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Abstract

Series of univariate distributions indexed by equally spaced time points are ubiq-

uitous in applications and their analysis constitutes one of the challenges of the

emerging field of distributional data analysis. To quantify such distributional time

series, we propose a class of intrinsic autoregressive models that operate in the space

of optimal transport maps. The autoregressive transport models that we introduce

here are based on regressing optimal transport maps on each other, where predic-

tors can be transport maps from an overall barycenter to a current distribution or

transport maps between past consecutive distributions of the distributional time se-

ries. Autoregressive transport models and their associated distributional regression

models specify the link between predictor and response transport maps by moving

along geodesics in Wasserstein space. These models emerge as natural extensions of

the classical autoregressive models in Euclidean space. Unique stationary solutions

of autoregressive transport models are shown to exist under a geometric moment

contraction condition of Wu and Shao (2004), using properties of iterated random

functions. We also discuss an extension to a varying coefficient model for first order

autoregressive transport models. In addition to simulations, the proposed models

are illustrated with distributional time series of house prices across U.S. counties

and annual summer temperature distributions.
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1. INTRODUCTION

Distributional data analysis (DDA) deals with data that include random distributions

as data elements. While such data are prevalent in many applied problems (Menafoglio

et al. 2018; Matabuena and Petersen 2021), this area is still in its early development.

An important instance where one encounters distributional data arises for sequences of

dependent distributions that are indexed by discrete time. Such distributional time series

are ubiquitous. For instance, the distribution of the log returns of the stocks included

in a stock index is expected to contain more information than the index itself, which

only conveys the mean of the distribution but not any further information inherent in the

distribution such as quantiles. Elucidating the nature of such financial time series is for

example of interest for risk management (Bekierman and Gribisch 2021; Kokoszka et al.

2019). We will illustrate the proposed methods with the time series of distributions of

house prices that are formed from U.S. county house price data and may inform economic

policy (Oikarinen et al. 2018; Bogin et al. 2019) and also with time series of annual

distributions of temperatures aggregated over the summer, where a rise in night time

temperatures and more frequent extremes have been related to global warming.

Other pertinent examples include the analysis of sequences of age-at-death distribu-

tions over calendar years, which is instrumental for the study of human longevity (Mazzuco

and Scarpa 2015; Shang and Hyndman 2017; Ouellette and Bourbeau 2011) and also the

study of the distributions of correlations between pairs of voxels within brain regions that

can be derived from fMRI Bold signals (Petersen and Müller 2016), where such distribu-

tions may be observed repeatedly for the same subject in longitudinal studies that include

fMRI brain imaging and where measurements are taken at regular time intervals.

Distributions can be equivalently represented as either density, quantile or cumulative

distribution functions, assuming that all of these exist. Each of these representations
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comes with certain constraints (for example, density functions are nonnegative and in-

tegrate to 1). An important observation is that the spaces where these objects live are

nonlinear. As a consequence, common statistical tools that are available in linear func-

tion spaces such as the Hilbert space L2 that is utilized in functional time series analysis

(Bosq 2000) are inadequate and there is a need for the development of adequate sta-

tistical methodology. It is the goal of this paper to contribute to the development of

autoregressive models for one-dimensional distributions, given that autoregressive models

are popular in time series analysis and have been also considered for distributional time

series in recent work based on mapping to tangent spaces in the Wasserstein manifold

(Chen et al. 2022; Zhang et al. 2022).

Existing approaches for distributional regression are based on various transformation

approaches that include mapping the distributions into a Hilbert space as implemented in

the log quantile distribution approach (Kokoszka et al. 2019; Petersen and Müller 2016)

or through logarithmic maps in the Wasserstein manifold (Chen et al. 2022), where one

uses the Wasserstein metric in the distribution space and maps the distributions to a

tangent space that is a L2 space, anchored at a suitable distribution, often chosen as

a barycenter. One then can implement functional regression models in the ensuing L2

space, and analyze these models by employing parallel transport. While the log quantile

distribution transformation approach to distributional regression can lead to large metric

deformations, the tangent bundle approach is extrinsic and there are some difficulties with

the required inverse exponential maps that are caused by the injectivity requirement that

one needs to numerically address in finite sample situations. Various projection methods

have been devised to tackle this problem (Bigot et al. 2017; Chen et al. 2022; Pegoraro

and Beraha 2022), while in other recent work on extrinsic modeling it has been ignored

(Zhang et al. 2022), which can lead to inferior performance.

Since the autoregressive transport models we propose here are intrinsic, they bypass
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the construction of a tangent space and the ensuing problems with mapping and projec-

tion. For the case where only the responses are distributional but predictors are vectors,

one can apply Fréchet regression (Petersen and Müller 2019). Concurrently with this

paper, a distributional regression model with one predictor was proposed for the inde-

pendent case (Ghodrati and Panaretos 2022), where the goal is to learn a single best

transport map that maps the predictor distribution to the response distribution, so the

model parameter is the transport map learned from the data. This is akin to fitting a

linear regression model with only an intercept. A nice feature of this simple model is that

finding the best transport map has been shown to be equivalent to an isotonic regression

problem, which can be solved by standard optimization techniques.

In this paper, we propose a novel class of intrinsic distributional regression models

for the autoregressive modeling of distributional time series. The proposed models are

based on transports of the probability measures. The most popular notion of transport of

distributions is optimal transport, which commonly refers to moving distributions along

geodesics in the Wasserstein space, i.e., the space of distributions equipped with the

Wasserstein metric. The key innovation in the proposed regression model is that both

predictors and responses are taken to be transports of distributions, rather than distribu-

tions themselves, in contrast to the currently available distributional regression models.

Our focus is on univariate distributions with bounded support on the real line, which is

the most relevant case in statistical data analysis. Moreover, in data applications the dis-

tributions that are part of the data sample are not known a priori and in practice need to

be estimated from data they generate by nonparametric methods. Such methods include

kernel density estimation and related approaches, and for practical implementations a

bounded interval that defines the domain needs to be fixed beforehand. For the relatively

uncommon applications that require the distributions to be supported on the entire real

line it is common practice to truncate the target distribution at a large enough interval
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and to target the truncated distribution, with negligible error.

Typical examples for predictor or response transports are the transports defined by

pushing distributional barycenters (Fréchet means) forward to individual distributions,

and in the distributional time series framework also the transports pushing the distribution

at time (j−1) to that at time j, which may serve as predictors for the transports pushing

the distribution at time j forward to that at time j+1. The idea of considering transports

rather than distributions as predictors or responses, especially transports from barycen-

ters, is motivated by the classical simple linear regression model for scalar predictors and

responses. This model can be written in transport form as E(Y−µY |X−µX) = β(X−µX),

where µY = EY, µX = EX and β is the slope parameter, where both responses Y − µY

and predictors X − µX can be interpreted as transports pushing the barycenters µX , µY

forward to the individual data X, Y . As we show here, this transport interpretation of lin-

ear regression provides a natural approach to extend classical regression to distributional

regression modeling by regressing transports on each other.

We focus here on autoregressive transport models (ATM) that permit an inherent

geometrical interpretation by relating geodesics in transport space to each other, where

a first order ATM (or ATM(1)) connects transports related to time (j − 1) to transports

related to time j. As in the independent case, geometric transport interpretations can also

be applied to the case of scalar or vector time series in Euclidean space, motivating the

extension to distributional time series where transports are very natural. One of our main

results is the existence and uniqueness of a stationary solution for ATM(1) processes, for

which we utilize the geometric-moment contraction condition (Wu and Shao 2004) for

iterated random maps. While the proposed models generally involve scalar coefficients

and are well interpretable, we also consider an extension for ATM(1) processes, where the

ATM features a functional rather than scalar coefficient. We show that this functional

coefficient can also be estimated consistently from samples. The definition of ATMs of
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order p (ATM(p)) is obtained as a straightforward extension; these models possess a multi-

layer structure. We demonstrate that ATMs are useful to capture the dynamic evolution

of distributions for both real and synthetic data.

The rest of the paper is organized as follows. In Section 2, we provide some prelimi-

nary discussion on basic concepts such as Wasserstein space, optimal transport maps and

geodesics. We also introduce addition and scalar multiplication operations for the space

of transport maps. Section 3 includes methodology and theoretical results for ATM(1)

models. Extensions to ATM(p) models and versions of ATM(1) models with functional

coefficients are the topics of Sections 4 and 5. Numerical considerations and applications

to simulated and real data can be found in Section 6. Conclusions are in Section 7, while

the supplementary material contains proofs and technical details.

2. THE SPACE OF TRANSPORT MAPS

Defining W to be the set of probability distributions on (S,B(S)) with finite second

moments, where S = [s1, s2] is a bounded closed interval in R and B(S) is the Borel σ-

algebra on S. We assume there is an underlying probability space (Ω,A, P ) of W-valued

random variables that induces a probability measure on the space W with respect to

which we can calculate moments for random variables taking values in W .

For any measurable function T : S → S and µ ∈ W , let T#µ denote the pushforward

measure of µ, i.e. for any B ∈ B(S), T#µ(B) = µ({x : T (x) ∈ B}). If µ1 is absolutely

continuous with respect to the Lebesgue measure, then the 2-Wasserstein metric (dW) on

W can be written using the Monge formulation (Villani 2003)

dW(µ1, µ2) = inf
T :T#µ1=µ2

{∫
S
(T (x)− x)2dµ1(x)

}1/2

=

{∫
S
(T12(x)− x)2dµ1(x)

}1/2

=

{∫ 1

0

(F−12 (u)− F−11 (u))2du

}1/2

. (1)
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Here µ1, µ2 ∈ W , F1 = F (µ1) and F2 = F (µ2) are the cumulative distribution functions

(cdf) of µ1, µ2 respectively, and

F−11 (u) := inf{x ∈ S : F1(x) ≥ u}, F−12 (u) := inf{x ∈ S : F2(x) ≥ u}

are the corresponding quantile functions, defined as left-continuous inverses of the cdf. A

map T that satisfies T#µ1 = µ2 is a transport map from µ1 to µ2 and T12 = F−12 ◦ F1 is

referred to as the optimal transport map that pushes the probability measure µ1 forward

to the measure µ2.

For a nonempty interval I ⊂ R, the length of a given curve γ : I → W is L(γ) :=

sup
∑k

i=1 dW(γ(ti−1), γ(ti)), where the supremum is taken over all k ∈ N and t0 ≤ t1 ≤

· · · ≤ tk in I. For absolutely continuous µ1, McCann’s interpolant (McCann 1997) is the

curve γ : [0, 1]→W given by

γ(a) = (id+ a(T12 − id))# µ1,

where a ∈ [0, 1] and id is the identity map. McCann’s interpolant is the geodesic in W

that corresponds to the optimal transport from µ1 to µ2, where we do not distinguish

between this geodesic and the transport map T12; we note that L(γ) = dW(µ1, µ2) and γ

has constant speed dW(γ(a1), γ(a2)) = (a2 − a1)dW(µ1, µ2) for any 0 ≤ a1 ≤ a2 ≤ 1.

Our focus is on a time series of distributions {µi}i=1,2,...,n ⊂ W , which is assumed to

possess some stationarity properties, including stationarity of the mean. This means that

there exists a common Fréchet mean or barycenter µF , given by

µF := argmin
ν∈W

Ed2W(ν, µi) for all i = 1, 2, . . . , n,

where existence and uniqueness are assured by the fact that the Wasserstein space for
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one-dimensional distributions is a Hadamard space (Kloeckner 2010).

We now consider the space of all Lebesgue integrable functions on S, Lp(S) = {f : S →

R | ‖f‖Lp <∞}, where 1 ≤ p <∞, λ is the Lebesgue measure and ‖f‖Lp := (
∫
S |f |

pdλ)1/p

is the usual Lp-norm. Define the set T as

T = {T : S → S | T (s1) = s1, T (s2) = s2, T is non-decreasing} . (2)

Since T is a closed subset of Lp(S), it is a complete metric space with respect to the

Lp-norm, i.e. the limit of every Cauchy sequence of points in T is still in T . In addition,

T ⊂ Lp(S) can be equivalently identified as T =
{
T : S → S

∣∣ T := F−11 ◦ F2

}
, where,

as above, F1, F2 are the cdfs of probability measures µ1, µ2 ∈ W . Here, F1, F2 may not be

continuous and are not necessarily strictly increasing. For any T ∈ T , the representation

T = F−11 ◦F2 is not unique and one may choose F2 to be the cdf of a uniform distribution,

in which case T is represented by F−11 only, which then is unique. This not only induces

a metric on T but also shows that W and T are isometric with this induced metric. This

isometry induces a probability measure on T that is inherited from the corresponding

measure on W . Furthermore, for every T ∈ T , there exists a uniquely defined inverse

transport map T−1 ∈ T ; for any given representation T = F−11 ◦ F2, T
−1 = F−12 ◦ F1.

To build an autoregressive model for elements in T , we introduce addition and scalar

multiplication operations in the transport space T as follows.

• Addition: T1 ⊕ T2 := T2 ◦ T1, where T1, T2 ∈ T .

• Scalar multiplication: For any x ∈ S and T ∈ T , for any α ∈ R with −1 ≤ α ≤ 1,
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let

α� T (x) :=


x+ α(T (x)− x), 0 < α ≤ 1

x, α = 0

x+ α(x− T−1(x)), −1 ≤ α < 0

.

For any |α| > 1, let b = b|α|c, the integer part of α, and set a = |α| − b. We then

define a scalar multiplication in transport space by

α� T (x) :=


(a� T ) ◦ T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸

b compositions of T

(x), α > 1

(a� T−1) ◦ T−1 ◦ T−1 ◦ · · · ◦ T−1︸ ︷︷ ︸
b compositions of T−1

(x), α < −1
,

These operations are motivated as follows. Addition of transports is defined as their

simple concatenation, which is a straightforward extension from the case of transports

in Rp, where transports correspond to vectors V that are added to a vector argument

c, so that TV (c) = V + c. Consecutively applying two transport maps TV1 and then TV2

then means adding the sum of the two vectors V1 + V2 to the argument vector c, so that

TV2◦TV1(c) = V1+V2+c. For scalar multiplication, given 0 < α < 1, a transport vector αV

defines the transport TαV (c) = αV + c and therefore transports an argument vector c to a

point on the straight line (geodesic) between c and c+V . So if T1 is the optimal transport

that pushes µF to (T1)#µF , it is natural to define α � T1 such that it pushes µF to a

distribution lying on the geodesic from µF to (T1)#µF where its location on the geodesic

is characterized by a fraction of length α when measuring length from the starting point

µF . When α is negative, c + αV = c + |α|(−V ), where −V can be interpreted as the

transport map that pushes c+V to c and thus is the inverse transport T−1V of the transport

TV . The obvious extension to optimal transport maps in distribution spaces then leads

to the above definition of scalar multiplication, which is further illustrated in Figure 1. A
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c µF

R2 W

c+ V1 (T1)#µF

(α� T1)#µFc+ αV1

c+ V1 + V2

(T1 ⊕ T2)#µF

Figure 1: Motivating the definition of the addition ⊕ and scalar multiplication � oper-
ations for 0 < α < 1 in the Wasserstein optimal transport space for transports T1, T2
(right), while in R2 optimal transports are defined by vectors V1, V2 (left).

distinction from the vector space case is that the addition ⊕ for optimal transport maps

is not commutative. For scalar multiplication with factors α that are such that |α| > 1,

if α is an integer we decompose the map Tα into an iterative sum of maps T , and if α

is not an integer we apply the integer part of α first and after this apply an additional

transport map that is a scalar multiplication of T with the left-over fractional part of α.

Observe that(T ,⊕) is a (non-Abelian) group with the identity map as identity. For

any T ∈ T , the inverse is T−1. By the definition of ⊕, we have

(T1 ⊕ T2)⊕ T3 = T3 ◦ (T2 ◦ T1) = (T3 ◦ T2) ◦ T1 = T1 ⊕ (T2 ⊕ T3),

which entails the associativity of ⊕. Regarding the relation between � and ⊕, distributive

laws do not hold, i.e. there exists α, β ∈ R and T1, T2 ∈ T such that

α� (T1 ⊕ T2) 6= (α� T1)⊕ (α� T2), (α + β)� T1 6= (α� T1)⊕ (β � T1).

A simple example is as follows. Set S = [0, 1], T1(x) = x2, T2(x) = (x + x2)/2
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and α = 0.6, β = 0.7. Simple algebra shows that (α + β) � T1 = 0.7x2 + 0.3x4 6=

0.3(0.4x + 0.6x2) + 0.7(0.4x + 0.6x2)2 = (α � T1) ⊕ (β � T1). In addition, the coefficient

of x4 in the 4th order polynomial (with respect to x) α � (T1 ⊕ T2) is 0.3, while x4 has

coefficient 0.63 in (α�T1)⊕(α�T2), which indicates that α�(T1⊕T2) 6= (α�T1)⊕(α�T2).

3. AUTOREGRESSIVE TRANSPORT MODELS OF ORDER 1

3.1 Model and Stationary Solution

We first consider a time series {Xi}i=1,2,...,n ⊂ Rp with constant mean E[Xi] = µ ∈ Rp.

The vector autoregressive model of order 1 (VAR(1)) with scalar coefficient is

Xi − µ = β(Xi−1 − µ) + εi, (3)

where β ∈ R and {εi}i=1,2,...,n ⊂ Rp are the i.i.d innovations with mean 0. In this Euclidean

time series model, the vector Xi − µ can be interpreted as the optimal transport map

pushing µ to Xi, which provides the inspiration for the proposed ATM.

In general metric spaces, differences cannot be formed and thus a direct extension of

model (3) is not feasible. However, in transport spaces with uniquely defined optimal

transports along geodesics we can reinterpret differences of elements in terms of such

optimal transports. Specifically, in Wasserstein space, we define the difference between

two distributions µ2 and µ1 to be the optimal transport map that pushes µ1 to µ2, i.e.,

µ2 	 µ1 = F−12 ◦ F1, (4)

where in (4) F1 = F (µ1), F2 = F (µ2) are the cdfs of measures µ1, µ2, respectively. We

also require appropriate generalizations for the random innovations εi that now become

random transports. Extending the notion of additive noise for Euclidean data, we model
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noise in transport space as random transport maps in T constrained in such a way that

their Fréchet mean (barycenter) is the identity transport. A noise contaminated version

of a transport map T ∈ T is thus T ⊕ ε, where E(ε) = id.

Motivated by model (3), the autoregressive transport model of order 1 (ATM(1)) is

Ti = α� Ti−1 ⊕ εi, where Ti = µi 	 µF , (5)

where α ∈ R is the model parameter and the εi are i.i.d random distortion transport

maps with mean E(εi) = id. The proposed ATM approximates the optimal transport

map at time t = i with the scaled transport map α � Ti−1, in analogy to the VAR(1)

model Xi − c = β(Xi−1 − c) + εi, which can be interpreted as approximating the optimal

transport map Xi − c with the scaled transport map β(Xi−1 − c); see Figure 2 for an

illustration. While (3) provides the usual formulation of the VAR(1) model, another way

to view the model is by relating past differences to current differences, i.e., model (3)

gives rise to the alternative model

Xi −Xi−1 = β(Xi−1 −Xi−2) + εi. (6)

The difference Xi − Xi−1 can be interpreted as the optimal transport map between

Xi−1 and Xi. In Wasserstein space, autoregressive transport models of order 1 (ATM(1))

can analogously be built with optimal transports between adjacent distributions,

Ti = α� Ti−1 ⊕ εi, where Ti = µi+1 	 µi, (7)

where the εi are again i.i.d random distortion maps with E(εi) = id.

Next we show the existence of stationary solutions for models (5) and (7). For any

S, T ∈ T , 1 ≤ q < ∞ and random distortion map ε, we utilize the distances dq(S, T ) =
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‖S − T‖Lq on T and define φε, φ̃i,m : T → T by

φε(S) = α� S ⊕ ε, φ̃i,m(S) = φεi ◦ φεi−1
◦ · · · ◦ φεi−m+1

(S).

Then under a suitable contraction condition, stationary solutions exist.

Theorem 1. Suppose there exists η > 0, S0 ∈ T , C > 0 and r ∈ (0, 1) such that

E
[
dηq

(
φ̃i,m(S0), φ̃i,m(T )

)]
≤ Crmdηq(S0, T ) (8)

holds for a given 1 ≤ q < ∞ and all m ∈ N and all T ∈ T . Then, for all S ∈ T ,

T̃i := lim
m→∞

φ̃i,m(S) ∈ T exists almost surely and does not depend on S. In addition, T̃i is

a stationary solution to the following system of stochastic transport equations

Ti = α� Ti−1 ⊕ εi, i ∈ Z (9)

and is unique almost surely.

The proof utilizes the theory of iterated random function systems (Diaconis and Freed-

man 1999), where a crucial element is the geometric-moment contraction condition (8) of

Wu and Shao (2004). Regarding sufficient conditions for (8) when q = 1, easy algebra

shows that d1(α� S, α� T ) = αd1(S, T ) for a positive α. From the corresponding result

on the L1 distance of cdfs (see, e.g., Shorack and Wellner 2009), one immediately finds

d1(S, T ) =

∫
S
|S(x)− T (x)|dx =

∫
S
|S−1(x)− T−1(x)|dx,

which then entails that d1(α � S, α � T ) = −αd1(S, T ) when α < 0. Suppose for any

S, T ∈ T , E[d1(εi ◦ S, εi ◦ T )] ≤ Ld1(S, T ), where L is some positive constant such that

αL ∈ (0, 1), then (8) is seen to hold with η = 1 and r = αL by iterating the argument.
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c µF

R2 W

Xi−1 µi−1

β(Xi−1 − c) α� Ti−1

εi
Xi

β(Xi−1 − c) + εi

εi
µi

α� Ti−1 ⊕ εi

Figure 2: Illustration of the VAR(1) model Xi− c = β(Xi−1− c) + εi in R2 (left) and the
ATM(1) model Ti = α� Ti−1 ⊕ εi, Ti = F−1i ◦ FF in W (right). The colored dashed lines
are geodesics and correspond to the respective optimal transport maps.

Moreover, E[d1(εi ◦ S, εi ◦ T )] ≤ Ld1(S, T ) holds if the {εi} satisfy E[|εi(x) − εi(y)|] ≤

L|x− y|.

3.2 Estimation

As mentioned before, ATM(1) is an extension of the classical AR(1) model in Euclidean

space. A necessary and sufficient condition for AR(1) to admit a stationary solution is

that the model parameter lies in (−1, 1), and Theorem 1 together with the subsequent

discussion indicates that a similar framework applies for ATM(1). Thus, it is natural

to assume that the true model parameter α of ATM(1) lies in (−1, 1). Furthermore, in

distributional data analysis and distributional time series the distributions that serve as

data atoms are usually not known but one rather has available i.i.d. samples of real-

valued data that have been generated by these distributions and this needs to be taken

into account in the analysis. In the following, we describe a consistent estimator for α

based on these samples of real-valued data. We denote the available estimates of transport
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maps Ti by T̂i, i = 1, . . . , n. Depending on whether α is positive or negative, T̂i or T̂−1i is

used accordingly in the proposed method.

If {T1, . . . , Tn} satisfies model (9), then it holds that

α =


∫
S E[(Ti+1(x)−x)(Ti(x)−x)] dx∫

S E[(Ti(x)−x)2] dx , if α ≥ 0,∫
S E[(Ti+1(x)−x)(x−T−1

i (x))] dx∫
S E[(x−T−1

i (x))2] dx
, if α < 0.

This motivates the following least squares type estimators of α,

α̂ =

 α̂+ if l+(α̂+) ≤ l−(α̂−),

α̂− if l+(α̂+) > l−(α̂−).

where α̂+ = argminα l+(α), α̂− = argminα l−(α) and

l+(α) =
n∑
i=2

∫
S

(
T̂i(x)− x− α(T̂i−1(x)− x)

)2
dx,

l−(α) =
n∑
i=2

∫
S

(
T̂i(x)− x− α(x− T̂−1i−1(x))

)2
dx.

Theorem 2. Suppose T0 ∼i.i.d T̃0 and {Ti}ni=1 are strictly increasing, continuous and

generated from equation (9) with −1 < α < 1 and T0 as the initial transport. Under the

assumptions of Theorem 1 with q = 1, if
∫
S E[(T1(x)− x)2] dx > 0,

|α̂− α| = Op

(
τ +

1√
n

)
,

where τ = supiE[d1(T̂i, Ti)].

Intuitively, the condition
∫
S E[(T1(x) − x)2] dx > 0 ensures that the sequence of

transport maps deviates from a sequence of identity maps. This is required to arrive

at a consistent estimator, since if Ti = id almost surely, equation (9) would hold for

14



any α ∈ R and it is then not possible to estimate α consistently. More specifically, if∫
S E[(T1(x)− x)2] dx > 0, then the following application of the Cauchy-Schwarz inequal-

ity excludes the case of equality and therefore gives rise to the strict inequality

c′ =

(∫
S
E[(T1(x)− x)2] dx

)(∫
S
E[(x− T−11 (x))2] dx

)
−
(∫
S
E[(T1(x)− x)(x− T−11 (x))] dx

)2

> 0,

where 1/c′ is an implicit constant in the Op for the rate of convergence result Op(τ+1/
√
n).

For practical applications it needs to be taken into account that the underlying dis-

tributions are almost always unknown. Accordingly, a realistic starting point is that one

has available samples of independent realizations {Xi,l}Ni
l=1 that are obtained for each of

the distributions µi. There are then two independent random mechanisms that generate

the data. The first of these generates random distributions {µi}ni=1; the second generates

randomly drawn samples {Xi,l} from each µi. Based on the {Xi,l}Ni
l=1, cdfs {Fi} or quantile

functions {Qi} can be estimated with available methodology (Falk 1983; Leblanc 2012).

Denoting the estimated cdfs by F̂i, the corresponding quantile function estimates are

Q̂i(a) = inf{x ∈ S | F̂i ≥ a}, a ∈ [0, 1]. Alternatively, one can directly estimate quantile

functions (Cheng and Parzen 1997) or start with density estimates and convert these to

cdfs using numerical integration, obtaining rates such as supµ∈W E[d2W(µ̂, µ)] = O(1/
√
N),

where N = min{Ni : i = 1, 2, . . . , n} (Panaretos and Zemel 2016) under suitable assump-

tions or alternatively supµ∈Wac
R
E[d2W(µ̂, µ)] = O(N−2/3) on the set of absolutely continu-

ous distributions (Petersen and Müller 2016). With estimates for quantile functions and

cdf in hand, one then obtains optimal transport map estimates T̂i = Q̂i ◦ F̂F or T̂i =
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Q̂i+1 ◦ F̂i, where F̂F = Q̂−1F and Q̂F =
∑n

i=1 Q̂i/n, implying

τ . sup
i
E[d1(T̂i, Ti)] . max{sup

i
(E[d2W(µ̂i, µi)])

1/2, (E[d2W(µ̂F , µF)])1/2}

for the rate τ in Theorem 2, where a . b means that there exists a constant C > 0 such

that a ≤ Cb. Depending on assumptions and estimation procedures as mentioned above,

one then obtains convergence rates ranging from τ ∼ N−1/4 to τ ∼ N−1/3.

4. AUTOREGRESSIVE TRANSPORT MODELS OF ORDER p

4.1 Stationary Solution

Autoregressive transport models of order p (ATM(p)) are defined as

Ti = αp � Ti−p ⊕ αp−1 � Ti−p+1 ⊕ · · · ⊕ α1 � Ti−1 ⊕ εi, (10)

where α1, . . . , αp ∈ R are model parameters and εi are i.i.d. random distortion maps with

E(εi) = id. To show the existence of stationary solutions, we construct a chain of functions

and again apply the geometric-moment contraction condition (Wu and Shao 2004). Let

T p = T × · · · × T be the product space, S = (S1, S2, . . . , Sp),R = (R1, R2, . . . , Rp) ∈ T p

and define the random functions Υε, Υ̃i,m : T p → T p as

Υε(S) = (S2, . . . , Sp, αp � S1 ⊕ · · · ⊕ α1 � Sp ⊕ ε),

Υ̃i,m(S) = Υεi ◦Υεi−1
◦ · · · ◦Υεi−m+1

(S),

where ε, εi are random distortion transports. We employ the product Lq-metric on T p

given by dq(S,R) =
{∑p

i=1 d
2
q(Si, Ri)

}1/2
, where q ≥ 1 is a fixed constant in the following.
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Theorem 3. Suppose there exists η > 0, S0 ∈ T p, C > 0 and r ∈ (0, 1) such that

E
[
dηq

(
Υ̃i,m(S0), Υ̃i,m(R)

)]
≤ Crmdηq(S0,R) (11)

holds for all R ∈ T p and m ∈ N. Then, for all S ∈ T p,

(T̃i−p+1, T̃i−p+2, . . . , T̃i) := lim
m→∞

Υ̃i,m(S) ∈ T p

exists almost surely and does not depend on S. In addition, (T̃i−p+1, T̃i−p+2, . . . , T̃i) is a

stationary solution of the following system of stochastic equations

Ti = αp � Ti−p ⊕ αp−1 � Ti−p+1 ⊕ · · · ⊕ α1 � Ti−1 ⊕ εi, i ∈ Z

and is unique almost surely.

For motivation of Υε and condition (11), consider the classical AR(p) model in R,

i.e. Yi =
∑p

j=1 βjYi−j + εi ∈ R, which can be represented as a vector autoregressive

model of order 1 (VAR(1)) in the form Yi = BYi−1 + εi, where Yi = (Yi, . . . , Yi−p+1)
T ,

εi = (εi, 0, . . . , 0)T ∈ Rp and

B =



β1 β2 . . . βp−1 βp

1 0 . . . 0 0

0 1 . . . 0 0

0 0 . . . 1 0


.

With (nonrandom) starting points Y0 and Y′0, running the VAR(1) model recursively m

times, one obtains Ym = BmY0+
∑m

j=1B
m−jεj and Y′m = BmY′0+

∑m
j=1B

m−jεj. With ‖·

‖2 denoting the Euclidean norm, condition (11) for this model becomes E [‖Ym −Y′m‖2] .

rm‖Y0−Y′0‖2 for some 0 < r < 1. With a slight abuse of notation, denoting the spectral
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norm of B as ‖B‖2,

E [‖Ym −Y′m‖2] = ‖Bm(Y0 −Y′0)‖
η
2 ≤ ‖Bm‖2‖Y0 −Y′0‖2.

Now if the absolute values of the eigenvalues of B are bounded above by a constant

0 < r < 1, i.e. they are inside the unit circle, then ‖Bm‖2 . rm, and this is equivalent to

the fact that the roots of φ(z) = 1 −
∑p

j=1 βjz
j all lie outside the unit circle. The latter

is a standard assumption for the existence of stationary solutions of AR(p) processes in

Euclidean space. In linear spaces the terms containing the innovation errors in Ym and

Y′m cancel, which for this case simplifies the verification of Condition (11).

To select the order of the ATM, we propose an approach based on rolling-window

validation and refer to Zivot and Wang (2007) for more details on rolling-window anal-

ysis for time series. To train the ATM(p) on a given sequence {µt, µt+1, . . . , µt+m−1} of

length m with starting time t, we assume that there exists a pre-sample of length k, i.e.,

{µt−k, . . . , µt−1}. For each fixed p in a candidate set, the sample {µt−k, µt−k+1, . . . , µt−k+m−1}

is used as training set to predict the distribution at time t − k + m. Denoting this

predicted distribution as µ̂t−k+m, the prediction accuracy can be measured by Wasser-

stein distance dW(µt−k+m, µ̂t−k+m). Then roll the window one step forward and use

{µt−k+1, µt−k+1, . . . , µt−k+m} as training set to make a prediction at time t − k + m + 1

and compute the error dW(µt−k+m+1, µ̂t−k+m+1). Rolling the training window forward re-

peatedly until the last window covering time t− 1 to t+m− 2 is reached and computing

the error dW(µt+m−1, µ̂t+m−1) then leads to the selection of the autoregressive order p as

the minimizer of
∑t+m−1

i=t+m−k dW(µi, µ̂i) over a candidate set of orders.
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4.2 Estimation of Model Parameters

Hereafter, we denote the true model parameters as (α∗1, . . . , α
∗
p) to avoid confusion. Ob-

vious estimates of the ATM(p) parameters α∗1, α
∗
2, . . . , α

∗
p are obtained as minimizers of

Ln(α1, α2, . . . , αp) =
1

n− p

n∑
i=p+1

∫
S

(Ti(x)− αp � Ti−p ⊕ · · · ⊕ α1 � Ti−1(x))2 dx.

When p > 1, the minimization of Ln(α1, . . . , αp) is challenging, as the functional Ln in

general is not convex. We propose a back propagation-type algorithm to address this

minimization problem. The partial derivatives of α� Ti(x) with respect to x are

∂

∂x
α� Ti(x) =


(1 + a(gb(x, Ti)− 1))×

(
b−1∏
l=0

gl(x, Ti)

)
, if α > 0,

1, if α = 0,

(1 + a(1− gb(x, T−1i )))×
(
b−1∏
l=0

gl(x, T
−1
i )

)
, if α < 0,

where b = b|α|c, a = |α| − b, T ′, (T−1)′ are the derivatives of T, T−1 respectively,∏b−1
l=0 gl(x, T ) is defined to be 1 if b− 1 < 0 and

gl(x, T ) =


T ′(x), if l = 0,

T ′(T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
l compositions of T

(x)) if l = 1, 2, . . .

The partial derivative with respect to α when a > 0 is

∂

∂α
α� Ti(x) =

 Ti(h(x, Ti))− h(x, Ti), if α > 0

h(x, T−1i )− T−1i (h(x, T−1i )), if α < 0,
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where

h(x, T ) =


x if b = 0,

T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
b compositions of T

(x) if b > 0.

Since α � Ti(x) is not differentiable w.r.t α if α ∈ Z, we use its subdifferential (sub-

gradient). When α = 0, we set ∂α � Ti(x)/∂α at α = 0 to be any value in the closed

interval between Ti(x)−x and x−T−1i (x). In our simulations, ∂α�Ti(x)/∂α at α = 0 is

selected uniformly from Ti(x)−x and x−T−1i (x). When 0 6= α ∈ Z, ∂α�Ti(x)/∂α is set

to be the partial derivative of α� Ti(x) at a point α′ such that α′ has the same sign as α

and |α| < |α′| < (|α| + 1). For more details on the back-propagation type algorithm for

ATM of order p see the display for Algorithm 1. We employ gradient clipping, a common

technique used in deep neural networks to prevent exploding gradients.

Next, we establish consistency for the minimizer of Ln(α1, . . . , αp), i.e.

α̃ := (α̃1, α̃2, . . . , α̃p)
T ∈ argmin

−c≤α1,...,αp≤c
Ln(α1, α2, . . . , αp),

where c is the same constant as in Theorem 4 below, which demonstrates that (α̃1, α̃2, . . . , α̃p)

converges to the true model parameters in probability with respect to the discrepancy

∆(α̃,α∗) :=

∫
S
E
[
(α̃p � T1 ⊕ · · · ⊕ α̃1 � Tp(x)− α∗p � T1 ⊕ · · · ⊕ α∗1 � Tp(x))2

]
dx,

where α∗ = (α∗1, . . . , α
∗
p)
T are the true model parameters. The key step, where the

constant c is used, is to show that sup−c≤α1,...,αp≤c |Ln(α1, . . . , αp)− E[Ln(α1, . . . , αp)]| =

op(1) based on Corollary 3.1 of Newey (1991). In practice, we simply set c to be a large

enough number.

Theorem 4. Under the assumptions of Theorem 3 with q = 1, if T0 ∼i.i.d T̃0 and {Ti}ni=1
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are strictly increasing, differentiable, bi-Lipschitz continuous with Lipschitz constant K

and generated from equation (10) with T0 as the initial transport and (α1, . . . , αp) =

(α∗1, . . . , α
∗
p) where −c ≤ α∗1, . . . , α

∗
p ≤ c for some constant c > 0, then

∆(α̃,α∗)
p→ 0 as n→∞.

5. CONCURRENT AUTOREGRESSIVE TRANSPORT MODEL

A promising extension of ATMs of order 1 is to consider model coefficients that vary with

x ∈ S. For a function β : S → [−1, 1], define the operation

β } T (x) :=


x+ β(x)(T (x)− x), 0 < β(x) ≤ 1

x, β(x) = 0

x+ β(x)(x− T−1(x)), −1 ≤ β(x) < 0

.

This leads to the following concurrent autoregressive transport model (CAT),

Ti = β } Ti−1 ⊕ εi, (12)

with i.i.d. random distortion transports εi satisfying E(εi) = id.

To ensure monotonicity that is required for the transports to be well defined, given

the true function β, we consider a subset of transports T̃ ⊂ T such that β} T̃ := {β}T :

T ∈ T̃ } ⊆ T̃ and assume that P (εi ◦ T̃ ⊆ T̃ ) = 1 where εi ◦ T̃ := {εi ◦ T : T ∈ T̃ };

this obviously holds if the function β does not vary, i.e. is constant, whence T̃ = T and

P (εi ◦ T̃ ⊆ T̃ ) = 1. Whenever β } T̃ ⊆ T̃ and P (εi ◦ T̃ ⊆ T̃ ) = 1, the random functions

ϕε(S) = β } S ⊕ ε, ϕ̃i,m(S) = ϕεi ◦ ϕεi−1
◦ · · · ◦ ϕεi−m+1

(S), ϕε, ϕ̃i,m : T̃ → T̃
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Algorithm 1: Back Propagation Algorithm for Fitting ATM(p), p > 1.

Select a grid s1 < x1 < x2 < · · · < xm < s2.
Select step size η.
Initialize α0

k = 0 for k = 2, 3, . . . , p and

α0
1 = argmin

α

1

n− p

n∑
i=p+1

m∑
j=1

(Ti(xj)− α� Ti−1(xj))2 .

for t = 1, 2, . . . do

Forward Pass

For all i = p+ 1, . . . , n, j = 1, . . . ,m, compute Rt
1,ji = αt−1p � Ti−p(xj).

for k = 2, 3, . . . , p do
For all j, i, compute

Rt
k,ji = αt−1p+1−k � Ti−(p+1−k)(R

t
k−1,ji).

For all j, i, compute Ltji = 2
(
Ti(xj)−Rt

p,ji

)
.

Backward Pass

For all j, i, set Dt
0,ji = 1 .

for k = 1, 2, . . . , p− 1 do
For all j, i, compute

Dt
k,ji = (Dt

k−1,ji)×

(
∂

∂x
αt−1k � Ti−k(x)

∣∣∣∣
x=Rt

p−k,ji

)
for all j, i,

Update αk as

αtk = αt−1k +
η

n− p

n∑
i=p+1

m∑
j=1

(
LtjiD

t
k−1,ji

∂

∂α
α� Ti−k(Rt

p−k,ji)

∣∣∣∣
α=αt−1

k

)
.

Compute αtp = αt−1p + η
n−p

∑n
i=p+1

∑m
j=1

(
Ltji(D

t
p−1,ji)

∂
∂α
α� Ti−p(xj)

∣∣
α=αt−1

p

)
.

if stopping conditions hold then
return (αt1, α

t
2, . . . , α

t
p)
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are well-defined for any S ∈ T̃ .

An example for this concurrent autoregressive transport model (CAT) is as follows.

Let s1 = t1 < · · · < tk = s2 be a grid over S and β : S → [0, 1] be such that β is positive

and is either increasing or decreasing on each grid interval [ti, ti+1]. Here T̃ is selected as

a set of transports such that for any T ∈ T̃ , T (ti) = ti, T (x) ≥ x if β(x) is increasing

and otherwise T (x) < x. The properties required for the CAT model are satisfied as T̃

is complete and {εi} can be defined as random distortion maps taking values in T̃ . To

state our next result, we equip T̃ with the sup-metric d∞(f, g) = supx∈S |f(x)− g(x)|.

Theorem 5. Suppose that T̃ is a complete metric space, P (εi ◦ T̃ ⊆ T̃ ) = 1 and there

exists η > 0, S0 ∈ T̃ , C > 0 and r ∈ (0, 1) such that

E [dη∞ (ϕ̃i,m(S0), ϕ̃i,m(T ))] ≤ Crmdη∞(S0, T ) (13)

holds for all T ∈ T̃ and m ∈ N. Then, for all S ∈ T̃ , T̃i := lim
m→∞

ϕ̃i,m(S) ∈ T̃ exists

almost surely and does not depend on S. In addition, T̃i is a stationary solution of the

system of stochastic equations

Ti = β } Ti−1 ⊕ εi, i ∈ Z (14)

and is unique almost surely.

The estimation of the CAT model function β proceeds similarly to the estimation of

the scalar coefficient in the ATM(1). If {T1, . . . , Tn} satisfy model (12), then for all x ∈ S

β(x) =


E[(Ti+1(x)−x)(Ti(x)−x)]

E[(Ti(x)−x)2] , if β(x) ≥ 0,

E[(Ti+1(x)−x)(x−T−1
i (x))]

E[(x−T−1
i (x))2]

, if β(x) < 0.
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This suggests estimates β̂(x) for β(x) given by

β̂(x) =

 β̂+(x), if l+(β̂+(x)|x) ≤ l−(β̂−(x)|x),

β̂−(x), if l+(β̂+(x)|x) > l−(β̂−(x)|x),

where β̂+(x) = argminβ l+(β|x), β̂−(x) = argminβ l−(β|x) and

l+(β|x) =
n∑
i=2

(
T̂i(x)− x− β(T̂i−1(x)− x)

)2
,

l−(β|x) =
n∑
i=2

(
T̂i(x)− x− β(x− T̂−1i−1(x))

)2
.

Then we obtain pointwise convergence of β̂(x) to β(x) in probability.

Theorem 6. Suppose T0 ∼i.i.d T̃0 and {Ti}ni=1 are strictly increasing, continuous and

generated from equation (14) with β such that −1 < β(x) < 1 for all x ∈ S and with T0

as the initial transport. Under the assumptions of Theorem 5, if E[(T1(x)− x)2] > 0,

|β̂(x)− β(x)| = Op

(
τ(x) +

1√
n

)
,

where τ(x) = supiE[|T̂i(x)− Ti(x)|].

6. NUMERICAL STUDIES

In the following, ATMm and CATm indicate models that are based on optimal transport

maps {Ti} from the Fréchet mean to individual distributions, while ATMd and CATd indi-

cate models based on optimal transport maps between adjacent distributions. Specifically,

model (5) is denoted as ATMm(p), model (7) as ATMd(p), model (12) with Ti = F−1i ◦FF

as CATm and model (12) with Ti = F−1i+1 ◦ Fi as CATd.

To examine the performance of these ATMs, we compare them in simulations with a
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recently proposed autoregressive model for distributional time series (Chen et al. 2022),

which we refer to as WR (Wasserstein Regression). This approach is based on using

manifold logarithmic maps in the Wasserstein manifold to map distributions to a tangent

space anchored by the overall barycenter. Since the tangent space is a subspace of a

L2-space, functional linear regression techniques can be applied in this space, followed by

a projection on the convex injectivity set and an application of the exponential map to

get back to the Wasserstein manifold. Due to the local linearization this is an extrinsic

approach, while the proposed ATMs are intrinsic to the Wasserstein manifold.

We also include comparisons with the log quantile (LQD) approach, which ignores the

manifold structure of the distribution space, providing a direct 1:1 mapping of distribu-

tions to a Hilbert space by the invertible log quantile transformation or other transfor-

mations (Petersen and Müller 2016). After applying the LQD transformation, standard

autoregressive models for functional time series can be employed in the ensuing Hilbert

space (Bosq 2000), followed by mapping back into distribution space by the inverse LQD

map. For autoregressive modeling of functional time series we used the R package “ftsa”.

6.1 Interpretation of ATMs

We illustrate the process of transporting distributions by ATMs with a simple example.

Let µ1, µ2, µ3 be three normal distributions N(−1, 2.25), N(2.5, 1.44) and N(−2, 0.81)

(here all distributions are truncated to the interval [−10, 10], where the miniscule mass

left outside of the truncation interval is ignored). We apply ATMm(2) and ATMd(2)

models to produce the distribution µ4 at time t = 4. Figure 3 illustrates the densities

of µ2, µ3 as well as the density of µ4 generated by ATMm(2), where the Fréchet mean is

chosen as the standard normal distribution µ0. For the optimal transport maps T2, T3

that map µ0 to µ2 and µ3, respectively, we observe that T2 shifts the density of µ0 to the

right and increases its variance, while T3 shifts µ0 to the left and decreases its variance.
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Note that ATMm(2) transforms µ0 by first applying transport map α1 � T3, followed

by an application of transport map α2�T2. For example, from the first row of the figure,

when α1 = 0.5, α2 = 0.5, the resulting overall transport is close to the identity, whereas

for α1 = 0.5, α2 = 0, the resulting density of µ4 is on the Wasserstein geodesic connecting

µ0 and µ3. When α1 = 0, it can be seen from the middle row of Figure 3 that the density

of µ4 is moving to the left with decreasing variance when α2 moves from 0.5 to −0.5. This

illustrates the effect of the changing value of α2 for the transport α2 � T2. Similar effects

can be seen in the third row of the figure.

The densities of µ1, µ2, µ3 and the density of µ4 that is obtained by applying the

difference based models ATMd(1) and ATMd(2) are depicted in Figure 4. Denoting by T1

the optimal transport map that maps µ1 to µ2 and by T2 the transport map that maps

µ2 to µ3, one finds that T1 represents a shift to the right with a simultaneous decrease in

variance, while T2 represents a shift to the left, also accompanied by a decrease in variance.

Applying ATMd with T1, T2 as predictors, i.e. model (10) with T3 = α1 � T2 ⊕ α2 � T1,

leads to the transport map T3, which is then applied to µ3, resulting in µ4. To illustrate

the effect of the coefficients, all panels show that decreasing α2 enhances a shift to the

left, while decreasing α1 is associated with a shift to the right.

6.2 Reducing Non-stationarity

The following example illustrates that the difference-based models ATMd and CATd are

advantageous compared to ATMm, CATm and WR if the assumption that {µ1, . . . , µn} is

a stationary sequence does not hold. Stationarity of the sequence {µ1, . . . , µn} is a basic

assumption for models ATMm, CATm and WR, whereas models ATMd and CATd only re-

quire stationarity for differences, i.e. the sequence of optimal transport maps constructed

by taking transports between consecutive distributions {µ1, . . . , µn} as predictors.

Consider a sequence of Gaussian distributions {µ1, . . . , µ6} with mean 0 and decreasing
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Figure 3: Illustrating ATMm(2) and ATMm(1) models for distributional time series. Each
panel depicts the density functions for distributions µ2 (dot-dashed), µ3 (dashed) (these
are the same across all panels) and the density of distribution µ4 generated by ATMm

(blue), which varies across panels. For all panels the density of µ0 (standard normal) is
also included (solid black).

27



−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t=1 t=2 t=3 ATMd

α1 = 0.5, α2 = 0.5

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α1 = 0.5, α2 = 0

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α1 = 0.5, α2 = −0.5

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t=1 t=2 t=3 ATMd

α1 = 0, α2 = 0.5

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α1 = 0, α2 = 0

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α1 = 0, α2 = −0.5

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t=1 t=2 t=3 ATMd

α1 = −0.5, α2 = 0.5

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α1 = −0.5, α2 = 0

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

α1 = −0.5, α2 = −0.5

Figure 4: Illustrating ATMd(2) and ATMd(1) models for distributional time series. Each
panel depicts the density functions for distributions µ1 (dotted), µ2 (dot-dashed) and µ3

(dashed) (these are the same across all panels) and the density of distribution µ4 generated
by ATMd (red), which varies across panels.
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Figure 5: Left panel: The training sample introduced in Section 6.2. Right panel: The
one-step forecasts obtained for different methods at t = 7, where only predictions ob-
tained from ATMd(1) and CATd reflect the declining trend in variances, as only these two
predictions have smaller variance compared to the last observed density at t = 6, which
is also plotted on the right panel.

standard deviations 4.8, 4, 3, 1.6, 1.15, 1, respectively. This sequence of distributions is

non-stationary. We use {µt : t = 1, 2, . . . , 6} as training data and aim to predict the

distribution µ7 with models ATMm(1), ATMd(1), CATm, CATd, WR and LQD. The

densities of the training data are visualized in the left panel of Figure 5. One would

expect µ7 to follow this trend, i.e. to also have mean 0 with even smaller variance than

µ6. The right panel shows the predicted densities obtained with the different methods.

We find that only ATMd and CATd capture the underlying trend and provide reasonable

predictions for the next element µ7 in the sequence.
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6.3 Simulations

We generate random transports according to

Ti = α4 � Ti−4 ⊕ α3 � Ti−3 ⊕ α2 � Ti−2 ⊕ α1 � Ti−1 ⊕ εi, i ∈ Z, (15)

where εi(x) = 1
2
((1 + ξi)g(h−1(x)) + (1 + ξi)h

−1(x)), h(x) = 1
2
((1 − ξi)g(x) + (1 + ξi)x),

x ∈ S = [0, 1] and {ξi} ∼i.i.d Uniform(−1, 1). Here g(x) is the natural cubic spline passing

through points (0, 0), (0.33, 0.7), (0.66, 0.8), (1, 1). We note that this construction ensures

that the εi are transports. When representing these transports as quantile functions, for

0 < ξi < 1 the function g(x) is shifted along the direction perpendicular to the diagonal

towards the identity map and for −1 < ξi < 0 this shift is applied to g−1 instead; see

Figure 6 for an illustration of g and εi(x). By construction, E(εi) = id.

To compare prediction accuracy across different models, we generated {Ti}101i=1 from

the above model, using {Ti}100i=1 as training set, aiming to predict T101. The Wasser-

stein distance between T101 and its prediction was computed for different combinations

of α1, α2 by treating the transport maps {Ti} as quantile functions. For these compar-

isons, we modified LQD to operate on transport maps, rather than predictor distributions

(as originally devised). The simulation results for 1000 Monte Carlo replications are in

Table 1 (numbers multiplied by 100). The order of ATMm was obtained by rolling-

window validation based on a pre-sample of size 50. When α2 = 0, model (15) reduces

to an autoregressive model of order 1. Overall, ATM was found to outperform WR and

LQD. We also use this example with h(x) chosen as natural cubic spline passing through

(0, 0), (0.3, 0.5), (0.6, 0.8), (1, 1) to illustrate the empirical rate of convergence of the es-

timates for the parameters of ATMm(1). Figure 7 displays estimation error versus
√
n

based on 200 Monte Carlo repetitions, demonstrating that finite sample performance with

increasing sample sizes matches the root-n convergence rate predicted by Theorem 2.
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Figure 6: Auxiliary functions for the simulation. Left panel: The monotone function g
(blue), g−1 (red) and εi with ξi = −0.7 (green) in the simulation (15). Middle panel:
Sequence of generated transport maps Ti for simulation (15) with α1 = −0.3, α2 = 0.2.
Right panel: Quantile functions generated for simulation (16) with α1 = −0.3, α2 = 0.2.

It is also of interest to consider a sequence of distributions that are not generated from

any of the examined models. Starting with the sequence of square integrable functions

Ri(x) = sin(ζix), (16)

where x ∈ [0, 1] and the {ζi} are generated from the AR(2) model, ζi = α1ζi−1 +α2ζi−1 +

α3ζi−3 + α4ζi−4 + εi, εi
i.i.d.∼ Uniform(−4π, 4π), we convert the {Ri} to distributions by

applying the inverse log quantile density transformation (Petersen and Müller 2016), scal-

ing the resulting distributions to be supported on [0, 1]; see Figure 6 (right panel) for an

illustration. Again, we generate 100 distributions for training and report the results for

1000 Monte Carlo replications. The simulation results are in the lower part of Table 1.

For this case, we find that ATMm(1) is the overall preferred model.

6.4 Temperature Data

One consequence of global warming may be an increasing frequency of warm summer

nights in the Northern hemisphere. Inspired by the article of Bhatia and Katz (2021), we
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Figure 7: Log-estimation error of α̂ versus log sample size n for ATM(1), for α = 0.5 (left)
and α = −0.5(right). The solid black line in each panel is a line with slope -0.5 that is
predicted by theory.

studied this with temperature data that were recorded at O’Hare international airport

(available at https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND). The

annual distributions of daily minimum temperatures, aggregating these temperatures over

the period June 1 to September 30 over the summer months of each year, are illustrated

in Figure 8 for the years from 1990 to 2019, where we use the distributions prior to 2019

as training data to predict the distribution for the year 2019.

For the ATM models we varied p from 1 to 3 and found that p = 3 yielded the

best prediction. The observed and predicted densities for 2019 are shown in Figure 8.

The Wasserstein distances between observed and predicted distributions were found to be

0.334 for ATMd(3), 1.01 for ATMm(3), 0.462 for CATd, 1.477 for CATm, 1.134 for WR,

and 1.255 for LQD. The fitted model coefficients for the best model, i.e. ATMd(3), are

α1 = −0.724, α2 = −0.5, α3 = −0.268. Denote by µ2018, µ2017, µ2016, µ2015 the observed

distributions for the years 2018, 2017, 2016, 2015, respectively, and by T3 be the optimal

transport from µ2015 to µ2016, by T2 the optimal transport from µ2016 to µ2017 and by
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(α1, α2, α3, α4) (0.2, -0.5, 0.1, -0.3) (0.5, 0, 0, 0)

Example (15)
ATMm 12.264 11.586
LQD 13.891 13.282
WR 12.535 11.765

Example (16)
ATMm 9.841 9.644
LQD 10.079 9.836
WR 10.082 9.838

Table 1: Forecasting accuracy comparison for simulations (15) and (16).

T1 the optimal transport from µ2017 to µ2018. The training set of distributions, i.e. the

observed data, is illustrated in the form of densities in the left panel of Figure 8, predicted

densities are in the middle panel and the densities of µ2015, . . . , µ2018 in the right panel.

Comparing the densities of µ2017 and µ2018, µ2016 and those of µ2017, µ2015 and µ2016,

respectively, we find that T1 corresponds to a shift to the right and a sharpening of the

distribution, T2 corresponds to a shift to the left and a smoothing of the distribution and

T3 corresponds to a shift to the right and a sharpening of the distribution. The proposed

model applies deformations α3 � T3, α2 � T2 and α1 � T1 sequentially to µ2018. it is

likely that ATMd and CATd yield the best results because of the non-stationarity of this

sequence, as the distributions shift to the right over the years, reflecting a warming trend.

6.5 U.S. House Price Data

Given the sequence of distributions {µ1, µ2, . . . , µn}, for a starting time sr ∈ {k + 1, k +

2, . . . , n−k}, we used the subset {µsr , µsr+1, . . . , µsr+k−1} to train models and to produce

the prediction µ̂sr+k at time sr + k. The autoregressive order p was selected so as to

minimize
∑sr+k−1

i=sr
dW(µi, µ̂i), where µ̂i is the predicted distribution at time i by ATM(p)

trained on the sample {µi−k, . . . , µi−1}. The candidate set for p was {1, 2, 3, 4, 5} when

k = 8 and {1, 2, 3, 4, 6, 8} when k > 8. We adopted the rolling window approach (Zivot
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Figure 8: Left panel: Densities of the annual distributions of minimum summer night
temperatures at O’Hare International Airport from 1990-2018. Middle panel: Observed
density and predicted densities obtained from various models for the year 2019. Right
figure shows the densities of µ2018, µ2017, µ2016, µ2015 that are the observed distributions
for years 2018, 2017, 2016, 2015 respectively.

and Wang 2007) and used the prediction loss
∑n−k

sr=k+1 dW(µsr+k, µ̂sr+k)/(n− 2k).

The US house price data contain bimonthly median house prices for 306 U.S. cities

and counties from June 1996 to August 2015 (available at http://www.zillow.com). We

adjusted the data to account for inflation by a monthly adjustment factor (deflator) and

constructed the bimonthly house price distributions over the 306 cities/counties. The

preprocessed distributions (equivalently density or quantile functions) were then scaled

to be supported on [0, 1]. Figure 9 presents the house price densities over time. Setting

the learning rate η = 1 in algorithm 1, the prediction results are summarized in Table

2. In general, ATMd emerged as the best performing model for these data, which is not

surprising due to the non-stationarity of these data.

7. CONCLUDING REMARKS

Distributional data analysis is challenged by the fact that distributions do not form a

vector space and basic operations such as addition and multiplication are not available.

This especially affects regression models, including distributional autoregressive models
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Figure 9: Distributions of US house prices across counties for 240 months between 1996
and 2015, shown as densities.

for time series analysis. At the same time, many time series data can be viewed as

sequences of distributional data that are indexed by time and there is a need for more

advanced statistical tools to model such time series. A key innovation of this paper is that

it provides a novel class of regression models for distributional data that are intrinsic and

enjoy geometric interpretations. These models result from adopting the point of view that

predictors and responses are elements of a space of optimal transports that is equipped

with basic algebraic operations. The existence of stationary solutions of the associated

ATM models can be guaranteed if a geometric moment-contraction condition is satisfied.

The proposed models not only provide new ways of modeling distributional time series,

but also shed light on the possibility of developing models for time series that take values in

other geodesic metric spaces. The proposed approach is not limited to optimal transport,

and other transports that correspond to geodesics with respect to relevant metrics in

distribution spaces could similarly be considered, for example Fisher-Rao transports (Dai

2022). Modeling time series that take values in the space of multivariate distributions will

be a challenging future problem; see also the discussion of this case in Chen et al. (2022).
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k 8 12 18 26 36
ATMm 1.878 1.754 1.771 2.715 2.952
CATm 2.660 2.473 2.345 2.327 2.363
ATMd 1.647 1.611 1.652 1.708 1.778
CATd 1.797 1.787 1.802 1.845 1.924
WR 4.052 3.986 4.074 4.045 4.322
LQD 3.405 3.079 2.927 2.730 2.860

Table 2: Comparison of prediction errors for the US house price distributional time series,
where k is the length of the training set. Actual prediction errors to be multiplied by
10−3.
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