(x;X) = 1 + [X − 𝜇]TΣ−1(x − 𝜇), 𝜇 = E(X), Σ =
Var(X), and corresponding M-estimators are given by

m̂⊕(x) = arg min
𝜔∈Ω

M̃n(𝜔, x), M̃n(⋅, x) = n−1
n∑

i=1
wiG(x)d2(Zi, ⋅). (1)

with weights wiG(x) = 1 + (Xi − X)TΣ̂−1(x − X).
For local Fréchet regression we present results for the case of scalar predictors, where the

extension to multivariate predictors is straightforward. With a nonnegative kernel function K that
integrates to 1 and using the notation Kh(⋅) = 1

h
K( ⋅

h
) for a kernel scaled with bandwidth h, the

local Fréchet regression model can be written as

l̃⊕(x) = arg min
𝜔∈Ω

L(𝜔, x), L(⋅, x) = E(wL(x, h;X)d2(Z, ⋅))

with wL(x, h;X) = 1
𝜎2

0
Kh(X − x)[𝜇2 − 𝜇1(Xi − x)], where 𝜎2

0 = 𝜇0𝜇2 − 𝜇2
1 and 𝜇j = E(Kh(X − x)

(X − x)j).
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The corresponding local Fréchet estimator is

l̂⊕(x) = arg min
𝜔∈Ω

Ln(𝜔, x), Ln(⋅, x) = n−1
n∑

i=1
wiL(x, h)d2(Zi, ⋅), (2)

employing weights wiL(x, h) = 1
�̂�2

0
Kh(Xi − x)[�̂�2 − �̂�1(Xi − x)], where �̂�2

0 = �̂�0�̂�2 − �̂�2
1 and �̂�j =

n−1 ∑n
i=1 Kh(Xi − x)(Xi − x)j).

2.2 Conditional mean estimation

Consider responses that take values in the Hilbert space L2( ). When choosing the L2

metric in the bounded target space of mean functions ΩM ⊂ L2( ), it is easy to see that
E(Y (t) |X)=E⊕(Y |X)(t), where E⊕ is the Fréchet mean. Then estimation is straightforward within
the Fréchet regression framework by taking Y i(⋅), i= 1, 2, … , n, as responses. The following
result provides a novel characterization of Fréchet regression and shows that, interestingly, global
and local Fréchet regression in this setting are equivalent to fitting time-varying linear or local
linear regression models. We use here the notations

(𝛽0(t), 𝛽1(t)) = arg min
𝛽0(t),𝛽(t)

n∑
i=1

(
Yi(t) − 𝛽0(t) − 𝛽T

1 (t)Xi
)2
, (3)

(
𝛽
∗
0(x, h1, t), 𝛽

∗
1(x, h1, t)

)
= arg min

𝛽0(t),𝛽1(t)

n∑
i=1

Kh1(Xi − x)(Yi(t) − 𝛽0(t) − 𝛽1(t)(Xi − x))2. (4)

Proposition 1. Consider global and local Fréchet regression estimates with weights wiG and wiL
defined in (1), (2), given by

�̂�G(x, ⋅) = arg min
𝛽0

n∑
i=1

wiG(x)d2(Yi, y), (5)

�̂�L(x, h1, ⋅) = arg min
𝛽0

n∑
i=1

wiL(x, h1)d2(Yi, y). (6)

For the L2 metric d2(Y1,Y2) =
[∫ (Y1(t) − Y2(t))2dt

]1∕2 for Y1,Y2 ∈ L2( ), it holds that

�̂�G(x, t) = 𝛽0(t) + 𝛽1(t)x,

�̂�L(x, h1, t) = 𝛽∗0 (x, h1, t).

This result demonstrates that with Hilbert space valued responses, global Fréchet regression
fits can be interpreted as fitting a linear varying coefficient model, while local Fréchet regression
can be interpreted as fitting a nonparametric varying coefficient model, providing new insights
into the workings of the general concept of Fréchet regression for this important special case.

2.3 Conditional covariance estimation

To obtain conditional covariance surfaces with the Fréchet regression framework, the first step
is to represent the conditional covariance as the conditional Fréchet mean of random objects
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that are constructed from the initial observations {Y i(⋅), Xi}, where the random objects must take
values in the target spaceΩC ⊂ {𝜌(s, t) ∶  ×  → , 𝜌 is symmetric and nonnegative definite},
equipped with a suitable metric. For the random objects, we take the raw covariance
surfaces Z = (Y (t) − 𝜇(X , t))⊗ (Y (s) − 𝜇(X , s)) and choose the Frobenius metric d2

F(Z1,Z2) =∫ ∫ (Z1(s, t) − Z2(s, t))2 dsdt, defining the object space (ΩC, dF).
We find that m⊕(x) = arg min

𝜔∈Ω
E(d2(Z, 𝜔)|X = x) = Cov(Y (s),Y (t)|X = x), enabling us to apply

Fréchet regression to the sample Zi(t, s) = (Yi(t) − 𝜇(Xi, t))⊗ (Yi(s) − 𝜇(Xi, s)), i= 1, 2, … , n.
However, since 𝜇(x, t) is unknown, analogous to the situation considered in Petersen et al. (2019)
for the case of covariance matrices, the sample elements Zi are not directly available and proxies
need to be obtained by estimating the conditional mean by �̂�iG(x, t) or �̂�iL(x, t), substituting these
estimates for the unknown true means. Then the available sample consists of the tensor products

ZiG(t, s) = (Yi(t) − �̂�G(Xi, t))⊗ (Yi(s) − �̂�G(Xi, s)), (7)

ZiL,h1(t, s) = (Yi(t) − �̂�L(Xi, h1, t))⊗ (Yi(s) − �̂�L(Xi, h1, s)), (8)

for global, respectively, local Fréchet regression. We show in Section 3 that there is no loss when
substituting ZiL, ZiG for the unknown true Zi, under mild regularity assumptions.

The global and local versions of the Fréchet regression for covariance surfaces, that is, the
conditional covariance estimates, are then given by

ĈG(x, ⋅, ⋅) = arg min
𝜔∈ΩC

n−1
n∑

i=1
wiG(x)d2

F(ZiG, 𝜔), (9)

ĈL,h1,h2(x, ⋅, ⋅) = arg min
𝜔∈ΩC

n−1
n∑

i=1
wiL(x, h2)d2

F(ZiL,h1 , 𝜔). (10)

Let

C̃G(x, t, s) = n−1
n∑

i=1
wiG(x)ZiG, C̃L,h1,h2 (x, t, s) = n−1

n∑
i=1

wiL(x, h2)ZiL,h1

with eigenvalue decomposition

C̃G(x, t, s) =
∞∑

k=1
𝜆kG(x)𝜓kG(x, s)𝜓kG(x, t), (11)

C̃L,h1,h2(x, t, s) =
∞∑

k=1
𝜆kL(x)𝜓kL(x, s)𝜓kL(x, t). (12)

Then the explicit solutions can be expressed as

ĈG(x, t, s) =
∑
𝜆kG>0

𝜆kG(x)𝜓kG(x, s)𝜓kG(x, t),

ĈL,h1,h2(x, t, s) =
∑
𝜆kL>0

𝜆kL(x)𝜓kL(x, s)𝜓kL(x, t),

where further details can be found in the proofs of Propositions 3 and 5.
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2.4 Prediction bands

Under Gaussian assumptions, estimates for the conditional mean and covariance functions yield
the conditional distribution (Y |X), as it is uniquely determined by the conditional mean func-
tion and the conditional covariance surface. This approach can also be utilized to construct an
approximate simultaneous prediction band of Y |X = x. Decomposing the conditional covariance
surface C(x, s, t) into the orthonormal eigenfunctions of the conditional covariance operator, by
Mercer’s theorem,

C(x, s, t) =
∞∑

k=1
𝜆k(x)𝜓k(x, s)𝜓k(x, t).

Assuming that the conditional eigenfunctions 𝜓k(x, ⋅) form a basis of L2( ) for each x, we may
represent Y |X = x in this basis,

Y (t) = 𝜇(x, t) +
∞∑

k=1
𝜉k(x)𝜓k(x, t). (13)

The variance of the conditional functional principal components is Var(𝜉k|X = x) = 𝜆k(x),
where 𝜆k(x) > 0 is the kth eigenvalue of the conditional covariance operator Cx. Instead of using
infinitely many components, for practical purposes we need to truncate the sum in (13) at Jn
included summands, which we choose as the smallest integer satisfying

inf
x

∑Jn
k=1 𝜆k(x)∑∞
k=1 𝜆k(x)

≥ rn, (14)

where rn is the fraction of variance explained. By letting rn → 1 as n→∞, one can eventually
recover the entire conditional distribution.

Assuming conditional Gaussianity, that is, that {𝜉1(x), … , 𝜉Jn(x)}|X = x is also Gaussian dis-
tributed for all x, one can construct (1 − 𝛼) prediction regions via a simple ellipsoid construction
based on

P

{ Jn∑
k=1

𝜉k(x)2

𝜆k(x)
> 𝜒2

Jn,1−𝛼

}
≤ 𝛼.

From this one obtains the (1 − 𝛼) level simultaneous (in t ∈  ) prediction band

(1 − 𝛼, x, rn) =

{
𝜇(x, t) +

Jn∑
k=1

ak𝜆
1∕2
k (x)𝜓k(x, t) ∶

Jn∑
k=1

a2
k ≤ 2

Jn,1−𝛼
, t ∈ 

}
,

denoting by 𝜒2
Jn,1−𝛼

the (1 − 𝛼) quantile of the 𝜒2 distribution with Jn degrees of freedom. This
construction involves an approximation, due to the truncation at Jn included terms. We will show
in Section 3 that these prediction bands achieve correct coverage in the limit when n→∞ and
Jn →∞.

In applications the conditional mean and covariance need to be estimated, for which we use
the methods of Section 2.2. Specifically, we use global estimates (�̂�G(x, ⋅), ĈG(x, ⋅, ⋅)) (5), (6) or
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local estimates (�̂�L,h1
(x, ⋅), ĈL,h1,h2(x, ⋅, ⋅)) (9), (10) to replace C(x, s, t) and then obtain the estimated

simultaneous prediction bands

G(1 − 𝛼, x, Jn) =

{
�̂�G(x, t) +

Jn∑
k=1

ak𝜆
1∕2
kG (x)𝜓kG(x, t) ∶

Jn∑
k=1

a2
k ≤ 𝜒2

Jn,1−𝛼
, t ∈ 

}
, (15)

L,h1,h2(1 − 𝛼, x, Jn) =

{
�̂�L,h1

(x, t) +
Jn∑

k=1
ak𝜆

1∕2
kL (x)𝜓kL(x, t) ∶

Jn∑
k=1

a2
k ≤ 𝜒2

Jn,1−𝛼
, t ∈ 

}
, (16)

where 𝜆kG(x), 𝜓kG(x, s), 𝜆kL(x), 𝜓kL(x, s) are as in (11).
These prediction bands will be illustrated in simulations in Section 4 and for applications in

Section 5.

3 ASYMPTOTIC PROPERTIES

We establish consistency of the proposed estimates under the framework of M-estimation. A func-
tion f ∶  → R is called 𝛼 differentiable if it has uniformly bounded partial derivatives of order⌊𝛼⌋ (the greatest integer smaller than 𝛼) and its highest partial derivatives are Lipschitz of order
𝛼 − ⌊𝛼⌋.

For k= (k1, k2, … , kd), k. =
∑d

i=1 ki and the corresponding partial derivative Dkf , define

||f ||𝛼 = max
k.≤⌊𝛼⌋ sup

x∈A
|Dkf (x)| + max

k.=⌊𝛼⌋ sup
x,y∈A

|Dkf (x) − Dkf (y)|||x − y||𝛼−⌊𝛼⌋ .

Then C𝛼
D() denotes the set of functions that are almost everywhere 𝛼 differentiable with||f ||𝛼 ≤ D (see section 7, van der Vaart & Wellner, 1996). We require the following assumptions:

(A0) T is compact and (Y |X = x) is Gaussian for all x.
(A1) ΩM ⊂ C𝛼

D( ), ΩC ⊂ C𝛼
D( ×  ) and Y (⋅) is in C𝛼

D( ) with probability 1, for some 𝛼 > 1
and D> 0, where ΩM is the target space of conditional mean functions and ΩC is the target space
of conditional covariance functions, as defined in Section 2.3.

(K0) The kernel K used in local Fréchet regression is a symmetric probability density function,
such that with Kjm = ∫RKj(u)umdu, |K14| and |K26| are both finite.

The Gaussianity assumption is needed to make the problem of assessing conditional distri-
butions in the infinite-dimensional setting tractable, as explained above. The assumption on the
differentiability of the random trajectories and conditional mean function is in line with typical
smoothness assumptions in functional regression.

To state our main results, we need to identify the targeted conditional mean and covariance
functions. Extending least squares to metric data, global Fréchet regression aims at the best lin-
ear model, replacing least squares with more general distances, while local Fréchet regression
provides an analogous local version, generalizing local least squares smoothing, as discussed in
more detail in Section 2. The global Fréchet regression targets for mean and covariance are

�̃�(x, ⋅) = arg min
𝜔∈ΩM

E[wG(x;X)d2(Y (⋅), 𝜔)], (17)

C̃(x, ⋅, ⋅) = arg min
𝜔∈ΩC

E[wG(x;X)d2
F(C

∗(⋅, ⋅), 𝜔)] (18)
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where C∗(s, t) = (Y (t) − 𝜇(X , t))⊗ (Y (s) − 𝜇(X , s)), for the population targets 𝜇(x, t) = E(Y (t)|x)
and C(x, s, t)=Var(Y (t), Y (s) |x), where from now on we write C(x) to denote C(x, ⋅ , ⋅).

Proposition 2. For �̂�G(x, t) as defined in (5), under (A0) and (A1),

∫
(�̂�G(x, t) − �̃�(x, t))2dt = Op(n−1),

where �̃�(x, ⋅) is the global Fréchet regression of the mean function (17).

An analogous consistency result holds for global Fréchet regression for covariance surfaces,
where dF denotes the Frobenius metric, as before.

Proposition 3. For ĈG(x, ⋅, ⋅) as defined in (9), under (A0) and (A1),

dF(ĈG(x), C̃(x)) = Op(n−1∕2),

where C̃(x) is the global Fréchet regression of covariance (18).

We utilize these consistency results to obtain the rate of convergence of the 2-Wasserstein dis-
tance between estimated and true conditional distributions. Since it has become one of the most
popular metrics in the space of distributions, due to its role in optimal transport and its supe-
rior performance in applications (Petersen & Müller, 2016; Villani, 2008), we quantify here the
distance of distributions with the Wasserstein metric, which is also motivated by the connection
of this metric with the L2 distance of quantile functions for the case of one-dimensional distri-
butions that we consider here. The 2-Wasserstein distance between two distributions 1,2 on a
measurable metric space  with metric d is defined as

d2
w(1,2) = inf

X̃1∼1,X̃2∼2

E[d (X̃1, X̃2)2]. (19)

In our case the metric space  is the Hilbert space of square integrable functions with the
L2 metric. When analyzing the minimization problem (19), we will make heavy use of the fact
that only Gaussian distributions 1,2 need to be considered. The following main result provides
the rate of convergence in terms of the Wasserstein distance of the estimated conditional distri-
bution (�̂�G(x, t), ĈG(x, s, t)) to the true conditional distribution (Y |X), where (𝜇(x, t),C(x, s, t))
denotes the Gaussian measure on L2( ) with conditional mean function 𝜇(x, ⋅) at X = x and
conditional covariance function C(x, ⋅ , ⋅) at X = x, so that (Y |X = x) ≡ (𝜇(x, t),C(x, s, t)).
Theorem 1. For �̂�G(x, t) defined in (5) and ĈG(x, ⋅, ⋅) defined in (9), if (A0) holds and (A1) is sat-
isfied with 𝛼 > 2, and if 𝜇(x, t) = �̃�(x, t) and C(x) = C̃(x), that is, the true conditional mean and
covariance satisfy the linear regression models implied by global Fréchet regression, then

dw((Y |X = x),(�̂�G(x, t), ĈG(x, s, t))) = Op(n−(𝛼−2)∕8𝛼).

We note that the rate of convergence in this distributional consistency result improves as the
degree of smoothness 𝛼 in assumption (A1) increases and approaches n−1/8 as 𝛼 → ∞.

A second option is to employ local Fréchet regression estimators for the conditional mean
functions �̂�L(x) (6) and the conditional covariance functions ĈL(x) (10). This approach is more
flexible as one does not need to require that the true conditional mean and covariance functions
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follow the linear model that is implied by global Fréchet regression. However, as in the Euclidean
case, in exchange for fewer assumptions, in the nonparametric approach one needs to consider
bias, and the rates of convergence for the conditional distributions are slower. This is seen in
Theorem 2, the proof of which makes use of the following two results.

Proposition 4. Under (A0), (A1), and (K0), if the bandwidth sequence satisfies h1 ∼n−1/5, it holds
that

d2(�̂�L(x, h1, t), 𝜇(x, t)) = Op(n−2∕5).

Proposition 5. Under (A0), (A1), (K0) and h1 ∼ h2

dF(ĈL,h1,h2(x),C⊕(x)) = Op((nh1)−1∕2), dF(C⊕(x),C(x)) = Op(h2
1),

where C⊕(x, ⋅, ⋅) = argmin𝜔∈ΩC E[wL(x, h2;X)d2
2(Z, 𝜔)] with Z = (Y (t) − 𝜇(X , t))⊗ (Y (s) − 𝜇(X , s))

is the smoothed target and C(x, ⋅ , ⋅)=Cov(Y (⋅), Y (⋅) |X = x) is the true conditional covariance
function. Then choosing h1, h2 ∼n−1/5, it holds that

dF(ĈL,h1,h2(x),C(x)) = Op(n−2∕5).

The preceding results lead to the rate of convergence for the local estimation approach when
targeting the true conditional distribution estimation.

Theorem 2. Under (A0) and (K0), if (A1) is satisfied with 𝛼 > 2 and if h1 ∼ h2 ∼n−1/5,

dw((Y |X = x),(�̂�L(x, h1, t), ĈL,h1,h2(x, s, t))) = Op(n−(𝛼−2)∕10𝛼).

This implies that for the local approach, the convergence of the Wasserstein distance between
estimated and true conditional distributions approaches the rate n−1/10 as 𝛼 → ∞. The above
convergence of global and local Fréchet estimates of mean and covariance functions also leads
to the consistency of the 1 − 𝛼 prediction bands defined in (15) and (16). The following result
shows that for large sample sizes, the coverage of these bands is at least at the nominal
level 1 − 𝛼.

Theorem 3. If (A0), (A1), and (K0) holds. For the global (15) and local (16) prediction bands, as
the fraction of variance explained rn in (14) satisfies rn → 1 as n→∞,

lim
n→∞

P(Y (t) ∈ L(1 − 𝛼, x, rn), for all t ∈  |X = x) ≥ 1 − 𝛼.

Furthermore, if �̃�(x, ⋅) = 𝜇(x, ⋅) and C̃(x) = C(x),

lim
n→∞

P(Y (t) ∈ G(1 − 𝛼, x, rn), for all t ∈  |X = x) ≥ 1 − 𝛼.

4 IMPLEMENTATION AND SIMULATIONS

In practical applications, one often has a dense and regular grid tj on which the functional data
{Xi, Y i(tj)}, i= 1, 2, … , n, j= 1, 2, … , m, are observed, where {t1, t2, … , tm} is a dense equidistant
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grid that covers  . We then approximate the L2 distance in function space by d̃2
2(Y1,Y2) =

1
m2

∑m
j=1 (Y1(tj) − Y2(tj))2 and use discretized mean function estimates for global and local versions,

respectively, given by

{�̂�G(x, t1), �̂�G(x, t2), … , �̂�G(x, tm)} = arg min
y(tj),j=1,… ,m

n∑
i=1

[wiG(x)d̃
2
1(Yi, y)],

{�̂�L(x, h1, t1), �̂�L(x, h1, t2), … , �̂�L(x, h1, tm)} = arg min
y(tj),j=1,… ,m

n∑
i=1

[wiL(x, h1)d̃
2
1(Yi, y)].

Discretized conditional raw covariances ZiG (7) and ZiL (8) are m×m nonnegative
definite matrices with {ZiG}j,k = (Yi(tj) − �̂�G(x, tj))(Yi(tk) − �̂�G(x, tk)) and {ZiL,h1}j,k = (Yi(tj) −
�̂�L(x, h1, tj))(Yi(tk) − �̂�L(x, h1, tk)), with d̃2

2(Z1,Z2) =
∑m

j=1
∑m

k=1 (Z1(tj, tk) − Z2(tj, tk))2 denoting the
matrix Frobenius norm. The conditional covariance estimates are then

ĈG(x, tj, tk) = arg min
𝜔∈Ω̃

n−1
n∑

i=1
wiG(x)d̃

2
2(ZiG, 𝜔), (20)

ĈL,h1,h2(x, tj, tk) = arg min
𝜔∈Ω̃

n−1
n∑

i=1
wiL(x, h2)d̃

2
2(ZiL,h1 , 𝜔), (21)

where Ω̃ is the space of nonnegative definite matrices on Rm×m.
Setting C̃G(x) = n−1 ∑n

i=1 wiG(x)ZiG and C̃L,h1(x) = n−1 ∑n
i=1 wiL(x, h1)ZiL,h1 as in (11), with

eigenvalue decomposition
∑m

k=1 �̃�kGvkGvT
kG and

∑m
k=1 �̃�kLvkLvT

kL, respectively, the solutions can be
written as

ĈG(x, tj, tk) =
⎧⎪⎨⎪⎩
∑
�̃�kG>0

�̃�kGvkGvT
kG

⎫⎪⎬⎪⎭j,k

, (22)

ĈL,h1,h2(x, tj, tk) =
⎧⎪⎨⎪⎩
∑
�̃�kG>0

�̃�kLvkLvT
kL

⎫⎪⎬⎪⎭j,k

. (23)

Note that the local versions depend on two bandwidths h1, h2 for estimating the condi-
tional mean and conditional covariance. While h1 can be chosen by cross-validation, the bias in
empirical covariances (7), (8) makes cross-validation for choosing h2 infeasible. To address this
problem, we simplify the selection by setting h2 = h1 for conditional mean and conditional covari-
ance estimation, where we choose h1 by cross-validation for the conditional mean estimation,
minimizing

CVMean(h) =
n∑

i=1
d2

2(�̂�
(−i)
L (Xi, h1, ⋅),Yi), (24)

where �̂�(−l)
L (Xl, h1, ⋅) is the local Fréchet conditional mean estimation from the reduced sample

{Xi, Y i}, i= 1, 2, … , l− 1, l+ 1, … , n.
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For the simulations, we generated data (Xi, Y i), i= 1, … , n, with functional responses
Y i ∈L2([0, 1]) and scalar predictors Xi. The conditional distributions (Y |X) were constructed as
Gaussian processes and the functional responses Y (t) were assumed to be observed on an equidis-
tant grid with m= 51 grid points. We investigated sample sizes n= 50, 100, 200, 300, 400, 500, 1000
and generated data (Y i(tj), Xi), i= 1, 2, … , n, j= 1, 2, … , 51, (t1, t2, … , tm) = (0, 1

m−1
,

2
m−1

, … , 1)
Specifically, predictors Xi, i= 1, 2, … , n, were generated i.i.d. from Unif([0, 1]) and responses

Y i, i= 1, 2, … , n, independently from

Y (t) =
√

3𝜃1t +
√

6
5
𝜃2

(
1 − t

2

)
,

with 𝜃1|X ∼ N(X ,X2), 𝜃2|X ∼ N(X∕2, (1 − X)2), independent given X . For this setting, one can
analytically determine the true conditional means and covariances of (Y |X),

E(Y (t)|X) =
√

3Xt +
√

6
5

X
2

(
1 − t

2

)
,

Cov(Y (s),Y (t)|X) = 3X2ts + 6
5
(1 − X)2

(
1 − t

2

)(
1 − s

2

)
.

Local Fréchet regression was used to estimate conditional mean and conditional covariance.
For an initial study we evaluated the performance of bandwidth choices with bandwidths h1 and
h2, selected as combinations of 10 log scale equidistant bandwidths from 0.01 to 0.5. We evalu-
ated the accuracy of the conditional distribution estimation by the average Wasserstein distance
(19) over all x and the accuracy of the resulting conditional covariance estimates by the mean
integrated square error (MISE),

MISE = E
(
∫

1

0 ∫
1

0 ∫
1

0
(Ĉ(x, s, t) − C(x, s, t))2 ds dt dx

)
,

which was estimated with Q= 1000 Monte Carlo runs for each n by the empirical mean integrated
square error (EMISE),

EMISE = 1
Q

Q∑
q=1 ∫

1

0 ∫
1

0 ∫
1

0
(Ĉq(x, s, t) − C(x, s, t))2 ds dt dx.

The dependency of EMISE on bandwidth choices h1 and h2 in Table 1 indicates that although
the best bandwidth combination is sometimes a little off the diagonal h1 = h2, the bandwidths
on the diagonal provide similar EMISEs as the best combinations. Thus, cross-validation choices
with h2 = h1, selecting h1 by cross-validation as described above, worked very well overall. Fitted
and true conditional covariance surfaces are illustrated in Figure 1, demonstrating reasonable
accuracy and goodness-of-fit. The plot of EMISE versus sample size in Figure 2 agrees with the
asymptotic predictions in Proposition 5.

Figure 3 demonstrates the performance of prediction bands for level 𝛼 = 0.1 under the
global model. There are 85 lines covered by the band among 100 simulated observations.
The performance of the prediction bands was evaluated at x = 0.1, 0.2, … , 0.9 and sample
sizes n= 100, 500, 1000. For each Monte Carlo run, we generated a random sample (Y i(tj), Xi),
i= 1, 2, … , n, j= 1, 2, … , 51 from the global model and constructed nine global prediction bands
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T A B L E 1 Empirical mean integrated square error of different bandwidth h1

and h2 at sample size 100

h1, h2 0.01 0.024 0.057 0.136 0.324 0.5
0.01 0.18 0.159 0.139 0.132 0.179 0.182

0.024 0.241 0.105 0.095 0.106 0.163 0.163

0.057 0.131 0.119 0.091 0.084 0.117 0.141

0.136 0.167 0.088 0.072 0.064 0.106 0.128

0.324 0.185 0.094 0.062 0.055 0.074 0.104

0.5 0.186 0.143 0.044 0.046 0.078 0.092

F I G U R E 1 True conditional covariances (top 3) and fitted conditional covariances (bottom 3) from one
simulation run with sample size n= 100. The selected run is of medium empirical mean integrated square error.
The left column is when x = 0.1, middle column when x = 0.5, and right column when x = 0.9

F I G U R E 2 EMISE (left) and average Wasserstein distance (right) versus sample size for local Fréchet
regression. The bandwidths h are chosen by cross-validation



FAN and MÜLLER 515

F I G U R E 3 Level 0.9 prediction band
(blue solid band) for simulated data at x = 0.8
with n= 100. Another 100 random
observations are generated from the true
model to calculated the coverage rate

F I G U R E 4 Empirical mean integrated square error (left) and average Wasserstein distance (right) versus
sample size for global Fréchet regression with 500 Monte Carlo runs

at x = 0.1, 0.2, … , 0.9. Then 100 new observations were generated from the true model at each
x and the number of curves falling within the constructed prediction bands was recorded. For
sample sizes n= 100, 500, 1000, we generated 500 Monte Carlo runs and the coverage rate was cal-
culated by averaging over all x and Monte Carlo runs, leading to results of 0.874, 0.888, 0.891 for
the respective sample sizes. As sample size gets larger, the coverage of the band is seen to become
more accurate.

As mentioned above, global Fréchet regression relies on stronger model assumptions and
is only consistent when the true conditional covariance and conditional mean are linear in X
as shown above. Therefore, we generated data according to Y (t) = 𝜃1

√
3t + 𝜃2

√
(6∕5)(1 − t∕2),

where 𝜃1|X ∼ N(X ,X), 𝜃2|X ∼ N(X∕2, 1 − X) and independent given X . Then the true con-
ditional mean and covariance are E(Y (t)|X) =

√
3Xt + X

2

√
(6∕5(1 − t∕2), Cov(Y (s),Y (t)|X) =

3Xts + (6∕5)(1 − X)(1 − t∕2)(1 − s∕2). Under this setting we chose different sample sizes and
calculated EMISE and average Wasserstein distance as in Figure 4. The curve on the left
of Figure 4 is close to n−1/2, in accordance with the theoretical result in Proposition 3 and
the average Wasserstein distance result is similar to that obtained for the local method in
Figure 2.
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5 DATA ILLUSTRATIONS

5.1 Bike-sharing Data

The bike-sharing data are available at http://capitalbikeshare.com/system-data (Fanaee-T &
Gama, 2014). The counts of bike-sharing rentals were recorded every hour in Washington, DC
for 2 years, along with weather and seasonal covariates such as temperature, wind speed, and an
indicator whether the day of the rental is a holiday. Our goal is to study how the conditional dis-
tribution and prediction bands for the bike-sharing rental process change in dependency on these
covariates.

With data available for n= 731 days, the functional response Y i is the bike-sharing rental pro-
cess on the ith day, with data recorded every hour as the number of rentals during the hour (there
are a few missings). The covariates are indicators for Spring, Summer, Autumn, work day, clouds,
slight rain or snow, heavy rain or snow, and in addition continuous predictors that include aver-
age temperature of the day, average humidity of the day (scaled to [0, 1]), and average wind speed
of the day (also scaled to [0, 1]).

Since the dimension of X is high and there are several binary predictors, local Fréchet regres-
sion is not feasible, but we can apply global Fréchet regression to obtain conditional distributions
of the rental process. The effects of season and work days versus holidays are illustrated in
Figure 5. This indicates that weather primarily influences the scale of bike rentals, while whether
it is a holiday or work day has a major effect on shape and width of the prediction band. During
the work week, peaks in the profile are present at around 8 a.m. and 5 p.m., corresponding to the
major commuting times, so clearly on week days one of the main purposes of renting a bike is to
use it to commute to the workplace.

By contrast, on holidays, a broad peak in the profile tends to occur around 12–3 p.m. and
there are more people renting bikes at midnight than at work days. Unsurprisingly, in Winter
fewer people rent a bike than in Spring, Summer, and Autumn. In Summer, the bike rentals at
the evening peak have a wider prediction band, indicating more variability, and there is some
graphical evidence for an afternoon peak that is much less expressed in the other seasons. In
Figure 6 we show the prediction bands for the rental processes in dependence on wind speed.
For higher wind speeds, the prediction bands widen and there are overall less bike rentals, as one
would expect.

5.2 Fragments of growth curves

Fragments are a special type of functional data, where for each subject observations on only a
part of the time domain are available. Recently, this kind of data, which are also referred to as
functional snippets, has become a topic of much research and discussion in functional data anal-
ysis due to the ubiquity of functional data fragments in applications (Delaigle & Hall, 2013, 2016;
Kraus, 2019; Liebl & Rameseder, 2019; Stefanucci et al., 2018). We provide here some tools for
such data that are a natural consequence of the proposed conditional distribution analysis for
functional responses. This type of data is for example encountered in accelerated longitudinal
studies (Dawson & Müller, 2018; Galbraith et al., 2017). In such studies, the full time domain on
which a dynamic process of interest unfolds extends over a longer stretch of time, while only a
relatively short observational study can be carried out. Then subjects at different stages of the full
longitudinal process are simultaneously observed for a relatively short time interval that depends

http://capitalbikeshare.com/system-data
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F I G U R E 5 Approximate simultaneous prediction bands at level 0.8 for different seasons and weekdays/
weekends. Top row conditional on Spring, second row on Summer, third row on Autumn and bottom row on
Winter; left column results are conditional on holidays or weekends and right column results conditional on
work days. For all cases the wind speed is chosen as the average of the season. The red curves are estimated
conditional means
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F I G U R E 6 Approximate simultaneous prediction bands at level 0.8 conditional on different levels of wind
speed on holidays or weekends in Spring. Top panels are with wind speed 0.3 and 0.4 from left to right, the
middle panels 0.5 and 0.6, and the bottom panels 0.7 and 0.8. The red curves are estimated conditional means

on the duration of the accelerated longitudinal study, and subjects enter the study at a random
time distance from the time origin of the longitudinal process of interest.

Formally, we have a stochastic process Y (t), t ∈ [0, T], where in the following we refer to the
time t as age of the subject. Each subject is observed over an interval of short fixed length T0 <T
and the age si when the ith subject enters the study is random and i.i.d. We assume that dur-
ing the observation period the trajectories of subjects who enter the study are fully observed or
that the Y i(t), t ∈ [si, si +T0] are available on a dense grid. Then the observed data are {Y i(tij), si},
tij ∈ [si, si +T0], i= 1, 2, … , n, where tij, j= 1, 2, … , mi, is the dense time grid where subject i is
observed.

We illustrate the application of our methods to this problem by drawing fragment sam-
ples from the Zürich longitudinal growth study (Gasser & Kneip, 1995; Kneip & Gasser, 1988).
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F I G U R E 7 Fragment growth curves of n= 120 boys and n= 112 girls. The left are boys and right are girls

F I G U R E 8 Prediction bands at level 0.9 over fragments for children entering at age 10, 11, and 12 years
and at height 135 cm. The top panels are with entering age 10, the middle panels with entering age 11, and the
bottom panels with entering age 12. The left column corresponds to boys results and the right corresponds to
girls. The red curves are estimated conditional means
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The Zürich longitudinal growth study includes body heights of 120 boys and 112 girls at differ-
ent ages from 0 to 20 years. The study consists of longitudinal measurements recorded four times
between 0 and 1, half-yearly between 10 and 18, and yearly otherwise with the last measurement
at age 20 years. For each subject we assign a random entering age, which is uniformly drawn from
a grid of ages that spans half-yearly between 10 and 17. The length of each fragment is chosen to
be 3 years, that is, we assume the accelerated longitudinal study is conducted over an interval of
3 years. The fragments drawn are as shown in Figure 7.

We apply local Fréchet regression to obtain (Y (s + t)|s,Y (s)), t ∈ [0, T0], as described in
Section 2, aiming to obtain the conditional distribution of the observed trajectories on the frag-
ment in dependence on the value of the trajectory upon entering the fragment and the age at
which a subject enters the fragment. These quantities are known at the time when the fragment
period starts and the resulting conditional distribution is of interest for various applications, for

F I G U R E 9 Prediction bands at level 0.9 over fragments for children entering at age 10, 11, and 12 years
and at height 145 cm. The panels are arranged as in the preceding figure, Figure 8. The red curves are estimated
conditional means
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example, to determine whether growth is on track during the fragment period. We note here
that functional principal component analysis is for example not feasible for functional fragments
unless one imposes extremely strong and unverifiable assumptions, and there are very few options
available to analyze such data if one wishes to avoid what amounts to essentially parametric
assumptions. The method we propose here is one of the available options that can be employed
under mild assumptions.

To gain insights into fragmented functional data, we use the conditional simultaneous pre-
diction region (16) that results from conditional distribution modeling. Here we condition
on age at entry and value of body length (which generates the functional process) at age at
entry into the domain of the fragment. The prediction band in this case is for the interval
[s, s+T0].

F I G U R E 10 Prediction bands at level 0.9 for children entering at age 13, 14, and 15 years and at height
160 cm. The top panels are with entering age 1, middle panel with entering age 14, and bottom panel with
entering age 15. The results for boys are in the left column and those for girls in the right column. The red curves
are estimated conditional means
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F I G U R E 11 Prediction bands at level 0.9 for children entering at age 13, 14, and 15 years and at height
170 cm. The panels are arranged as in Figure 10. The red curves are estimated conditional means

We present the results of prediction bands in Figures 8, 9, 10, and 11 for entering ages 10, 11,
and 12 years, and entering heights 135 and 145 cm, and also conditioning on entering ages 13, 14,
and 15 years and on entering heights of 160 and 170 cm. At entering age 10, 11, and 12 years and
same entering height, boys and girls have similar conditional mean and variation while at entering
ages 13, 14, and 15 years, the conditional means of boys are much higher and the prediction bands
for boys are much wider. For both boys and girls at the same entering height, larger age at entry
into the fragment domain is associated with similar conditional means but higher variation at
age 10, 11, and 12 years; however, at entering ages 13, 14, and 15 years, larger entering ages are
associated with less variation, which can be explained by the fact that growth ends around age
18 years.
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6 DISCUSSION

In the article, we propose both linear and nonparametric models to construct conditional distri-
butions for regression models with functional responses, thus broadening the scope of functional
regression, which is normally confined to the usual mean regression. This approach can also be
harnessed to construct asymptotic simultaneous prediction bands, which can be used to deter-
mine whether new trajectory observations that are associated with certain covariate levels are
outliers or fall into the expected range. The proposed methods are supported by asymptotic
consistency, including Wasserstein consistency for conditional distributions.

The proposed method is shown to be also useful for longitudinal fragment data that are com-
monly encountered in accelerated longitudinal studies. Approaches that aim to estimate the
whole covariance surface are not useful for functional data that consist of genuine fragments.
Instead, we solve the conditional distribution problem under Gaussian assumptions, which can
then be harnessed to assess the dynamic behavior of subjects within the fragments conditional
on the age at entry, as well as the function value at the beginning of the fragment, where the dis-
tribution of the functional response during the fragment is predicted from the data available at
entry into the fragment.
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